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Abstract

Automated segmentation and labeling of individual brain anatomical regions is challenging due to 

individual structural variability. Although, atlas-based segmentation has shown its potential for 

both tissue and structure segmentation, the inherent natural variability as well as disease-related 

changes in MR appearance is often inappropriately represented by a single atlas image. In order to 

have a more accurate representation, several atlases may be used for the segmentation task in a 

given neuroimaging study. In this paper, we present the MultisegPipeline, it uses multiple atlases 

that have been visually inspected and capture the expected variability in a neonatal population. 

The MultisegPipeline transfers the labeled regions from each atlas to the target image using 

deformable registration (ANTs1 or QuickSilver2 is available for this task). Additionally, the set of 

labels are merged using a label fusion technique that reduces the errors produced by the 

registration. The final output is a single label map that combines the results produced by all atlases 

into a consensus solution. In our study, the MultisegPipeline is used to segment brain MR images 

from 31 infants, a leave-one-out strategy was used to test our framework. The average dice score 

coefficient was 0.89.
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1. INTRODUCTION

Segmentation of brain structures in magnetic resonance imaging (MRI) is essential for 

quantitative studies of the brain. Manual anatomical labeling (identification of anatomical 

brain structures and assignment of a unique label to each structure) would provide the 

highest possible accuracy. Unfortunately, manual labeling is a time consuming operation and 

is biased depending on the rater. These issues makes manual labeling implausible for studies 

involving several subjects. Moreover, neonatal brain image segmentation is particularly 

challenging, due to the fact that there is low contrast between white and gray matter 
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regions[3] [4]. Recent advancements5 using deep learning are able to accurately classify the 

white matter (WM), gray matter (GM) and cerebral spinal fluid (CSF); sub-cortical 

segmentation of brain structures6 using deep learning has also been explored. These studies 

achieved high segmentation accuracy, nevertheless, the age of the subjects that participated 

in these studies range from infants 7 years of age to adults. Therefore, a solution for the 

segmentation of sub-cortical structures in neonatal images remains to be created. In this 

paper we present the MultiSegPipeline, it is based on the NeoSegPipeline.7 The major 

contributions to this framework are the integration of the Quicksilver (QS)2 registration 

algorithm and the integration of a label fusion algorithm method available in ANTst[8] [9]. 

The following section explains the data used to test our framework.

2. MATERIALS

Images from 37 infant brains were taken from a larger study designated to investigate early 

brain development. Each dataset contains T1 weighted (T1w) and T2 weighted (T2w) MRI 

of newborns. Both images were acquired in the same scanning session. The newborns were 

scanned between the age of 40 weeks corrected gestational age (two premature infants) and 

47 days. The Children were scanned unsedated while asleep, fitted with ear protection and 

with their heads secured in a vacuum-fixation device. These images have been previously 

segmented and the resulting label maps have been visually inspected and manually 

corrected. The following sections explains in detail the methods available in the 

MultisegPipeline.

The images are divided into 2 groups, 6 images to re-train the QuickSilver registration 

algorithm and 31 images to test the MultiSegPipeline.

3. METHODS

Figure 1 shows an overview of the framework. The NeoSegPipeline7 is shown in blue and 

the additions presented in this paper are shown in green. The three major steps involved are 

image pre-processing, registration by QS and label fusion algorithm. The inputs are T1 

weighted (T1w) and T2 weighted (T2w) images. A leave-one-out strategy is used to test our 

framework.

3.1 Pre-processing

The first step in this framework is to skull-strip the images, a brain mask may be provided as 

input, otherwise FSL-bet10 is used to compute it. After the skull is removed, an in-

homogeneity correction11 is applied. The resulting image is then registered to each 

individual atlas. The following section briefly explains the QS2 registration method.

3.2 Image registration

Quicksilver (QS) is a fast deformable image registration method. It uses a deep encoder-

decoder network to predict deformation parameters. The input to the neural network are 

patches extracted at the same location and the output is a tensor that holds the deformation 

for the given patch. The ground truth data during training is the Large Deformation 
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Dieomorphic Metric Mapping (LDDMM). Additionally, QS uses a correction network that 

refines the output produced by the prediction network.

For the work presented in this paper, we use ANTs to compute deformation fields between a 

pair of images, these deformation fields are used to train the prediction network in QS. The 

correction network was not used to refine the registrations produced by QS. By integrating 

this software into the MultiSegPipeline, we expect to achieve faster results and preserver the 

quality in the final output segmentation. Registration using ANTs is the most time 

consuming operation in our framework.

3.3 Label fusion

The label fusion strategy used in this software is available in ANTs. It is based on the 

assumption that atlases may produce correlated segmentation errors. Based on this 

assumption, the label fusion seeks to minimize this error without compromising the 

properties of ‘voting’. It formulates the weighted voting problem optimization over unknown 

voting weights, i.e., it requires the joint distribution of label errors produced by any pair of 

atlases in the neighborhood of each voxel to be known. The unknowns are estimated using 

image intensity similarity between a pair of atlases. The problem is formulated as follows,

p l x, T f = ∑
i = 1

n
wx

i p l x, Ai (1)

Where p l | x, T f  is the estimated probability of label l for the target image at location x. 

p l | x, Ai  is the probability that Ai votes for label l at x.

4. RESULTS

We tested the segmentation approach using both registration algorithms (ANTs and QS). We 

obtain a segmentations for the WM, GM, CSF and sub-cortical regions. Our goal was to 

compare the performance of ANTs v.s. QS. Figure 2 shows registration results for 3 

subjects. There are differences between the registrations but we consider that the gain in 

speed using QS is significant when compared to ANTs. Figure 3 shows the 3D surface 

rendering of the sub-cortical structures. 3 subjects were chosen randomly to visualize the 

result at 3 different orientations. Figure 4 shows the segmentation result for 12 randomly 

chosen subjects. Figure 5 shows box plots of the dice coefficient obtained using the leave-

one-out strategy. The structures shown are the 12 sub-cortical structures (left and right 

amygdala, putamen, caudate, thalamus, hippocampus and pallidum). The average dice was 

0.92 using ANTs v.s. 0.89 using QS. Using the QS algorithm showed less accuracy, 

however, we expect the dice coefficient to increase when the correction network for the QS 

registration is used.
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5. CONCLUSION

In conclusion, we have presented a multi-atlas segmentation scheme implemented in the 

MultisegPipeline framework. The tool is available at our github repository https://

github.com/NIRALUser/NeosegPipeline.git. This tools works on the major operating 

systems. We have binary packages that are ready for download.

The results show that the proposed method achieved comparable segmentation results using 

either ANTs or Quicksilver registration method for the sub-cortical structures. However, in 

future work we intent to improve the QS registration algorithm by including the correction 

network. We expect the output registration from QS to be of equal quality than those 

produced by ANTs. The gain in speed by QS is significant and is a desirable addition to be 

included in this framework.
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Figure 1. 
Overview of the framework. The new additions are shown in green.
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Figure 2. 
From top to bottom, moving image, ANTs registration result, Quicksilver registration result, 

the target image.
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Figure 3. 
3D surfaces for sub-cortical structures, Amygdala, Caudate, Hippocampus Pallidum, 

Putamen, and Thalamus.
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Figure 4. 
Segmentation results for randomly chosen subjects.
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Figure 5. 
Dice coefficient comparing the output using registration by ANTs and Quicksilver for 10 

sub-cortical structures. The following notation is used in the x-axis. Q=Quicksilver, 

A=ANTS, AL=Amygdala L, AR=Amygdala R, CL=Caudate L, CR=Caudate R, 

HR=Hippocampus R, HL=Hippocampus L, PaL=Pallidum L PaR=Pallidum R, 

PuL=Putamen L, PuR=Putamen R, TL=Thalamus L, TR=Thalamus R, L=Left, R=Right
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