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A deep neural network to assess
spontaneous pain from mouse
facial expressions

Alexander H Tuttle1, Mark J Molinaro1, Jasmine F Jethwa1,
Susana G Sotocinal2, Juan C Prieto3, Martin A Styner3,
Jeffrey S Mogil2 and Mark J Zylka1

Abstract

Grimace scales quantify characteristic facial expressions associated with spontaneous pain in rodents and other mammals.

However, these scales have not been widely adopted largely because of the time and effort required for highly trained

humans to manually score the images. Convoluted neural networks were recently developed that distinguish individual

humans and objects in images. Here, we trained one of these networks, the InceptionV3 convolutional neural net, with a

large set of human-scored mouse images. Output consists of a binary pain/no-pain assessment and a confidence score.

Our automated Mouse Grimace Scale integrates these two outputs and is highly accurate (94%) at assessing the presence of

pain in mice across different experimental assays. In addition, we used a novel set of “pain” and “no pain” images to show

that automated Mouse Grimace Scale scores are highly correlated with human scores (Pearson’s r¼ 0.75). Moreover, the

automated Mouse Grimace Scale classified a greater proportion of images as “pain” following laparotomy surgery

when compared to animals receiving a sham surgery or a post-surgical analgesic. Together, these findings suggest that the

automated Mouse Grimace Scale can eliminate the need for tedious human scoring of images and provide an objective and

rapid way to quantify spontaneous pain and pain relief in mice.
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Introduction

Despite a persistent demand for new analgesics with

fewer adverse side effects, successes in translating basic

discoveries into clinical treatments have been limited.

Standard tests of animal hypersensitivity and allodynia

do not measure spontaneous pain—the main symptom

associated with chronic pain in humans.1–3 In an attempt

to address this mismatch, assays that monitor ongoing

spontaneous pain in rodents were developed, although

many of these assays have uncertain predictive value (see

Mogil4). Moreover, a significant proportion of sponta-

neous pain assays are prohibitively labor-intensive to

score and require highly trained personnel.
The Mouse and Rat Grimace Scales (MGS and RGS)

measure characteristic changes in facial expressions that

associate with pain in rodents.5,6 To make use of these

scales, close-up video is obtained from rodents, individ-
ual images containing the face are manually extracted,
and the images are scored for the presence or absence of
grimacing, as defined by changes in facial musculature.
This rodent scale is based on human facial coding
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scales.7,8 Facial grimace scales were subsequently
adapted to detect spontaneous pain in additional species
including sheep,9,10 horses,11,12 rabbits,13 cattle,14 pigs,15

and cats.16 Researchers used this scoring system to
evaluate analgesic efficacy in mice17 and rats,18,19,20,21

as well as evaluate post-surgical spontaneous pain in
rodents.22,23 To eliminate the need for manual image
extraction, the Rodent Face FinderVR software was devel-
oped. This software identifies and extracts video frames
when mice or rats are facing the camera.6,17 However,
this software does not eliminate two of the most time-
consuming and subjective aspects of using grimace
scales—(1) training lab personnel to score images and
(2) scoring the large numbers of images that are gener-
ated as part of each experiment. Widespread adoption of
grimace scales has been limited as a result, despite
the fact these scales are reproducible between labs and
accurately predict analgesic efficacy.

We reasoned that a machine learning model could be
used to eliminate the need for humans to score images.
To test this possibility, we trained and optimized a
convolutional neural network based on Google’s
InceptionV3 model24 to analyze and classify a large
number of “pain” and “no pain” face images from out-
bred CD-1 mice. Similar machine-learning models were
used to predict human self-reported pain25,26 and to clas-
sify changes in mouse behavior at the sub-second level.27

Our automated Mouse Grimace Scale (aMGS) was val-
idated on novel image sets generated in two different
labs (Zylka and Mogil) and accuracy was compared to
human scoring. In contrast to previous efforts,28 we
show a consistently high accuracy across large data
sets that include high-definition color images procured
from multiple pain tests. Finally, we evaluate the
predictive validity of our model using an assay of
post-operative pain (laparotomy) and relief of pain
with carprofen, a non-steroidal anti-inflammatory
drug. This analgesic was previously found to reduce
pain-induced grimacing in mice and rats when images
were scored by humans.17,21

Methods

Animals

All animal experiments were approved by the
Institutional Animal Care and Use Committee of the
University of North Carolina at Chapel Hill and in
accordance with NIH guidelines. Archived images
from the Mogil lab were of mice previously tested in
compliance with the McGill Downtown Animal Care
and Use committee and were consistent with Canadian
Council on Animal Care guidelines. Images of mice were
obtained from video or still image archives kept at the
Mogil lab at McGill University (Quebec, Canada) or

recorded and processed at the University of North

Carolina (Chapel Hill, NC, USA). All animals used in

this study were CD-1
VR

(ICR:Crl) mice (6–12 weeks old)

and were purchased from Charles River Laboratories

(Albany, NY; St. Constant, QC). Mice at UNC were

housed in standard 7.5 in.� 11.5 in.� 5 in. polycarbon-

ate cages with 1/4-in. corncob bedding (Bed-o’Cobs,

Maumee, OH) in groups of five with same-sex litter-

mates under a 12:12-h light:dark cycle (lights on at

07:00), in a temperature-controlled environment (20

� 1�C), and with ad libitum access to food (Envigo

Teklad 2920, Harlan Teklad) and tap water. Each

animal underwent one surgery (and/or drug or anesthe-

sia exposure). Mice received isoflurane during surgery

and were sacrificed immediately after post-surgical

observation. In cases of surgical complications, mice

were immediately sacrificed without further testing.

Roughly equal numbers of male and female mice were

tested in each cohort. Neither main effects of sex nor

interactions with sex were noted, so collapsed data

are reported.

Compounds

Zymosan was obtained from Sigma-Aldrich (St. Louis,

MO) and dissolved in physiological saline (5.0 mg/ml),

and unilaterally injected (20ml volume) into the

intraarticular space around the ankle joint. Carprofen

(Rimadyl
VR

) was purchased from Zoetis, Inc.

(Kalamazoo, MI) and administered to a subset of animals

(50 mg/kg, s.c.) as described below.

Video capture

Data sets provided from the Mogil lab were generated

by placing mice individually on a tabletop in cubicles

(9� 5� 5 cm high) with two walls of transparent

Plexiglas and two side walls of removable stainless

steel. Two high-resolution (1920� 1080) digital video

cameras (High-Definition Handycam Camcorder,

model HDR-CX100, Sony, San Jose, CA) were placed

immediately outside both walls to maximize the oppor-
tunity for clear head shots (see Figure 1(a)). Video was

taken for 30 min immediately before zymosan ankle

injection (baseline) and for 30-min periods at various

time points after injection.
To generate additional images for our training set, as

well as validate the classification accuracy of the aMGS,

additional mice were filmed using a second experimental

assay. Mice were placed individually on the edge of a

tabletop in a custom-built four-cubicle array (each cubi-

cle measuring 5� 12� 6 cm high) with one back wall of

transparent acrylic glass and two side walls of stainless

steel (see Figure 1(b)). The fourth wall was open and

positioned directly above the floor (1.1-m drop).
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We found that this arrangement encourages mice to look

towards the visual cliff and hence face the camera. One

camera was positioned 0.25 m away from the open side

to capture video footage mice in the cubicle array. In this

configuration, four mice can be recorded simultaneously

using two high-resolution (1920� 1080) digital video

cameras (High-Definition Camcorder, model HFR700,

Canon, Tokyo, Japan). After a 30-min habituation to

the cubicle, mice were filmed for a 30-min baseline ses-

sion immediately before surgery or inter-articular zymo-

san injection.

Nociceptive assays

We obtained scored mouse grimace image sets from the

Mogil lab to create our initial training set. These images

were generated as part of a previous study,5 and repre-

sent data from multiple pain tests. We also used the

intrarticular zymosan inflammation assay (ZYM) to

supplement the initial training image set as well as gen-

erate a separate set of images to serve as a novel valida-

tion set (not used in the initial training). We used this

second validation set to compare automated and human

image classification. ZYM consisted of a single 20

ll injection of 5 mg/ml zymosan into the right ankle

joint. Mice were allowed to recover for 3 h in their

home cage after injection and before being placed back

into our video setup for a 30-min habituation prior to

filming. Mice were filmed for 1 h.
A post-surgical pain assay (laparotomy, LAP) is

designed to mimic a ventral ovariectomy. We used the

LAP test to further validate the aMGS as a second pain

assay, as well as evaluate our system’s ability to detect

analgesia-related reduction in mouse grimacing. LAP

surgeries were performed on isoflurane–oxygen-anesthe-

tized mice by a single surgeon (AHT). After shaving and

disinfection of the surgical site, a 1-cm midline incision

was made by using a scalpel. Muscle layers and skin

edges were closed with 6-0 non-absorbable braided silk

suture and skin edges apposed by using tissue glue. Once

recovered from anesthesia, mice were reintroduced to

video cubicles to obtain post-surgical video recordings.

Mice (n¼ 64) were placed into one of three groups: (1)

surgery alone (laparotomy); (2) surgery plus carprofen

(50 mg/kg, s.c.) during recovery (carprofen); (3) isoflur-

ane anesthesia and surgery preparation only (sham

surgery). All surgeries were performed at 13:00� 1 h.

Cases of excessive bleeding or poor surgical outcome

were excluded from testing (n¼ 7). Mice were allowed

to recover for 15–20 min following surgery before being

filmed for 1 h in the video rig.

Image generation and human scoring

Individual frames from video files were “grabbed” auto-

matically by the Rodent Face Finder software, devel-

oped previously to assist in capturing mouse and rat

face images from video.6,17 This software detects

frames, in an unbiased fashion, where eyes and ears

are visible and image quality is not compromised by

motion blurring. The Rodent Face Finder was set

to grab one image for every 10 s of video in order to

avoid oversampling extremely short observation periods.

All images were output from the software and placed

into Microsoft PowerPoint, with one image per slide.

A PowerPoint macro (http://www.tusharmehta.com/

powerpoint/randomslideshow/index.htm) was used to

randomize the slide order. Identifications were removed

to ensure that subsequent coding was performed in a

blinded fashion by experienced human scorers.
Randomized and unlabeled photos were presented

sequentially on a large, high-resolution computer moni-

tor. For each photo, the scorer assigned a value of 0, 1,

or 2 for each of the five MGS action units: (1) orbital

tightening, (2) nose bulge, (3) cheek bulge, (4) ear posi-

tion, and (5) whisker change. In each case, a score of 0

indicated high confidence by the scorer that the action

unit was absent. A score of 1 indicated either high

confidence of a moderate appearance of the action unit

or equivocation over its presence or absence. A score of

Figure 1. Setups used to capture continuous video footage of mice. Examples of mice grimacing in (a) the traditional recording setup with
mice enclosed in Plexiglas boxes and (b) the new elevated cliff recording setup. Mice face towards the visual cliff for most of the recording
session in the new setup, allowing the use of a single camera instead of two cameras. The camera also captures clearer images (without
reflections) through air than through the Plexiglas partition.
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2 indicated high confidence of a marked appearance of

the action unit. The final MGS score was the summed

score across the five action units (resulting in a maxi-

mum hypothetical score of 10 and minimum score of

0). All human scores were input into our initial training

set for the automated scoring system.

The automated Mouse Grimace Scale

To systematically classify an individual mouse facial

expression as “pain” or “no pain,” the InceptionV3

convolutional neural net—one of the current standard

convolutional neural net’s for generalized image classifi-

cation—was retrained on our own data set. We began by

building the initial training set from a combination of

previously published pain images (provided by the Mogil

lab5) and supplemented by additional ZYM images

generated in the Zylka lab. Altogether, our training set

comprised 5,771 unique images: 2,444 “pain” and 3,327

“no pain.” We then validated our model by combining

unpublished ZYM images from the Mogil lab (scored by

SGS) and adding annotated laparotomy images generat-

ed by the Zylka lab (scored by JJ). To determine inter-

rater reliability, we calculated a concordance value based

on MGS scores produced by our human raters on a

subset of training images. We found our two MGS scor-

ers to be in close agreement with one another on the

same set of ZYM images (Cronbach’s alpha¼ 0.89).
Initial training images were selected equally from

published data sets as well as new experiments in order

to maximize image heterogeneity. This was to ensure

that our model would be able to classify pain faces

across a variety of different testing parameters (including

image background, image quality, rodent facial differ-

ences, and pain assays). We confirmed the absence of

large systematic differences between “pain” and “no

pain” images using a pixel-by-pixel structural similarity

analysis on a subset of our training images (n¼ 12–16).

Analysis revealed that within-group and between-group

differences were statistically indistinguishable from

one another.
To further anticipate future variations in image qual-

ity, a random selection of “pain” images from the train-

ing set were duplicated, programmatically altered by

cropping (� up to 10% on each side), horizontal flip-

ping, or brightness scaling by a factor of N(1,0.2), and

then added back into the “pain” image subset. By alter-

ing some of the pain images, we were also able to create

an overall balanced training set (3,536 “pain” and 3,326

“no pain” images). Both the training and classification

scripts utilized Google’s TensorFlow (v1.0) library and

were written in Python (v3.5). To tailor the pre-trained

model for our specifications, we exploited the power of

transfer learning to retrain only the final fully connected

and softmax layers of the inception model on our own

training image set.
To train the model, we split our balanced training set

(comprising 6,862 total images) into training (80%), test-

ing (10%), and validation (10%) subsets. After empiri-

cally testing various training hyper-parameters, we

found a learning rate of 0.01 to be ideal. The training

batch size was set to 100 images, and the batch size for

both testing and validation sets remained unbounded in

order to balance the stability of results between training

runs. The model trained to converge after 7,500 itera-

tions of 100-image training batches processed by our

neural network.
The aMGS was designed to output a classification

(“pain” or “no pain”) and respective confidence rating

(from 0.5 to 1.0). High-confidence images determined by

a confidence rating above a specified threshold were

retained and classified, while low-confidence images

were discarded. This increased the model’s accuracy

while simultaneously serving as a quality control step

to further identify and remove low-quality images.

Model training and image classification was completed

on standard notebook computers (Macbook Pro mid-

2015, Palo Alto, CA, and Dell Inspiron 15 7000 series

mid-2016, Round Rock, TX).

Laparotomy experiment

To test the predictive validity of our new model, we

processed novel images obtained from animals undergo-

ing a laparotomy (with or without analgesia) or sham

surgery (control) using the aMGS. Our new model clas-

sified an image as either “pain” or “no pain” with an

accompanying confidence score. High-confidence images

were then selected (0.75 confidence or greater) and clas-

sified by our automated system. After identifying and

selecting high-confidence images, videos that did not

contain a minimum number of high-confidence images

(mean image number¼ 1 image/minute) were excluded

from analysis (n¼ 16–19). Spontaneous mouse pain was

quantified by taking a percentage: % “pain”= (“pain”

images/total images)� 100. To compare degree of spon-

taneous mouse pain following surgery versus baseline, a

simple difference score was calculated: % pain(post-sur-

gery)�% pain(baseline).

Statistics

All statistical analyses were performed using Systat v.13

(SPSS, Chicago, IL), with a criterion of a¼ 0.05.

To compare human and machine grimace scores, a

linear regression analysis was performed between

images that were rated by two coders (SGS or JJ) on

the 11-point MGS compared with the confidence

rating of the aMGS. To measure human inter-rater

4 Molecular Pain



concordance, Cronbach’s a was calculated on coder

scores from the same set of 275 sample mouse images.

Human versus machine scores were compared using a

simple linear regression; machine confidence intervals

were compared to chance levels using one-sample t-

tests followed by Bonferroni correction. For the laparot-

omy experiment, normality and homoscedasticity were

confirmed using the Anderson-Darling and Levene tests,

respectively, and parametric statistics were used in all

cases. Baseline behavioral outliers were identified

(Studentized residual> 3.0) and removed prior to final

analysis (n¼ 2). Group data were analyzed by one-way

analysis of variance (ANOVA), followed by Tukey’s

Test to determine group differences.

Results

The aMGS shows a high degree of internal accuracy

After training the aMGS, we reran the original dataset

through the trained model and checked preliminary clas-

sification results. We found that when every training

image was included for analysis, the model’s calculated

sensitivity (79%), specificity (87.2%), and accuracy

(83%) were suboptimal as compared to experienced

human coders. To increase the model’s accuracy, we

used the confidence interval output generated automat-

ically by the aMGS to eliminate “ambiguous” images.

Specifically, we restricted subsequent analysis to high-

confidence (>0.75 confidence interval) images. After

recalculation, the same metrics were significantly

improved: sensitivity (90.5%), specificity (96.1%), and

accuracy (93.2%) (Table 1).
We next validated the aMGS using a reserved subset

(10%) of our initial image pool that was not used to

train the model (“validation set”). After analyzing the

entirety of the validation set, the aMGS achieved an

accuracy of 84%. To increase the model’s classification

accuracy, we once again restricted the aMGS to analyze
only high-confidence images from the validation set

(>0.75 confidence interval). This increased the model’s
reported accuracy to 94%, which is comparable to what
highly experienced human coders achieve.5,17

Classification accuracy of the aMGS and

human coders is comparable when presented
with novel images

To further validate the aMGS, we acquired unpublished
images of mice at baseline or after receiving ankle zymo-

san injections scored by the Mogil lab (SGS, using the
standard cubicle system; Figure 1(a)) and combined
them with additional baseline and ankle zymosan

images generated and scored by the Zylka lab using
our new cubicle system (JJ, Figure 1(b)). The collective
image set (total n¼ 433) was analyzed by the aMGS and

assigned a classification (“pain” or “no pain”) as well as
a confidence rating (0.5 to 1.0). We then compared these
confidence ratings against human MGS scores and

found a positive linear relationship between machine
and human scores (Pearson’s r¼ 0.75). One-sample
t-tests reveal that aMGS confidence ratings were signif-

icantly different from chance for every human MGS
score except “3,” although it is apparent that the
aMGS, as might be expected, had more difficulty classi-

fying intermediate MGS scores (reflected by a lower
confidence rating) than images that garnered very
high or very low MGS scores (Figure 2). This finding

is in line with our initial validation results—the aMGS
is significantly more accurate when classifying

Table 1. Legend- Images assessed were from our initial training
set. We found that restricting analysis to high confidence images
(P0.75) yielded the highest degree of accuracy while maintaining a
high number of quantifiable images (67% of total images from the
training set). Human prediction values denote images determined
to be “in pain” or “not in pain“ by human assessment. Machine
predictions denote images assessed by the aMGS.

Machine Prediction

Human Prediction (Truth)

Pain (images) No pain Total

Pain 2,159 85 2,224

No pain 226 2,107 2,333

Total 2,385 2,192 4,577

Sensitivity-90.5%

Specificity-96.1%

Accuracy-93.2%

Figure 2. Direct correlation between human and machine gri-
mace scores using novel grimace images. aMGS confidence scores
were placed on a continuous scale, with �1.0 being equal to 100%
confidence that the mouse image was not showing pain and 1.0
being equal to 100% confidence that the mouse image was showing
pain. Resulting aMGS confidence scores were grouped by corre-
sponding human MGS score. Bars represent mean� SEM of
transformed aMGS scores. Values significantly different from
chance (**p< 0.01; ***p< 0.0001) according to one-sample t test.
aMGS: automated Mouse Grimace Scale; MGS: Mouse Grimace
Scale. “Chance”= 0.5

Tuttle et al. 5



high-confidence “pain” and “no pain” images than

ambiguous images.

The aMGS accurately detects pain and relief of

pain in a post-operative model

We next tested the predictive validity of the aMGS in the

laparotomy assay of post-operative pain. We used

the aMGS to quantify the relative proportion of high-

confidence images scored from mice at baseline with

images taken 60 min after laparotomy or sham surgery.

We compared these groups with a third cohort of

animals that were given carprofen immediately after sur-

gery. Mice filmed after laparotomy surgery produced

significantly more “pain” images than sham surgery or

mice given carprofen during recovery (one-way ANOVA

found a significant main effect of group (F(2,36)=9.7,

p< 0.0001) (Figure 3(a)).
Despite the marked differences in the relative amount

of “pain” images observed between laparotomy and con-

trol groups, we noticed that mice in the sham group also

produced more “pain” images during the post-operative

period. To minimize the possibility of mice falling asleep,

a known confound for mouse grimace scoring, we re-ran

the aMGS on a subset of videos taken from the first

30min following surgery (n¼ 12 mice/condition).

A one-way ANOVA of the results found a similar

main effect by surgery group (F(2,33) =4.0, p¼ 0.03)

with laparotomized mice producing significantly more

“pain” images than shams (Figure 3(b)). Mice given

carprofen following laparotomy showed a decreased

analgesic effect during this abbreviated observation

period after surgery. This finding suggested that the

analgesic was not as effective during the first 30 min

observation period (p¼ 0.07).

Discussion

Using a large number of human-scored images of mouse
faces, obtained from different experimental settings and
across two different labs as a training set, we found that

a machine learning model can accurately classify the
presence of a mouse pain face in a rapid and unbiased
manner when compared to human scoring. Internal val-
idation of the initial (human scored) image training set
revealed that the aMGS was comparable to trained

human coders.5 Furthermore, we observed a high
degree of concordance between the aMGS and human
MGS scores. Although images assigned intermediate
human MGS scores (2 to 4) correspond with relatively

low confidence ratings produced by our model, it is our
experience that these images are of little diagnostic value.
Intermediate MGS scores are assigned when a mouse fails
to clearly demonstrate facial pain in a majority of action

units. Furthermore, by excluding low-confidence images,
the aMGS has a built-in quality control mechanism
whereby low-quality images (i.e., where the face is not
fully captured, is blurred, or includes the face of the adja-
cent mouse) are excluded from analysis. By restricting

image classification to high-confidence ratings, the
aMGS was comparable (94% accuracy) to the most
highly trained human coder in previous studies.5

The aforementioned accuracy values were based on
comparing aMGS output to human MGS scores
across multiple pain assays. We also compared human

scores to aMGS output in a second cohort of mice
undergoing ankle zymosan injections, an assay of
inflammatory pain. We found that our computer
model’s predictions correlated strongly with human
scores across the entire MGS range, yielding a

Pearson’s r¼ 0.75. We further tested the utility of the
aMGS with a post-surgical pain assay. We found that

Figure 3. The aMGS correctly predicted analgesic efficacy in a post-operative pain assay. High-confidence images collected 60 min (a) or
30 min (b) following surgery. Bars represent mean� SEM of difference scores (number of pain images after surgery – number of pain
images at baseline). BL: baseline; SHAM: sham surgery; LAP: laparotomized animal; LAPþCAR: laparotomized animal given 50 mg/kg
of the NSAID carprofen immediately following surgery. n¼ 12 to 14 for all conditions. Values *p< 0.05; ***p< 0.001; �p¼ 0.074 as
determined by Tukey Test following one-way ANOVA.

6 Molecular Pain



the aMGS classified a significantly larger proportion of

mouse images as being in pain following a laparotomy

procedure than a comparable sham surgical procedure.
Likewise, the aMGS detected significantly less mouse

pain images after mice were administered the analgesic

carprofen immediately following a laparotomy surgery,

suggesting that our aMGS can detect pain-specific

changes in the mouse face following the relief of pain.
We noticed that an increasing number of images from

mice in the sham surgical cohort were scored as “pain”

during the 1-h observation period when compared to

baseline, albeit significantly less than laparotomized ani-

mals (Figure 3(a)). After checking video footage, we
noted that the prolonged, 120-min testing period

resulted in some of our sham animals falling asleep.

An analysis of the first 30 min of behavior following

surgery abrogated this effect, although it also decreased

the effect of the analgesic, which was injected immedi-

ately after surgery and thus may not have had enough
time to reach full efficacy (Figure 3(b)). Based on this

analysis, we determined that our model has difficulty

distinguishing between images of sleeping and grimacing

mice, much like human observers.5 To reduce chances of

animals falling asleep, future experiments would benefit
from shorter observation periods. One additional caveat

of our model is that the current version of the aMGS is

optimized to detect facial grimacing in albino mice.

Further training sets containing non-albino mouse

images will be needed to adapt the aMGS to classify

pain in other strains of mice with agouti or black fur.
Finally, the current version of the aMGS is only able to

provide a binary pain assessment (“pain” or “no pain”)

and a semi-quantitative confidence rating, in contrast to

human scores that can detect subtler changes in mouse

facial expressions.
The successful development of machine learning

applications presents an enormous opportunity for bio-

medical research. Researchers used large data sets (from

previously established diagnostic testing) to train convo-

lutional neural networks to detect human health issues
with a high degree of accuracy, including skin

cancer,29,30 breast cancer,31–34 and thoracic abnormali-

ties.35,36 Like these other automated systems, the aMGS

can be deployed quickly and cheaply as a reliable

replacement for manual MGS scoring, which is relatively
labor intensive, low-throughput, and prone to human

bias. Human efforts to evaluate rodent grimacing in

real-time have so far produced mixed results.37,38 The

aMGS has the potential to be useful for a large

number of applications, providing an objective metric
for pain research, as well as serving as a front-line diag-

nostic for animal pain monitoring. Finally, the through-

put of the aMGS makes possible long-term monitoring

of pain, quickly and accurately assessing the presence of

facial grimace in much larger data sets than previously

described5 and in models of chronic pain.39,40,41
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