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Abstract

Early social experiences, particularly maternal care, shape behavioral and physiological 

development in primates. Thus, it is not surprising that adverse caregiving, such as child 

maltreatment leads to a vast array of poor developmental outcomes, including increased risk for 

psychopathology across the lifespan. Studies of the underlying neurobiology of this risk have 

identified structural and functional alterations in cortico-limbic brain circuits that seem 

particularly sensitive to these early adverse experiences and are associated with anxiety and 

affective disorders. However, it is not understood how these neurobiological alterations unfold 

during development as it is very difficult to study these early phases in humans, where the effects 

of maltreatment experience cannot be disentangled from heritable traits. The current study 

examined the specific effects of experience (“nurture”) versus heritable factors (“nature”) on the 

development of brain white matter (WM) tracts with putative roles in socioemotional behavior in 

primates from birth through the juvenile period. For this we used a randomized crossfostering 

experimental design in a naturalistic rhesus monkey model of infant maltreatment, where infant 

monkeys were randomly assigned at birth to either a mother with a history of maltreating her 

infants, or a competent mother. Using a longitudinal diffusion tensor imaging (DTI) atlas-based 

tract-profile approach we identified widespread, but also specific, maturational changes on major 

brain tracts, as well as alterations in a measure of WM integrity (fractional anisotropy, FA) in the 

middle longitudinal fasciculus (MdLF) and the inferior longitudinal fasciculus (ILF), of maltreated 

animals, suggesting decreased structural integrity in these tracts due to early adverse experience. 

Exploratory voxelwise analyses confirmed the tract-based approach, finding additional effects of 

early adversity, biological mother, social dominance rank, and sex in other WM tracts. These 

results suggest tract-specific effects of postnatal maternal care experience versus heritable or 
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biological factors on primate WM microstructural development. Further studies are needed to 

determine the specific behavioral outcomes and biological mechanisms associated with these 

alterations in WM integrity.
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Introduction

Early social experiences, particularly maternal care, shape behavioral and physiological 

development (Curley and Champagne, 2016; Drury et al., 2017; Howell et al., 2016; 

Sánchez et al., 2001). Thus, it is not surprising that adverse caregiving, a form of early life 

stress (ELS), is a major risk factor for psychopathology, including anxiety, depression, 

substance abuse, and behavioral disorders across the lifespan (Carr et al., 2013; Danese and 

Tan, 2014; Gunnar and Quevedo, 2007; Pechtel and Pizzagalli, 2011; Shonkoff et al., 2012; 

Shonkoff and Bales, 2011; Teicher et al., 2003). One particularly devastating and widespread 

form of early life adversity is infant maltreatment. In 2016 an estimated 676,000 children 

were affected in the US alone, with 68% of victims being younger than 5 years of age, with 

those in the first year of life experiencing the highest rates of abuse and neglect (Children’s 

Bureau, 2018). In addition to the human toll, in 2008 the lifetime economic cost of new 

cases of child maltreatment in the US has been estimated to be $428 billion (Peterson et al., 

2018). Given these staggering human, health, and economic consequences, it is of vital 

importance to understand the neurobiological mechanisms that underlie the adverse 

behavioral and psychological outcomes associated with child maltreatment in order to 

identify tractable neurodevelopmental targets for prevention and treatment.

One potential neurobiological mechanism involves the impact of ELS on the development of 

brain structural connectivity, including brain white matter (WM) (De Bellis et al., 1999; 

Hanson et al., 2013; Brittany R. Howell et al., 2013; McCrory et al., 2012; Ohashi et al., 

2017; Teicher et al., 2003). Brain WM undergoes massive developmental changes during 

early life, including increases in volume due to myelination, dendritic pruning, etc. making 

these developmental processes vulnerable to environmental factors during infancy and 

childhood (Deoni et al., 2012; Dubois et al., 2014; Geng et al., 2012). Indeed, there is also 

evidence that myelination and other developmental processes are sensitive to stress and 

glucocorticoids (Brittany R. Howell et al., 2013; Jauregui-Huerta et al., 2010; Liston and 

Gan, 2011), suggesting that elevated levels of stress hormones related to infant maltreatment 

and other ELS experiences could affect the development of brain WM microstructural 

integrity during infancy and childhood.

Microstructural integrity of WM bundles can be assessed in vivo and therefore 

longitudinally using diffusion tensor imaging (DTI), providing a powerful tool to study 

neurodevelopmental changes in brain WM tracts (Le Bihan, 2003). DTI allows 

quantification of water diffusion on a microscopic scale using a variation of a typical MRI 

magnetization sequence (Jones and Leemans, 2011). Diffusion in the brain is informative 
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because myelinated axons restrict what would otherwise be non-directional diffusion (i.e. 

isotropic) of water, resulting in anisotropy (Le Bihan et al., 2001). This directional diffusion 

can be quantified by fractional anisotropy (FA), which is the ratio of diffusion parallel to the 

fibers (i.e. axial diffusivity, AD) to diffusion perpendicular to the fibers (i.e. radial 

diffusivity, RD). Thus, FA can be affected by either changes in diffusion perpendicular to the 

tract, which decreases with increased axonal myelination (Zhang et al., 2009), or to changes 

in diffusion parallel to the tract, which increases with axonal density, caliber, and 

microtubular packing and organization (Kumar et al., 2012). Thus, higher FA values can be 

interpreted as increased WM tract integrity due to increased myelin or increased fiber tract 

organization. FA was the main diffusion property selected for this study (although AD, RD 

and mean diffusivity - MD, the mean diffusion across and parallel to the fibers – are also 

presented) because it increases across early development (Cohen et al., 2016; Deoni et al., 

2012; Shi et al., 2013), it has been associated with variations in behavior, and is sensitive to 

early caregiving experience (Fields, 2008; B.R. Howell et al., 2013; Scholz et al., 2009).

Cortico-limbic and temporal circuits (including WM bundles such as the uncinate fasciculus 

-UF-, the inferior longitudinal fasciculus -ILF-, middle longitudinal fasciculus -MdLF-, and 

fornix) appear to be particularly sensitive to ELS. These circuits are key for processing of 

social stimuli (e.g. visual, auditory) and emotional regulation (Dannlowski et al., 2012). 

Early adversity has been previously related to WM microstructural alterations in these 

circuits in individuals with histories of adverse caregiving, including institutional rearing and 

childhood maltreatment (Bick et al., 2015; Dannlowski et al., 2012; De Bellis et al., 1999; 

Eluvathingal et al., 2006; Govindan et al., 2010; Hackman and Farah, 2009; Hanson et al., 

2013; Kumar et al., 2014; McCrory et al., 2012; Teicher et al., 2003, 2014). These regions 

are also sensitive to ELS in animal models (Bolton et al., 2018; Coplan et al., 2016; Brittany 

R. Howell et al., 2013; Howell et al., 2017, 2016, 2014; McEwen, 2008). Additionally, 

alterations in these WM regions are implicated in the psychopathologies and several of the 

affective disorders for which ELS is a risk factor (Dannlowski et al., 2012; Fields, 2008; 

Pechtel and Pizzagalli, 2011; Thomason and Thompson, 2011). Taken together this evidence 

suggests that ELS results in alterations in cortico-limbic WM tracts that have been linked 

with increased risk for psychopathology.

Despite the link between early adverse experiences and WM alterations it is not clear how 

these alterations unfold during human development, as it is very difficult to study these early 

phases in humans because the effects of adversity cannot be disentangled from heritable 

traits (e.g. higher stress and emotional reactivity), or nutritional, medical or socioeconomic 

factors. There is also evidence that early adversity- and maltreatment-related traits can be 

transmitted from generation to generation in humans and nonhuman primates, and that 

genetic and epigenetic mechanisms may be involved (Bowers and Yehuda, 2015; Collishaw 

et al., 2007; Fairbanks, 1989; Franklin et al., 2010; Huizinga et al., 2006; Kaplow and 

Widom, 2007; KINNALLY et al., 2013; Kinnally and Capitanio, 2015; Maestripieri, 2005; 

Moog et al., 2018; Santavirta et al., 2018; Tarullo and Gunnar, 2006; Widom et al., 2015). 

Thus, the current study examined the specific effect of early caregiving (“nurture”) and 

heritable factors (“nature”) on the developmental trajectories of major brain WM tracts in 

primates from birth through the juvenile period using a randomized cross-fostering 

experimental design in a naturalistic rhesus monkey model of infant maltreatment.
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Nonhuman primate models such as rhesus macaques (Macaca mulatta) have a critical 

translational value for humans when studying the effects of early adverse social experience, 

particularly on neurodevelopment, for several reasons. Biological and behavioral similarities 

that make rhesus monkeys ideal for studying neurodevelopment include prolonged gestation 

of a single offspring, strong social and mother-infant bonds (Hinde and Spencer-Booth, 

1967) maturational stage of the brain at birth, and neurodevelopmental patterns (particularly 

those of WM development in the few published reports, Gibson, 1991; Shi et al., 2013). 

Rhesus monkeys develop approximately four times faster than humans, making longitudinal 

experiments designed to assess changes in developmental trajectories such as the current 

study more feasible. Rhesus monkeys are also more closely related to humans 

phylogenetically than other model organisms (e.g. rats or mice), and the developmental 

effects of the early environment in development, particularly maternal care, show strong 

similarities with those of humans (Hinde and Spencer-Booth, 1967; Howell et al., 2014; 

Maestripieri, 1999; Sánchez et al., 2001). Rhesus monkeys also exhibit spontaneous infant 

maltreatment (Maestripieri and Carroll, 1998), an adverse form of caregiving reported in 

several other primate species (Brent et al., 2002; Johnson et al., 1996; Maestripieri and 

Carroll, 1998; TROISI and DʼAMATO, 1984).

Here we studied the effects of spontaneous infant maltreatment in rhesus monkeys, which 

occurs in approximately 2–5% of rhesus dams (Howell et al., 2016; Maestripieri and Carroll, 

1998; McCormack et al., 2006). We operationalized maltreatment using two types of 

behavior, physical abuse and maternal rejection (thought to be a form of neglect) 

(Maestripieri and Carroll, 1998; McCormack et al., 2006), which cause infant distress and 

elevations in stress hormones (Drury et al., 2017; Brittany R. Howell et al., 2013; Koch et 

al., 2014; McCormack et al., 2009, 2006). They occur predominantly during the first 3–6 

months of life, with many maltreating mothers showing these behaviors as early as the first 2 

weeks of life (Maestripieri and Carroll, 1998; McCormack et al., 2006). Maltreatment shows 

transgenerational transmission along the maternal line (Maestripieri, 1998) in part via 

experience (i.e. females maltreated as infants are likely to maltreat their own infants), as 

shown in studies using a cross-fostering design (i.e. Maestripieri, 2005). Previous reports 

using this NHP model of infant maltreatment have identified negative outcomes in offspring, 

including increased anxiety and emotional responses, social deficits and alterations in stress 

neuroendocrine and immune systems throughout infant development and into adolescence 

(Drury et al., 2017; B.R. Howell et al., 2013; Howell et al., 2017, 2014; Koch et al., 2014; 

Kohn et al., 2014; Maestripieri, 1998; Maestripieri et al., 2000; McCormack et al., 2009, 

2006, Sanchez et al., 2015, 2010, 2007). Our group has also identified neurodevelopmental 

alterations in amygdala volume and cortico-limbic circuits such as the UF associated with 

altered emotional reactivity (Howell et al., 2017, 2014). These effects of infant maltreatment 

in rhesus monkeys are consistent with alterations reported in children that experienced 

maltreatment and other forms of adverse caregiving as discussed above, which supports the 

construct validity of this animal model for uncovering the underlying neurodevelopmental 

mechanisms. Given the evidence that maltreatment can be perpetuated from generation to 

generation in humans and NHPs, and that genetic and epigenetic mechanisms can result in 

behavioral traits associated with maltreatment (Bowers and Yehuda, 2015; Collishaw et al., 

2007; Fairbanks, 1989; Franklin et al., 2010; Huizinga et al., 2006; KINNALLY et al., 2013; 
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Kinnally and Capitanio, 2015; Maestripieri, 2005; Moog et al., 2018; Santavirta et al., 2018; 

Tarullo and Gunnar, 2006; Widom et al., 2015), a critical contribution of our study is to 

disentangle the role of adverse caregiving experience (“nurture”) from that of potential 

heritable phenotypes (“nature”) using a validated animal model and a cross-fostering, 

randomized, well-controlled design not possible in human studies.

Therefore, the primary goal of this study was to examine the developmental trajectories of 

primate cortico-limbic and temporal WM tracts sensitive to ELS and with putative roles in 

socioemotional behavior from birth through the juvenile period while disentangling the 

specific impact of postnatal adverse experience (infant maltreatment) from heritable factors. 

We investigated this question using two different strategies: a hypothesis-driven approach 

focusing on specific WM tracts that are part of cortico-limbic and temporal brain circuits 

previously shown to be sensitive to ELS (e.g. the UF, ILF, MdLF, the fornix, and the corpus 

callosum - CC) and a second, data-driven, exploratory voxelwise approach, that examined 

developmental differences in WM tracts across the entire brain. In addition to the effects of 

maternal care and heritable factors from the biological mother, we also examined the effects 

of other important genetic and social factors such as sex and social dominance rank in our 

statistical models.

Methods

Subjects and Housing

A total of 42 infant rhesus monkeys (Macaca mulatta) were studied longitudinally from birth 

through 18 months of age (early juvenile period) to examine the effects of variations in 

maternal care on brain WM development as part of a larger longitudinal study that examined 

other biobehavioral outcomes (Drury et al., 2017; Howell et al., 2017; Mccormack et al., 

2015). Of those, 20 infants were raised by dams with competent maternal care (control, C: 9 

male, 11 female) and 22 were raised by maltreating dams (maltreating, M: 14 males, 8 

females; see Table 1, “Supplemental Material”, and the “Crossfostering” section below for 

group breakdown by biological dam based on our random assignment to experimental group 

at birth). Animals were born and housed at the Yerkes National Primate Research Center 

(YNPRC) Field Station, Lawrenceville, GA for the entire study. Subjects lived with their 

mothers and families in large, complex social groups consisting of 75–150 adult females, 

their sub-adult and juvenile offspring, and 2–3 adult males. This social complexity also 

enabled us to balance the distribution of social dominance ranks (high, medium and low 

social status), in addition to sex, across our experimental caregiving groups. Altogether our 

social experimental setting and design allowed examination of not only the effects of 

maternal care and biological heritable traits, but also of sex and social dominance rank on 

neurodevelopmental measures. The groups were housed in outdoor compounds 

(approximately 100ft x 100ft) with access to a climate controlled indoor housing area. 

Standard high fiber, low fat monkey chow (Purina Mills Int., Lab Diets, St. Louis, MO) and 

seasonal fruits and vegetables were provided twice daily, in addition to enrichment items. 

Water was available ad libitum. All the procedures described here were performed in 

accordance with the Animal Welfare Act and the U.S. Department of Health and Human 

Services “Guide for the Care and Use of Laboratory Animals”, and were approved by the 
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Emory Institutional Animal Care and Use Committee. Researchers were blind to group 

assignment whenever possible. Specifically, those collecting behavior were not blind all 

blind, as the behavioral observations were used to define group assignment, although they 

were whenever possible. Those that collected and QCed the imaging data, as well as those 

that built the DTI atlases were blind to group.

Cross-fostering design

All infants were randomly assigned at birth to be reared by a foster dam with either a history 

of competent maternal care (control) or of infant maltreatment (maltreating) in an effort to 

disentangle the effects of heritable and biological factors that may interact with the effects of 

early caregiving experience on WM development. Newborn monkeys were cross-fostered to 

an unrelated female at birth (except for 6 infants cross-fostered 24 hours, 2 others at 48 

hours and 1 at 72 hours after birth), counterbalancing groups by sex, biological mother, 

social dominance rank, and assigning infants from different matrilines and paternities to 

ensure high genetic and social diversity, as previously reported (Drury et al., 2017; Howell et 

al., 2017; Maestripieri, 2005). Infants were removed from their biological dams and 

introduced to their foster dams within 5 minutes of initial separation, resulting in a high 

adoption success rate (83%: 35 out of 42 were immediately successful). In the few cases 

where the foster dam did not immediately accept the foster infant (7 in this study) several 

strategies were employed to encourage adoption, including keeping dam and foster infant in 

close proximity in a quiet room, lightly anesthetizing the dam with ketamine (a known 

amnesic compound) and allowing the foster infant to nurse to increase endogenous maternal 

oxytocin, or administering exogenous oxytocin. If none of these strategies worked within a 

couple of hours, infants were returned to their biological mothers and excluded from the 

study. As shown in Table 1 (Supplemental Materials), of the 20 infants raised by foster 

control dams, 11 were biological infants of control mothers (CC subjects, as detailed in 

Table 1 of Supplemental Material: 6 males, 5 females) and 9 were born to maltreating 

mothers (MC: 3 males, 6 females). Of the 22 infants raised by maltreating dams, 12 were 

biological infants of control mothers (CM: 9 males, 3 females), and 10 were born to 

maltreating mothers (MM: 5 males, 5 females).

Behavioral observations: characterization of maternal care

A detailed description of the infant rhesus maltreatment model and methods for behavioral 

characterization of competent maternal care versus infant maltreatment is provided in 

previous publications (Drury et al., 2017; Howell et al., 2017; Maestripieri, 1998; 

McCormack et al., 2009, 2006). Briefly, infant focal observations were performed beginning 

at birth and continued over the first 3 months of life to characterize early maternal care 

experience using an adaptation of a well-established rhesus monkey ethogram (Altmann, 

1962; McCormack et al., 2006). Thirty-minute-long observations were performed on 

separate days (5 days/week during month 1 for a total of 20 observations; 2 days/week 

during month 2 for a total of 8 observations; and 1 day/week during month 3 for a total of 4 

observations) for a total of 16 hours per mother-infant pair. Observations were collected 

between 7 and 11 AM, when animals are most active. This observation protocol is optimal to 

document infant maltreatment in this species, given that physical abuse is the highest during 

month 1and stops by month 3 (Drury et al., 2017; Maestripieri, 1998; McCormack et al., 
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2006). Competent maternal care was defined as species-typical behaviors such as nursing, 

cradling, grooming, ventral contact and protection (retrieve from potential danger, restrain) 

of the infant. In contrast, maltreatment was defined as the comorbid occurrence of physical 

abuse (operationalized as violent behaviors directed towards the infant that cause pain and 

distress, including dragging, crushing, throwing) and infant rejection (i.e. prevention of 

ventral contact and pushing the infant away). We did not observe any instances in which 

subjects were the receivers of abusive behaviors from anyone other than their own 

maltreating foster dams. Physical abuse and rejection are highly comorbid in nonhuman 

primates, similarly to humans (Guzman et al., 2016; Howell et al., 2016) and thus represent 

a homogenous maltreatment experience. This comorbidity provides face validity for human 

studies in which physical abuse and neglect also co-occur (Cicchetti and Toth, 1995). Both 

abuse and rejection cause high levels of infant distress (e.g. scream vocalizations) and 

elevations in stress hormones (Drury et al., 2017; B.R. Howell et al., 2013; Maestripieri, 

1998; McCormack et al., 2006; Sanchez, 2006). Control foster mothers in this study 

exhibited competent maternal care and did not exhibit physical abuse or rejection (Drury et 

al., 2017; Howell et al., 2017). Abuse and rejection rates were calculated across the first 3 

postnatal months. Inclusion criteria in the maltreated group involved at least 3 instances of 

observed physical abuse. Other infant behaviors collected included affiliative behaviors (e.g. 

contact, grooming), anxiety-like behaviors (e.g. yawning, scratching, and body shakes 

(Maestripieri et al., 1992; Troisi et al., 1991), and general behavior (e.g. eating, drinking, 

passive).

MRI data acquisition and processing

T1 weighted (T1w), T2 weighted (T2w), and diffusion weighted images (DWI) were 

acquired during infancy (at 2 weeks, and 3 and 6 months) and the early juvenile period (at 

12 and 18 months of age). Twenty-one subjects had usable data for all 5 time points, sixteen 

had usable data for 4 time points, four had usable data for 3 time points, and one had usable 

data from 2 time points (see details in Table 1, Supplemental Material). Data were 

considered usable if they passed the QC procedures described in the next paragraph. The 

statistical methods applied accommodate missing data (see Statistics section for details). A 

total of 181 scans were used for this study. Images were acquired on a 3T Siemens Trio 

scanner (Malvern, PA) at the YNPRC Imaging Center using an 8-channel array, transmit and 

receive knee volume coil. Animals were separated from their mothers for approximately 4 

hours total for scanning. This included 30 min for scan preparation (e.g. anesthesia, 

intubation, positioning in scanner), 3 hours of active scanning, and 20–30 minutes post 

anesthesia recovery. The subjects were scanned supine under isoflurane anesthesia (0.8–1% 

isoflurane, inhalation). A custom-made head holder with ear bars and a mouthpiece was 

used to secure and prevent movement of the head in order to avoid motion artifacts. A 

vitamin E capsule was placed on the right temple to identify the right brain hemisphere. 

Animals were intubated, administered dextrose/NaCl (I.V.) for hydration, and placed on an 

MRI-compatible heating pad to maintain temperature. Physiological measures (i.e. heart 

rate, temperature, blood oxygenation) were monitored and maintained throughout the scans 

following YNPRC veterinary protocols. After the scan and complete recovery from 

anesthesia, subjects were returned to their mothers, and the mother-infant dyad returned to 

their social group.
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T1w data were acquired for image co-registration with DWI data using a 3D magnetization 

prepared rapid gradient echo (MPRAGE) sequence with the following parameters: 

TI/TR/TE= 950/3000/3.3 ms; 4 averages; voxel size: 0.6 mm isotropic (0.2 mm3) resolution. 

T2w images were collected using a fast-spin echo sequence in the same direction as the T1 

(TR/TE=7,900/125ms, voxel size=0.5×0.5×1.0mm – 0.25mm3, 10 averages) to help with 

anatomical identification of tissue borders, as well as for propagating structural brain masks 

to the DWI data. DWI images were collected with the following parameters: single-shot dual 

spin-echo EPI sequence with GRAPPA (R=3), voxel size: 1.3 mm isotropic (2.19mm3) with 

zero gap, 60 directions, TR/TE=5000/86 ms, 40 slices, FOV: 83 mm, b: 0, 1000 s/mm2, 12 

averages. All preprocessing, including eddy current and motion correction as well as 

automatic removal of artifact rich images, was performed using the DTIPrep software 

developed by the UNC Neuroimaging Research and Analysis Laboratories (NIRAL) (Oguz 

et al., 2014). DTIPrep is specifically designed to identify several types of artifacts in 

diffusion data, including electromagneticinterference-likeartifact, regional signal loss, 

venetian blind artifact, inter-slice and intra-slice intensity artifact, and checkerboard 

artifacts. Tensor computation employed a weighted least square estimation to produce a 

diffusion tensor image (DTI) for each subject. Each DTI dataset was further assessed 

visually for artifacts with 3D Slicer (Fedorov et al., 2012) and was excluded if any artifact 

could not be corrected. The tensor eigenvalues were calculated to obtain diffusion property 

images of FA, AD, RD, and MD. Skull stripping was performed by propagating manual 

structural masks via deformable registration of a structural T2 weighted image to the 

corresponding B0 images. Atlases are available at https://www.nitrc.org/projects/

macaque_atlas.

Longitudinal DTI atlas-based tract-profile analyses

An infant rhesus monkey longitudinal DTI atlas was built as described previously (Shi et al., 

2017). Briefly, we employed the diffusion atlas building tool DTIAtlasBuilder (Verde et al., 

2014) in a two-step approach, by first building the subject-specific atlases, one atlas per 

subject, which were then combined into an overall atlas. In each step, all corresponding FA 

maps were first intensity normalized and affinely co-registered. Then, an unbiased 

diffeomorphic FA atlas was created (Joshi et al., 2004). Subsequently, all the FA images 

were deformably registered to this diffeomorphic atlas with ANTS (Tustison et al., 2014). 

The final atlas was generated by averaging the deformed FA maps. The resulting 

deformation fields were then applied to each tensor image via finite-strain preservation. The 

final DTI atlas was computed as the average over all the warped tensor images. The 

deformation fields from the two steps were concatenated into a single final deformation 

field. This final deformation field allows the mapping of data to and from the longitudinal 

atlas space and the individual, native DTI space, and provides spatial normalization across 

all scans. To confirm that the registrations were successful two rounds of visual QC were 

performed. The first looked at all of the images overlaid on the atlas to capture any gross 

misalignments and errors. In the second round each subject’s data were loaded into 3D 

Slicer (Fedorov et al., 2012) individually and assessed for alignment with the atlas.

We performed fiber tracking of major tracts in the longitudinal DTI atlas space with 3D 

Slicer, as described in Verde et al., 2014. ROI seeding voxels were manually determined and 
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standard streamline tractography was used to obtain major fiber tracts of interest, including 

the UF, MdLF, ILF, the genu and splenium (subdivided into occipital and temporal fibers) of 

the CC (Fig. 1A), as well as the fornix. Tracts were identified using rhesus monkey 

anatomical landmarks defined in previous publications (Schmahmann et al., 2007; 

Schmahmann and Pandya, 2009). Using the final deformation fields to warp the atlas fiber 

tracts into each subject’s native DTI space, we sampled DTI tract profiles for FA, MD, RD, 

and AD at 0.3 mm intervals along each tract in native space. At every vertex, spaced at 

0.3mm, each DTI metric is sampled with a Gaussian kernel along the fiber using a standard 

deviation of 1mm of the kernel (computed across the fibers in the tract) in the subject’s 

native space, resulting in a fiber tract profile for that individual. Automatic profile quality 

assessment was performed by excluding subject data with correlation coefficients of less 

than 0.7 for each subject’s FA tract profile with the average at each age independently 

(Verde et al., 2014). In previous studies of older macaques we applied a correlation 

coefficient threshold of 0.85 (Shi et al., 2013). To avoid erroneously discarding biologically 

relevant variability in the infant monkeys we applied the more relaxed threshold of 0.7. See 

Figure 2 for FA profiles of each tract across all five ages assessed (see Supplemental 

Material Figures 2,4,6, and 8 for plots of other metrics - RD, AD, MD). No significant 

differences were observed in the excluded data regarding early experience (i.e. infants reared 

by foster control or maltreating mothers) or biological mother using Chi-squared tests (see 

Supplemental Material for details).

Statistical analysis

Global (i.e. entire tract) and local (i.e. at each point along the tract profile) effects on FA 

were determined using the functional mixed effects model approach (FMEM) (Luo et al., 

2015; Yuan et al., 2014). This approach allows the delineation of dynamic changes of 

diffusion properties with covariates of interest in a mixed effects model of spatially 

smoothing varying coefficient functions. The FA data are statistically functional data 

measured across tracts, as well as longitudinal data collected at multiple time points. FMEM 

allows the incorporation these two features in a unified model; that is, a functional mixed 

effects model. This method was specifically developed to address statistical properties of 

longitudinal neuroimaging data such that the statistical dependency due to within subject 

repeated measures (i.e. age; longitudinal analysis) and spatial location of the data along each 

tract (i.e. at every 0.3 mm intervals for this analysis) are included as random effects. Subject 

age was transformed using natural logarithms to produce roughly linear growth trajectories 

across the time period studied for use in the FMEM model (see Supplemental Materials for 

details regarding choice age transformation). An initial FMEM model that included all main 

and interaction effects for age (fixed and random effects), early maternal care experience 

(fixed effect), biological mother (fixed effect), sex (fixed effect), and social rank (fixed 

effect) was first applied. The model was then further refined by excluding those main effect 

and interaction terms that did not significantly (p<0.05) predict global FA of the tract using a 

backward elimination method. Because a threshold of 0.05 may be too stringent for model 

refinement, we also applied a threshold of 0.1, which resulted in the same final model. 

Cross-validation methods require considerable computational power, as we used an FMEM 

analysis (Yuan et al., 2014). For each of the fiber tracts and metrics, it sometimes takes 

several days to fit a model with high performance computing clusters. Thus, we were not 
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able to consider cross-validation methods. Furthermore, there exist no information criteria 

such as Akaike information criteria (AIC) or Bayesian information criteria (BIC) for 

FMEM. Thus, we applied a more traditional method, backward elimination. Three-way 

interactions were not considered as with only 181 scans in total, including all 42 subjects at 

all ages, we do not have sufficient sample size for models including three-way interactions. 

The model would have included more than 42 covariates because our data are longitudinal 

and statistically functional data; thus, another coefficient would need to be included for each 

vertex in the tract (e.g. for the occipital portion of the splenium this would be 219). We did 

attempt to fit a three-way interaction term, but the computation was not feasible for many 

fiber tracts due to ill-conditioned matrices. Even in cases where computation was possible, 

the result would be very unstable because of the small sample size and large number of 

terms. Thus, we decided to only consider two-way interaction terms. The final model 

included age, early experience (i.e. maltreatment), biological mother group, and an 

interaction term between early experience and biological mother group. Sex, social rank and 

their interaction terms were excluded because did they not show a significant effect on fiber 

tract properties. Global results were considered significant at p<0.05 using false discovery 

rate (FDR) corrected p-values. P-values were calculated using the wild bootstrap method as 

described in Yuan et al., 2014, and originally proposed by Wu (Wu, 1986). No cluster-based 

thresholding was applied for the atlas-based analyses.

Voxelwise WM skeleton analyses

An additional exploratory, voxelwise WM skeleton approach (Tract-based Spatial Statistics - 

TBSS, Smith et al., 2007) was also employed to complement the results of the atlas-based 

tract-profile approach. This voxelwise method of DTI analysis is unconstrained by a priori 
hypotheses and is less sensitive to registration errors. TBSS is robust to registration errors 

because local FA maxima are projected onto the WM skeleton, providing some flexibility to 

recover from registration errors. First, an average FA image was created from all subjects in 

the longitudinal atlas space described above, following previously published methods by our 

group (Howell et al., 2014). A skeletonized FA map representing the center of the WM was 

then calculated, and each individual subject’s FA data was projected onto that skeleton to 

account for spatial variability between subjects as previously described (Smith et al., 2007). 

Because this method was specifically designed to be less sensitive to registration errors than 

the tract-based method, none of the animals defined as outliers above were excluded from 

the TBSS analysis, nor were any additional outlier detection methods applied, thus the entire 

sample as described in Table 1 was included. From here the skeletonized data was analyzed 

using the Multiscale Adaptive Generalized Estimating Equations (MAGEE, Li et al., 2013) 

framework to model both main and interaction effects of age (natural log of age in days), 

early experience, biological mother, sex, and social rank. This complete statistical model 

was refined by excluding main effect and interaction terms that did not significantly predict 

FA in any clusters. The final model included main effect terms of age, early maternal care 

experience (being raised by a control dam was assigned a value of 0), sex (females were 

assigned the value of 0), biological mother (biological infants of control dams were assigned 

a value of 0), and rank (high ranking animals were assigned a value of 0, middle ranking a 

value of 1, and low ranking a value of 2), and two interaction terms, 1) early experience by 

biological mother, and 2) early experience by rank. A cluster-based thresholding approach 
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based on random field theory (Worsley et al., 1996) using full width half mass (FWHM) of 

1.5mm, p<0.01 as the significance threshold for cluster size, and p<0.05 as the significance 

level for individual voxels was applied. This method considers spatial dependencies between 

adjacent voxels and corrects for multiple comparisons. Tracts that were likely included in 

significant clusters were identified using published rhesus monkey white matter atlases 

(Adluru et al., 2012; Schmahmann and Pandya, 2009).

Results

Longitudinal DTI atlas-based tract-profile analyses

Tract-based analyses detected statistically significant global main effects of age in all tracts 

studied (UF, ILF, MdLF, CC genu/splenium, fornix, p<10−20) (Fig. 3A). FA increased with 

age in all tracts (as shown in Figs. 1B and 2), whereas MD, RD, and AD decreased 

significantly across time in these tracts (see Fig. 1B and Figs. 2–4 in Supplemental 

Material). Significant global main effects of caregiving were also detected in bilateral MdLF 

(left, p=0.01; right, p<0.001), and the right ILF (p=0.05) (Fig. 3B), with maltreated animals 

showing reduced FA in these tracts across all ages studied (from 2 weeks through 18 

months). Trends towards interactions between early caregiving experience and biological 

mother effects were also suggested in all of these tracts, with animals born to control 

mothers and cross-fostered to control mothers showing the highest FA values, although they 

failed to reach statistical significance (left MdLF, p=0.09; right MdLF, p=0.08; right ILF, 

p=0.09) (Fig. 3C). Local results show that the significant global main effects of early 

caregiving experience were due to group differences in FA in the center of the tracts, where 

the tracts are most coherent. There were no other significant main or interaction effects 

detected in the left ILF, the CC (genu or splenium subdivisions) or bilateral fornix.

Exploratory voxelwise WM skeleton TBSS analyses

A voxelwise analysis was applied in a WM skeleton to identify regions outside of the a 
priori tracts examined in the tract-profile analysis that may be sensitive to early experience, 

heritable factors, and individual subject characteristics including sex and social rank.

Main effects of age—Forty-eight clusters showed a significant age effect (Table 1, Fig. 

4), most of them showing increasing FA with increasing age, while a single cluster located 

in the dorsal aspect of the bilateral fornix showed decreasing FA with age. No interaction 

effects with age were detected.

Main and interaction effects of early caregiving experience—Significant main 

effects of early maltreatment experience were detected in three clusters, two bilateral 

clusters in the extreme capsule (EC, Table 2, Fig. 5A) and one in the left posterior limb of 

the internal capsule (PLIC, Table 2, Fig. 5B) (Schmahmann et al., 2007; Schmahmann and 

Pandya, 2009). Based on their anatomical location the EC clusters likely include parietal and 

temporal fibers (Mars et al., 2016; Schmahmann and Pandya, 2009). The PLIC cluster likely 

contains sensorimotor fibers, including a portion of the corticospinal tract (Schmahmann and 

Pandya, 2009). In all three of these clusters positive beta values from the fitted model 

indicate that maltreated infants have higher FA than infants that experienced competent, 
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control, care. However, because significant interactions between experience and biological 

mother, and experience and social rank were also identified in these same regions (see 

below) it is not possible to interpret this main effect for either group without considering the 

interaction effects with biological factors and social rank.

Two clusters with significant interactions between early caregiving experience and 

biological dam were found, one in the left superior longitudinal fasciculus, SLF (Table 2, 

Fig. 5C), and the other in the left MdLF (Table 2, Fig. 5D), in agreement with the findings 

reported above as part of the longitudinal DTI atlas-based tract-profile analysis. We 

investigated this interaction further by testing whether animals that were fostered to a dam 

with matching biological maternal care (i.e. control-control - CC, maltreating-maltreating - 

MM) were significantly different from those fostered to a dam with a different (mismatched) 

pattern of maternal care (i.e. control-maltreating - CM, maltreating-control - MC). We found 

that animals fostered to a dam with the expected caregiving behavior (matched) had 

significantly higher FA in these regions (Table 3, Fig. 6) than those fostered to a dam with a 

different maternal care pattern (mismatched).

One cluster with a significant interaction between early caregiving experience and social 

rank was detected in a region of WM that may include the right EC, or portions of the 

internal capsule (IC; Table 2, Fig. 5E). The negative coefficient value for this interaction 

from the fitted model suggests that as social rank increases, the FA values of animals raised 

by maltreating dams decreases incrementally as compared to animals raised by control 

dams. No other interactions with early caregiving experience were found.

Main effects of biological dam—No clusters with significant main effects of biological 

dam were found.

Main effects of sex—Two clusters with statistically significant main effects of sex were 

found: one in the left PLIC and the other in the isthmus of the CC (temporal and parietal 

fibers) (Table 2, Fig. 7). The negative beta values from the fitted model suggest that males 

have lower FA in these regions than females during this developmental period (from 2 weeks 

through 18 months). No significant interaction effects with sex were found.

Main effects of social rank

Two clusters with statistically significant main effects of social dominance rank were found 

in a bilateral region that is likely to contain the IC and/or the EC (Table 2, Fig. 8). The 

positive beta values from the fitted model indicate that FA in these regions increases with 

social rank for biological infants of control dams. No other significant interaction effects 

besides those previously reported with early caregiving experience were detected.

Discussion

In this study we examined the developmental changes in major primate brain tracts from 

infancy through the juvenile period and how maternal care and biologically heritable factors 

shape their developmental trajectories. For this, we studied the effects of infant maltreatment 

on development of brain WM microstructural integrity as quantified by FA throughout 
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infancy and into the juvenile period using a cross-foster design to disentangle the effects of 

early maternal care from those of heritable factors in a naturalistic rhesus monkey model. 

We used in vivo DWI to approach this question in two ways, (1) using an atlas-based tract-

profile approach in which we investigated specific impacts on cortico-limbic tracts, and (2) 

an exploratory voxelwise strategy in which no a priori WM regions were identified. Using 

the atlas-based method we detected significant global effects of age on all WM tracts 

examined (bilateral UF, bilateral fornix, bilateral MdLF, bilateral ILF, and the genu and 

splenium of the CC), with FA increasing in all tracts across this developmental period. 

Global main effects of early experience (i.e. competent caregiving versus maltreating 

caregiving) were detected in both right and left MdLF and the right ILF, with lower FA in 

maltreated animals as compared to control animals. Interestingly, FA was higher in these 

WM tracts in animals fostered to a dam with a “matching” biological maternal care pattern 

as compared to animals raised by a dam with the opposite caregiving pattern (e.g. 

mismatched). Exploratory voxelwise analyses modeled the effects of not only age, 

maltreatment experience, and biological mother as in the tract-profile analyses, but also 

included the effects of sex and social rank to provide an exploratory view into other 

individual biological characteristics and social experiences that may affect WM development 

across the entire primate brain. This exploratory analysis paralleled the tract-based analyses 

by demonstrating that most brain regions increased FA with age. It also confirmed the 

impact of infant maltreatment on ILF and MdLF, although effects on additional regions were 

uncovered. Main effects of sex and social rank were also identified in additional WM 

regions (e.g. the internal capsule and the CC), as were areas where biological mother and 

social rank interacted with early experience to predict FA.

To our knowledge, this is the first report of longitudinal WM development, from infancy to 

the juvenile period (2 weeks to 18 months of age), in the nonhuman primate brain. The 

positive relationship between FA and age found in both the longitudinal DTI atlas-based 

tract-profile analyses and the voxelwise analyses is consistent with several previous studies 

of WM development in both humans (Deoni et al., 2012, 2011; Dubois et al., 2014; Geng et 

al., 2012; Huang et al., 2006) and older, juvenile and adult macaques (Knickmeyer et al., 

2010; Kubicki et al., 2018; Shi et al., 2013), as well as post mortem studies (Brody et al., 

1987; Huang et al., 2006; Kinney et al., 1988; Yakovlev and Lecours, 1967). This increase in 

FA with age is thought to be due to changes in WM microstructural architecture (i.e. 

increased axonal packing, organization and diameter, and myelination) that result from a 

combination of cellular processes that occur throughout WM development (Concha, 2014; 

Walhovd et al., 2014). This increase in microstructural integrity is thought to lead to 

subsequent increases in the speed of action potential impulse propagation between regions 

that come with strengthening of connections (Beaulieu, 2014). Many recent studies have 

suggested that increases in FA are related to improved performance on tasks providing 

evidence that experience-related changes in WM are meaningful for behavior (Fields, 2010, 

2008). Thus WM development creates both a period of increased adaptability and plasticity 

of the developing brain to response to early experiences, as well as vulnerability to 

environmental insults, including stress (Andersen, 2003; Fox et al., 2010; Lupien et al., 

2009).
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Studies of early life stress in humans and other primate species have identified several brain 

WM tracts that are sensitive to adversity (De Bellis et al., 1999)(Hanson et al., 2013; 

Brittany R. Howell et al., 2013; Howell et al., 2014; McCrory et al., 2012; Ohashi et al., 

2017; Teicher et al., 2003). For example, studies investigating the effects of institutional 

rearing and social deprivation on WM in humans have reported decreased FA in prefrontal 

WM tracts including the UF, which connects the prefrontal cortex with temporal regions 

such as the amygdala (Eluvathingal et al., 2006; Govindan et al., 2010). Child neglect has 

also been linked to decreases in the structural integrity of prefrontal WM (Hanson et al., 

2013). In the current study, as well as in previous work by our group using the same rhesus 

monkey model of maltreatment (Brittany R. Howell et al., 2013), however, we failed to 

detect a significant effect of infant maltreatment experience on the UF, despite robust effects 

on other brain tracts, such as the ILF, connecting temporal regions with occipital cortex, and 

the MdLF, connecting temporal regions with inferior parietal cortex. Our findings are 

consistent with other work, including a recent study of WM in adolescents with histories of 

child maltreatment that reported several WM tracts affected by maltreatment, including 

lower FA in bilateral superior longitudinal fasciculus, the right cingulum bundle, the left 

inferior fronto-occipital fasciculus, and the splenium of the CC, but not the UF (Huang et al., 

2012). Our findings also support recent work that identified effects of maltreatment on WM 

in similar regions using a network approach (Ohashi et al., 2017). The discrepancy between 

reports in the literature could be due to specific WM effects of different types of early 

adverse experience (e.g. maternal deprivation, institutional rearing, maltreatment), 

developmental timing, or duration and severity of the experience. However, in the current 

study we did detect effects of early experience on the MdLF, which also contains prefrontal 

fibers (Petrides and Pandya, 2009; Schmahmann et al., 2007; Schmahmann and Pandya, 

2009), and may suggest some common regional effects on WM development across different 

forms of early life stress.

The MdLF is a long association tract connecting high-level association areas and paralimbic 

cortices including the inferior parietal lobule, the parahippocampal gyrus, the cingulate 

gyrus, and the prefrontal cortex (Schmahmann et al., 2007; Schmahmann and Pandya, 

2009). Based on the cortical regions connected by the MdLF it is likely that this tract plays 

an important role in communication, particularly via integration of information regarding 

spatial organization and motivational valence. The function of the MdLF in primates is 

unclear, but there is recent evidence that it is involved in social learning, particularly 

imitation in adult humans, but not adult macaques (Hecht et al., 2013). Although adult 

macaques do not imitate, infant macaques do (Ferrari et al., 2006). Recent work looking at 

imitation in infant rhesus monkeys suggests that social experience in the form of maternal 

care during the first days of life leads to a sensitization of the infant to social cues 

(Vanderwert et al., 2015). The findings from the current study are consistent with this 

literature, as they both highlight the importance of early experience, especially maternal 

care, on brain WM. They also suggest that these alterations may be related to the social 

deficits often observed in children with histories of maltreatment. Future studies are required 

to determine the functional role of this tract in behavior across development.

In addition to alterations in the MdLF, maltreatment was also associated with lower FA in 

the ILF. The ILF is also a long association tract that connects occipital and temporal cortices 
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(Ashtari, 2012; Schmahmann et al., 2007; Schmahmann and Pandya, 2009). In humans there 

is evidence that the ILF shows functional lateralization, with the left tract being important 

for language processing (Ivanova et al., 2016), and the right being important for face 

perception (Rokem et al., 2017) and recognizing emotional facial expressions (Philippi et al., 

2009; Unger et al., 2016). Because macaques use facial expression to learn about the state of 

conspecifics alterations in this WM bundle may result in deficits in social interactions.

Many conditions and processes have been associated with alterations in the ILF (Chanraud 

et al., 2010). One study of children that had experienced neglect early in life also detected 

decreased FA in the ILF, with those with lower FA having poorer performance on a spatial 

planning task (Hanson et al., 2013). In another form of early life adversity, adults with 

histories of witnessing domestic violence in childhood had decreased WM volume in the 

ILF (Choi et al., 2012). In addition to these studies of specific early life stresses, decreased 

FA in the ILF has also been related to schizophrenia (Pérez-Iglesias et al., 2010), with FA in 

the right ILF being negatively associated with thinking disorder (Phillips et al., 2009). A 

recent study of adult schizophrenic patients with histories of child maltreatment detected a 

negative association between scores on the Risky Family Questionnaire (a standardized 

measure of adverse childhood experience) in the left ILF (Poletti et al., 2015). This work 

highlights the role that early experience plays in the etiology of psychopathology. Wolff and 

colleagues reported increased FA in the left ILF in 6-month-old human infants that went on 

to develop autism spectrum disorder (Wolff et al., 2012). This pattern of increased FA 

continued through 12 months, but by 24 months the children with autism showed decreased 

FA in this tract as compared to controls (Wolff et al., 2012). Other groups have found similar 

differences between autistic individuals and those without a diagnosis, with decreases in FA 

being reported in adults and adolescents (Bloemen et al., 2010; Groen et al., 2011; 

Kleinhans et al., 2012). These studies combined with the results of the current study suggest 

that experience related alterations in WM development of the MdLF and ILF may contribute 

to the behavioral alterations and increased risk for developing psychopathology, particularly 

psychopathologies involving alterations in social behavior and communication. Nearly 

significant global maltreatment by biological mother interaction effects were identified in 

these tracts as well (bilateral MdLF and right ILF), suggesting that heritable factors may also 

play a modulatory role on the effects of early experience on temporal WM development; 

however, this hypothesis needs to be addressed by future studies utilizing larger sample 

sizes.

Voxelwise analyses using the TBSS method corroborated most of the maltreatment 

experience related effects, but also identified additional WM regions that were sensitive to 

early life adversity, biological mother, sex and social rank. Before discussing these results it 

is important to acknowledge that the TBSS method has limitations in regards to identifying 

specific tracts due to how wide regions of WM that contain multiple tracts are simplified 

into a single-voxel wide WM skeleton. Despite this limitation, this approach was chosen as 

an exploratory method to identify additional WM regions where FA was affected by early 

maternal care experience and other factors to complement the specific tract-based approach 

taken above due to several key advantages. One benefit of this method is that it limits the 

number of statistical tests necessary for voxelwise analysis of WM, thus making this type of 
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exploratory analysis more tractable statistically by reducing false positives. It is also less 

sensitive to registration errors.

Main effects of maltreatment experience, sex, and social rank were also found in a WM 

region that based on its anatomical location contains either the PLIC and/or the extreme 

capsule (EC). The PLIC contains fibers that connect superior temporal and parietal cortices 

with subcortical regions including the thalamus, as well as fibers of the corticospinal tract 

that carry information from primary motor cortex to motor neurons in the spinal cord 

(Schmahmann and Pandya, 2009). The functional role of the fibers of the PLIC is strongly 

involved in voluntary motor control based on studies of both healthy participants (Kim et al., 

2008) and stroke patients (Pendlebury et al., 1999), as well as multiple sclerosis patients 

(Lee et al., 2000). Reduced FA in PLIC has been associated with motor impairments (Puig et 

al., 2011; Sach et al., 2004). The EC is a long association fiber that connects the rhesus 

cytoarchitectural equivalents of Wernicke’s and Broca’s areas in humans, suggesting a role 

for this WM bundle in communication in monkeys (Petrides and Pandya, 2009, 2007). It is 

interesting to note that fibers arising from the orbitofrontal cortex course through the EC 

before joining the MdLF (Schmahmann and Pandya, 2009), making it possible for the 

effects in this region identified using a voxelwise approach to be related to the tract-based 

findings in the MdLF discussed previously. The main effect of maltreatment described by 

the voxelwise analysis shows a positive relationship between FA in this region of WM and 

maltreatment. Other studies of the effects of early life adversity have also reported 

differences in similar regions (Choi et al., 2009), although the experience of ELS was related 

to decreases in FA in these WM regions. Interestingly, Frodl and colleagues reported 

increased FA in several WM regions in unaffected first-degree relatives of those diagnosed 

with major depressive disorder that had experienced high levels of early life adversity (Frodl 

et al., 2012). This suggests that increased FA may contribute to resilience in the face of ELS. 

One study investigating the effects of a neonatal intervention focused on supporting the 

development of the infant in the context of the family reported increased relative anisotropy 

(a measure closely related to FA) in the left internal capsule, an increase that was related to 

decreased reactivity (Als et al., 2004), supporting the role of increased WM structural 

integrity in this region in resilience in the face of ELS.

In addition to the main effect of sex found in the left PLIC, a main effect of sex was also 

found in the isthmus of the CC, consistent with other studies investigating sex differences in 

the CC (Aboitiz, Francisco; Rodriguez, Eugenio; Olivares, Ricardo; Zaidel, 1996). Sex 

effects on the volume and surface area of this portion of the CC have been reported 

previously with females having larger surface areas in this region (Steinmetz et al., 1992; 

Witelson, 1989), although not all reports are consistent (Bishop and Wahlsten, 1997; Giedd 

et al., 1999). In addition to these sex dependent differences in size, sex differences in rates of 

development during childhood and adolescence have also been reported (Luders et al., 

2010). The isthmus of the CC carries interhemispheric fibers of parietal and superior 

temporal origin (Hofer and Frahm, 2006; Schmahmann and Pandya, 2009; Witelson, 1989). 

In humans these regions are thought to be involved in auditory processing and speech 

production (Dougherty et al., 2007; Westerhausen et al., 2009). A recent study reported a 

relationship between structural development of the isthmus of the CC and speech processing 

in 6 to 8-year-old children (Westerhausen et al., 2011).
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In addition to the main effect of social rank detected in the IC, interactions with 

maltreatment experience were identified in several other WM regions including the ILF, 

SLF, and the corticospinal tracts. In these regions FA decreased incrementally with 

decreasing rank in maltreated animals. Interestingly, in a previous study of WM in animals 

that received normative care our group identified similar regions with rank dependent levels 

of FA (Howell et al., 2014), however FA was increased in these regions in low ranking 

animals. The results from the current investigation suggest that maltreatment may be more 

detrimental in low ranking animals. They also highlight the need to consider the interactions 

between social hierarchy status (i.e. social dominance ranks in monkeys, and potentially 

socioeconomic status in humans) and early experience when investigating the effects of 

early experience on brain development.

The interaction between maltreatment experience and biological dam detected in the TBSS 

analysis provides empirical evidence supporting the environmental match/mismatch 

hypothesis, as opposed to the cumulative stress hypothesis. In the cumulative stress model, 

chronic exposure to stress early in life is thought to have an additive effect on poor outcomes 

(Taylor, 2010). In contrast, the match/mismatch hypothesis posits that offspring phenotypes 

that match those of previous generations (due to genetic or potentially epigenetic factors) 

confer some adaptive outcomes to the ancestral environment, including early social 

environment (Del Giudice et al., 2011; Ellis and Boyce, 2008; Nederhof and Schmidt, 2012). 

This view has been used to explain the link between early life stress and psychopathology 

considering individual variability in vulnerability and resilience, leading to the mismatch 

hypothesis of psychiatric disorders such as depression (Nederhof and Schmidt, 2012; 

Santarelli et al., 2014). In the current study infants raised by foster dams that “matched” the 

maternal care pattern of their biological dams had higher FA in specific WM regions than 

infants with mismatched maternal care. These findings are consistent with reports from 

studies in other animal models (Daskalakis et al., 2012; Nederhof and Schmidt, 2012; 

Santarelli et al., 2014) and highlight the need to consider ancestral experiences and heritable 

factors in conjunction with postnatal experience when trying to understand the complex 

outcomes of early life adversity.

It is important to acknowledge the limitations of the current study. While the sample size 

used was large for a macaque study and provided enough power to fit the models presented 

using a longitudinal design and appropriate multiple comparison corrections, it was not large 

enough for additional analyses to investigate the consequences of brain WM developmental 

differences on behavior, or to examine potential stress-related biological mechanisms (i.e. 

stress hormones). Additional limitations include: (1) the moderate resolution of the DTI 

data, (2) the deterministic methodology used to track the major WM tracts in the DTI atlas 

(which does not allow for modeling of crossing fibers), both of which limit our ability to 

accurately delineate tracts in regions with extensive crossing fibers (i.e. thalamic radiations, 

superior longitudinal fasciculus), and (3) the repeated exposure to anesthesia, which has 

been shown to affect oligodendricites in young monkeys (Brambrink et al., 2012; Noguchi et 

al., 2017; Schenning et al., 2017), could potentially affect the measures of white matter 

development studied here, although this is the case across all groups. Despite these 

limitations, the current study uncovered important normative developmental trajectories of 

NHP brain WM, as well as the role of early adversity-related impact on brain WM 
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development, and sets the stage for future studies specifically designed to address those 

questions.

Conclusions

The results of the current study provide a possible neurobiological mechanism through 

which adverse early experiences result in alterations in behavior. The alterations in WM 

development reported here are in regions known to support social brain functioning, 

supporting a putative role of these alterations in brain WM in the behavioral outcomes 

associated with early life stress. These effects were found in regionally specific areas, 

showing that early life stress does not affect brain WM in a nonspecific, or global, manner. 

Effects were not identified in only WM tracts known to be important for emotional, stress 

and social regulation, such as the UF, which suggests that a more complex network of brain 

regions and alterations underlie the long-term outcomes of maltreatment. These results 

parallel resting state functional imaging studies that show alterations in functional 

connectivity in the default mode network, including important association regions such as 

the parietal cortex, one of this network’s major hubs. There were no caregiving by age 

interactions, meaning that early experience did not affect growth trajectories, but the overall 

WM tract integrity (FA magnitude) throughout infant and juvenile development was affected 

in specific regions beginning very early in life. Modulation of the effects of early experience 

by heritable factors was also found in the voxelwise analyses, emphasizing the additional 

evolutionary importance of current maternal care and ancestral experience in guiding 

offspring development.
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Figure 1: 
(A) Tracts in the longitudinal DTI atlas included in tract-based analyses. Orange = genu 

of the corpus callosum (G), Purple = right uncinate fasciculus (UF), Lavender = left uncinate 

fasciculus (UF), Red = right fornix (F), Pink = left fornix (F), Dark blue = right middle 

longitudinal fasciculus (MdLF), Light blue = left middle longitudinal fasciculus (MdLF), 

Dark green = right inferior longitudinal fasciculus (ILF), Light green = left inferior 

longitudinal fasciculus (ILF), Yellow-green = splenium of the corpus callosum (SOcc), 

Yellow = temporal corpus callosum fibers (STap). (B) FA, RD, MD, and AD values at each 
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age of assessment. Metric values increase from blue to red. Position key: I = inferior, S = 

superior, R = right, L = left, A = anterior, and P = posterior.
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Figure 2: FA values plotted across the spatial extent of each tract across all ages of assessment.
The position along the tract is given in 0.3mm intervals where 0 is the center of the length of 

the tract, and positive values represent the anterior aspect of the tract, or the right side of the 

tract if the tract is interhemispheric.

Howell et al. Page 30

Neuroimage. Author manuscript; available in PMC 2020 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: Longitudinal DTI atlas-based tract-profile analyses:
(A) local results of main effects of age, (B) local results of main effects of maltreatment 

experience, (C) local results for maltreatment experience by biological dam interaction 

effects. Color indicates local FDR corrected p-value. Position key: I = inferior, S = superior, 

R = right, L = left, A = anterior, and P = posterior.
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Figure 4: TBSS analysis: Main effects of age.
Green voxels indicate the FA skeleton produced as part of the TBSS analysis. Other colored 

voxels represent the beta-value from the fitted model where statistically significant clusters 

(thresholded at p<0.01 for cluster size and p<0.05 for individual voxels to correct for 

multiple comparisons) were detected. Position key: I = inferior, S = superior, R = right, L = 

left, A = anterior, and P = posterior.
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Figure 5: TBSS analysis: Main and interaction effects of early caregiving experience.
Green voxels indicate the FA skeleton produced as part of the TBSS analyis. Other colored 

voxels (red-yellow-blue scale) represent the beta-value from the fitted model where 

statistically significant clusters (thresholded at p<0.01 for cluster size and p<0.05 for 

individual voxels to correct for multiple comparisons) were detected. Main effects of early 

caregiving experience were found in (A and B) bilateral extreme capsule (EC) and the left 

posterior limb of the internal capsule (PLIC). Interaction effect between early caregiving 

experience and biological dam were found in (C) the superior longitudinal fasciculus (SLF) 

and (D) the middle longitudinal fasciculus (MdLF). Interaction effect between early 

caregiving experience and social rank found in (E) the internal capsule. Position key: I = 

inferior, S = superior, R = right, L = left, A = anterior, and P = posterior.
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Figure 6: TBSS analysis: Contrast of animals raised by dams with maternal behavior patterns 
similar to their biological dams (i.e. matched) versus animals raised by dams with the opposite 
behavior pattern (i.e. mismatched).
Green voxels indicate the FA skeleton produced as part of the TBSS analysis. Blue voxels 

represent where mismatch animals had significantly (p<0.01 for cluster size and p<0.05 for 

individual voxels) lower FA than matched animals (the left middle longitudinal fasciculus, 

MdLF, and the left superior longitudinal fasciculus, SLF). Position key: I = inferior, S = 

superior, R = right, L = left, A = anterior, and P = posterior.
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Figure 7: TBSS analysis: Main effect of sex.
Green voxels indicate the FA skeleton produced as part of the TBSS analysis. Other colored 

voxels represent the beta-value from the fitted model where significant clusters (thresholded 

at p<0.01 for cluster size and p<0.05 for individual voxels to correct for multiple 

comparisons) were found. Position key: I = inferior, S = superior, R = right, L = left, A = 

anterior, and P = posterior.

Howell et al. Page 35

Neuroimage. Author manuscript; available in PMC 2020 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8: TBSS analysis: Main effect of social rank.
Green voxels indicate the FA skeleton produced as part of the TBSS analysis. Other colored 

voxels represent the beta-value from the fitted model where significant clusters (thresholded 

at p<0.01 for cluster size and p<0.05 for individual voxels to correct for multiple 

comparisons) were found. Position key: I = inferior, S = superior, R = right, L = left, A = 

anterior, and P = posterior.
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Table 1:

TBSS analysis table: Main effect of age.

Cluster Size (voxels) p-value Average Beta from 
Fitted Model White Matter Region

1 2628 < 10−20 0.024449 R-PLIC, R-ALIC, R-EC, R-SCR, R-CP, R-ST, R-VPF, R-ACg-WM, R-IFG-
WM, BCC, R-MB-WM

2 2198 < 10−20 0.022143 L-ST, BCC, L-ACR, L-DPF, R-SLF, R-EC, L-ALIC, R-ALIC, L-PLIC, L-EC, 
L-ACg-WM, R-ACR, L-OC, R-IFG-WM, L-PCR, R-ALIC, R-MB-WM, R-CST

3 1701 < 10−20 0.027713 L-CST, L-CP, L-ST, L-PLIC, L-ALIC, L-EC, L-SLF, L-DPF, L-SCR, BCC, L-
MB-WM,L-DPCR

4 782 < 10−20 0.02952 L-RLIC, L-PTR, L-EC, L-PLIC, L-TAP, R-DPCR, R-RLIC, R-PTR, L-SS, L-
MB-WM, Splenium

5 618 < 10−20 0.019205 L-EC, L-SLF, Splenium, L-DPCR, R-DPCR, L-PCR, L-CgC, R-PCR, R-PCR, 
R-PTR

6 367 2×10−12 0.014671 Splenium, L-PCR, L-DPCR, CgC-L, L-SLF, L-STG-WM

7 331 1×10−11 0.015353 R-STG-WM, L-STG-WM, R-EC, L-EC

8 319 3×10−11 0.019004 L-PTR, R-EC, R-STG-WM

9 304 1×10−10 0.011702 L-ACR, L-PTR, L-IFG-WM

10 284 3×10−10 0.027434 L-IFG-WM, L-ACR, L-OC, L-ICP, MCP

11 267 1×10−9 0.025582 L-ICP, R-SCP, R-ICP, MCP, L-OC

12 255 2×10−9 0.015338 R-ICP, R-OC, R-SLF

13 247 4×10−9 0.011445 R-SLF, R-IFG-WM, R-ACR

14 244 5×10−9 0.022957 Genu, R-IFG-WM, L-DPF, BCC

15 229 1×10−8 0.01971 BCC, L-ACR, R-ACR, Genu

16 190 2×10−7 0.014508 L-MTG-WM, R-MTG-WM, L-SS

17 184 3×10−7 0.013335 R-MdLF

18 172 9×10−7 0.033744 R-MdLF, R-Occipital WM

19 163 0.000002 0.02644 R-PCR, R-PTR, R-Occipital WM

20 153 0.000004 0.014867 R-PCR, L-MdLF

21 151 0.000005 0.01339 L-SS, L-MdLF

22 148 0.000007 0.017619 R-SS, R-MTG-WM, L-UF

23 131 0.000027 0.016157 L-PCR, R-MTG-WM, R-SS

24 120 0.000069 0.032015 L-PCR, L-MB-WM, R-MB-WM, R-SCP, L-SCP, L-CTG, R-CTG

25 105 0.000263 0.013821 R-CTG, L-CTG, R-SCP, L-SCP, R-EC

26 104 0.000289 0.027644 R-EC, L-SLF, L-PTR, L-SS, L-MTG-WM

27 103 0.000316 0.006434 L-DPCR, L-PTR, L-SLF, L-MTG-WM

28 102 0.000346 0.022481 L-DPCR, R-SLF

29 102 0.000346 −0.011344 R-SLF, BCC, Fornix

30 100 0.000417 0.013708 BCC, R-UF, Fornix

31 97 0.000551 0.015296 L-SCR, R-UF

32 95 0.000664 0.010236 L-SS, R-DPF, L-SCR

33 90 0.001067 0.013451 L-IFG-WM, R-SCR, L-SLF

34 79 0.003126 0.011282 L-IFG-WM, R-MB-WM

35 77 0.003821 0.012316 R-SCR, R-MB-WM
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Cluster Size (voxels) p-value Average Beta from 
Fitted Model White Matter Region

36 74 0.005178 0.012141 R-SCR

37 74 0.005178 0.022472 L-SLF, R-SLF

38 72 0.006355 0.016477 L-SLF

39 70 0.007813 0.012757 R-EC, R-PCR

40 69 0.008668 0.030249 R-EC

41 67 0.010686 0.009406 R-VPF, R-Occipital WM, R-UF

42 63 0.016331 0.009576 L-ACg-WM, R-ACg-WM, L-VPR

43 62 0.018179 0.009104 R-UF, R-SLF

44 60 0.022558 0.016943 R-SLF

45 57 0.031291 0.036887 L-ST, L-Cerebellar WM, L- Thalamic WM

46 55 0.039005 0.007709 L-Cerebellar WM, R-SLF

47 55 0.039005 0.03198 R-SLF, L-Occipital WM

48 55 0.039005 0.012428 L-Occipital WM, R-EC

R – right, L- left; Key: MCP, Middle Cerebellar Peduncle; BCC, body of the corpus callosum; CST, corticospinal tract; ICP, inferior cerebellar 
peduncle; SCP, superior cerebellar peduncle; CP, cerebral peduncle; ALIC, anterior limb of the internal capsule; PLIC, posterior limb of the 
internal capsule; RLIC, retrolenticular limb of the internal capsule; ACR, anterior corona radiata; SCR, superior corona radiata; PCR, posterior 
corona radiata; PTR, posterior thalamic radiation; SS, sagittal striatum; EC, external capsule; CgC, superior cingulum; ST, stria terminalis; SLF, 
superior longitudinal fasciculus; UF, uncinate fasciculus; TAP, tapetum; DPF, dorsal prefrontal WM; VPF, ventral prefrontal white matter; DPCR, 
dorsal posterior corona radiata; MdLF, middle longitudinal fasciculus; PT, pyramidal tracts; OC, olivocerebellar; IFG-WM, inferior frontal gyrus 
WM; STG-WM, superior frontal gyrus WM; MTG-WM, middle temporal WM; MB-WM, midbrain WM; ACg-WM, anterior cingulum.
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Table 2:

TBSS analysis: Main effects of maltreatment experience, sex, and social rank, and interaction effects 

(maltreatment by biological dam, maltreatment by rank).

Effect Cluster Size (voxels) p-value Average Beta from Fitted 
Model White Matter Region

Maltreatment Experience

1 66 0.011873 0.063313 R-EC, L-EC

2 56 0.034928 0.081644 L-PLIC, R-EC

3 54 0.043577 0.058194 L-PLIC

Maltreatment Experience X Biological 
Dam

1 58 0.028044 0.043289 L-SLF

2 56 0.034928 0.053197 L-SLF, L-MdLF

Maltreatment Experience X Rank 1 91 0.00097 −0.04625 R-IC

Sex
1 81 0.002562 −0.035081 R-PLIC

2 56 0.034928 −0.034349 BCC, L-PLIC

Rank
1 171 0.000001 0.026113 R-PLIC, R-RLIC

2 80 0.00283 0.024363 R-PLIC, L-PLIC, R-RLIC

R – right, L- left; Key: ALIC, anterior limb of the internal capsule; PLIC, posterior limb of the internal capsule; RLIC, retrolenticular limb of the 
internal capsule; EC, external capsule; IC, internal capsule.
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Table 3:

TBSS analysis: Differences between animals raised by dams with similar patterns of maternal care as their 

biological dam (i.e. matched: control-control, maltreating-maltreating) versus those raised by dams with a 

different pattern of maternal care as compared to their biological dam (mismatched: maltreating-control, 

control-maltreating).

Cluster Size (voxels) p-value Average Beta from Fitted Model White Matter Region

1 58 0.028044 0.043289 L-SLF

2 56 0.034928 0.053197 L-MdLF

R – right, L- left; Key: SLF, superior longitudinal fasciculus; MdLF, middle longitudinal fasciculus.
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