
Hierarchical Spherical Deformation for Cortical Surface 
Registration

Ilwoo Lyua,*, Hakmook Kangb, Neil D. Woodwardc, Martin A. Stynerd,e, Bennett A. 
Landmana,c

aElectrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA

bDepartment of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37203, USA

cDepartment of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, 
Nashville, TN 37232, USA

dDepartment of Computer Science, The University of North Carolina at Chapel Hill, Chapel Hill, 
NC 27599, USA

eDepartment of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 
27514, USA

Abstract

We present hierarchical spherical deformation for a group-wise shape correspondence to address 

template selection bias and to minimize registration distortion. In this work, we aim at a 

continuous and smooth deformation field to guide accurate cortical surface registration. In 

conventional spherical registration methods, a global rigid alignment and local deformation are 

independently performed. Motivated by the composition of precession and intrinsic rotation, we 

simultaneously optimize global rigid rotation and non-rigid local deformation by utilizing 

spherical harmonics interpolation of local composite rotations in a single framework. To this end, 

we indirectly encode local displacements by such local composite rotations as functions of 

spherical locations. Furthermore, we introduce an additional regularization term to the spherical 

deformation, which maximizes its rigidity while reducing registration distortion. To improve 

surface registration performance, we employ the second order approximation of the energy 

function that enables fast convergence of the optimization. In the experiments, we validate our 

method on healthy normal subjects with manual cortical surface parcellation in registration 

accuracy and distortion. We show an improved shape correspondence with high accuracy in 

cortical surface parcellation and significantly low registration distortion in surface area and edge 

length. In addition to validation, we discuss parameter tuning, optimization, and implementation 

design with potential acceleration.
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1. Introduction

Cortical morphometric approaches have been widely investigated in neuroimaging studies of 

brain development and atrophy such as gyrification (Armstrong et al., 1995; Schmitt et al., 

2002; Luders et al., 2004; Harris et al., 2004; Gaser et al., 2006; Lui et al., 2011; Kim et al., 

2016; Lyu et al., 2018b). In these studies, a well-established shape correspondence is a must 

to reveal global or local developmental trajectories over age or anatomical changes, and their 

relationships with cognitive functions or genetic and environmental factors. A shape 

correspondence is generally established by finding a proper mapping between cortical 

shapes via surface registration. However, the main challenge comes from inter-variability of 

cortical anatomies accompanied by a complicated, dynamic folding process that hampers 

establishing a shape correspondence appropriately. To find a cortical shape correspondence, 

surface registration generally involves registration metric, surface parametrization, and 

deformation estimation in the parametric space.

Surface registration is the process of transforming the cortical surface to find an optimal 

alignment with a target surface. Recent advance in 3D surface reconstruction (Dale et al., 

1999; Cointepas et al., 2001; Kim et al., 2005; Huo et al., 2016) provides a better 

representation of cortical shapes than that of volumetric images, which enables the use of 

geometry on 2-manifolds for cortical surface registration. This can readily provide rich 

cortical geometric information such as curvature and even advanced cortical anatomical 

biomarkers. For example, curves along sulcal fundi have been used as robust features for a 

shape correspondence since they can reduce spatial ambiguity and increase morphological 

consistency (Thompson et al., 2004; Van Essen, 2005; Joshi et al., 2007; Shi et al., 2009; 

Lyu et al., 2010, 2018c). To establish a shape correspondence, several studies utilized 

anatomical biomarkers to evaluate spatial agreements of cortical surfaces (Tao et al., 2002; 

Thompson et al., 2004; Van Essen, 2005; Glaunès et al., 2004; Joshi et al., 2007; Park et al., 

2012; Datar et al., 2013; Auzias et al., 2013; Lyu et al., 2015; Choi et al., 2015; Agrawal et 

al., 2017). Such a high level of distinctive shape description generally leads to less 

ambiguity in surface registration. In this framework, however, consistency in biomarker 
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extraction directly influences the quality of a shape correspondence. Typically, sparse 

biomarkers are unable to fully cover the entire cortex for a dense correspondence. On the 

other hand, establishing dense biomarkers on a large population is practically implausible, 

and there almost always exists inter- and intra-variability of biomarker extraction even 

across well-trained experts.

Biomarker-free approaches (Fischl et al., 1999; Yeo et al., 2010; Lombaert et al., 2013; 

Robinson et al., 2018; Lyu et al., 2018a) have been emerging to overcome the inherent 

limitations in biomarker selection. These methods typically seek an optimal alignment of 

geometric feature maps that cover the entire cortex. Although these features potentially have 

more ambiguity than well-defined biomarkers in surface registration, their availability and 

clear definition can be a quite appealing candidate for registration metrics. To enhance 

feature description more distinctively, Lombaert et al. (2013); Wright et al. (2015); Orasanu 

et al. (2016); Gahm et al. (2018) utilized spectral features defined in the Laplacian 

embedding or Tardif et al. (2015); Robinson et al. (2018) used multi-modal features.

In addition to registration metric, another component in surface registration is a valid 

parametrization of the cortical surfaces to handle surface registration tractably. There have 

been several attempts at parametrizing cortical shapes in a well-known space including 

planar (Hurdal et al., 2000; Joshi et al., 2007; Auzias et al., 2013), hyperbolic (Tsui et al., 

2013; Shi et al., 2017) or spherical parametrization (Fischl et al., 1999; Tao et al., 2002; 

Glaunès et al., 2004; Robbins et al., 2004; Van Essen, 2005; Yeo et al., 2010; Choi et al., 

2015; Robinson et al., 2018; Lyu et al., 2018a). These approaches provide easy handling of 

cortical surfaces via a consistent parametric representation, which simplifies the cortical 

shape correspondence problem. Of these attempts, spherical parametrization has been 

widely used for cortical surface registration since a reconstructed cortical surface typically 

has a genus-zero closed form. Thus, a sphere can naturally simplify a cortical surface while 

preserving its topology. Although mapping distortion always exists, its influence can be 

often minimized via conformal or area-preserving mappings (Fischl et al., 1999; Haker et 

al., 2000; Quicken et al., 2000; Tosun et al., 2004; Gu et al., 2004). Alternatively, a non-

parametric shape correspondence using particle ensemble avoids a particular surface 

parametrization (Cates et al., 2007; Oguz et al., 2009; Datar et al., 2013; Agrawal et al., 

2017). However, a full shape correspondence is implicit in that it only provides a particle 

correspondence. The resulting correspondence solely depends on the number of particles; no 

explicit deformation field is available.

In spherical mapping, a deformation field is obtained by finding displacements (or tracing 

velocity fields) on the sphere. Dale et al. (1999); Robbins et al. (2004) optimized a cortical 

alignment to pursue explicit penalization of registration metric and distortion. Glaunès et al. 

(2004) proposed interpolation on a spherical vector field. Later Yeo et al. (2010) developed 

Spherical Demons with the interpolation technique proposed by Glaunès et al. (2004). In 

their method, spherical displacements are represented as local geodesics in the local tangent 

space. Each individual trajectory is obtained over a static velocity field to deform the sphere. 

Wheland and Pantazis (2014); Robinson et al. (2018) proposed pre-defined displacements 

around each sampling point on the sphere. The resulting deformation concatenates 

successive deformations to yield final deformation by optimizing over a discrete 
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displacement field. Zou et al. (2007); Park et al. (2012) applied a spherical thin-plate spline 

for a dense shape correspondence. Overall, these methods achieved successful cortical 

surface registration in a sense of well-aligned feature maps or anatomical biomarkers.

An important characteristic in spherical deformation is a rigid rotation of the 3D rotation 

group SO(3) that preserves relative distances and thus maximizes a feature alignment on the 

sphere without any distortion. Lack of a sufficient rigid rotation could end up with large 

registration distortion or locally optimal solution. High registration accuracy even with a 

perfect feature matching does not guarantee minimal registration distortion. Yet, there has 

been a gap between a global rigid alignment and local deformation in surface registration. In 

most spherical surface registration methods, global rigid rotation is seldom incorporated 

during the optimization. A rigid alignment of feature maps is only performed independently 

before the optimization or based on volumetric transformation, and then only local 

displacements are optimized. One can interchangeably update a rigid alignment and local 

deformation during the optimization. However, the energy function needs to be carefully 

designed in this context; its optimization might be non-trivial (e.g., gradients of the energy 

function), otherwise. In our earlier work (Lyu et al., 2015), we proposed spherical harmonics 

interpolation of partial angular displacements in that spherical harmonics naturally encode 

global and local behaviors on the sphere. Unfortunately, the deformation field depends on a 

particular spherical parametrization. This is true since linear interpolation of polar angles 

does not hold rigid rotations as shown in Fig. 1. Consequently, the method requires an 

optimal pole selection to reduce such rotation singularity around the poles. The solution was 

ad-hoc, which cannot fundamentally address such inconsistent interpolation.

In this paper, we propose novel spherical deformation that minimizes registration distortion. 

The proposed method couples rigid and non-rigid deformation in a single framework. In 

particular, the proposed method simultaneously achieves both a global rigid alignment and 

local deformation by allowing spatially varying rotations as functions of spherical locations. 

To avoid a bias toward template selection, we further propose a group-wise registration 

framework, in which a population statistics is estimated. The proposed method is inspired by 

our earlier approach to spherical harmonics interpolation of a deformation field (Lyu et al., 

2015). Unlike this approach, the proposed method interpolates local composite rotations 

rather than polar angles that depend on a particular spherical coordinate system. This thus 

yields a well-established shape correspondence with low registration distortion. We extend 

our previous work (Lyu et al., 2018a) with the following main contributions: (1) detailed 

descriptions, (2) mathematical reformulation and derivation, (3) improved methodology 

(rigidity control and optimization), and (4) extensive evaluation on a healthy subject dataset 

with manual tissue labels.

2. Methods

2.1. Problem Definition

Consider a set of N cortical surfaces with their initial spherical mappings. For the nth 

subject, the goal is to estimate a continuous spherical deformation field Mn:𝕊2 𝕊2 such 

that
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M1 p1 = M2 p2 = ⋯ = MN pN , (1)

where pn ∈ 𝕊2 = p ∈ ℝ3: p = 1  is the corresponding location of the nth subject. M 

provides displacements carrying any spherical locations to their corresponding ones. Here, 

we pursue spherical displacements of the corresponding locations with reduced registration 

distortion. In the following sections, we first describe the proposed displacement encoding 

scheme represented by a rigid rotation and then extend the idea to non-rigid deformation.

2.2. Displacement Encoding

We seek a consistent displacement encoding scheme independent of a non-linear spherical 

polar coordinate system. Here, such a displacement can be efficiently encoded by two 

successive rotations: rotation of an Euler axis (precession) followed by rotation about the 

Euler axis (intrinsic rotation).

Theorem 1. For ∀R ∈ SO(3) with an arbitrary reference Euler axis z, R is sufficiently 
represented by the composition of two successive rotations: precession and intrinsic rotation.

Proof. We consider initial and target (after R) frames denoted by F and, F respectively; i.e., 

F = R ⋅ F. Without loss of generality, let F = [x y z] and F = [xyz]. (1) Precession: we rotate z 

to coincide with z. After this, other two axes are on the xy plane, which reduces one degree 

of freedom. (2) Intrinsic rotation: since z is aligned to z, there exists a proper rotation angle 

about z to fit F to F. Therefore, the two rotations are sufficient to encode R. See Fig. 2 for 

such a composite rotation. □

Theorem 1 states that two successive rotations (of and about an Euler axis) can vary 

depending on a reference Euler axis but their composite rotation is equivalent to any target 

rotation independent of a reference Euler axis. Any reference Euler axis can sufficiently 

render a target rigid rotation. This further implies that any spherical displacement can be 

obtained by finding two successive rotations regardless of a reference Euler axis. Therefore, 

we do not assume a specific reference Euler axis in this work. Fig. 3 shows a schematic 

illustration of the proposed encoding. For notational simplicity, we model these rotations by 

the axis-angle representation (matrix exponential) throughout this paper.

2.2.1. Precession: rotation of Euler axis—Consider a reference Euler axis z ∈ 𝕊2 is 

rotated to be at a target axis z ∈ 𝕊2. Intuitively, this is equivalent to precession of z 

determined by axis tilt of z. For spherical polar coordinates (θ, ϕ) ∈ [0, π] × [−π, π], we 

define their transformation into Cartesian coordinates.

φ(θ, ϕ) = [sinθcosϕ, sinθ sinϕ, cosθ]T . (2)
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In a naive way, the location of z is represented as a function of angular displacements(Δθ, 

Δϕ).

z = φ θz + Δθ, ϕz + Δϕ , (3)

whereθz and ϕz are inclination and azimuth of z, respectively. Unfortunately, Δθ and Δϕ are 

dependent and vary with respect to the location of z for the same distance of geodesics. To 

consistently handle displacements without angular dependency, we instead compute z as a 

function of geodesics on the local tangent plane at z via an exponential map expz:Tz𝕊2 𝕊2. 

In this way, we can thus find a unique location zT ∈ Tz𝕊2 that corresponds to z. For two 

arbitrary orthonormal bases u1, u2 ∈ Tz𝕊2, z is obtained by a linear combination of the two 

bases:

z = expz zT = expz cu1
u1 + cu2

u2 , (4)

where cu1
 and cu2

 are coefficients associated with u1 and u2, respectively. Note that u1 and 

u2 define a reference frame on the tangent space, which has no influence on geodesics 

themselves on Tz𝕊2. To rotate z to z, we define an additional rotation axis z⊥ and its rotation 

angle ω⊥ as follows:

z⊥ = z × z
z × z  and ω⊥ = arccos zT ⋅ z , (5)

Since the exponential map is defined on the sphere and z ⊥ zT, this further simplifies Eq. 

(5):

z⊥ =
z × zT

cu1
2 + cu2

2  and ω⊥ = cu1
2 + cu2

2 . (6)

Let [·]× denote a 3-by-3 skew-symmetric matrix to represent a cross product. We have the 

rotation of z as a matrix exponential

R1 = exp ω⊥ z⊥
× = exp z × zT × . (7)

2.2.2. Intrinsic rotation: rotation about Euler axis—Given a rotation angle ω ∈ 
[−π, π] about z, we have the intrinsic rotation of z as a matrix exponential
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R2 = exp ω[z]× . (8)

From Eqs. (7) and (8), the overall composite rotation is given by

R cu1
, cu2

, ω = R2 ⋅ R1 = exp ω[z]× ⋅ exp z × zT × . (9)

For ∀p ∈ 𝕊2, this encodes a new location:

M(p) = p cu1
, cu2

, ω = R cu1
, cu2

, ω ⋅ p . (10)

The resulting deformation M yields an identical rigid rotation at every location and globally 

drives the corresponding locations to the closest location by finding an optimal set of cu1
, 

cu2
, and ω

2.3. Extension to Hierarchical Spherical Deformation

In general, all the corresponding locations are not completely aligned after the rigid rotation. 

This leads to an extension of the rigid rotation to non-rigid deformation. From the 

observation of spatial homogeneity in feature maps, we here propose spatially varying 

rotations as functions of spherical locations rather than constants. The idea is to smoothly 

interpolate composite rotations over the sphere. For this purpose, we use a spherical 

harmonics interpolation technique that allows smooth interpolation of signals defined on the 

unit sphere. At a spherical location φ(θ, ϕ), the spherical harmonics basis function of degree 

l and order m (−l ≤ m ≤ l) is given by

Y l
m(θ, ϕ) = 2l + 1

4π
(l − m)!
(l + m)!Pl

m(cosθ)eimϕ, (11)

Y l
−m(θ, ϕ) = ( − 1)mY l

m *(θ, ϕ), (12)

where Y l
m * denotes the complex conjugate of Y l

m, and Pl
m is the associated Legendre 

polynomial

Pl
m(x) = ( − 1)m

2ll!
1 − x2

m
2 d(l + m)

dx(l + m) x2 − 1 l . (13)

Lyu et al. Page 7

Med Image Anal. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A real form of the functions is sufficient in this framework.

Y l, m =

1
2 Y l

m + ( − 1)mY l
−m m > 0,

Y l
0 m = 0,
1
2i

Y l
−m − ( − 1)mY l

m m < 0.

(14)

In particular, z is obtained by plugging a set of spherical harmonics coefficients cu1
= cl, u1

m

and cu2
= cl, u2

m  into Eq. (4):

z(θ, ϕ) = expZ ∑
l = 0

∞
∑

m = − l

l
cl, u1

m u1 + cl, u2
m u2 ⋅ Y l, m(θ, ϕ) . (15)

This also redefines zT as a function of a spherical location φ(θ, ϕ). In addition, ω is linearly 

proportional to the amount of intrinsic rotation. Thus, ω can be also obtained by the 

spherical harmonics interpolation as a function of spherical harmonics coefficients 

cω = cl, ω
m .

ω(θ, ϕ) = ∑
l = 0

∞
∑

m = − l

l
cl, ω

m ⋅ Y l, m(θ, ϕ) . (16)

This locally defines a rotation about z at each spherical location φ(θ, ϕ), which implies that 

the rotation smoothly changes across spherical locations. The proposed deformation is 

hierarchically represented since the spherical harmonics basis functions are linearly 

independent; the lower spherical harmonics degree, the smoother, more global deformation. 

Thus, the smoothness is easily controllable. Note that the deformation is equivalent to a rigid 

(global) rotation if l = 0.

2.4. Optimization

2.4.1. Energy function—We use scalar maps (e.g., mean curvature) defined on the 

cortical surfaces for the registration metric. We evaluate the agreement of the deformed 

scalar maps on the unit sphere to find the optimal local composite rotations. Since an explicit 

correspondence of scalar maps is unavailable, we instead put S icosahedral sampling points 

on each subject’s sphere and evaluate the agreement of the deformed scalar maps at the 

corresponding sampling locations. Given estimates of cu1
n , cu2

n , cω
n  of the nth subject, we 

consider its deformed scalar map fn and the corresponding location pi
n to the ith sampling 
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location pi such that pi = R cu1
n , cu2

n , cω
n ⋅ pi

n (see Eq. (10)). By letting f  be the mean across 

scalar maps, the feature mismatching energy is given by

E f cu1
, cu2

, cω = 1
2NS ∑

n = 1

N
∑
i = 1

S f n pi
n − f i

2

σ
f , pi

n
2 , (17)

where σ f
2 is feature variance. This energy encodes the amount of mismatching across feature 

maps to the mean as the sum of the standard scores; for the perfect feature matching, the 

energy becomes zero. Yet, the rigidity in Ef is implicit. To encourage the rigidity of the 

deformation more explicitly, we consider additional distortion energy:

Ed cu1
, cu2

, cω = 1
2N ∑

n = 1

N 1
Sn

∑
i = 1

Sn arccos2 pi
nT ⋅ pi

n

σ
d, pi

n
2 , (18)

where Sn is the number of vertices of the nth subject, σd
2 is distortion prior, and p is the 

reconstructed location of p at l = 0. This energy encodes the sum of the squared geodesic 

distance (arc length) distortion at p between before and after non-rigid deformation; the 

energy is equal to zero if only rigid rotation is applied (i.e., l = 0). Thus, this term helps 

prevent the deformation from being hugely distorted and only optimized toward feature 

matching during the optimization. Given updated coefficients, this quantifies the amount of 

distortion from initial relative displacements. Overall, we have the following total energy 

function:

E cu1
, cu2

, cω = E f cu1
, cu2

, cω + αEd cu1
, cu2

, cω , (19)

where α ∈ ℝ+ is a weighting factor. The total energy function leverages between a feature 

alignment and rigidity of the deformation. In the experiments, we balanced these energy 

terms (α= 1).

2.4.2. Second order approximation—In this work, the energy function is minimized 

by a standard Levenberg-Marquardt optimizer (Levenberg, 1944; Marquardt, 1963). For this 

purpose, we use the second order approximation of the optimization for fast convergence on 

such least squares. Since the coefficients are independent between subjects, we compute 

Jacobian matrices Jf and Jd of each individual subject. For the nth subject, we have the 

following partial derivatives at pi = φ θpi
, ϕpi

 (see Appendix A for their derivation). For 

simplicity, we omit a superscript n here.
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∂pi
T

∂cu1, j
= Y j θpi

, ϕpi
⋅ z × u1 × ⋅ pi

T
,

∂pi
T

∂cu2, j
= Y j θpi

, ϕpi
⋅ z × u2 × ⋅ pi

T, (20)

∂pi
T

∂cω, j
= Y j θpi

, ϕpi
⋅ [z]× ⋅ pi

T ,

where Yj (1 ≤ j ≤ (l + 1)2) is the jth spherical harmonics basis function. By assuming that f

and σ f
2 are constant, the ijth entry of Jf is given by

J f , 1 =
∂pi

T

∂cu1, j
⋅ ∇pi

f ⋅ 1
σ f , pi

,

J f , 2 =
∂pi

T

∂cu2, j
⋅ ∇pi

f ⋅ 1
σ f , pi

, (21)

J f , 3 =
∂pi

T

∂cω, j
⋅ ∇pi

f ⋅ 1
σ f , pi

.

We have an S-by-3(l + 1)2 matrix Jf.

J f = J f , 1, J f , 2, J f , 3 , (22)

and its residual Rf is given by

R f =
f p1 − f 1

σ f , p1
, ⋯,

f pS − f S
σ f , ps

T

. (23)

Similarly, by assuming that p and σd
2 are constant, the ijth entry of Jd is represented by
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Jd, 1 =
∂pi

T

∂cu1, j
⋅ pi ⋅ −1

1 − pi
T ⋅ pi

2 ⋅ 1
σd, pi

,

Jd, 2 =
∂pi

T

∂cu2, j
⋅ pi ⋅ −1

1 − pi
T ⋅ pi

2 ⋅ 1
σd, pi

, (24)

Jd, 3 =
∂pi

T

∂cω, j
⋅ pi ⋅ −1

1 − pi
T ⋅ pi

2 ⋅ 1
σd, pi

.

An Si-by-3(l + 1)2 matrix Jd has the following form.

Jd = Jd, 1, Jd, 2, Jd, 3 , (25)

and its residual Rd is given by

Rd =
arccos p1

T ⋅ p1
σd, p1

, ⋯,
arccos pSn

T ⋅ pSn
σd, pSn

T

. (26)

Let diag(·) denote a diagonal matrix. In a Levenberg-Marquardt framework, we have the 

following update step at each iteration of the optimization.

Δ = − (H + λdiag(H))−1 1
SJ f

TR f + α 1
Sn

Jd
TRd , (27)

where λ is a damping factor, and

H = 1
SJ f

TJ f + α 1
Sn

Jd
TJd . (28)

In practice, 3(l + 1)2 ⪡ S (Sn), which avoids rank deficiency. Finally, the spherical 

harmonics coefficients are updated at each iteration:

c = c + δΔ, (29)
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where α ∈ ℝ+ is regularization of the update step Δ to ensure that spheres are orientable (i.e., 

triangles with nonnegative area in the implementation).

2.4.3. Optimization and criteria—Given a feature map, we update coefficients by 

increasing spherical harmonics degree from l = 0 for an initial guess (Lyu et al., 2015). At 

the beginning, the optimization is independently performed on each individual degree, which 

yields a roughly reasonable guess as a good starting point for the optimization. At the same 

time, we also estimate f  and σ f
2 from initial scalar maps and then update them after the 

initial guess to employ improved population statistics. Since σd
2 is hard to be estimated, we 

use a single constant for the entire cortex. Once coefficients and population statistics are 

obtained from the initial guess, all spherical harmonics coefficients are finally optimized 

together, which drives all the deformation fields by optimizing both rigid and non-rigid 

deformation. The optimization converges if the energy difference between two successive 

steps is less than 10−5. We set λ = 0.001 and δ = 1. Note that δ is a local variable for each 

individual subject to maintain its orientability. Algorithm 1 summarizes the proposed surface 

registration in each resolution1.

2.4.4. Multi-resolution approach—It is widely acceptable in cortical surface 

registration frameworks (Fischl et al., 1999; Tao et al., 2002; Lyttelton et al., 2007; Zou et 

al., 2007; Yeo et al., 2010; Wheland and Pantazis, 2014; Lyu et al., 2018a) to utilize mean 

curvature of the cortical surfaces as a registration metric since it is mathematically well-

defined and reasonably captures the overall cortical folding patterns. However, due to the 

high locality of mean curvature and the nonlinearity of the energy function, there could be 

local optima during the optimization. To alleviate such a pitfall, we adapt a multi-resolution 

approach of different feature maps (Yeo et al., 2010). We use four geometric features from 

the cortex with different numbers of icosahedral sampling points on the sphere: mean 

curvature of the inflated surfaces (lCurv, S = 2, 562), sparse sulcal depth of the cortical 

surfaces (lSulc, S = 10, 242), dense sulcal depth of the cortical surfaces (hSulc, S = 40, 962), 

and mean curvature of the cortical surfaces (hCurv, S = 163, 842). Here, sparse and dense 

sulcal depth shares exactly the same geometric property but mapped onto the sphere with 

different levels of icosahedral subdivision of S. In this approach, we minimize the energy 

function of (Eq. 19) for each resolution (feature) from lCurv to hCurv, where a deformation 

field is incrementally optimized starting from its estimation at the previous resolution. The 

proposed algorithm works well even in a single resolution as shown in Fig. 4 and Lyu et al. 

(2018a), but the multi-resolution approach generally gives better performance since the 

approach can offer a complementary feature alignment at each resolution from global to 

local perspectives. Once again, we call Algorithm 1 for each resolution by providing the 

previous estimated deformation fields (i.e., spherical harmonics coefficients). In the 

experiments, we initialized all the coefficients c to zero once at the lowest resolution (lCurv).

1The code is available at https://github.com/ilwoolyu/HSD
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Algorithm 1

Hierarchical Spherical Deformation

Input: Spheres with c, f, f , σ f
2

, σd
2

, and λ.

Output: Deformation fields M

1: for all l do ▷ Incremental optimization

2:   λ ← 0.001 ▷ Initialize the damping factor.

3:   repeat ▷ Minimize the energy of Eq. (19).

4:    for all spheres do

5:     δ ← 1 ▷ Initialize the update scale.

6:     Compute spherical gradients of Eq. (20).

7:     Compute Jacobian matrices and residuals of Eqs. (22), (23), (25), and (26).

8:     Compute update step Δ of Eq. (27).

9:     repeat ▷ Ensure diffeomorphism

10:      Update coefficients c using Eq. (29).

11:      Update local composite rotations R using Eqs. (15) and (16).

12:      Update deformation field M using
Eq. (10).

13:      if negative triangle area found then

14:       δ ← δ/2 ▷ Reduce the update scale.

15:      end if

16:     until ensure orientable spheres

17:    end for

18:    if E decreases then ▷ Eq. (19)

19:     λ ← λ/2 ▷ Reduce the damping factor.

20:    else

21:     λ ← λ⋅2 ▷ Increase the damping factor.

22:    end if

23:   until convergence

24: end for

3. Results

3.1. Experimental Setup

The evaluation of cortical surface registration is quite challenging since no ground-truth 

shape correspondence is available on the human cortices in general. Although the overlap of 

cortical parcellation may not be a gold standard to fully evaluate the performance of cortical 

surface registration (Mangin et al., 2016), it can yield broad interests in ROI-based clinical, 

functional and structural studies. Thus, we focused on the overlap of cortical parcellation as 

one of the metrics of surface registration performance in this work.

There exists a well-known public dataset with manual labels of 31 cortical regions (based on 

the DKT-31 protocol) on 101 healthy subjects called Mindboggle-101 (Klein and Tourville, 

2012)2. The dataset was well validated, and its size is relatively large for the evaluation. 
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However, the cortical surface parcellation on this dataset was created via the shape 

correspondence established by FreeSurfer (Fischl et al., 1999) and then manually corrected 

by experts. This could have a potential bias toward that specific method. Another full dataset 

is publicly available from the MICCAI 2012 Grand Challenge and Workshop on Multi-Atlas 

Labeling (Landman and Warfield, 2012)3. The dataset consists of 30 healthy subjects with 

35 scans out of the OASIS dataset (Marcus et al., 2007). As ground-truth used in the 

MICCAI 2012 Grand Challenge and Workshop on Multi-Atlas Labeling, these images have 

been intensively delineated and corrected by neuroanatomists with 133 labels (132 regions 

including subcortical structures and 1 background) via the BrainCOLOR protocol (Klein et 

al., 2010)4. Thus, the cortical labels are completely independent of any of surface 

registration methods. However, the labels were only delineated on the volumetric images 

that require additional projection onto the cortical surfaces.

Although both datasets have their own issues, in this work, we evaluated our method mainly 

on the latter dataset with BrainCOLOR to ensure independent cortical surface parcellation 

for fair comparisons. On the other hand, Mindboggle-101 was used only to provide 

reference validation of cortical parcellation, and the experimental results on this dataset are 

available as supplementary information. Since the latter dataset with BrainCOLOR includes 

two repeat scans for 5 subjects, we excluded the repeat scans for these subjects to prevent 

potential bias toward them. Therefore, 30 scans were used with their manual labels in total. 

Finally, an expert manually corrected the cortical parcellation across the 30 scans since the 

label projection from volume to surface has a potential misalignment due to quantization 

errors. After the projection, a total of 49 cortical ROIs (only gray matter tissue labels) are 

available as shown in Table 1.

The cortical surfaces were reconstructed via a standard FreeSurfer pipeline (Dale et al., 

1999), and both left and right hemispheres were used for evaluation. Since our method 

adapted the multi-resolution registration (including feature maps) of FreeSurfer (Fischl et 

al., 1999) and Spherical Demons (Yeo et al., 2010), we compared our method with the two 

methods. We used their suggested (and widely adapted) parameter settings on healthy 

populations. All experiments were conducted with a single thread (Intel Xeon E5–2630 

2.20GHz). The evaluation was based on a feature alignment, cortical parcellation, and 

registration distortion. In particular, we first evaluated the three methods in a pair-wise 

manner to evaluate spherical deformation itself and then evaluated them in a group-wise 

manner to ensure minimal distortions, by which population average is iteratively updated 

(Lyttelton et al., 2007; Yeo et al., 2010). Once again, the cortical parcellation is completely 

independent of the three methods and was used only for evaluation since we did not include 

any information from the cortical parcellation during the optimization. In all of these 

methods, surface registration is ultimately achieved by maximizing the alignment of hCurv 
at the end of the optimization.

2The dataset is available at https://mindboggle.info/
3Request for the data acquisition with manual labels at https://my.vanderbilt.edu/masi/workshops/
4See more information about the BrainCOLOR protocol at Neuromorphometrics, Inc. http://www.neuromorphometrics.com/

Lyu et al. Page 14

Med Image Anal. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://mindboggle.info/
https://my.vanderbilt.edu/masi/workshops/
http://www.neuromorphometrics.com/


3.2. Pair-wise Spherical Deformation

We first focused on a single resolution given a target template to evaluate pure spherical 

deformation performance for each method in a pair-wise manner since a multi-resolution 

approach has dependency between successive resolutions, which is challenging to evaluate 

the spherical deformation itself. Specifically, we evaluated the three methods for their 

flexibility (ability to overcome local optima) of deformation with only an hCurv feature that 

has locally homogeneous regions. Surface registration with a single feature may be neither 

quite common practice nor necessarily optimal in neuroanatomy. However, it would be 

useful (1) to observe spherical deformation even on highly localized features that most likely 

suffer from local optima and (2) to evaluate a balance between registration accuracy and 

distortion. In this context, we evaluated the three methods in feature alignment and 

registration distortion. Note that we used exactly the same feature maps and FreeSurfer’s 

standard template (so-called fsaverage (Fischl et al., 1999)) for the three methods, and all 

these methods perform an optimal rigid alignment before the non-rigid deformation. In our 

method, we set a high level of icosahedral subdivision S = 163, 842 and l = 15. To see an 

advantage of the proposed harmonized rigid alignment, we performed our method with and 

without an optimal rigid alignment; i.e., the coefficients at l = 0 were updated only at the 

initial guess and excluded during the full optimization.

Fig. 5 shows the average hCurv features, and the average variance of hCurv is summarized 

in Table 2. In the three methods, the overall cortical folding patterns of the average map are 

similar to those of the template, while the proposed method provides the sharpest patterns on 

the average map as shown in Fig. 5. On the other hand, we could not find noticeable 

difference in the proposed method between with and without the optimal rigid alignment. 

Fig. 6 illustrates a typical example of registration by these methods. They begin with almost 

the same optimal rigid alignment before the local deformation, but the proposed method 

yields a better local feature alignment after optimizing both rigid and non-rigid deformation.

Finally, we measured area and length distortion for each triangle and edge as the absolute 

log ratio between before and after registration (Van Essen, 2005; Robinson et al., 2018). We 

measured such distortion metrics before and after registration for each individual subject. 

The distortion of each method is summarized in Table 3. The proposed method achieves the 

smallest distortion for both area and length after two-sided paired t-tests (30 samples). The 

optimization at l = 0 slightly improves the overall distortion as well (see Fig. 6 for example) 

despite statistical significance. Note that the feature alignment and registration distortion in a 

pair-wise approach are not necessarily small enough since we used a fixed template, to 

which deformation fields always have a bias. Therefore, the deformation reported in this 

approach should be interpreted for relative comparisons across the three methods.

3.3. Group-wise Registration

We evaluated the three methods in a group-wise manner that reduces a bias to template 

selection and provides a sharp feature mean with low registration distortion. This approach 

is quite similar to pair-wise registration except that a template is updated after each round of 

co-registration (Lyttelton et al., 2007). Yeo et al. (2010) used this approach in their work for 

best performance of Spherical Demons, and FreeSurfer also provides the same procedure for 
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iterative update of the template for group-wise registration in their implementation. For 

optimal registration and best performance of these methods, we focus on a group-wise 

approach in the remainder of the experiments at this point.

3.3.1. Feature alignment—We computed the registration results using lSulc, hSulc, 

lCurv, and hCurv features of the FreeSurfer’s outputs that are optimized for FreeSurfer and 

Spherical Demons. Once again, the registration in these methods was achieved in a multi-

resolution manner by aligning lCurv and lSulc maps followed by hSulc and hCurv maps, 

and we used a different resolution for each feature map with icosahedral subdivision from 4 

(S = 2, 562) to 7 (S = 163, 842). In each resolution, we optimized spherical harmonics 

coefficients and fed them as an initial guess to the higher resolution. It is noteworthy that 

exactly the same feature maps were used for all the methods for fair comparisons. In terms 

of optimization, their methods estimate a reference template (population average) only 

before registration; thus, it is fixed during the entire optimization, which requires several 

rounds of co-registration. In our experiments, the optimization of their methods converged 

after 3 rounds. Unlike these methods, only a single round of co-registration was sufficient in 

our method. Indeed, we could not find any noticeable difference after a single round since 

the population average was semi-optimized after an initial guess. This yields much faster 

registration than the two methods. In particular, at each round including four features, the 

proposed method and Spherical Demons took about 15 mins per subject, whereas FreeSurfer 

took more than an hour per subject after the multi-resolution optimization with the four 

features. Although Spherical Demons and the proposed method achieved comparable 

computation time for individual subject registration, FreeSurfer, Spherical Demons, and the 

proposed method took about 90 hours, 21 hours, and 7 hours for the entire subjects, 

respectively, after all rounds of co-registration. Fig. 7 shows the average hCurv features. It 

can be observed that overall patterns are quite similar while slightly different patterns (e.g., 

cingulate sulcus) are exhibited in the three methods. Table 4 summarizes statistics on hCurv 
variance in the three methods. FreeSurfer achieves relatively high variance, which results in 

little more blurred average patterns than other methods. We found that the proposed method 

achieves smaller variance for l ≥19 than Spherical Demons (see Fig. 8) for both 

hemispheres.

3.3.2. Cortical surface parcellation—We evaluated registration performance using 

cortical parcellation that is completely independent of registration metric. Since no ground-

truth parcellation was available, we computed the mode (majority vote) parcellation map 

across the subjects after performing each surface registration method. Ideally, the 

parcellation map is completely aligned with all subjects if a surface correspondence is 

perfectly established. To measure the performance, we computed a Dice coefficient for each 

region with the mode map. We then performed one-sided paired t-tests for the 30 subjects 

with FreeSurfer and Spherical Demons to reveal regions with statistically significant 

improvement on Dice coefficients. In this evaluation, we measured Dice coefficients over the 

entire cortex (30 samples (average Dice coefficient of 49 regions per subject) - a single test 

for each method) and for each cortical region (30 samples for each region −49 tests for each 

method). For the latter evaluation, we further corrected p-values with respect to the number 

of regions via a standard false discovery rate (FDR) (Benjamini and Hochberg, 1995) at q = 
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0.05. Since the one-sided test tells which method has significant improvement, we setup two 

different hypotheses on Dice coefficients: the proposed method is better than the existing 

method and the proposed method is worse than the existing method. Table 5 summarizes the 

average Dice coefficients on the entire cortex across the 30 subjects. Althoguh the 

improvement was not considerable, the statistical tests revealed that our method achieves 

significant improvement on the left hemisphere and both hemispheres over FreeSurfer and 

Spherical Demons, respectively (p < 0.05). For the right hemisphere, marginal difference 

was observed from FreeSurfer (p = 0.102). Several significantly improved regions were 

revealed, while no region was found with significantly decreased overlaps. Figs. 9 and 10 

show the detailed Dice coefficients and their corresponding regions, respectively. Our 

method shows better overlaps particularly on the motor cortex and temporal lobe on both 

hemispheres.

3.3.3. Registration distortion—As in the evaluation on pair-wise registration, we also 

measured area and length distortion for each triangle and edge as the absolute log ratio 

between before and after registration. We then collected all the measurements to compute 

their distribution. Table 6 summarizes registration distortion (30 samples - average distortion 

per subject) in the three methods. Our method provides significantly reduced registration 

distortion compared to FreeSurfer and Spherical Demons. For both hemispheres, the 

maximum area change (i.e., exponential of the area distortion) across subjects was smaller 

than FreeSurfer and Spherical Demons by a factor of about 2.2 × 104 and 2.7, respectively. 

Similarly, our method also achieves smaller maximum edge change than FreeSurfer and 

Spherical Demons by a factor of about 3.3 × 10 and 1.1, respectively. We also measured a 

moment coefficient of skewness (Pearson, 1895; Kenney and Keeping, 1954) of the 

distributions in registration distortion as summarized in Table 7. The resulting coefficients 

indicate that the proposed method has a less skewed distribution to the right (shorter tail), 

which implies a fewer number of regions with large registration distortion than the other 

methods. Figs. 11 and 12 show the detailed distributions of registration distortion. It can be 

observed from the skewness that the proposed method yields less registration distortion in 

the resulting deformed spheres for both area and length distortion.

In addition, we computed the average of area change in each individual region of the cortical 

parcellation. This metric measures the amount of absolute area change (combining both 

compression and expansion) within each region after registration. Since triangle size of 

FreeSurfer’s surfaces is irregular in general, we used the weighted average of area change 

per each region, where the weight is proportional to triangle size. We then performed one-

sided paired t-tests for the 30 subjects with FreeSurfer and Spherical Demons to reveal 

regions with significantly reduced distortion. For each method, we performed a single test on 

average distortion (30 samples) and 49 tests for all cortical regions (30 samples per region). 

Fig. 13 summarizes the statistics across the 30 subjects, and Fig. 14 shows the corresponding 

improved regions after the FDR correction (q = 0.05). For each hemisphere, we found that 

more than a one third of 49 regions have significantly less area change than the other 

methods, while no region has more area change after the FDR correction. For example, 

FreeSurfer shows quite huge deformation in Ent (51.52%), whereas relatively much low 

deformation (15.43%) is measured in the proposed method for both hemispheres. It is 

Lyu et al. Page 17

Med Image Anal. Author manuscript; available in PMC 2020 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



noteworthy that the proposed method offers the Dice coefficients on Ent even with 

significantly low deformation (see Figs. 9 and 15). For another instance in PrG, the proposed 

method shows less area change (19.99%) with higher Dice coefficients than Spherical 

Demons (25.20%) for both hemispheres. We emphasize that such reduced area change is 

achieved while keeping comparable registration accuracy to the other methods.

4. Discussion

4.1. Deformation Field

The smoothness of a deformation field is controlled directly by spherical harmonics degree l. 
In our framework, the smoothness does not refer to an additional energy term. Rather, it 

could be considered conceptually akin to iterative smoothing of the deformation fields 

proposed in Spherical Demons (Yeo et al., 2010). Yet, the proposed method works in a top-

down manner (i.e., from global to local deformation) opposite to Spherical Demons that 

performs iterative smoothing on deformation fields after local deformation. Theoretically, 

the deformation has no interaction with local neighbors if l goes to infinity in our method 

and if no iteration is given in Spherical Demons.

We found that the energy function decreases as l increases. The proposed method achieved 

less variance of feature maps for l ≥ 19. Yet, it still remains unclear about the amount of the 

smoothness for an optimal shape correspondence since true trajectory of cortical surface 

deformation is unknown; indeed, this issue has arisen in most surface registration 

frameworks. For example, our experiments showed comparable overall Dice coefficients of 

the three methods (Table 5) even though the cortical folding patterns on the average feature 

maps were slightly different (Fig. 7). As discussed in Yeo et al. (2008), small variance does 

not always indicate best performance of surface registration. It is also true in the proposed 

method since better performance was shown at l = 15 in terms of cortical parcellation and 

registration distortion. In several clinical studies (e.g., functional MRIs), there could be 

different optimal smoothness and thus structural parcellation might not be a good metric for 

the evaluation on surface registration as discussed in Robinson et al. (2018). Although the 

proposed method was evaluated on structural parcellation, the orthonormality of spherical 

harmonics basis functions can easily control the smoothness of deformation in an easier way 

than other existing methods, which might be useful to investigate optimal smoothness for 

other studies.

4.2. Cortical Surface Parcellation

We used 30 subjects with their ground-truth volumetric labels that were manually corrected 

after their projection onto the surfaces. In the experiments, we found marginal difference in 

the average Dice coefficients (up to 0.7% improvement) despite statistical significance. 

Similarly, our method showed comparable average Dice coefficients to those of the other 

two methods on Mindboggle-101 (up to 0.3% improvement) despite statistical significance 

(see supplementary information for the detailed Dice coefficients and their statistics). 

Statistically, no region was revealed with decreased Dice coefficients on the dataset with 

BrainCOLOR whereas those in several regions became decreased on Mindboggle-101 

despite still inconsiderable absolute difference. Although their direct comparison is non-
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trivial due to the disparity in the data acquisition (demographics, scan devices, parcellation 

protocols, etc.), the decreased Dice coefficients were found on Mindboggle-101 mainly 

because both the increased number of samples (from 30 to 101) and the decreased number of 

cortical regions (from 49 to 31) increase statistical power, which results in statistical 

significance even on small absolute difference in the Dice coefficients. Therefore, given such 

marginal difference in both parcellation protocols, it is difficult to choose the best among the 

three methods with superior performance. They offer comparable registration performance 

in a context of cortical surface parcellation.

4.3. Registration Distortion

We evaluated registration distortion for both entire cortical regions and area change on each 

individual region of the cortical parcellation. The proposed method showed significantly 

smaller distortion than the other methods, and more than a one third of the cortical regions 

have significantly lower area change (Figs. 13 and 14) while achieving comparable Dice 

coefficients (Figs. 9 and 10). This advantage could be desirable in some ROI-based studies 

that focus on structural or functional analyses within less distorted regions, in which cortical 

surface quantification (e.g., cortical thickness) can be also resampled with less distortion. 

The further importance about distortion has been discussed in Van Essen (2005). In our 

experiments, however, we excluded vertex-wise registration distortion at each corresponding 

location since inter-subject variability in distortion was quite arbitrary in the three methods 

(see Fig. 6 for example). From our observations, the corresponding locations not necessarily 

have similar amount of the registration distortion along cortical folding. To the best of our 

knowledge, it is unknown yet that registration distortion is captured in a sense of population 

average or necessarily similar across the corresponding locations. Deeper investigation into 

registration distortion would be informative for further shape analyses.

4.4. Optimization

In general, the energy function is non-convex. In our framework, a large number of spherical 

harmonics coefficients 3(l+1)2 · N need to be optimized, in which a chance to be trapped in 

local optima is proportional to 3(l+1)2 · N. To reduce this chance, we optimized individual 

degree independently to begin with a reasonable initial guess. This is feasible due to the 

orthonormality of spherical harmonics basis functions. Thus, the reduced degree of freedom 

in the optimization can yield better estimation of the coefficients than optimizing over the 

entire coefficients from the beginning without an initial guess.

In addition to the incremental optimization, we employed a Levenberg-Marquardt optimizer 

that approximates the second order of the energy function for two reasons. First, the 

optimizer offers fast convergence in few steps as it behaves like a gradient decent and then 

turn into a Gauss-Newton optimizer for better convergence. Second, since the Jacobian Jf 

and Jd consist of different signs, the Hessian approximation H is positive semi-definite, 

which potentially lacks a full rank. These are handled by a single damping factor λ. 

Unfortunately, finding an optimal damping factor is non-trivial in most optimization 

problems including ours, and derivation of its analytic solution is practically implausible. 

We empirically adjust this variable at each optimization step. λ decreases by a half if the 

energy is reduced; otherwise, it increases by a factor of 2. Such a simple approach 
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practically worked quite well. Mostly, the optimization is done in 20 steps at each degree 

(including full degree optimization). Although we did not extensively investigate parameter 

tuning in this work, it could be an interesting topic for future work.

4.5. Pair-wise Spherical Deformation

The three methods offer a well-fitted rigid alignment before the spherical deformation; we 

could not find significant difference across them after their rigid alignment. Unlike 

FreeSurfer and Spherical Demons that update only local deformation, the proposed method 

optimizes both rigid and non-rigid deformation. This might yield relatively locally focused 

deformation in the other methods, whereas the proposed method shows overall smooth 

deformation across the cortex (see distortion in Fig. 6). In the experiments, we observed the 

impact of the optimal rigid alignment by excluding l = 0 during the full optimization. 

Technically, the exclusion of only l = 0 is separation between rigid and non-rigid 

deformation, but spherical harmonics bases at low degrees act close to global (i.e., nearly 

rigid alignment). Therefore, we found slight difference between with and without a fully 

optimized rigid alignment on the registered cortical patterns, while the optimal rigid 

alignment still reduces the amount of the distortion after the registration.

4.6. Group-wise Registration

A group-wise approach is independent of a template choice unlike a pair-wise approach. In 

the optimization, co-registration is performed with the mean and variance of features are 

estimated from the study group of interest. In this way, the inter-subject variability could be 

better handled. Therefore, the resulting registration reduces a bias to a specific template as 

well as registration distortion. Particularly, the energy function optimizes both feature 

matching and rigidity of deformation, in which the feature mean f  and variance σ f
2 are 

updated during the optimization. In our earlier work (Lyu et al., 2015), they were updated at 

every iteration step to estimate a population average. However, there is no regularization (or 

boundary condition) of the estimated average feature map unlike template-based surface 

registration methods that use a fixed average feature map. In this unconstrained optimization 

the energy function can be minimized by expanding less variable regions (e.g., regions along 

the inter-hemispheric cut). Such deformed regions consequently can yield large registration 

distortion, which might be an undesirable property. In the proposed method, these quantities 

were estimated in two phases at the initialization and after the individual degree 

optimization. Although our current approach uses a fixed average feature map to prevent 

large deformation during the optimization of each individual degree, the two-phase average 

update steps were sufficient in the experiments; a single round of co-registration sufficiently 

achieved a comparable shape correspondence to the existing methods. Thus, this yields 

faster convergence to the population average than other methods. In this work, the proposed 

deformation has a high degree of freedom since spherical harmonics coefficients are 

unconstrained. We thus introduced an additional regularization term for rigidity of 

deformation. This term enables more explicit rigidity by maintaining initial relative 

distances. A main challenge in this regularization is to define distortion prior σd
2. Unlike 

other parameters, σd
2 is quite subject-dominant, so its estimation is difficult from a given 
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population. The spherical deformation becomes a rigid rotation as σd
2 decreases. In our 

framework, we empirically set σd = 0.04 corresponding to roughly 4 times the average edge 

length (0.01) of the triangular mesh of the unit sphere.

4.7. Diffeomorphism

Diffeomorphic surface registration has a differentiable one-to-one mapping between source 

and target surfaces, which holds several nice properties particularly including no fold (i.e., 

positive determinant of Jacobian) in a deformation field. In the proposed method, it can be 

easily shown that the deformation field is differentiable since spherical harmonics basis 

functions essentially have C∞ smoothness thanks to trigonometric functions. Unfortunately, 

the proposed deformation cannot always hold a one-to-one mapping since there is no 

specific regularization of the Jacobian determinant. This can sometimes happen at a high 

degree of spherical harmonics if multiple points are mapped onto the same location by the 

deformation. A possible solution is to maintain the positive Jacobian determinant during the 

optimization. However, its analytic derivation is quite challenging, so practically 

implausible. Alternatively, this can be addressed by unfolding a deformation field by finding 

triangles with negative area after registration (Fischl et al., 1999; Yeo et al., 2010; Robinson 

et al., 2018). In this work, however, unfolding a deformation field cannot be directly 

incorporated in a sense of spherical harmonics interpolation since the approach locally 

modifies a deformation field. We instead reduced the update step size δ in a Levenberg-

Marquardt framework, which limits the amount of deformation. Yet, all of these approaches 

are still empirical and theoretically might not completely obey diffeomorphism. In practice, 

these can hold diffeomorphism in the discrete domain (Yeo et al., 2010). Once a one-to-one 

mapping is guaranteed, there exists an inverse mapping in the proposed deformation, which 

is just a transpose of local rotation matrices.

4.8. Implementation Issues

The computation time of the proposed method depends mainly on deformation field update 

and Hessian approximation. To update deformation fields at each iteration, local rotations 

need to be recomputed, which guides deformation of the spheres. Since deformation fields 

change over time, we need to know the corresponding locations to the icosahedral sampling 

points for each individual sphere. This requires an efficient triangle search algorithm on the 

unit sphere. Naive exhaustive search is infeasible in practice due to a large number of 

triangles (320k). To expedite triangle search, we used a customized axis-aligned bounding 

box (AABB) hierarchy, in which spherical locations are represented by spherical polar 

coordinates. In this way, the search dimension is reduced from 3D to 2D, and the search 

becomes faster and more efficient because the bounding boxes tightly cover only spherical 

regions. In our implementation, the AABB hierarchy update takes less than a second.

The Hessian approximation needs Jacobian of the energy function, and its computation 

requires O(S2 (l+1)2) time complexity. At the end of optimization, the number of sampling 

points S is approximately 160k and that of spherical harmonics coefficients is 256 × 3 at l = 

15. In our implementation, the Basic Linear Algebra Subprograms (BLAS) routines 

provided great efficiency on computing this step (about 5 sec per subject at full degree 

optimization on a single core). In addition to the time complexity, this step requires O(S·(l
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+1)2) space, which indicates that l has a quadratic space complexity. It consumes about 500 

Mbytes memory per subject in our implementation. For a large population, therefore, l needs 

to be determined according to memory capacity to avoid potential overflow if memory 

capacity is limited.

Finally, all computation steps are independent. Thus, these already have a good shape of 

parallelism. We implemented GPU matrix computation for the Hessian approximation, 

which reduces the processing time by a half. Note that the implementation was not used for 

the comparisons in our experiments. GPU acceleration can be also applied to the AABB 

hierarchy update/query since every triangle is treated independently as a single node (Popov 

et al., 2007). We expect that a GPU version of the AABB hierarchy will provide better 

efficiency.

5. Conclusion

We presented novel hierarchical spherical deformation for cortical surface registration. 

Motivated by the composition of precession and intrinsic rotation, the proposed method 

extends the composite rigid rotation to general non-rigid deformation as functions of 

spherical locations. To this end, we used spherical harmonics interpolation of local rigid 

rotations to generate smooth non-rigid deformation fields. By optimizing spherical 

harmonics coefficients, optimal rigid and non-rigid deformation is achieved simultaneously 

in a single framework. To allow rigid rotations more explicitly, we further introduced an 

additional regularization term of the rigidity. Also, we derived the second order 

approximation of the energy function for better convergence of the optimization. 

Consequently, the resulting deformation is smooth, continuous, and independent of a 

particular spherical coordinate system. The proposed method is template-free group-wise 

registration that avoids a potential bias toward template selection. In the experiments, the 

proposed method showed a comparable feature map alignment to other state-of-the-art 

methods. In addition, the proposed method achieved high accuracy in cortical surface 

parcellation as well as low registration distortion in terms of surface area and edge length. 

This low distortion was achieved while providing comparable registration accuracy. Finally, 

the proposed method offered fast group-wise surface registration, and implementation with a 

GPU version of the Hessian computation is publicly available.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A.: Gradients of Spherical Locations

We take derivatives at p = φ θp, ϕp  with respect to spherical harmonics coefficients. We first 

consider cl, ω
m . From Eq. (10), we have the following composite partial derivative by the chain 

rule:

∂p
∂cl, ω

m = ∂ω
∂cl, ω

m ⋅ ∂p
∂ω . (A.1)

∂p
∂ω = [z]× ⋅ exp ω[z]× ⋅ exp z × zT × ⋅ p = [z]× ⋅ p, (A.2)

and Eq. (16) yields

∂ω
∂cl, ω

m = Y l, m θp, ϕp . (A.3)

Hence, we have the following form.

∂p
∂cl, ω

m = Y l, m θp, ϕp ⋅ ([z] × ⋅ p) . (A.4)

Now we consider derivatives with respect to cl, u1
m . By the chain rule, Eq. (10) becomes

∂p
∂cl, u1

m =
∂cu1

∂cl, u1
m ⋅ ∂p

∂cu1
. (A.5)

In general, SO(3) does not hold the commutativity. For easier derivation, we slightly modify 

Eq. (9) as follows.

R cu1
, cu2

, ω = exp z × zT × ⋅ exp ω[z]× . (A.6)

This switches the order of rotations but yields a composite rotation equivalent to Eq. (9). 

From Eq. (4), we expand Eq. (7) by the distributive property.
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exp z × zT × = exp cu1
u1 + cu2

u2 × zT ×
= exp cu1

u1 × zT + cu2
u2 × zT ×

. (A.7)

Since cu1
 is a real-valued function, we have

∂p
∂cu1

= u1 × zT × ⋅ exp z × zT × ⋅ exp ω[z]× ⋅ p = u1 × zT × ⋅ p, (A.8)

and Eq. (15) yields

∂cu1
∂cl, u1

m = Y l, m θp, ϕp . (A.9)

Hence, we have the following form.

∂p
∂cl, u1

m = Y l, m θp, ϕp ⋅ u1 × zT × ⋅ p . (A.10)

We leave out the derivation with respect to cl, u2
m , which can be derived analogously as that of 

cl, u1
m .
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Highlights

• Cortical surface registration using hierarchical spherical deformation.

• Smooth harmonization from rigid to non-rigid deformation.

• Group-wise surface correspondence with no template selection bias.

• High registration accuracy in cortical surface parcellation.

• Reduced registration distortion in surface area and length.
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Figure 1: 
An example of angular interpolation failures. The displacements by a counter clockwise 

rotation about the fixed axis (blue) are represented by elevation angles passing through the 

pole (green). Such angles have different signs before and after the pole (red and purple). The 

resulting interpolation thus yields rotation singularity at the pole, which is incapable of 

encoding the rotation completely.
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Figure 2: 
Precession and intrinsic rotation: (a) initial setting of two frames, (b) z-axis alignment after 

precession, and (c) the final alignment after intrinsic rotation. Any rigid rotation can be 

implemented by precession and intrinsic rotation. The resulting composite rotation does not 

rely on a particular spherical coordinate system.
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Figure 3: 
A schematic illustration of the proposed rotation by the axis-angle representation. For the 

rotation of a given location, (precession) the rotation axis z (red) is rotated to z (blue) by ω⊥ 

about z⊥, followed by (intrinsic rotation) a rotation about z by ω (green). The exponential 

map (purple) at z is employed to encode local geodesics (orange). Finally, the rotation axis z
and its associated rotation angle ω smoothly vary on the unit sphere as functions of spherical 

locations. A half sphere is used for better visualization.
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Figure 4: 
The average hCurv feature maps at intermediate spherical harmonics degrees l (optimization 

with single resolution based on only hCurv). Each hemisphere shows the average hCurv 
feature after independent optimization at each individual degree. The cortical folding 

patterns become sharper, and the finest patterns are achieved after spherical harmonics 

coefficients are optimized together.
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Figure 5: 
The average hCurv feature maps on the 30 subjects after pair-wise registration to a fixed 

template. Overall, these methods achieve similar hCurv patterns. The proposed method 

including a non-optimal rigid alignment provides a sharper representation close to the 

template.
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Figure 6: 
An example of pair-wise registration from a single subject to a fixed template. These 

methods begin with almost the same rigid alignment before the local deformation and 

produce similar hCurv patterns with slight difference. However, FreeSurfer and Spherical 

Demons only update the local deformation during the optimization. This results in relatively 

large deformation in several regions, whereas the proposed method updates both rigid and 

non-rigid deformation to reduce locally focused deformation. Also, the optimal rigid 

alignment in our method provides improved feature alignments and registration distortion 

compared to ours with a non-optimal rigid alignment.
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Figure 7: 
The average hCurv feature maps on the 30 subjects. The three methods achieve similar 

hCurv patterns, while FreeSurfer shows little more blurred patterns than other methods. 

These methods provide much more improved average patterns than the initial average.
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Figure 8: 
hCurv variance at different degree l. The feature variance decreases as l increases. Both 

hemispheres have similar variance at each degree. The proposed method has smaller 

variance then FreeSurfer and Spherical Demons at l ≥ 9 and l ≥ 19, respectively. It is 

noteworthy that smaller variance does not necessarily indicate better surface registration 

performance. In our experiments, the proposed method works well at l = 15 in terms of 

cortical parcellation and registration distortion.
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Figure 9: 
Dice coefficient of 49 regions on the left and right hemispheres. One-sided t-tests reveal 

regions with statistical significance after the FDR correction (q = 0.05). Several regions are 

significantly improved, while no region becomes worse after the FDR correction. The color 

in the labels indicates the improved regions compared to FreeSurfer (blue), Spherical 

Demons (red), and both methods (green). In comparison with FreeSurfer, our method has 21 

and 12 improved regions for the left and right hemispheres, and with Spherical Demons, our 

method has 9 and 7 improved regions for the left and right hemispheres (see Fig. 10 for the 

improved regions with the adjusted p-values).
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Figure 10: 
Negative log of the adjusted p-values on cortical regions with significantly improved Dice 

coefficients after the FDR correction (q = 0.05). The average surface is divided by the mode 

map of 49 regions. Total 33 and 16 out of 98 regions are significantly improved compared to 

FreeSurfer and Spherical Demons, respectively. The color indicates negative log of the 

adjusted p-values in the improved regions.
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Figure 11: 
Area distortion (whiskers with maximum 1.5 interquartile range). The proposed method has 

a less skewed distribution to the right (shorter tail). This implies a fewer number of regions 

with large area distortion than FreeSurfer and Spherical Demons on both hemispheres.
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Figure 12: 
Edge distortion (whiskers with maximum 1.5 interquartile range). The proposed method has 

a less skewed distribution to the right (shorter tail). This implies a fewer number of regions 

with large edge distortion than FreeSurfer and Spherical Demons on both hemispheres.
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Figure 13: 
Area change of 49 regions on the left and right hemispheres. One-sided t-tests reveal regions 

with statistical significance after the FDR correction (q = 0.05). More than a one third of 

regions have significantly reduced area change, while no region becomes worse after the 

FDR correction. In comparison with FreeSurfer, our method has 18 and 21 improved regions 

for the left and right hemispheres, and with Spherical Demons, our method has 16 and 23 

improved regions for the left and right hemispheres (see Fig. 14 for the improved regions 

with the adjusted p-values). Note that the maximum range is truncated at 60% for better 

visualization. The color in the labels indicates the improved regions compared to FreeSurfer 

(blue), Spherical Demons (red), and both methods (green).
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Figure 14: 
Negative log of the adjusted p-values on cortical regions with significantly reduced area 

change after the FDR correction (q = 0.05). The average surface is divided by the mode map 

of 49 regions. Total 39 out of 98 regions are significantly improved compared to FreeSurfer 

and Spherical Demons. The color indicates negative log of the adjusted p-values in the 

improved regions.
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Figure 15: 
An example area change in Ent. (top) The three methods yield similar cortical folding 

patterns after co-registration (see Fig. 7 for the average hCurv maps). The mode regions of 

Ent are highlighted brightly. (middle) The Dice coefficients are comparable, which implies 

that these methods achieve comparable performance in surface alignment; the hCurv maps 

are also well aligned with the averages. (bottom) Even with comparable registration 

performance, the surface area (triangle size) is less distorted in the proposed method than 

FreeSurfer and Spherical Demons. It is noteworthy that the mode region of Ent in our group-

wise framework is little larger than others because the distortion can be better minimized 

(i.e., better area preservation) in this way, while maintaining comparable registration 

accuracy (see Fig. 9 for Ent).
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