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Abstract

Motivation: B-cell receptor (BCR) repertoire profiling is an important tool for understanding the

biology of diverse immunologic processes. Current methods for analyzing adaptive immune recep-

tor repertoires depend upon PCR amplification of VDJ rearrangements followed by long read

amplicon sequencing spanning the VDJ junctions. While this approach has proven to be effective,

it is frequently not feasible due to cost or limited sample material. Additionally, there are many

existing datasets where short-read RNA sequencing data are available but PCR amplified BCR data

are not.

Results: We present here V’DJer, an assembly-based method that reconstructs adaptive immune

receptor repertoires from short-read RNA sequencing data. This method captures expressed BCR

loci from a standard RNA-seq assay. We applied this method to 473 Melanoma samples from The

Cancer Genome Atlas and demonstrate V’DJer’s ability to accurately reconstruct BCR repertoires

from short read mRNA-seq data.

Availability and Implementation: V’DJer is implemented in C/Cþþ, freely available for academic

use and can be downloaded from Github: https://github.com/mozack/vdjer

Contact: benjamin_vincent@med.unc.edu or parkerjs@email.unc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

T-cells and B-cells compose the adaptive immune system and bear

highly specific cell surface receptors that allow them to recognize

antigenic targets. Massive diversity at the adaptive immune receptor

loci is generated by the process of V-J and V-D-J recombination dur-

ing cell development, with a theoretical number of unique receptors

for each class estimated at greater than 1015 and lower bounds for

circulating lymphocytes measured at greater than 106 (Arstila

et al.,1999; Boyd et al., 2009; Warren et al., 2011). This extraordin-

ary diversity is achieved through recombination of V, D and J

segments, insertions and deletions at junction points, as well as

somatic hypermutation in the case of B-cell receptors (BCRs)

(Supplementary Fig. 1). This diversity of targeting receptors is
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crucial for immune defense against infectious pathogens and has im-

plications for understanding autoimmunity, immunodeficiency syn-

dromes and the anti-tumor immune response to malignant diseases.

Adaptive immune receptor repertoire analysis was initially per-

formed by evaluating differences in sequence length of the primary

antigen binding region, a process known as spectratyping (Pannetier

et al., 1995), where the presence of a skewed length distribution

would be interpreted as evidence of clonal restriction (i.e. low reper-

toire diversity). Following this, techniques were developed for

single-cell sorting, PCR amplification and Sanger sequencing of

BCR loci (Hunsucker et al., 2015; Tiller et al., 2009). Next-

generation sequencing has allowed for analysis of bulk repertoires

also by sequencing PCR amplicons (Arstila et al.,1999; Boyd et al.,

2009; Vincent et al., 2016; Warren et al., 2011). For each of these

techniques, amplicons and resultant sequence reads span full V-D-J

rearrangements with presumed one read to one sequence mapping.

Constraints of this general approach include high costs, the possibil-

ity of primer annealing and amplification bias and the inability to

analyze multiple loci in parallel should sample nucleic acid template

amounts be limiting.

Our group and others have shown that B-cell lineage gene ex-

pression signatures are strongly prognostic in multiple solid tumor

types (Gentles et al., 2015; Iglesia et al., 2014). In order to profile all

BCR loci in a single experiment, as well as to analyze adaptive im-

mune receptor repertoires from large publicly-available RNA

sequencing datasets such as those generated by The Cancer Genome

Atlas (TCGA), we have developed V’DJer (v�e-jur), an assembly-

based approach to reconstruction and relative quantitation of im-

munoglobulin heavy-chain (IgH), kappa light-chain (IgK) and

lambda light-chain (IgL) sequences from short read mRNA-Seq

data with read lengths of 48 bp or longer. V’DJer allows for full in-

ference of repertoire characteristics including variable and joining

gene segment usage, population diversity, sequence sharing between

populations, antigen binding region amino acid properties and

motifs, clonal structure and somatic hypermutation in BCR reper-

toires (Fig. 1).

2 Materials and methods

V’DJer accepts a Binary Alignment/Map (BAM) file of mapped

mRNA-seq short reads as input. V’DJer then performs:

1. Read extraction to isolate reads that may have arisen from a

BCR.

2. de Bruijn graph construction from candidate reads.

3. Graph traversal using BCR specific heuristics.

4. Mapping of reads to and evaluation of candidate BCR

sequences.

V’DJer outputs a fasta file containing BCR contigs and a

Sequence Alignment/Map (SAM) file containing reads mapped to

those contigs (Fig. 2). This output is suitable for use with down-

stream quantification tools such as RSEM (Li and Dewey, 2011).

2.1 Read extraction
V’DJer extracts reads from a STAR (Dobin et al., 2013) aligned

BAM (Supplementary Note 1) as follows:

1. Reads mapping to any functional locus specific to the IG chain

of interest are extracted.

2. Mapped reads containing a 15-mer in common with the IG

chain’s functional germline V, D or J segments are extracted.

3. All unmapped reads are extracted.

In all cases, a read is always extracted along with its paired read.

2.2 Graph construction
V’DJer constructs a de Bruijn graph (Pevzner et al., 2001) from the

extracted reads using a modified version of the assembler developed

for ABRA (Mose et al., 2014). A preliminary version of the graph is

constructed utilizing reads and base quality scores. Each vertex in

the graph represents a k-mer along with the sum of base qualities for

each base in that k-mer. Vertices containing k-mers that do not

reach a minimum configurable number of observations in the reads

are removed from the graph. Those vertices that do not reach a con-

figurable minimum base quality sum threshold at any position

within the k-mer are also removed. Additionally, vertices not sup-

ported by more than one distinct read are pruned. Linear paths

through the graph (vertices containing a single incoming and outgo-

ing edge) are then condensed into a single vertex.

2.3 Graph traversal
Vertices containing 0 incoming edges are identified as candidate

source vertices. These vertices are assigned a homology score with

the IG chain’s variable germline segments using an initial hash table

lookup and subsequent scoring via dynamic programming. Those

vertices meeting a minimum homology score are used as source ver-

tices for graph traversal. During traversal of the graph, a path score

is calculated for each path through the graph as the product of all

edge ratios thus far traversed. The edge ratio is the frequency for a

Fig. 1. V’DJer features. (a) BCR light and heavy chains can be assembled from

a single assay. (b) The isotype of an assembled heavy chain can be identified

using the assembled constant region sequence. (c) Relative clone abundance

can be accurately measured using reads mapped to assembled clones. (d)

Nucleotide resolution assembly provides the ability to perform mutation spe-

cific analyses including somatic hypermutation assessment and clonal diver-

sity of the sample
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given outgoing edge divided by the frequency of all outgoing edges

for the same vertex (an edge ratio for a single outgoing edge is one).

Traversal of a path through the graph continues until one of three

conditions is met:

1. A vertex with no outgoing edges is reached.

2. A configurable maximum contig length is exceeded.

3. The path score drops below a configurable threshold.

Candidate contigs are generated from paths reaching an appro-

priate length. The Samtools API (Li et al., 2009) is used to extract

reads from the input BAM.

2.4 Contig evaluation
Contigs are initially filtered by searching for evidence of

Complementarity Determining Region 3 (CDR3) sequence. Sixteen

base long anchors are extracted from near the 30 end of germline V

segments and 50 end of J segments. Candidate contigs are searched for

sequence showing homology to at least one V and one J anchor (max-

imum of four mismatches). If the V and J anchors are within a reason-

able distance of one another, the contig is searched for amino acids

known to be highly conserved in CDR3. Cysteine is required to ap-

pear on the 50 end of the CDR3 region while Tryptophan (IgH) or

Phenylalanine (IgK/IgL) must appear on the 30 end. These amino acids

must be in frame and within expected CDR3 length distance from

one another. If a contig passes these initial CDR3 identification crite-

ria, the originally extracted reads are mapped to the contig using a

hashing approach. All reads are stored in a hash table and the contig

is examined from beginning to end looking for perfect read matches.

If both members of a read pair map to a contig in the correct orienta-

tion and within a reasonable insert length, they are considered

mapped. While computationally efficient, this approach does not cur-

rently allow for sequencing errors. The relatively exhaustive graph

traversal that V’DJer employs would ordinarily result in a potentially

high number of false positive paths through the graph. To resolve

this, candidate contigs are required to have sufficient read depth and

complexity of coverage to pass the evaluation step. Those contigs that

do pass are output along with read alignments to those contigs.

2.5 Post-processing
The V’DJer output is a fasta file containing assembled contigs span-

ning most of the V(D)J region as well as a portion of the constant re-

gion (default total contig length is 360 bases). Additionally, a SAM

file containing reads aligned to the assembled contigs is output. We

use RSEM to quantify the assembled transcripts. VQuest is used to

gather additional information about the assembled contigs including

V and J segment identification as well as V region identity which we

use as a proxy for mutational load. BCR isotypes are identified by

mapping the trailing 48 bases of each contig (constant region se-

quence) to hg38 using STAR and identifying the constant region seg-

ment using the resultant coordinates. Contigs sharing an identical

CDR3 (amino acids), V gene segment, J gene segment and isotype

are clustered for downstream analysis.

3 Results

3.1 Simulation results
We initially tested V’DJer’s ability to accurately assemble BCR V(D)J

sequences by analyzing simulated repertoires of IgH clonotypes

(unique sequence arising from VDJ recombination and somatic hyper-

mutation) from which short paired reads were generated at average

depths varying from 25� to 500�. When run in standard mode,

V’DJer achieved greater than 90% sensitivity at an average clonotype

depth of 50� or greater with zero false positives (Fig. 3a). Running

V’DJer with more sensitive settings resulted in sensitivity approaching

90% at average clonotype depth of 25� or greater at the expense of

increased computational costs (50–1200% increase in runtimes and

0–1000% increase in RAM depending upon clonotype homology, di-

versity and abundance). More sensitive detection is achieved by utiliz-

ing a smaller k-mer size, more exhaustive graph traversal, and less

aggressive graph pruning and contig filtering (Supplementary Note 2).

The relative abundance of V’DJer called BCR sequences was then esti-

mated by RSEM (Li et al., 2011). The resulting count estimates were

in high agreement with the simulated clonotype depths (r2 ¼ 0.995)

(Fig. 3b). Finally, we simulated all IgH V/J combinations at average

depth of 50� to test for bias in assembling across V and J gene seg-

ment usage. Ten clonotypes were simulated for each V/J combination.

We found minimal differences in BCR assembly sensitivity dependent

on V and J usage pairing (Supplementary Fig. 2). For the majority of

combinations (1015 of 1410), 100% of simulated clonotypes were de-

tected, and for all combinations at least 70% of simulated clonotypes

were detected (Supplementary Table 1).

3.2 Long read validation
We further assessed V’DJer’s performance by comparing to targeted

IgH amplicon sequencing of breast cancer derived RNA samples.

Fig. 2. V’DJer workflow. V’DJer accepts a mapped mRNA-seq BAM file as in-

put. Reads mapping to or having homology with Ig chain specific loci or se-

quence are extracted along with all unmapped reads and are used to

construct a deBruijn graph. The graph is traversed producing putative contigs

which are filtered based upon the presence of sequence having homology

with anchors arising from germline V and J segments as well as conserved

amino acids and read coverage. The final set of assembled contigs spanning

most of the V(D)J region and a portion of the constant region is output along

with a SAM file of reads mapped to the assembled contigs
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MiSeq 2�250 paired end sequencing was used for this comparison

with primers originating from framework region 2 of various IgH

variable (V) gene segments as well as a joining (J) gene segment used

in the IgH repertoire amplifications (Supplementary Note 3). In par-

allel with IgH amplicon sequencing, V’DJer was run on 2�50

paired-end bulk mRNA sequencing data from the same samples. For

this evaluation, assembled contigs encompassing at least one merged

MiSeq read were considered validated. Of those V’DJer assembled

contigs comprising at least 1% of the IgH repertoire as computed by

RSEM, 85.5% were validated by the MiSeq sequencing (Fig. 3c).

When allowing up to two mismatches against the MiSeq contigs, the

validation rate increased to 91.3%. The 15 most abundant contigs

across all three samples were all validated as well as 31 of the 32

most abundant contigs. The possibility should be noted that primer

bias may cause the MiSeq protocol to not sample transcripts that do

not contain sequence matching the primer annealing sites, which

suggests that some portion of the unvalidated contigs may not neces-

sarily be false positives. We expect the MiSeq protocol to be more

sensitive than V’DJer for those sequences that do match the primer

annealing sites due to depth of sequencing as well as the need for a

minimum read depth and complexity in the V’DJer assembly ap-

proach. However, due to possible issues in primer bias as well as

issues with accuracy of abundance in the MiSeq protocol due to

PCR amplification, an unbiased comparison of sensitivity between

the two methods is not feasible. V’DJer’s detection ability is limited

to the more abundant portions of the BCR repertoire.

3.3 Trinity comparison
The Trinity assembler (Grabherr et al., 2011) has been previously

used to infer the BCR sequence of an expected single dominant clo-

notype. For example, Blachly et al. used Trinity to reconstruct dom-

inant IgH clonotype sequences in chronic lymphocytic leukemia

(Blachly et al., 2015). To compare the performance of V’DJer with

Trinity, we applied Trinity to the same three short read mRNA-Seq

datasets that were used for MiSeq validation. Across the three sam-

ples, V’DJer assembled roughly an order of magnitude more MiSeq

validated IgH contigs than Trinity (Fig. 3d). Further, peak RAM

usage for Trinity exceeded 200GB across all three samples, while

peak RAM usage for V’DJer was less than 60GB.

3.4 TCGA melanoma results
We applied V’DJer to 473 Melanoma samples from TCGA (Cancer

Genome Atlas Network, 2015), followed by RSEM for clonotype

quantification and VQuest (Giudicelli et al., 2004) for identification

of variable (V), diverse (D) and joining (J) gene usage. Predictions

were made in 73.2%, 73.6% and 70.0% of IgH, IgK and IgL sam-

ples, respectively, with ability to predict generally driven by BCR

abundance. Constant regions are joined to the variable (VDJ) region

to produce valid BCRs, thus relative abundance of the IgH constant

region serves as a control for the BCR sequence abundances output

by V’DJer. Quantified V’DJer IgH fragment counts calculated by

RSEM were strongly associated with IgH constant region counts

(r2¼0.851) (Fig. 4a). This result provides evidence for the breadth

of the repertoire that is captured by V’DJer. Heavy and light chain

fragment counts were also highly associated (r2¼0.949) (Fig. 4b).

For those samples with predictions, an average of 35 clonotypes

were identified (Fig. 4c). CDR3 lengths (Fig. 4d) were in line with

previously observed distributions (IgH CDR3 length predominantly

27–87 nt, IgK CDR3 length 24–33 nt, IgL CDR3 length 27–39 nt)

(Larimore et al., 2012; Meffre et al., 2001). When analyzing iso-

types, we observed an order of magnitude more IgG clonotypes than

any other isotype (Fig. 4e), with IgA and IgM the next most fre-

quent. A very small number of IgD clonotypes were identified and

no IgE clonotypes were assembled. As expected, we observed

increased incidence of somatic hypermutation in IgG and IgA clono-

types compared to IgM (P¼1.07 � 10�53) (Fig. 4f). No individual

V gene/J gene pairing among dominant clonotypes is enriched be-

yond expectation given individual V gene and J gene counts (Fisher’s

Exact p¼0.253). (Supplementary Fig. 3).

Measurements of diversity can include assessments of richness

(the number of distinct members of the repertoire) and evenness

(variance of abundance of clonotypes within the repertoire). Here,

we use Pielou’s evenness index as a measure of BCR repertoire diver-

sity within each sample calculated as the Shannon entropy divided

by the log of the number of clonotypes.

Evenness ¼
�Rclonotypeproportion�log clonotypeproportion

� �

log clonotypesð Þ : (1)

This measure of diversity serves as an indicator of possible clonal

selection and expansion. A sample with a single or small number of

clonotypes expressed at levels much higher than other clonotypes in

the sample would be considered to have low evenness, while a sam-

ple with clones of similar abundance would have high evenness

(Fig. 5a). We assessed the impact of BCR abundance and repertoire

diversity on melanoma patient survival. We stratified samples into

groups of low abundance and high abundance with the high abun-

dance group further stratified by low evenness and high evenness.

While increased abundance had a positive impact on outcomes, the

group with high abundance and low evenness showed the best sur-

vival. The 5 year survival rates were 50.4%, 66.7% and 80.8% for

the low abundance, high abundance/high evenness and high abun-

dance/low evenness groups, respectively (Fig. 5b). This finding is

consistent with the hypothesis that a selected antigen driven B-cell

response against the tumor is present in the tumor immune micro-

environment. By comparison, BCR diversity in TCGA Bladder sam-

ples was not shown to be a prognostic indicator of patient survival

(Kardos et al., 2016).

Mean V’DJer run time for the 473 sample TCGA Melanoma co-

hort on the IgH chain was<3 h running on 8 core servers while mean

peak RAM usage was<12GB. Samples containing high BCR abun-

dance and diversity used considerably more compute time and RAM,

in some cases more than a day of processing and>32GB of RAM.

Fig. 3. Performance characteristics. (a) Evaluation of ability to detect simu-

lated IgH sequences by depth of sequencing. (b) Quantification results from

simulated data show that relative abundance measured by RSEM for clones

of varying depths closely matches expectation. (c) Assembled contigs vali-

dated by MiSeq sequencing sorted by relative abundance. All contigs com-

prising at least 1% of the IgH repertoire for a given sample are shown. (d)

Assembled IgH contigs validated by MiSeq sequencing for Trinity and V’DJer
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4 Discussion

We present here V’DJer, software for inference of BCR repertoires

using short-read RNA sequencing data. A major advantage of this ap-

proach is the capacity to capture expressed BCR loci in a standard

RNA-seq assay. This is especially important in application to clinical

samples where nucleic acid template may be limiting. In contrast to

assays that depend on PCR amplification, V’DJer is not limited to

evaluating only those sequences that can be successfully primed.

V’DJer does not require FACS sorting of B-cells prior to analysis; ra-

ther it performs well when analyzing complex RNA template mixtures

derived from the bulk tumor immune microenvironment.

Application of V’DJer is primarily limited by read coverage of

the clones of interest. In the setting of high coverage, assembly sensi-

tivity and specificity are high as well; however in areas of low cover-

age sensitivity lessens. Thus in the context of a tumor immune

infiltrate, V’DJer is best suited for reconstruction of dominant and

subdominant clones. The algorithm allows for wide latitude in

choosing parameters for optimal performance given the expected

coverage in the sample; however there is a lower bound on coverage

for recovering a given clonotype in the assembly. Functional BCRs

are protein multimers, comprising heavy chain and kappa or lambda

light chain pairing. Recently, multiple methods have been developed

to capture paired heavy/light chain information (or paired alpha/

beta chains in the context of T-cell receptor repertoires) (DeKosky

et al., 2014; Howie et al., 2015). V’DJer does not attempt this

pairing.

Other assembly-based methods have been used to analyze adap-

tive immune receptor repertoires. The first of these was iSSAKE,

which assembled short read mRNA-seq data derived from sequenc-

ing 50 RACE products to reconstruct TCRb repertoires (Warren

et al., 2009). This method has not to our knowledge been applied to

BCR loci. A second method used the Trinity assembly algorithm to

reconstruct dominant IgH sequences and analyze somatic hyper-

mutation of their variable regions in chronic lymphocytic leukemia

samples (Blachly et al., 2015). V’DJer showed superior performance

to this method in the context of bulk RNA-seq data including reads

from a diverse underlying BCR repertoire. Additionally, other tools

have been developed to perform a selective local assembly based

upon k-mer or read extraction. For example, a method used for clus-

tered regularly interspaced short palindromic repeat (CRISPR) de-

tection in bacteria and archaea identifies and clusters frequently

occurring k-mers for assembly (Ben-Bassat and Chor, 2016).

Adaptive immune receptor repertoire profiling in general is an

important analytical tool for translational cancer biology. Our

group and others have shown that B-cell lineage gene expression sig-

natures are strongly prognostic in multiple solid tumor types (Iglesia

et al., 2014). BCR variable region mutation rate is prognostic in

chronic lymphocytic leukemia (Hamblin et al., 1999), and adaptive

immune receptor repertoire profiling provides the most sensitive

method of detecting minimal residual disease in B-cell leukemias

(Logan et al., 2014). Applied to a large melanoma mRNA-seq data-

set, V’DJer allowed discovery of prognostic information in tumor-

infiltrating BCR repertoire diversity over and above BCR expression

alone. Given the huge clinical interest in this immunotherapy ap-

proach and limited material of many pre-treatment tumor biopsy

samples, V’DJer will be critical for adaptive immune receptor

Fig. 4. TCGA melanoma results. (a) Total V’DJer abundance measured against reads mapped to IgH constant regions. (b) V’DJer heavy chain abundance is asso-

ciated with V’Djer light chain abundance. (c) Number of assembled clones per sample. (d) CDR3 length distributions for all assembled contigs (inclusive of con-

served Cys and Trp/Phe). (e) Relative abundance of isotype assignments. (f) Isotype specific mutational loads
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analysis for understanding response to immunotherapy and develop-

ing biomarkers to guide treatment decisions.
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Fig. 5. Impact of BCR abundance and diversity on survival. (a) Examples of

low evenness and high evenness in clone abundance. Larger nodes indicate

higher clone abundance. Edges were drawn if Hamming distance is<30% be-

tween two sequences. (b) Kaplan–Meier survival curves for the TCGA

Melanoma cohort stratified by BCR abundance (high: count>1000, low:

count�1000) and clone evenness (high:>0.8, low: �0.8) into three groups:

low abundance, high abundance/high evenness and high abundance/low

evenness
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