
Shape variation analyzer: a classifier for temporomandibular 
joint damaged by osteoarthritis

Nina Tubau Riberaa, Priscille de Dumasta, Marilia Yatabea, Antonio Ruellasa, Marcos 
Ioshidaa, Beatriz Paniaguab, Martin Stynerc, João Roberto Gonçalvesd, Jonas Bianchia,d, 
Lucia Cevidanesa, Juan-Carlos Prietoc

aDept. of Orthodontics and Pediatric Dentistry, University of Michigan, 1011 N University Ave, Ann 
Arbor, MI, USA 48109

bKitware, Inc., 101 East Weaver Street, Carrboro, NC, USA 25710

cDept. of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel 
Hill, Hanes Hall, Campus Box 3260, NC, USA 27599

dDept. of Pediatric Dentistry, São Paulo State University (Unesp), School of Dentistry, 1680 
Humaita St, Araraquara, SP, Brazil 14801-385

Abstract

We developed a deep learning neural network, the Shape Variation Analyzer (SVA), that allows 

disease staging of bony changes in temporomandibular joint (TMJ) osteoarthritis (OA). The 

sample was composed of 259 TMJ CBCT scans for the training set and 34 for the testing dataset. 

The 3D meshes had been previously classified in 6 groups by 2 expert clinicians. We improved the 

robustness of the training data using data augmentation, SMOTE, to alleviate over-fitting and to 

balance classes. We combined geometrical features and a shape descriptor, heat kernel signature, 

to describe every shape. The results were compared to nine different supervised machine learning 

algorithms. The deep learning neural network was the most accurate for classification of TMJ OA. 

In conclusion, SVA is a 3D Sheer extension that classifies pathology of the temporomandibular 

joint osteoarthritis cases based on 3D morphology.
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1. INTRODUCTION

Osteoarthritis (OA) is the most relevant arthritis worldwide1. It is related with pain and 

disability affecting 13.9% of adults at any given time. The pathogenesis of 

temporomandibular joint remains unclear to this day and may involve repair and 

morphology adaptation but also bone destruction. Patient data in clinical research on 

temporomandibular joint osteoarthritis often includes large amounts of structured 

information, such as imaging data, biological marker levels, and clinical variables2–4. The 

present study proposes improvement in the unsupervised statistical machine learning 
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classification proposed by Gomes et al., 20155 and de Dumast et al., 20186. Robust and 

comprehensive deep learning classification requires large sample size and well-controlled 

samples with regard to heterogeneity of pathologies. The neural network deep learning 

proposed in this manuscript classifies morphological variability extracting features from the 

mandibular condyle morphology to describe each patient 3D mesh. Because our training de-

identified database contains uneven number of shapes in each stage of bone degeneration, 

the first challenge has been the simulation of variation in 3D meshes coordinates and 

features. Shape descriptors are also a solution when characterizing a 3D mesh. Thus, Heat 

Kernel Signature7 descriptor will be combined with geometric features for a better result. 

Because our sample size is small and neural networks require large amount of data, we will 

use an over-sampling algorithm SMOTE8 to balance our groups. We compared the neural 

network built with other machine learning methods such as SVM9, Gaussian Process10, 

Random Forest11 and implement the Shape Variation Analyzer (SVA) as a plugin for the 

open-source software 3D-Slicer12. The neural network architecture of choice is more 

adjustable, innovative and robust to allow addition of larger datasets as this work progresses 

with future collaboration with other clinical centers

2. METHODS

2.1 Materials

Following clinical diagnosis of TMJ osteoarthritis, a cone beam computed tomography 

(CBCT) scan was taken on all participants, with 0.08 mm isotropic voxel size and 4 cm × 4 

cm field of view, using the 3D Accuitomo 170, Morita Corp. The study sample consists of 

293 (259 training set and 34 testing set) mandibular condyle 3D surface meshes constructed 

from CBCT scans for the training dataset, 105 from control subjects and 154 from patients 

of TMJ OA. Those 3D meshes were classified in 6 groups, by consensus between 2 

clinicians (MY and AR) as shown in Figure 1. Thirty-four right and left condyles from 17 

patients (39.9 ± 11.7 years), who experienced signs and symptoms of the disease for less 

than 5 years, were included as the testing dataset.

2.2 From CBCT scan to 3D mesh

Many steps are accomplished (figure 2) before having the 3D mesh corresponding to each 

CBCT scan as following.

2.3 Generation of synthetic data

After the consensus between the 2 expert clinicians, the number of samples in every group is 

different. This problem is extremely common in machine learning. Most machine learning 

algorithms work better when the number of samples in every group is roughly equal. In 

2002, a sampling-based algorithm called SMOTE (Synthetic Minority Over-Sampling 

Technique) was introduced to face imbalanced problems. This method is one of the most 

used thanks to its simplicity and effectiveness. The synthetic data is created by operating in 

“feature space” instead of “data space”. In traditional oversampling, minority class is 

replicated exactly. In SMOTE, new minority instances are constructed this way:

For each minority class instance c:
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Neighbors = get k Nearest Neighbors (5 in our case)

n = pick randomly one of the neighbors

Creation of a new minority class r using c’s feature vector and the feature’s vector difference 

of n and c multiplied by a random number -> r.feats = c.feats + (c.feats - n.feats ) * rand(0,1)

2.4 Feature extraction and shape descriptors

The SVA module computes the average shape of each group of condylar dysmorphology, as 

well as geometric features at each vertex of the mesh and a shape descriptor, heat kernel 

signature. The features are stored into arrays and linked to their corresponding vertices in the 

3D meshes. Those vertex-wise features are:

• Normal vector: 3 scalars for the x, y, and z coordinates

• Distances: As many components as classes

The distance to every mean group is computed.

• Curvatures: 4 scalars for mean, minimum, maximum, and Gaussian curvature.

• Shape Index: 1 scalar

The shape index and curvedness were computed using the principal curvatures (κ1, κ2) at 

every point in the surface. The shape index described local surface topology in terms of the 

principal curvatures, calculated as follows (1):

S = 2
π arctan

κ1 + κ2
κ1 − κ2

(1)

• Curvedness: 1 scalar

The curvedness was calculated as a measurement of the amount or ‘intensity’ of the surface 

curvature as follows (2):

C =
κ1 + κ2

2
2

(2)

• Position: 3 scalars for the x, y, and z coordinates.

• Heat kernel signature

The heat kernel signature (HKS) is a shape descriptor used in deformable shape analysis 

methods. For each point of the shape, HKS defines its feature vector representing the point’s 

global and local geometric features. It is based on heat kernel, fundamental solution of the 

heat equation. HKS uses Laplace Beltrami operator associated with the shape. Heat kernel 

signature should be scale invariant to deal with global and local scaling transformations. The 

patients of our study have different sizes of condyles depending on the gender and the age; 

we need to compare the 3D meshes without taking into account the scale differences. We 
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used the heat conduction properties as shape descriptor with the heat diffusion equation as 

following (3):

ΔX + ∂
∂t u = 0 (3)

where ΔX is the Laplace-Beltrami operator.

Computation of the scale invariant HKS is done using heat kernel formula (solution of the 

heat diffusion equation [3]) in where continuous eigenfunctions and eigenvalues of the 

Laplace Beltrami operator are replaced by the discrete value (4):

KX, t(x, z) =
i 0

∞
e

λitϕi(x)ϕi(z) (4)

where λ0, λ1, … ≥ 0 are eigenvalues and ϕ0, ϕ1, … are the corresponding eigenfunctions of 

the Laplace-Beltrami operator, satisfying ΔXϕi = λiϕi.

The Laplace-Beltrami operator is discretized using cotangent weight scheme, defined for 

any function f on the mesh vertices as (5):

Δ
X

f
i
= 1

ai
∑ j wi j( f i − f j) (5)

where wij = cot aij + cot bij for j in the 1-ring neighborhood of vertex i and zero otherwise 

( aij and bij are the two angles opposite to the edge between vertices i and j in the two 

triangles sharing edge) and ai are normalization coefficients proportional to the area of 

triangles sharing the vertex xi.

The discrete heat kernel signature is approximated by (6):

h(xl, τ) ≈
l 0

k
e

λlα
τ

ϕil
2 = Ψe−T ∧ (6)

where T = diag(αT) and Ψ = ϕil
2

2.5 Deep neural network

Neural network architecture: The neural network learns tasks by considering examples. It is 

based on a collection of connected units called neurons organized in layers. We use a soft-

max layer with one output per class. The output vector will be the probability for each shape 

to belong to a class. The algorithm extracts shape features to classify each sample in the 

training data in a class and can then classify new samples thanks to this probabilistic 
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function (the soft-max function). The TensorFlow open-source library was used to train and 

test the neural network by constructing computational graphs. The neural network was 

trained to classify a given shape into one of the 6 groups indicating the severity of the 

disease. The input data to train the network was stored in a matrix with dimensions [number 

(nbr) of subjects, nbr of vertices, nbr of features]. By training a neural network we sought to 

identify discriminative patterns of these features and encoded them in the network (deep 

learning).

2.6 Comparison with machine learning algorithms

We trained and optimized nine different supervised machine learning to compare to our 

current deep neural network: Nearest Neighbors13, Linear Support Vector Machine9, Radial 

Basis Function kernel Support Vector Machine9, Gaussian Process10, Decision Tree14, 

Random Forest11, AdaBoost15, Naive Bayes16 and Quadratic Discriminant Analysis17 

(Figure 3).

3. RESULTS

Using SMOTE algorithm creates balanced group as shown in figure 4. It allows training 

accuracy increasing from 86% to 92% and creates large amount of data in every group. 

Choosing features is decisive for the neural network to perform well. We had trained the 

neural network previously described with different combinations of features. We are using 

heat kernel signature as a shape descriptor. For each group, patterns are similar meaning a 

good understanding of the morphology variability (Figure 5).

We used a neural network having 4 hidden layers with [4096, 2048, 1024, 512] neurons, a 

dropout layer with probability 0.5 and softmax layer with 7 outputs. The learning rate was 

set to 1–5. The network was trained for 100 epochs and the batch size was set to 32. The 

SVA training is shown in Figure 6. The maximum accuracy during training was 92%. The 

dataset was subdivided in two sets, training and testing in an 80/20 ratio. The testing data 

was not used at any point during training and it will be used to test if the trained network 

generalizes well for unseen data samples. After testing with 9 different machine learning 

algorithms, we chose the deep neural network because it’s more modulable and innovative 

and robust to allow addition of larger data sets as this work progresses with future 

collaboration with other clinical centers.

The continued enrollment of subjects to adding more data will benefit from the deep 

learning approach to improve the ability of the neural network to learn abstract patterns and, 

thus, increase the classification accuracy. Furthermore, neural networks have been shown to 

perform better to build a predictive tool to assess disease progression and explain variability 

over time. After testing with the 34 testing condyles, we obtain an accuracy of 47% of exact 

classification and 91% if we take an error of +/− one group as shown in Figure 7 with the 

confusion matrix.
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4. CONCLUSION

SVA is a novel tool to TMJ condyle analyze shape variation using deep neural networks. The 

results presented indicate that using shape features only favors the classification task, i.e., we 

do not include any information about position or orientation of the model. This classification 

approach seems promising, as it may help us increase our understanding about shape 

changes that TMJ OA patients undergo during the course of the disease. The source code 

repository is available at https://github.com/DCBIA-OrthoLab/ShapeVariationAnalyzer. 

Future work will focus on including additional predictors/features of the disease in the 

neural network training (e.g., clinical data, behavioral or biochemical). Clinical and 

behavioral data has been acquired through questionnaires, while biochemical data has been 

acquired through a protein analysis in saliva and plasma samples. Including these may 

contribute to improve the classification power of the neural network.
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Figure 1. 
Randomly selected samples in each group, shown in red, classified by the 2 expert clinician. 

In yellow, the mean of the control group. G1: close to normal, G2: Degeneration 1, G3: 

Degeneration 2, G4: Degeneration 3 and G5: Degeneration 4 – 5.
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Figure 2. 
Description of the 3D meshes creation from CBCT scan.
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Figure 3. 
5-layers neural network compared to supervised machine learning algorithms. Supervised 

methods show the decision boundary in the background for the first feature. The points 

represent the input data with different groups (plain: training data; surrounded: testing data)
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Figure 4. 
Number of shapes before and after SMOTE (Group 0: Control, Group 1: Close to Normal, 

Group 2: degeneration 1, Group 3: degeneration 2, Group 4: degeneration3, Group 5: 

degeneration 4-5.
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Figure 5. 
Shapes randomly chosen in every group with heat kernel signature plotted
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Figure 6. 
Accuracy and cross entropy loss
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Figure 7. 
Confusion matrix: columns show the SVA classification of condyle morphology, rows shows 

the clinician expert consensus classification. The main diagonal cells are the correct 

classification of SVA taking as a reference the clinicians classification.
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