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Abstract

Background: Measures of the adaptive immune response have prognostic and predictive associations in
melanoma and other cancer types. Specifically, intratumoral T cell density and function have considerable
prognostic and predictive value in skin cutaneous melanoma (SKCM). Less is known about the significance of
tumor-infiltrating B cells in SKCM. Our goal was to understand the prognostic and predictive value of B cell
phenotypic subsets in SKCM using RNA sequencing.

Methods: We used our previously published algorithm, V’DJer, to assemble B cell receptor (BCR) repertoires and
estimate diversity from short-read RNA sequencing (RNA-seq). We applied machine learning-based cellular
phenotype classifiers to measure relative similarity of bulk tumor sample gene expression profiles and different B
cell phenotypes. We assessed these aspects of B cell biology in 473 SKCM from the Cancer Genome Atlas Project
(TCGA) as well as in RNA-seq data corresponding to tumor samples procured from patients who received CTLA-4
and PD-1 inhibitors for metastatic SKCM.

Results: We found that the BCR repertoire was associated with different clinical factors, such as tumor tissue site
and sex. However, increased clonality of the BCR repertoire was favorably prognostic in SKCM and was prognostic
even after first conditioning on various clinical factors. Mutation burden was not correlated with any BCR
measurement, and no specific mutation had an altered BCR repertoire. Lack of an assembled BCR in pre-treatment
tumor tissues was associated with a lack of anti-tumor response to a CTLA-4 inhibitor in metastatic SKCM.

Conclusions: These findings suggest an important prognostic and predictive role for B cell characteristics in SKCM.
This has implications for melanoma immunobiology and potential development of immunogenomics features to
predict survival and response to immunotherapy.
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Background
The adaptive immune response plays a dynamic role
during cancer development, progression, and metastases
via a process called immune editing [1]. Skin cutaneous
melanoma (SKCM), in particular, may result in the out-
growth of tumor clones that either lack (“non-inflamed”
or “cold”) or show a strong association with tumor-
infiltrating lymphocytes (“inflamed” or “hot”) [2]. Mul-
tiple lines of evidence support the importance of
melanoma-specific effector T cells in mediating anti-

tumor immunity. The degree of effector T cell responses,
which may be directed against either self-antigens over-
expressed by melanoma cells, cancer testis antigens, or
neo-antigens derived from expressed somatic mutations
in melanoma [3–5], has been both a favorable prognostic
factor in SKCM patients [6, 7] and a predictor of re-
sponse to immunotherapies in metastatic SKCM [8–11].
There is a limited but growing body of evidence that B

cells play an important role in melanoma. For example,
patients with metastatic SKCM can develop antibodies
against cancer testis antigens [12, 13], and the presence
of these antibodies has been associated with clinical
benefit from CTLA-4 inhibition [13]. Patient-derived B
cells can kill melanoma cells in vitro by antibody-

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

* Correspondence: parkerjs@email.unc.edu; benjamin_vincent@med.unc.edu
1Lineberger Comprehensive Cancer Center, The University of North Carolina
at Chapel Hill, Chapel Hill, NC 27599, USA
Full list of author information is available at the end of the article

Selitsky et al. Genome Medicine           (2019) 11:36 
https://doi.org/10.1186/s13073-019-0647-5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/388591035?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s13073-019-0647-5&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:parkerjs@email.unc.edu
mailto:benjamin_vincent@med.unc.edu


dependent cellular cytotoxicity (ADCC) [14]. Depletion
of B cells was associated with impaired T cell tumor in-
filtration and cytotoxicity in the murine B16 melanoma
model [15, 16]. Analysis of 329 SKCM specimens as part
of The Cancer Genome Atlas (TCGA) project showed
that patients who were classified as “immune-high”
based on RNA sequencing (RNA-seq) contained a pleo-
morphic immune infiltrate that consisted of various
immune cell subsets in addition to T cells, including B
cells [17]. In patients with metastatic SKCM, tumor-
infiltrating B cells had increased B cell receptor (BCR)
class switching and affinity maturation [18], suggesting
the presence of an active antigen-driven B cell response.
B cell infiltration was correlated with T cell infiltration
and with improved prognosis in SKCM [6, 7, 19, 20].
Other prior work has shown that tumor associated B
cells may be associated with poor prognosis, confer re-
sistance to targeted therapy via induced expression of
IGF-1, and promote tumor progression via increased
angiogenesis and support of lymph node metastasis [21–
25]. Thus, precise molecular descriptions of B cell biol-
ogy in melanoma with utility in clinical prognosis and in
particular the role of tumor-infiltrating B cells are
underdeveloped.
Analyses of adaptive immune responses have been ac-

celerated by next-generation sequencing-based (NGS)
approaches to profile T cell receptor (TCR) and BCR
repertoires [9, 26]. We recently analyzed RNA-seq data
from multiple cancers as part of the TCGA project and
reported that B cell receptor abundance and diversity of
the BCR variable region (V-region) are independent
prognostic factors with respect to overall survival in
SKCM [7]. This work demonstrated the utility of whole
transcriptome profiling to characterize the immune cell
repertoire, but could not resolve more specific aspects of
B cell biology, such as the prognostic significance of in-
dividual B cell subsets and BCR repertoire characteristics
estimated from complete VDJ transcripts. The latter is
now possible using our recently published bioinformatics
tool, V’DJer, which reconstructs BCR sequences from
bulk tumor RNA-seq data, and thereby quantifies the
type and extent of the repertoire of tumor-infiltrating B
cells [27]. Furthermore, analysis of tumor datasets with
limited or no systemic treatment information, such as
the TCGA project, cannot address the question about
the importance of B cell response as predictors of re-
sponse to immunotherapies in metastatic SKCM.
To address these gaps in our knowledge, we analyzed

RNA-seq data from the complete TCGA SKCM tumor
dataset (n = 473 tumors) [17] as well as publicly available
RNA-seq data from tumor tissues that were collected
prior to treatment with immune checkpoint inhibitors
[8, 28]. Integrating results from BCR repertoire profiling,
TCR repertoire profiling, and machine learning-based

classifications, we determined the prognostic and pre-
dictive significance of B cells and the BCR repertoire in
metastatic SKCM. We found that clonally restricted
BCR repertoire measured using species evenness was a
favorable prognostic factor in SKCM. Species evenness
is a calculated by dividing Shannon entropy by the total
number of species (clones) and measures uniformity of
the observed species.

Methods
Patients, clinical data, and mutation classification from
the TCGA cohort in cutaneous melanoma
Patient demographics (age and sex), stage, and tumor
tissue site were downloaded from GDAC Firehose from
June of 2016. The survival data used was from the cu-
rated TCGA survival data from Lui et al. [29].
The mutations from each specimen were annotated by

the UNCseq™ pipeline (version 2016.07; see below “next
generation sequencing - the TCGA cohort in Cutaneous
Melanoma”). Each specimen was subsequently classified
according to the previously reported molecular classifi-
cations [17]: BRAF V600/601, RAS-mutant (NRAS,
KRAS, and HRAS), NF1-mutant (with high-impact mu-
tation only), and triple “wild-type”.

Applying TCGA molecular subtype classification to full
RNA-seq data set
A gene expression-based classification was previously
described that classified 329 TCGA samples into three
groups called “immune-high”, “keratin-high”, and
“MITF-low” [17]. To apply this to the final full TCGA
cohort of 473, we developed a gene expression classifier
based on the previously published data. We calculated
the silhouette width scores for each of the original 329
samples using the 1500 genes from the original analysis
[30]. Samples with a positive silhouette value (n = 263)
were considered most representative of each subtype
and used to develop a gene expression predictor with
Classification to the Nearest Centroids (CLaNC) method
[31]. The final predictor consisted of 1260 genes with a
7.2% cross validation error rate and a 5% training error
rate. This predictor was applied to the entire cohort to
predict subtypes on the additional TCGA samples.

Assembly and analysis of BCR and TCR sequences
BCR sequences were assembled using the same parame-
ters as we have previously described [27]. Diversity mea-
sures (described below) were computed based on
outputs from V’DJer using divBCR (an R function that
calculates count and diversity metrics from the V’DJer
output, https://github.com/sararselitsky/divBCR). TCR
repertoire was analyzed from paired-end FASTQ files via
MiXCR v1.8.1 RNA-seq mode [32]. Alignment was
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performed using both default and RNA-seq modes, tar-
geting all TCR loci.

Diversity measures
The total count measure is the sum of the expression of
all BCR clones normalized by total RNA-seq read count.
Top clone proportion and second top clone proportion
measure the proportion of the most expressed and sec-
ond most expressed clone in a population, respectively.
Mean V-region identity estimates somatic hypermuta-
tion by determining the mean of the number of nucleo-
tides that vary from the International ImMunoGeneTics
Information System (IMGT) [33]. We also calculated di-
versity indices commonly used in the ecology literature
[34, 35], Shannon entropy and 1-Gini-Simpson (referred
to as Gini-Simpson), which measure species richness
(number of species, or sequences), abundance, and even-
ness of the species in a population. We also measured
species evenness, which is Shannon entropy normalized
by species richness (Additional file 1: Figure S4).
See Additional file 1: FigureS3 for a demonstration of

the diversity measures in toy examples. The BCR popu-
lation structure for all TCGA melanoma samples is visu-
alized in Fig. 1.

Classification and subtype predictions
BAGS classifier (GSE56315 [36]) was built using Linear
Distance Weighted Discrimination [37] (dwdLinear from
the R package Caret) of genes with a standard deviation
of log2 transformed RNA-seq > 0.2. IL10±-producing B
cell classifier (GSE50895 [38]) was built same as BAGS,
except it used all genes. For both of these, the classifica-
tion subtype of each sample was called by the sub-
classification with the highest probability.

Statistical analysis
All statistical analyses and plots were generated using R
version 3.4.1 (2017-06-30). Kaplan-Meier plot and Cox
proportional hazards regression model were implemented
using the R package survival. R packages used for analyses
were stats, plyr, reshape2, and caret. R packages used for
generating plots were ggplot2 and heatmap.plus.

Results
B cell receptor repertoire in SKCM RNA-seq data
Immunoglobulin heavy chain genes are expressed in dif-
ferent isotypes (γ, δ, α, and μ), each indicative of a par-
ticular state of B cell differentiation and activation.
Using V’DJer [27], a bioinformatics software tool that as-
sembles BCRs (both heavy and light chains) from RNA-
seq, we found that immunoglobulin heavy chain γ
(IGHG, individual γ subclasses could not be distin-
guished), which is associated with an activated B cell re-
sponse, was the most abundant heavy-chain isotype in

the 473 SKCM samples (median read count of samples
with an assembled sequence = 8301, Fig. 1a, b). This was
followed by immunoglobulin heavy chain α (IGHA, me-
dian read count = 898.7), which is associated with a mu-
cosal B cell response. In contrast, the immunoglobulin
heavy chain μ (IGHM, median read count = 613.5) and
immunoglobulin heavy chain δ (IGHD, median read
count = 256.0) isotypes, which are associated with naïve
B cells, were the least abundant antibody subtypes
(Fig. 1b). The Igκ and Igλ light chains are coupled with
any of the heavy chains, but since IGHG was the most
abundant, they are most likely associated with IGHG.
We are not able to couple the heavy and light chains in
silico from bulk RNA-seq experiments.
As a quality control check, we correlated BCR reper-

toire estimates with total RNA-seq coverage and found
no correlation (Additional file 1: Figure S1, Spearman’s
rank rho (ρ) range 0.03–0.17), meaning the B cell signal
was not a result of variation in read depth. V’DJer suc-
cessfully assembled sequences of IGHA for 197 (42%),
IGHG for 337 (71%), and IGHM for 117 (25%) out of
473 samples. Ninety-five percent of samples with an as-
sembled IGHA also had an assembled IGHG, and 99%
of samples with an assembled IGHD had an assembled
IGHG (Fig. 1b). V’DJer also assembled sequences of the
light Igκ chains for 348 (74%) and Igλ chains for 331
(70%) samples.
Due to the stringent read depth requirements (> 25×

depth for 90% sensitivity) or lack of B cell presence,
V’DJer failed to reliably assemble BCR sequences from
any chain in 102/473 (21%) of samples. Samples where
no IGHG was assembled demonstrated significantly
lower read counts aligned to the IGHG constant region
(p = < 2.2 × 10− 16 using the Mann-Whitney U test, Add-
itional file 1: Figure S2), suggesting that lack of assem-
bled BCR is due to low expression of the gene. We
assessed assembled sequences corresponding to IGHA,
IGHG, Igκ, and Igλ. Assembled IGHM and IGHD se-
quences occurred in too few samples for further consid-
eration (n = 117 and n = 5 respectively, Fig. 1b).
We assessed several measurements of the BCR rep-

ertoire: total BCR counts (sum of all the counts from
the assembled BCRs), top clone proportion, mean V-
region identity (surrogate for somatic hypermutation,
SHM), and three diversity measures: Shannon en-
tropy, Gini-Simpson, and species evenness (see
“Methods,” toy example shown in Additional file 1:
Figure S3, Additional file 2: Table S1). Of the TCGA
SKCM samples with assembled BCR sequences, there
was considerable variation in the BCR populations
identified; some samples showed evidence of clonal
restriction, while others had high BCR diversity.
Figure 1c depicts the BCR repertoire of all TCGA
SKCM samples with an assembled BCR.
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As expected [39], for IGHG BCR sequences, two di-
versity indices, Shannon entropy and Gini-Simpson,
which are determined by the total number of clonotypes
and their relative abundance, were strongly and signifi-
cantly correlated with total BCR abundance (ρ = 0.80
and 0.69, respectively, p < 2.2 × 10− 16 by Spearman’s rank

correlation, Fig. 1d). Species evenness, as an individual
measurement, was significantly anti-correlated with total
BCR abundance (ρ = − 0.47, p < 2.2 × 10− 16). Tumor som-
atic mutation burden and predicted neo-antigen burden
did not correlate with any of the BCR repertoire measure-
ments in these pre-treatment samples, suggesting that the
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Fig. 1 B cell receptor data. a Density plot of total BCR counts for IGHG (yellow) and IGHA (blue). b Assembled “chain” status for TCGA SKCM (n = 473).
The samples are on the y-axis, each row is one sample, and chain types are on the x-axis. Black tiles indicate that a sample has at least one assembled
sequence and gray is none. The samples are ordered by status for each chain type, from left to right on the x-axis. c Visual depiction of clonality for
the entire TCGA melanoma cohort with a successfully assembled BCR (n = 337). x-axis displays each individual tumor sample. The y-axis is the rank of
the proportion of each clone within a tumor. Each unique IGHG BCR sequence (clone) with a relative proportion > 0.01 is represented by a circle. The
diameter of each circle represents the proportion of the sequence for each sample. The circles are ordered by proportion, rank, in descending order.
Grayscale represents the total BCR counts. The samples are split into four sub-panels based on species evenness and ordered by low to high evenness
within each sub-panel. d Pair-wise correlation heatmap. The color in each cell represents Spearman’s rank correlation coefficient of IGHG
measurements correlated with IGHG measurements. Samples included in this analysis are TCGA SKCM samples with a value for each feature analyzed.
See Additional file 2: Table S1. * p value < 0.05, ** p value < 0.01, *** p < 0.005, **** p value < 0.0005
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B cell response was also directed against antigens not
expressed within melanoma tumors (e.g., cancer testis and
melanocyte differentiation antigens, or infectious agents)
as well as possible melanoma-specific antigens.

BCR associations with various clinicopathologic and
molecular factors
We tested the clinical variables tumor tissue site, sex,
age (as a binary, > 65 and < 65), and stage at diagnosis,
for their association with the various BCR measurements
using univariate linear regression and found that no
BCR measurement was significantly associated with
stage or age. In contrast, sex was significantly associated
with multiple diversity measures. Females had signifi-
cantly higher BCR diversity measured by both Gini-
Simpson (p = 0.01 by the Mann-Whitney U test) and
Shannon entropy (p = 0.02) than males, and correspond-
ingly a lower top clone proportion (p = 0.01), but no sig-
nificant difference in BCR abundance or evenness (p =
0.11, p = 0.74, respectively Additional file 1: Figure S4),
suggesting that female melanoma patients may have a
more diverse B cell response.
Tumor tissues analyzed in the TCGA SKCM dataset

were acquired from primary tumors as well as tumors
arising at different metastatic sites. We assessed if the B
cell diversity metrics were altered based on site and
found that diversity was lower in the primary tumor and
regional subcutaneous metastatic samples (Shannon en-
tropy p = 0.002, Gini-Simpson p = 0.02 by ANOVA, Add-
itional file 1: Figure S5), and mean V-region identity was
lower in the primary tumor (P = 4 × 10− 9). The higher
SHM and lower diversity in the primary and regional
metastatic samples could be due to the presence of more
immature B cells in the distant metastatic sites, includ-
ing lymph node metastases that would be expected to
contain tissue resident B cells. However, total BCR
counts and evenness were not significantly different (p =
0.06 and p = 0.4 respectively).
First, we tested the association of each IGHG BCR

measurement with overall survival (OS) and found that
species evenness, total BCR counts, Shannon entropy,
and species richness were significantly prognostic
(Table 1, p = 0.002, 0.01, 0.05, and 0.05, hazard ratio
[HR] = 1.38, 1, 0.72, 0.85, respectively, Cox proportional
hazards regression model). We next sought to determine
whether BCR repertoire measurements were associated
with OS after first accounting for the clinical variables
tumor tissue site, sex, age at diagnosis, and stage. Species
evenness and total BCR counts provided prognostic in-
formation in addition to the clinical variables (p = 0.001
and p = 0.04, respectively, log likelihood ratio test, HR =
1.45 and 0.72, respectively, Cox proportional hazards re-
gression model). Overall, we found that more clonal ex-
pansion and higher B cell infiltrate was significantly

associated with OS even after accounting for clinical
variables.

Comparison of melanoma subtypes and machine
learning-derived B cell phenotypes
Given that lower IGHG species evenness was a favorable
prognostic factor in SKCM, we hypothesized that the
presence of distinct tumor-infiltrating B cell subsets may
be associated with BCR repertoires and outcomes. We
classified TCGA SKCM samples based on their B cell
subsets, by constructing two classifiers from publicly
available datasets: B cell-associated gene expression sig-
natures (BAGS, GSE56315) for five functionally different
B cell subtypes (naïve, centrocytes, centroblasts, mem-
ory, and plasmablasts) [36], and a second classifier of B
regulatory cells that exert an immunoregulatory role or
not (GSE50895) [38]. It should be emphasized that this
classification may not be measuring B regulatory cells,
but more indicative of an immunosuppressive tumor
microenvironment. Both classifiers were applied to score
each SKCM sample with a relative measure of similarity
to the known classes. These scores do not necessarily re-
flect the B cell population cellular phenotype distribu-
tion, but do measure the relative similarity between bulk
tumor sample gene expression profiles and each of the B
cell classes. These scores were then taken as relative
measures of B cell subsets but may not truly be a meas-
ure of any B cell populations. The score for the B regula-
tory cells and BAGS memory classification were
significantly prognostic after accounting for age, sex, tis-
sue site, and stage (p = 4 × 10− 9, 2 × 10− 8 respectively,
log likelihood ratio test, Additional file 1: Figure S6).

Table 1 Univariate model: association of overall survival and
each IGHG BCR measurement using Cox proportional hazard
regression model. Multivariate model: association of overall
survival and each IGHG BCR measurement after conditioning on
clinical variables (tumor tissue site, sex, age at pathological
diagnosis, and patient stage) using the log likelihood ratio test
to determine p values and Cox proportional hazard regression
model to determine the hazard ratio

Univariable Multivariable

Hazard ratio p value Hazard ratio p value

Species evenness 1.38 0.0017 1.45 0.0014

Total BCR counts 0.72 0.0102 0.72 0.0104

Shannon entropy 0.85 0.0464 0.88 0.1727

Species richness 0.82 0.0512 0.83 0.0864

1-Gini-Simpson 0.87 0.0856 0.92 0.3852

Top clone prop 1.13 0.1407 1.07 0.4970

Mean V-region identity 0.94 0.4604 1.01 0.9256

Total mutation load 0.87 0.5624 0.75 0.3381

Neo-antigen 1.01 0.8997 1.00 0.9736
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The B regulatory cell score was associated with shorter
OS, while the memory B cell score was associated with
longer OS.
We next investigated whether any of the subgroups

derived from the proposed TCGA classifications [17] on
the basis of the most abundant somatic mutations (i.e.,
mutations in BRAF codons V600 and K601, RAS codons
G12, G13, and Q61, and NF1 stop codon mutations) or
gene expression profiling (melanogenesis associated
transcription factor low (MITF-low), immune-high, and
keratin-high) was associated with various BCR measures
or other B cell subsets. Samples classified as memory B
cells (mature, expanded and antigen-selected), and non-
regulatory B cells, were strongly enriched in the TCGA
immune-high subtype (chi-squared p < 2.2 × 10− 16, Add-
itional file 1: Figure S7). There was no enrichment for ei-
ther the BAGS classification or the B regulatory cell
classification for any of the mutation classes.
We performed an ANOVA to determine the variation

across each of the TCGA tumor subtype’s BCR and TCR
measurements (Fig. 2a). The TCGA molecular subtypes
had the most variation across the different subtypes for
the BCR diversity measurements (IGHG Shannon en-
tropy, q = 1 × 10− 14, IGHG Gini-Simpson, q = 4 × 10− 9

by ANOVA after Benjamini-Hochberg multiple testing
correction), indicating that tumor gene expression

differences were associated with variation in B cell diver-
sity (Fig. 2b, c). The BAGS and B regulatory cell classifi-
cations also significantly varied, but to a lesser degree
(BAGS IGHG Shannon entropy, q = 1 × 10− 7; B regu-
latory cells IGHG Shannon entropy, q = 1 × 10− 8;
Fig. 2a, b). Mutation status alone was not associated
with any of the BCR diversity measurements.

BCR and TCR features association in cutaneous melanoma
To gain insight into the relationship between tumor-
infiltrating B and T cell populations, we assessed the T
cell receptor (TCR) repertoire using MiXCR [32].
MiXCR was able to detect TCRs in > 80% of the SKCM
samples. We estimated the TCR repertoire using the
same metrics we applied to BCRs, except for V-region
identity, since TCRs do not undergo somatic hyper-
mutation. The abundance and diversity measures of the
BCR repertoires were significantly correlated with those
same measures for TCR repertoires (ρ = 0.47–0.55, p <
4 × 10− 16, Additional file 1: Figure S8), suggesting con-
cordant activation of both cell types. Similar to BCR,
TCR diversity and abundance were significantly associ-
ated with OS after accounting for the clinical variables
tissue site, sex, age, and stage (Shannon entropy, p =
8 × 10− 5 and total TCR counts, p = 0.01, Cox propor-
tional hazard’s model).
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classification types: TCGA RNA-seq molecular subtype (keratin-high, immune-high, MITF-low), reg B cell (IL-10± regulatory B cells), BAGS (B cell-associated
gene signatures), and TCGA mut (status of BRAFV600/K601, RASG12/G13/Q61, and stop-codon NF1 somatic mutations). Each sub-panel is a different chain
type. b Heatmap colored by scaled medians of each measurement across all subtypes. The plot is split into subplots by chain and classification. The medians
were scaled across all sub-classifications, together. c Boxplots of selected BCR/TCR repertoire measurements separated by TCGA molecular subtypes split into
sub-panels by immunoglobulin chain type. Boxes represent median ± interquartile range and whiskers ±1.5 × interquartile range. Outliers are represented by
black dots. Samples included are TCGA SKCM samples with a value for each feature analyzed. See Additional file 2: Table S1
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To assess the relationship between the B cell pheno-
type classifications and BCR and TCR repertoire mea-
surements, we performed unsupervised hierarchical
clustering (Fig. 3). Species evenness clustered together
for all chain types, indicating an association between
BCR and TCR restriction. Four clusters were identified.
The orange and green clusters had higher BCR and TCR
abundance, higher diversity, and lower species evenness

and were enriched in the immune-high TCGA gene ex-
pression subtype, non-regulatory B cell subtype, and
memory B cell subtype. These clusters had evidence of B
and T cell clonal expansion and maturation, and they
were split by expression of IGHA. The blue cluster,
which had higher expression of IGHA and IGHG and
lower expression of TCR-A and TCR-B, was enriched in
IL10+ B regulatory cell and depleted of immune-high

Fig. 3 Unsupervised clustering of the TCGA SKCM samples according to BCR/TCR measurements. All TCGA melanoma samples (n = 473); samples
with missing values were imputed for visualization purposes. For all BCR measurements missing values were replaced with a zero. Exceptions
included evenness, which was replaced by one, and mean V-region identity, which was replaced by the median. Measurements were scaled and
median-centered. Each row shows a BCR or TCR measurement, chain type represented by a different color in the row color bar. The columns
correspond to samples. The column color bars represents the cluster assignment, the subtypes (TCGA RNA-seq, BAGS, B regulatory cell), and
presence or absence of assembled chains
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samples. The red cluster, which had low expression of
both B and T cell expression, had an enrichment of cen-
troblast and B regulatory cell-classified samples.

B cell features are predictors of non-response to an
immune checkpoint inhibitor in metastatic melanoma
Density of tumor-infiltrating effector T cells has been
previously associated with response to CTLA-4 and PD-
1 inhibitors in SKCM [8, 28]; however, less is known
about associations between B cells and immunotherapy
response. We tested for differences in BCR repertoire di-
versity indices by response to treatment and found that
none were significantly different in the responders com-
pared to the non-responders (Additional file 1: Figure
S9). However, the absence of an assembled IGHG was
enriched in the non-responders (p = 0.04, Fisher’s exact
one-sided test, Fig. 4a) for anti-CTLA4, but not anti-
PD1. There were not enough samples without TCRs to
test if the absence was associated with non-response.
We tested if any TCR repertoire diversity measurement
was associated with treatment response to either drug
but found no significant association.
Next, we classified the anti-PD1 and anti-CTLA4-

treated samples using the BAGS and B regulatory
cell classifications. We found that non-responders to
anti-CTLA4 therapy were enriched in the IL10+
classification (p = 0.03, Fisher’s exact one-sided test,
Fig. 4b); however, there was no difference in re-
sponse to anti-PD1. The IL10+ classification may be
associated with an overall immunosuppressive micro-
environment and not a true measure of the B cell

subsets. There was no enrichment in either study for
the BAGS classifications (Fig. 4c). Overall, we found
that the absence of B cells and a tumor which more
often classifies as an IL10 regulatory B cell were as-
sociated with a lack of response to anti-CTLA4
therapy.

Discussion
Over the last 40 years, various reports have focused on
the significance of T cells, in particular of the effector
CD8 subtype, as both favorable prognostic factors and
predictors of response to immunotherapies [40]. How-
ever, the density of tumor-infiltrating T cells alone is nei-
ther a prognostic factor for all cancers nor a sole
predictor of response. We recently reported that B cell
gene expression and BCR diversity were independently
prognostic in TCGA SKCM and renal cancer by per-
forming RNA-seq analysis using methods that assessed
only the germline-only BCR region [7]. Detailed evalua-
tions of full-length BCR sequences from short-read
RNA-seq data have been limited due to inherent chal-
lenges in assembling immunoglobulin chains. In this re-
port, we extend our observations on the specific B cell
response as both a prognostic factor and possible pre-
dictor of response to CTLA-4 and PD-1 inhibitors in
SKCM by integrating assembled BCRs determined from
RNA-seq using V’DJer and machine learning-based
classifications.
Our key observations are as follows: first, a highly

abundant, clonally restricted BCR repertoire was a favor-
able prognostic factor in SKCM. Second, high-diversity,
highly abundant BCR repertoire is not restricted to

A B C

Fig. 4 B cell associations with response to immunotherapy. The color represents the response status: gray represents non-responder and red
represents responder. a Stacked bar plot showing the proportion of samples with an assembled IGHG (“has IGHG”) or no assembled IGHG. b
Stacked bar plot showing the proportion of samples that were classified as IL10 secreting regulatory B cells (IL10_plus) or non-regulatory B cells
(IL10_minus). c Stacked bar plot showing the number of samples that were classified into each of the different B cell subtypes from the BAGS
classifier. * p value < 0.05
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SKCM that bear high somatic mutation burden, suggest-
ing that B cells can infiltrate melanoma in response to
other antigens, such as melanoma differentiation and
cancer testis antigens [17], viral antigens, and/or poten-
tially other factors such as B cell chemotactic cytokines.
This idea is further supported by the previous finding
that women with SKCM have significantly lower somatic
mutation burden than men [41] and our finding in this
study that SKCM in women, who are known to have
relatively decreased global central immune (i.e., thymic)
tolerance and therefore more prone to autoimmune dis-
eases [42], had a more diverse B cell infiltrate. Third, a
substantial non-regulatory B cell presence is likely bene-
ficial for response to anti-CTLA4 inhibitors.
Our study suggests a key role for tumor-infiltrating B

cells in modulating the anti-tumor immune response. T
cells can provide help to B cells, and B cells can secrete
cytokines that support T cell proliferation and functional
polarization. Since B cells also express immune checkpoint
molecules such as CTLA-4, PD-1, and PD-L1 [43–46] that
may negatively regulate BCR signaling [47], and since treat-
ment with CTLA-4 or PD-1 inhibitors has been associated
with increase in certain autoimmune antibodies [48, 49], it
is possible that immune checkpoint inhibitors may enhance
activation of B cells and overall contribute to either anti-
tumor response (memory B cells) and/or development of
autoimmunity [50]. In support of the former, our analysis
of publicly available RNA-seq data corresponding to pre-
treatment tumor tissues collected from patients who re-
ceived CTLA-4 inhibitor suggests that lack of a B cell re-
sponse is a predictor of poor response to immune
checkpoint inhibitors.
Our results have other important clinical implications. We

hypothesize that the greater clinical benefit seen in SKCM
may be at least partially attributed to an important role of B
cells in this disease. In fact, targeted therapies that can po-
tentially inhibit B cell function if given at high doses, such as
ibrutinib, which are currently in clinical development across
various malignancies (NCT03021460, NCT02581930), may
have undesirable clinical effects based on B cell inhibition.
Analysis of peripheral blood for melanoma antibodies could
complement other non-invasive studies to determine melan-
oma prognosis [14]. That said, there is also published data
that B cell features can be associated with poor prognosis
and tumor progression. Further work will be required to
understand this heterogeneity and determinants of the com-
plex roles of B cells in melanoma.
One limitation of our study is that tumor-infiltrating B

cell subsets scored using BAGS classifiers were not vali-
dated using traditional tumor imaging techniques, such
as immunohistochemistry or immunofluorescence. We
were also not able to discriminate the proportion of B
cells in each tumor sample that deeply infiltrated the
tumor versus those that were tumor adjacent or

physiologically present due to involvement of blood and/
or lymphatic structures in the sample. Further studies
will be needed to assess the localization of B cell popula-
tions within melanoma tumors and associate this with B
cell functional phenotypes and B cell receptor repertoire
profiles. While lack of this contextual validation is an in-
herent weakness across all TCGA projects where bulk
gene expression profiling was used to infer immune fea-
tures, it is important to emphasize that in the original
report of the TCGA SKCM project the Pathology Ana-
lysis Working Group performed a semi-quantitative ana-
lysis on the density of tumor-infiltrating lymphocytes on
hematoxylin and eosin-stained tissue sections, termed
immune score, a method that inherently cannot discrim-
inate between various lymphocytic cell subsets. Given
that the OS is longer in patients with clonally restricted
BCR repertoires, future tumor tissue-based translational
studies in SKCM should include contextual assessment
of BCR repertoire features and prognostically significant
B cell subsets (memory, regulatory, IL-10 producing).

Conclusions
In summary, we have shown that BCR repertoire mea-
surements and B cell phenotypic population characteris-
tics from RNA-seq data differ by SKCM gene expression
subtype and associate with OS. The BCR repertoire was
associated with different clinical factors, such as tumor
tissue site and sex and increased clonality of the BCR
repertoire was favorably prognostic in SKCM. The BCR
repertoire was prognostic even after first conditioning
on various clinical factors. Memory and IL10+-secreting
B cell classifications were associated with prognosis
(positive and negatively, respectively); however, these
classifications were based purely on gene expression and
need to be validated with orthogonal methods. Lack of
an assembled BCR in pre-treatment tumor tissues was
associated with a lack of anti-tumor response to a
CTLA-4 inhibitor in metastatic SKCM. These findings
suggest an important prognostic and predictive role for B
cell characteristics in SKCM. These data have implications
for understanding melanoma immunobiology as well as
potential development of immunogenomics features to
predict survival and response to immunotherapy.
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