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Abstract

Antibody targeting of the immune checkpoint receptor PD1
produces therapeutic activity in a variety of solid tumors, but
most patients exhibit partial or complete resistance to treatment
for reasons that are unclear. In this study, we evaluated tumor
specimens from 65 patients with melanoma, lung nonsqua-
mous, squamous cell lung or head and neck cancers who were
treated with the approved PD1-targeting antibodies pembroli-
zumab or nivolumab. Tumor RNA before anti-PD1 therapy was
analyzed on the nCounter system using the PanCancer 730-
Immune Panel, and we identified 23 immune-related genes or
signatures linked to response and progression-free survival
(PFS). In addition, we evaluated intra- and interbiopsy variabil-
ity of PD1, PD-L1, CD8A, and CD4 mRNAs and their relation-
ship with tumor-infiltrating lymphocytes (TIL) and PD-L1 IHC
expression. Among the biomarkers examined, PD1 gene expres-

sion along with 12 signatures tracking CD8 and CD4 T-cell
activation, natural killer cells, and IFN activation associated
significantly with nonprogressive disease and PFS. These asso-
ciations were independent of sample timing, drug used, or
cancer type. TIL correlated moderately (�0.50) with PD1 and
CD8A mRNA levels and weakly (�0.35) with CD4 and PD-L1.
IHC expression of PD-L1 correlated strongly with PD-L1 (0.90),
moderately with CD4 and CD8A, and weakly with PD1. Repro-
ducibility of gene expression in intra- and interbiopsy specimens
was very high (total SD <3%). Overall, our results support the
hypothesis that identification of a preexisting and stable adap-
tive immune response as defined bymRNA expression pattern is
reproducible and sufficient to predict clinical outcome, regard-
less of the type of cancer or the PD1 therapeutic antibody
administered to patients. Cancer Res; 77(13); 3540–50.�2017 AACR.

Introduction
Tumor cells suffer numerous genomic alterations, generating

neoantigens that can be identified by the immune system.

Although an innate immune response is observed in patients
with cancer, this response is usually ineffective to control tumor
progression (1, 2). To date, many immune escape mechanisms
have been identified (1, 3, 4), including profound local immune
suppression, induction of tolerance, dysfunction in T-cell signal-
ing, and evasion of immune destruction by expression of endog-
enous "immune checkpoints" that normally terminate immune
responses after antigen activation. These observations have
resulted in the development of various immune approaches for
the treatment of cancer, including immune checkpoint pathway
inhibitors such as anti-PD1 for the treatment of patients with
advanced lung cancer, melanoma, renal cancer, and other tumor
types (5–9).

A particular challenge in cancer anti-PD1 immunotherapy is
the identification of predictive biomarkers to identify responders
fromnonresponders and to guide disease-management decisions.
Emerging data suggest that patients whose tumors overexpress
PD-L1 by IHC have improved clinical outcomes with anti-PD1–
directed therapy tumors (10). Although this might be the case of
lung cancer, inwhichPD-L1 IHCdoes seempredictive, it is not the
case of many other cancers, like melanoma or renal cancer, in
which results are more controversial. In addition, IHC-based
detection of PD-L1 as a predictive biomarker is confounded by
multiple issues, many still unresolved today, such as variable
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data has been deposited in Gene Expression Omnibus
(GSE93157).

Sample data
All tumor sampleswere obtained before anti-PD1 therapy. Two

different categories of sample-type were considered: sample
acquisition before anti-PD1 therapy initiation (�3 months and
no treatment between the biopsy and the beginning of treatment
with anti-PD1; named here "baseline") or archival sample
(named here "archival"). Thus, an archival sample is a tumor
biopsy (either from a primary tumor or a metastatic biopsy)
obtained > 3 months before anti-PD1 therapy initiation.

Immune gene signatures
Fifteen independent gene signatures tracking different cell

types [e.g., CD8 T cells, NK cells, and dendritic cells (DC)] were
evaluated (17–19). A signature that tracks normal mucosa was
also included as a control. In addition, we performed an
unsupervised analysis using all immune-related genes and all
samples, and handpicked four newly developed immune-relat-
ed signatures that met the following criteria: >15 genes and a
correlation coefficient (r) among the genes >0.8. The gene lists
of each signature can be found in Supplementary Table S1. To
obtain a single score for each signature and sample, median
expression of all genes from the signature was calculated.

The Cancer Genome Atlas dataset
All RNASeqv2 samples fromnonsqNSCLC, sqNSCLC,HNSCC,

and SKCM samples (n ¼ 2,170) available at the Cancer Genome
Atlas (TCGA) portal (https://gdc.cancer.gov/) were downloaded
(20). RNA-Seq by expectation maximization (RSEM) values
below 3 were treated as missing values, and if more than 50%
of expression values were missing for a gene, that particular gene
was removed from the data matrix. RSEM values were then log
base 2 transformed.

Reproducibility analysis
Expression of PD1, PD-L1, CD8A, and CD4, together with 5

housekeeping genes, was determined across 1,150 FFPE-based
samples from13 cancer types using a custom-madeCodeSet (data
not shown). The entire expression datawas scaled from0 to 10. To
evaluate the variability of PD1, PD-L1, CD8A, and CD4 mRNA
expression within the same sample (intrasample variability), an
average of 2.6 extractions from a single biopsy/sample (i.e., same
tumor cylinder) were profiled in 35 patients, and total SD was
calculated. To determine the output variability across different
core needle biopsies of the same tumor (intersample variability),
15 biopsies from 5 independent tumors were evaluated, and total
SD was calculated.

Tumor-infiltrating lymphocytes and PD-L1 IHC
Percentages of stromal tumor-infiltrating lymphocyte (TIL)

were evaluated in hematoxylin and eosin slides from 51 tumor
samples according to the 2014 Guidelines developed by the
International TILs Working (21). Percentages of PD-L1–expres-
sing tumor cells were assessed in six freshly-cut FFPE lung tumor
samples using the commercially available Ventana Sp263 assay.

Statistical analysis
To identify genes differentially expressed across groups, amulti-

class significance analysis of microarrays using a FDR <5% was

detection antibodies and cutoffs, tissue preparation, stability of 
the biomarker in primary versus metastatic biopsies, and staining 
of tumor versus immune cells (10).

The development of gene expression profiling of tumors has 
enabled to identify prognostic gene expression signatures and 
patient selection with targeted therapies. Recently reported stud-
ies have evaluated the association of immune-related gene expres-
sion in patients with various solid tumors treated with immuno-
therapy. For example, a genome-wide analysis of serial melanoma 
biopsies from patients treated with recombinant IL2 revealed a 
signature predictive of clinical response from pretreatment biop-
sies (11). More recently, an IFN-inflammatory immune gene 
expression signature associated with both enhanced overall 
response (OR) rates and progression-free survival (PFS) in 
patients with melanoma treated with pembrolizumab, which is 
subsequently being investigated in other malignancies (12). Oth-

er example include an eight-gene signature reflecting preexisting 
immunity, the T-effector/IFNg signature, explored in a phase II 
trial of previously treated non–small cell lung carcinoma (NSCLC; 
ref. 13). If validated, the implementation of these signatures will 
require the utilization of robust and reproducible genomic-based 
platforms.

Here, we evaluated the association of immune-related gene 
expression profiles in patients with advanced nonsquamous 
NSCLC (nonsqNSCLC), squamous NSCLC (sqNSCLC), head 
and neck squamous cell carcinoma (HNSCC), and skin cuta-
neous melanoma (SKCM). The overall hypothesis is that 
immune signatures analyzed before anti-PD1 therapy can pre-
dict response to PD1 checkpoint blockade independently of 
cancer type.

Patients and Methods
Patient data

This study included patients with advanced nonsqNSCLC, 
sqNSCLC, HNSCC, or SKCM, treated at two institutions in Bar-
celona (Vall d'Hebron Hospital and Hospital Clínic) with anti-
PD1 monotherapy in various clinical trials. Patients received 
pembrolizumab or nivolumab until progression or unacceptable 
toxicity. Patients with advanced melanoma could have received 
prior anti-CTLA4 therapy.

Written informed consent was obtained from all patients 
before enrollment. The hospital Institutional Review Board 
approved the study in accordance with the principles of Good 
Clinical Practice, the Declaration of Helsinki, and other applicable 
local regulations.

Gene expression analysis
A section of the formalin-fixed paraffin-embedded (FFPE) 

tissue was first examined with hematoxylin and eosin staining 
to confirm presence of invasive tumor cells and determine the 
tumor area. For RNA purification (Roche High Pure FFPET RNA 
Isolation Kit), �1–5 10-mm FFPE slides were used for each 
tumor specimen, and macrodissection was performed, when 
needed, to avoid normal contamination (14–16). A minimum 
of approximately 50 ng of total RNA was used to measure the 
expression of 730 immune-related genes and 40 housekeeping 
genes using the nCounter platform (NanoString Technologies) 
and the PanCancer Immune Profiling Panel (17). Data were log 
base 2–transformed and normalized using housekeeping genes 
selected using the nSolver 2.6 package. Raw gene expression
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participate in the differentiation of na€�ve T cells into CD4 Th1
cells (e.g., IL12RB1, CXCR3, and STAT4). Cluster 2 (n ¼ 20)
tracks granzyme A–mediated apoptosis pathway (i.e., granzyme
A and B and perforin 1), checkpoint inhibitors (i.e., PD1 and
LAG3), and T-cell receptor signaling (e.g., CD8A, CD8B, and
IFNg). Cluster 3 (n ¼ 44) tracks cell-adhesion molecules (e.g.,
CD4, CD86, and integrin b2), toll-like receptors (i.e., toll-like

Table 1. Clinical–pathologic characteristics of the combined datasets evaluated
in this study

N (%)

N 65
Age, median (range) 59 (40–83)
Sex
Male 50 (77%)
Female 15 (23%)

Type of cancer
Nonsquamous lung carcinoma 22 (34%)
Squamous lung carcinoma 13 (20%)
Squamous head and neck 5 (8%)
Melanoma 25 (39%)

Previous lines
0 17 (26%)
1 22 (34%)
2 13 (20%)
3 13 (20%)

Melanoma previous immunotherapy
Ipilimumab 7 (28%)
No immunotherapy 18 (72%)

Biopsy
Archival 32 (49%)
Baseline 33 (51%)

Drug response
CR 3 (5%)
PR 17 (26%)
SD 16 (25%)
PD 29 (45%)

ORR
CR–PR 20 (31%)
SD–PD 45 (69%)

Smoking
Current smoker 16 (25%)
Former smoker 28 (43%)
Never smoker 21 (32%)

ECOG
0 20 (31%)
1 43 (66%)
2 2 (3%)

Drug
Nivolumab 28 (43%)
Pembrolizumab 37 (57%)

PFS, median (95%, CI) 3.47 (2.8–6.87)
Melanoma BRAF status
BRAF mutated 9 (36%)
Previous BRAF inhibitor 3 (12%)
Nonprevious BRAF inhibitor 6 (24%)

BRAF wild-type 16 (64%)
Lung cancer EGFR status
EGFR mutated 1 (3%)a

EGFR wild-type 30 (75%)
NA 9 (23%)

Lung cancer ALK status
ALK rearranged 0 (0%)
ALK not rearranged 30 (75%)
NA 10 (25%)

Abbreviations: CR, complete response; PR, partial response; SD, stable disease;
PD, progression disease; ORR, overall response rate; PFS, progression-free
survival; ALK, anaplastic lymphoma kinase; NA, not applicable.
aPreviously treated with EGFR TKI.

used. Time from the first day of treatment to progression or last 
follow-up was defined as PFS. Estimates of PFS were from Kaplan–
Meier curves and tests of differences by log-rank test. Multivariable 
Cox proportional hazards models were built including cancer-
type, timing of biopsy, gender, and drug as covariables. Stepwise 
regression was used to select the most informative variables, 
which were included in a multiple (linear) regression model. 
Tumor response was determined at 6 to 8 weeks of starting 
treatment using modified RECIST 1.1 criteria. Complete response 
(CR) was defined as CR. OR was defined as partial or CR. 
Nonprogressive disease (NPD) was defined as response or stable 
disease (SD) for at least 3 months. Association between gene or 
signature expression and CR, OR, or NPD rates was also assessed 
by logistic regression analysis. All statistical tests were two-sided.

Results
Clinical–pathologic characteristics

Tumor samples (50.8% baseline and 49.2% archival) from 65 
patients (77% males) with different advanced cancers [NSCLC 
including both nonsqNSCLC (n ¼ 22) and sqNSCLC (n ¼ 13); 
HNSCC (n ¼ 5) and SKCM (n ¼ 25)] were evaluated in this study 
(Table 1). All patients had been recruited in various clinical trials 
evaluating the efficacy of anti-PD1 monotherapy [nivolumab 
(56.9%) or pembrolizumab (43.1%)]. Most patients (80%) 
received �2 prior lines of therapy. In the melanoma group, 7 of 
25 patients (28%) had been previously treated with ipilimumab. 
In 6 of the 7 patients, the archival biopsy was prior to ipilimumab 
and the biopsy was after ipilimumab in 1 patient. Of the 9 patients 
with BRAF-mutated melanoma, 3 received a BRAF inhibitor 
before anti-PD1. In all of them, the biopsy was archival before 
BRAF-inhibition. In the other groups, no patient received check-
point inhibitors before anti-PD1 therapy. In the entire popula-
tion, the OR and NP rates were 30.8% and 55.4%, respectively. 
Median PFS was 3.47 months [95% confidence interval (CI), 2.8–
6.87]. No significant differences in terms of OR and NPD rates, or 
PFS, were observed across the four cancer types (Supplementary 
Table S2).

Immune cell-type expression across cancer types
To identify immune cell-type expression across the different 

cancer types, we performed an unsupervised analysis of 730 
immune-related genes and 65 samples (Fig. 1). The gene cluster-
ing revealed that most genes (n ¼ 536, 73.4%) were highly 
correlated (correlation coefficient >0.50). The sample clustering 
revealed two clear groups of samples (groups 1 and 2). No clear 
associations were observed between the two clusters of samples 
and response to therapy (i.e., PD, SD, and OR), timing of biopsy, 
or sex. Interestingly, a significant association (P < 0.001, Fisher 
exact test) was observed regarding the type of cancer, where most 
sqNSCLC and SKCM samples clustered together in group 2 and 
showed an overall pattern of lower expression of immune-related 
genes than nonsqNSCLC samples. Of note, a significant associ-
ation (P ¼ 0.011, Fisher exact test) was found regarding the two 
groups and the drug used as most nonsqNSCLC patients were 
treated with nivolumab.

From the hierarchical clustering (Fig. 1), we handpicked four 
gene clusters (i.e., cluster 1, cluster 2, cluster 3, and cluster 4). 
Cluster 1 (n ¼ 68 genes) tracks antigen presentation through
T-cell activation. The signature is composed of genes that form 
the TCR complex (e.g., CD3D, CD3E, CD3G, CD247, and 
ZAP70), costimulate T cells (i.e., CD2, CD28, and ICOS), and



receptor 1, 4, 7, and 8), and immune checkpoint inhibitor
PD-L2. Finally, Cluster 4 (n ¼ 17) tracks IFN activation (i.e.,
IFN A7) and T-cell CD4 Th2 activation (i.e., IL13).

Cancer-type immune-specific profiles
To identify cancer-type immune-specific profiles, we first

retrieved RNA-Seq data from TCGA project for a total of
2,170 tumor samples representing HNSCC (n ¼ 566),
sqNSCLC (n ¼ 554), nonsqNSCLC (n ¼ 576), and SKCM
(n ¼ 474). SqNSCLC and HNSCC samples were combined
into a single group because their gene expression patterns are
largely undistinguishable as previously reported by the TCGA
pan-cancer group (22). Of note, >90% of samples from the
TCGA project are primary tumors.

In the TCGA dataset, the expression of all immune-related
genes, or the genes directly associated with immune cell types,
was found to discriminate (FDR < 5%) the three cancer groups
(Fig. 2A). Interestingly, very similar patterns of immune-related

expression were observed in our nCounter-based dataset, where
nonsqNSCLC samples show higher expression of immune-
related genes, or immune cell-type genes, than the other cancer
groups, especially SKCM samples (Fig. 2A). For example, PD-L1
gene was found less expressed in melanoma samples than the
other cancer groups (Fig. 2B). The expression of the 23 genes
and signatures across the three cancer groups in the nCounter-
based dataset are shown in Supplementary Fig. S1. Of note,
virtually all our nCounter-based data originates from core
biopsies from metastatic tissues.

Using all genes evaluated on thenCounter platform,wederived
a gene expression–based predictor in the TCGA dataset that
identifies each of the three cancer groups, and then applied this
predictor onto our nCounter-based dataset. The predictor iden-
tified the correct cancer group in 86.2% (56/65) of the cases (Fig.
2C). When the subset of genes focusing only on immune cell-
types was evaluated, the predictor identified the correct cancer
group in 80% (52/65) of the cases (Fig. 2C).
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Cancer-type immune-specific profiles. A, Immune-related profiles, and immune cell–type–specific profiles, in the TCGA dataset compared with the nCounter-
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needle biopsies (total of 35 patients) were tested (average of 2.6
extractions per core needle biopsy). The SD for PD1, PD-L1,
CD8A, and CD4 mRNA was 0.136, 0.05, 0.046, and 0.03 units,
respectively, in a scale of 0–10 (intrabiopsy variability).

To determine the output variability across different core needle
biopsies of the same tumor, a total of 15 biopsies from five
independent tumors (average of 2.5 biopsies per tumor) were
evaluated. The SD for PD1, PD-L1, CD8A, and CD4 mRNA was
0.239, 0.04, 0.12, and 0.07 units, respectively, in a scale of 0 to 10
(interbiopsy variability). Overall, these results support the high
reproducibility of the nCounter platform in evaluating immune-
related expression profiles.

Correlation TILs and PD-L1 IHC with immune genes
We first investigated the correlation of stromal TILs with PD1,

PD-L1, CD8A, and CD4 mRNA in 51 evaluable samples. Among
the four biomarkers evaluated, PD1 and CD8A were found
moderately correlated [correlation coefficients (r) of 0.54 and
0.53], andCD4andPD-L1were foundweakly correlated (r¼0.37
and 0.35; Supplementary Fig. S3). Second, tumor PD-L1 IHCwas
found strongly correlated (r ¼ 0.90) with PD-L1, moderately
correlated (0.53 and 0.42) with CD4 and CD8A, and weakly
correlated (r ¼ 0.25) with PD1 (Supplementary Fig. S4).

Discussion
In the last few years, anti-PD1/PD-L1 drugs have become a new

paradigm in oncology (23, 24). Nivolumab and pembrolizumab,
bothmonoclonal IgG4 antibodies against PD1, have demonstrat-
ed significant response rates in several clinical trials involving
patientswith advanced SKCM, lung cancer andother solid tumors
(5–9). However, not all patients benefit and those who benefit do
not benefit to the same extend. Thus, there is a need to better
understand the biology behind the activity of these drugs and
identify predictive biomarkers of response.

The development of tools for selecting patients that are likely to
benefit from these therapies has been investigated but still
remains unclear. At present time, PD-L1 expression by IHC
remains the only potential biomarker, but important inherent
limitations exists (10). In this way, the Blueprint Proposal (25)
has been developed by four pharmaceutical companies and two
diagnostic companies involved in the immune-oncology field.
The proposed study will help build an evidence base for PD1/
PD-L1 companion diagnostic characterization for non–small cell
lung cancer aiming to get consensus regarding PD1/PD-L1 as a
biomarker in a similar manner as has been done for HER2 or
hormone receptor testing in breast cancer (26, 27).

Lessons learned over the years regarding the implementation of
IHC-based biomarker guidelines reveal the existence of important
discordance rates in the daily clinical setting whether the same
antibody, or two different antibodies, are used (28, 29). This is
observed for biomarkers that are used as a binary score (i.e.,
positive or negative). Moreover, even higher discordance rates
have been observed with IHC-based biomarkers such as Ki67
when there is a need to quantify (i.e., percentages of positive
tumor cells) and draw specific cutoffs (30). Thus, it is likely that
PD1/PD-L1 IHC determinations will suffer from similar issues. In
this scenario, implementation of robust and reproducible assays
under genomic platforms such as the nCounter is needed. For
example, a genomic assay that measures 50 genes (i.e., PAM50)
using thenCounter platformhas alreadybeen implemented in the

Correlation among PD1, PD-L1, and immune cell–type 
signatures

To better understand the association between the various sig-
natures being analyzed, we performed a hierarchical clustering of 
pairwise correlations between the 20 signatures, and PD1, PD-L1, 
and CTLA4 genes, in the combined cohort of 65 patients (Fig. 2D). 
Among the different signatures, six (i.e., cytotoxic cells, CD8 T cells, 
T cells, NK cells, Th1 cells, cluster 1, and cluster 2) tracking cytotoxic 
T-cell infiltration, as well as PD1 gene, showed high correlation 
among them (correlation coefficient > 0.77). Similar results were 
obtained using the TCGA RNA-seq data (Fig. 2D).

Immune-related gene expression and therapy response/benefit
To identify the immune-related biological processes associated 

with anti-PD1 therapy response/benefit, we first evaluated the 
association between the expression of each individual gene, or 
signature, and type of response/benefit (i.e., ORR and NPD) after 
adjustment for four clinical–pathological variables (i.e., sex, type 
of biopsy, cancer type, type of drug). On one hand, CD8 T cells 
and PD1 showed a clear tendency for being associated with ORR 
but did not reach statistical significance (Fig. 3A). On the other 
hand, 14 signatures (cytotoxic cells, NK cells, Th1 cells, cluster 2, 
CD8 T cells, cluster 1, T cells, cluster 4, cluster 3, CD45, CD4-
activated, dendritic cells, neutrophils, and Treg cells), together 
with PD-L1, PD1, and CTLA4 were significantly associated with 
NPD (Fig. 3B). Of note, no other clinical–pathologic variable was 
found clearly associated with NPR, except for sex [male vs. female; 
odds ratio ¼ 4.89; 95% confidence interval (CI), 1.44–19.76; P ¼ 
0.015].

Immune-related gene expression and PFS
To identify the immune-related biological processes associated 

with anti-PD1 therapy response/benefit, we evaluated the asso-
ciation between the expression of each individual gene, or signa-
ture, and PFS (Fig. 4A). Among the different biomarkers, 11 
signatures (NK cells, cluster 4, CD8 T cells, cluster 2, cluster 1, 
Th1 cells, T cells, CD4 activated, cytotoxic cells, DC, and Treg 
cells), together with PD1 and PD-L1 genes were found signifi-
cantly associated with PFS after adjustment for four clinical–
pathologic variables (i.e., sex, type of biopsy, cancer type, type 
of drug). Sex was the only clinical–pathologic variable found 
associated with PFS [male vs. female; hazard ratio (HR) ¼ 0.48; 
95% CI, 0.25–0.92; P ¼ 0.02] in univariate analysis.

Finally, we explored the actual survival outcomes of the 
patients based on the expression of the six most significant 
signatures or genes (Fig. 4B; Supplementary Fig. S2). To draw 
cutoffs, we used tertiles and defined low expressers as those in the 
low tertile group and high expressers as those in the high tertile 
groups. All signatures or genes, except PD1, showed a significant 
association with PFS. For example, the median PFS of patients 
with low and high NK-cell expression was 2.57 and 6.87 months 
(HR ¼ 0.39; 95% CI, 0.185–0.815). Moreover, the percentage of 
patients with low and high NK-cell expression who were found 
progression-free at 12 and 24 months were 9.1% versus 23.8%
and 9.1% versus 14.28%, respectively.

PD1, PD-L1, CD8A, and CD4 mRNA output variability
To evaluate the variability of PD1, PD-L1, CD8A, and CD4 

mRNA expression within the same sample, multiple extractions 
from a single biopsy/sample (i.e., same tumor cylinder) were 
profiled. A total of three extractions from three independent core



clinical setting with high reproducibility within and across labs
(31). Thus, studies that evaluate the analytic validation of
immune-related genes or signatures using robust genomic plat-

forms seem warranted. In this direction, our variability analyses
with PD1, PD-L1, CD8A, and CD4mRNA, together with reported
data by NanoString of the analytic performance of an immune
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Immune-related gene expression and therapy response/benefit. A, Odds ratios of various genes or gene signatures (as a continuous variable) for odds ratio
(left) and NPD (right), after adjusting for clinical–pathologic variables. Each signature was standardized to have a mean of 0 and a SD of 1. The size of the square is
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Immune-related gene expression and PFS. A, PFS HRs of various genes or gene signatures (as a continuous variable) in all patients (left), patients with a baseline
biopsy (middle), and with an archival biopsy (right). Each signature was standardized to have a mean of 0 and a SD of 1. The size of the square is
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(ICR; e.g., CXCR3, CCR5 ligand genes, and IFNg-signaling tran-
scripts; 18, 37). In this context, predictive, prognostic, and mech-
anistic immune signatures overlap, and a continuum of intratu-
mor immune reactions exists. Indeed, ICR-related genes have
been constantly found associated with increased survival across
cancer types (19, 38) and responsiveness to immunotherapeutic
approaches including anti-CTLA4 (39), adoptive therapy/IL2
(40, 41), and vaccination (41).

Beyond PD-L1 IHC and gene expression signatures, other
potential genomic biomarkers of response or benefit to
immune checkpoint inhibitors are emerging (42, 43). For
example, there is a link between the number of mutations (the
so-called mutational load), the formation of neoantigens, and
immune response (44). Indeed, cancer types with the highest
response to anti-PD1 (i.e., SKCM and lung cancer) to date are
the ones to have a high mutational load. For example, McGra-
nahan and colleagues (45) found that a high burden of clonal
tumor neoantigens correlated with improved patient survival,
an increased presence of TILs, and a durable response to anti-
PD1 and anti-CTLA4. Moreover, Rizvi and colleagues (46)
studied the tumors of patients with NSCLC undergoing anti-
PD1 therapy. Across two independent cohorts, higher nonsy-
nonymous mutation burden in tumors was associated with
improved objective response, durable clinical benefit, and PFS.
However, whether this approach predicts benefit in other
cancer types beyond NSCLC still needs to be explored. In
addition, further studies are needed to explore the analytic
validity of exome sequencing and neoantigen identification.

An interesting observation in our study was that very similar
patterns of single and global immune-related gene expression
profiles existed between our samples and the TCGA tumor sam-
ples. Indeed, SKCM, nonsqNSCLC, and sqNSCLC/HNSCC TCGA
samples are largely (>90%) from patients with nonmetastatic
disease and were obtained from surgical specimens. On the
contrary, our samples are from patients with metastatic disease,
many of them pretreated with chemotherapy, and obtained from
core-needle biopsies. These data suggest that immune activation
seems to occur early on in the disease and seems quite stable
throughout tumor progression (asmeasured by gene expression).
This hypothesis is supported by our observations that the type of
tissue (baseline vs. archival) did not affect substantially the
association of our signatures with anti-PD1 response. Moreover,
weobserved that each cancer type has aunique immune-related or
immune cell-type–specific gene expressionprofile, suggesting that
differentmechanisms of immune activation or suppressionmight
be occurring and might be cancer-type specific to some extent.

There are several caveats toour study. First, this is an exploratory
and retrospective study with a limited sample size; therefore, we
did not attempt to find the best biomarker. Thus, prospective and
randomized studies will be needed to define and validate the
predictive ability of each gene or signature and the best cutoff
based on performance and clinical utility. Second, we did not
evaluate overall survival since the number of events (i.e., deaths)
was insufficient at the time of analysis. Third, the number of
HNSCC samples analyzed is low and thus no major conclusions
can be drawn in this group. However, as previously discussed,
there is already clinical evidence of the predictive value of
immune-related gene expression in patients with HNSCC treated
with pembrolizumab (35). Fourth, we did not have on-treatment
samples to evaluate whether these are more valuable than pre-
treatment samples. In this direction, Chen and colleagues (47)

gene signature (32), support the high reproducibility of the 
nCounter platform for measuring immune-related biomarkers.

Two previous articles have evaluated the association of the 
transcriptome and response to anti-PD1 monotherapy (33, 34). 
In the first one, Hugo and colleagues (33) compared the expres-
sion of more than 25,000 genes using RNAseq between 15 
responding (i.e., defined as NPD) and 13 nonresponding (i.e., 
defined as progressive disease) patients with advanced melanoma 
treated with pembrolizumab or nivolumab. The authors identi-
fied 693 genes differentially expressed, mostly upregulated in 
nonresponding tumors, between the two groups. Interestingly, 
mesenchymal and inflammatory tumor phenotypes were found 
associated with innate anti-PD1 resistance. However, genes with 
putative roles in modulating immune checkpoint sensitivity, such 
as PD-L1, CD8A/B, IFNg , or multiple IFN signatures, were not 
found associated with NPD. In the second study, Ascierto and 
colleagues (34) compared the expression of 60 immune-related 
genes using multiplex qRT-PCR in 12 patients (4 responders and 8 
nonresponders) with PD-L1–positive advanced renal cell carci-
noma treated with nivolumab. No gene was found differentially 
expressed between the 2 groups. In a subsequent analysis evalu-
ating the whole transcriptome with RNA-seq, the expression of 
metabolic-related genes, and not genes involved in immune 
checkpoint sensitivity, were found associated with anti-PD1 resis-
tance. Although we do not have a clear explanation of why these 
results are different from ours, the differences in the number of 
samples, the cancer-type (i.e., renal carcinoma) and the transcrip-
tomic approach may not be comparable.

On the contrary, results from two recently reported studies 
evaluating the association of immune-related gene expression in 
patients with various solid tumors treated with anti-PD1/PD-L1 
are consistent with ours. In the first one, Ayers and colleagues 
developed a predictive "IFNg" gene signature using the nCounter 
platform in 19 patients with advanced SKCM treated with pem-
brolizumab (35). Then they tested the predictive ability of this 
signature, and three additional signatures, in patients with SKCM 
(n ¼ 62), HNSCC (n ¼ 33), and gastric cancer (n ¼ 33) treated 
with pembrolizumab in KEYNOTE-001 and KEYNOTE-012 trials. 
Overall, they observed that tumors lacking an immune pheno-
type, as suggested by low scores of the signatures, did not respond 
to anti-PD1 therapy (35). In the second study, Fehrenbacher and 
colleagues (13) evaluated 224 NSCLC pretreatment samples from 
a phase II trial where patients were randomized to docetaxel or 
atezolizumab, an anti-PD-L1 drug. The authors observed that 
patients with high T-effector-IFNg-associated gene expression, 
measured using the Nimblegen platform, had improved overall 
survival with atezolizumab. These studies support our findings 
that a similar immune biology related to T cell and IFN activation 
predicts anti-PD1/PD-L1 response or benefit across multiple 
cancer types and that the benefit from checkpoint inhibition is 
pronounced in tumors with preexisting immunity. Further sup-
porting this hypothesis is a recent study using flow cytometry on 
freshly isolated metastatic melanoma samples from two cohorts 
of 20 patients, revealing that increasing fractions of PD1-high/
CTL–associated protein four high (PD1hiCTLA-4hi) cells within 
the tumor-infiltrating CD8þ T-cell subset strongly correlates with 
response and PFS following anti-PD1 monotherapy (36).

The gene signatures identified here (e.g., cluster 2 and CD8 T 
cells), and in previous reports (13, 35), as being associated with 
anti-PD1 therapy response or survival are composed of genes 
previously identified as the Immunologic Constant of Rejection



analyses suggested that immune profiling identified in early on-
treatment biopsies following anti-PD1 blockade is more predic-
tive of benefit compared with pretreatment tumor samples. Final-
ly, we only had 6 samples to compare tumor PD-L1 IHC expres-
sion with immune expression. However, the six samples repre-
sented a broad range of IHC staining and were able to observe a
high correlation with PD-L1 mRNA.

In summary, our results reveal that although each cancer type
might have unique immune expression profiles, various genes,
including PD1, or signatures, mostly targeting CD8 and CD4
T-cell and IFN activation, are associated with NPD and better
progression-free survival independently of cancer type, timing of
the biopsy or anti-PD1 drug. The results are consistent with the
hypothesis that identification of a preexisting and stable adaptive
immune response predicts clinical outcome. Moreover, we show
that the nCounter platform offers high intra- and interbiopsy
reproducibility. Further clinical validation of these immune-relat-
ed gene expression profiles seems warranted.
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