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Abstract

Motivation: Genomic variant detection from next-generation sequencing has become established

as an extremely important component of research and clinical diagnoses in both cancer and

Mendelian disorders. Insertions and deletions (indels) are a common source of variation and can

frequently impact functionality, thus making their detection vitally important. While substantial

effort has gone into detecting indels from DNA, there is still opportunity for improvement. Further,

detection of indels from RNA-Seq data has largely been an afterthought and offers another critical

area for variant detection.

Results: We present here ABRA2, a redesign of the original ABRA implementation that offers sup-

port for realignment of both RNA and DNA short reads. The process results in improved accuracy

and scalability including support for human whole genomes. Results demonstrate substantial im-

provement in indel detection for a variety of data types, including those that were not previously

supported by ABRA. Further, ABRA2 results in broad improvements to variant calling accuracy

across a wide range of post-processing workflows including whole genomes, targeted exomes and

transcriptome sequencing.

Availability and implementation: ABRA2 is implemented in a combination of Java and C/Cþþ and

is freely available to all from: https://github.com/mozack/abra2.

Contact: parkerjs@email.unc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Next generation sequencing (NGS) has become a widely used tool

for a variety of applications. Variant calling has been an area of

great interest in DNA for some time and is of increasing interest in

RNA. One of the first steps in a NGS variant calling pipeline is to

align sequenced reads to a reference genome. Widely used DNA

aligners such as bwa-mem and bowtie2 (Langmead and Salzberg,

2012; Li, 2013) are capable of quickly aligning large numbers of

reads and support gapped alignment, thus allowing identification of

indels. For the sake of speed, these methods do not align each read

exhaustively and may in some cases fail to reveal indels, particularly

at increased indel lengths. Historically, variant callers have relied

upon accurately mapped reads to identify Single Nucleotide

Variants (SNVs) and indels. Instances where the reads are not accur-

ately mapped can confound variant detection.

In recent years, a number of methods have been developed that

offer improved detection of indels in DNA. In some cases, variants

can be successfully identified as long as the reads containing the

variant are mapped to roughly the correct location. The original

ABRA implementation (Mose et al., 2014) used a localized assembly

process to adjust read alignments, thus revealing indels in the align-

ments and improving variant detection in a variety of callers such as

Freebayes (Garrison and Marth, 2012) for calling inherited variants,

and Strelka for somatic calling (Saunders et al., 2012). Recently

developed callers used for inherited variant detection such as

Platypus, GATK-HaplotypeCaller (GATK-HC), Strelka2 and
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Scalpel (DePristo et al., 2011; Kim et al., 2018; Narzisi et al., 2014;

Rimmer et al., 2014) all make use of localized assembly allowing for

detection of indels that may or may not be included in the original

read alignments. Similarly, the recently developed Lancet and

Mutect2 (Cibulskis et al., 2013; Narzisi et al., 2018) make use of

localized assembly for somatic variant calling.

RNA-Seq has proven to be extremely important as a diagnostic

tool allowing for analysis of gene and isoform expression, gene

fusions, transcript splicing, expressed variation and RNA editing. The

presence of splice junctions in RNA necessitated the development of

splice aware aligners. Several RNA-Seq aligners have been developed

that are capable of mapping reads that span splice junctions (Dobin

et al., 2013; Kim et al., 2013, 2015; Wang et al., 2010; Wu et al.,

2016). However, the presence of non-trivial variation can cause

RNA-Seq reads to not entirely align. For example, Sun et al. have

demonstrated that standard RNA-Seq pipelines have difficulty identi-

fying indels of length greater than 2 bases (Sun, 2016). Frequently,

variant calling pipelines that were originally developed for DNA are

modified to handle the syntax for RNA-Seq alignments, but are not

optimized for RNA-Seq. For example, the widely used GATK

(DePristo et al., 2011) requires RNA-Seq read alignments to be bro-

ken into multiple alignments with the splice junctions removed, pro-

ducing DNA-like reads that can then be processed using tools

originally developed for DNA variant calling. Additionally, the

recently developed Transindel (Yang et al., 2018) relies upon

bwa-mem—a DNA aligner—for the initial alignment of reads.

ABRA2 is an update to the original ABRA implementation that

provides splice-aware re-alignment of RNA-Seq data as well as sub-

stantially enhanced computational performance. The improved

alignments produced by ABRA2 enable more accurate variant call-

ing of expressed variants in general, and for indels in particular.

Furthermore, ABRA2 improves upon the original ABRA’s accuracy

on DNA, offers faster run times, and enables enhanced scalability

capable of handling human whole genomes.

2 Algorithm

2.1 Original Abra implementation
Briefly, the original ABRA implementation processes input BAM files

on a localized per region basis. Reads of each region of interest are

extracted and assembled using a deBruijn graph. Assembled contigs

are added to a global pool of contigs. Once assembly is complete

across all regions, all contigs are then aligned to the reference genome

using bwa-mem. Chimeric alignments of a given contig are combined

when the alignments clearly indicate the presence of an indel that can

be simply represented as a single variant. Once all contigs have been

aligned, bwa-mem is again used to map all reads to all contigs. When

a read maps more closely to a contig than the reference, it is updated

to match the contig alignment in the context of the reference.

While this method has proven to be effective in many cases of tar-

geted DNA sequencing such as gene panels and whole exomes, there

are several clear shortcomings. When the total number of contigs

grows large, aligning all reads to all contigs can become prohibitively

slow and in some cases cause bwa-mem to not run to completion.

This causes problems in scalability as well as computational difficul-

ties for noisy samples and samples that diverge substantially from the

reference genome as is the case for many mouse strains. Due to the

scalability problems, large samples such as human whole genomes

typically fail to run to completion. Post processing of chimeric bwa-

mem alignments may work well in the presence of a single, simple iso-

lated indel, but may not properly capture more complex or noisy

events consisting of multiple variants or nearby technical artifacts.

Localized assembly has become widely used in variant calling, but is

computationally expensive and may not always be necessary to iden-

tify pertinent variants resulting in unnecessarily long compute times.

Finally, neither the original ABRA nor bwa-mem account for splicing,

thus rendering the tools suboptimal for RNA-Seq data. We have

developed ABRA2 to ameliorate these issues.

2.2 Realignment
2.2.1 Overview

ABRA2 operates on a per-region basis analyzing windows of size

400 bp with each window overlapping by 200 bp. Either the entire

genome is traversed, or regions of interest can be specified via a bed

file. Contigs are generated for each region of interest and aligned

back to the reference. Reads are then mapped to the generated con-

tigs and updated in cases where an improved alignment is discovered

(Fig. 1).

2.2.2 Contig generation

Candidate contigs representing variation from the reference for a

given region are generated in a variety of ways.

Fig. 1. Overview of ABRA2 workflow. Reads overlapping a genomic window

of 400 bp are extracted. Contigs are generated using a variety of mechanisms

including localized assembly, identification of substantially soft clipped reads,

placement of observed indels in localized reference representations and input

known indels. Reference representations of putative transcripts are generated

using annotated splice junctions as well as unannotated splice junctions

observed in the original read alignments. Contigs are exhaustively mapped

to each transcript/reference representation using semi-global alignment and

the single best alignment is identified. Reads are then aligned back to the con-

tigs using a simple seed and extend approach. If a read unambiguously aligns

more closely to a contig than the reference, then the read alignment is

updated based upon the contig’s alignment to the reference
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1. Indels and/or splice junctions observed in the original read align-

ments inserted into a localized reference representation.

2. Sequence extracted from reads containing substantial high qual-

ity soft clipping (15 or more bases). Reads aligning to the same

locus may optionally be merged to form a consensus representa-

tion which may be of benefit in cases of amplicon sequencing.

3. Contig generation via localized assembly (Pevzner et al., 2001)

of reads mapped to the region of interest along with unmapped

reads anchored by their pairs. The assembly is executed when

the fraction of assembly triggering reads exceeds a configurable

fraction of total reads in the region. Assembly triggers include

read pairs with one read unmapped, insertions longer than 15%

of the read length in the original alignments, or the presence of

high quality soft clipped bases longer than 25% of the read

length. In cases where multiple samples are present (including

matched tumor/normal pairs), they are assembled jointly.

4. Known or suspected indels passed in as an input VCF file

inserted into a localized reference representation.

2.2.3 Transcript/Reference representations

All splice junctions with a start or end point within the region of

interest (padded by 2 read lengths on either end) are identified to

create a local set of splice junctions J. These may include annotated

splice junctions as well as splice junctions identified in the input

read alignments. Additionally, splice junctions within a read length

of the start or end point of any member of J are added to J. This step

is repeated a second time, which ultimately has the net effect of

allowing reads that partially overlap the region of interest to span 2

splice junctions outside the region of interest and still map properly.

Once the junctions in J are determined, all possible combinations of

the elements of J are identified recursively. Combinations that do

not contain overlapping splice junctions are considered to be a valid

potential transcript. While identifying all possible combinations of

splice junctions can result in substantially more putative transcripts

than simply utilizing annotated transcripts, this is necessary to en-

able accurate alignment of reads in the presence of alternative tran-

scripts that may not be annotated. Reference representations of each

transcript are generated based upon the input reference genome uti-

lizing the loci of the splice junctions corresponding to the putative

transcript.

2.2.4 Contig alignment

Contigs generated from the previous step are then aligned to the

localized regional representations of the reference using semi-global

alignment with affine gap penalties (Brudno et al., 2003; Gotoh,

1982; Smith and Waterman, 1981). The optimal end to end align-

ment of each contig is identified within the local reference represen-

tation. When multiple putative transcripts are present, each contig is

aligned to each transcript representation and the single highest scor-

ing alignment is selected. The final alignment is modified to include

junctions present in the best localized reference representation.

2.2.5 Read alignment

Reads that do not perfectly match the reference are mapped to each

aligned contig using a simple ungapped seed and extend alignment.

The regional reference representation is hashed into 10-mers which

serve as the seeds. A read is compared to all potential reference posi-

tions with a matching seed with the smallest number of mismatches

indicating the optimal alignment. Unlike the original ABRA imple-

mentation, reads are only remapped to contigs arising from nearby

regions. If a read unambiguously maps to a contig more closely than

the reference, the read is updated using the contig’s alignment in the

context of the reference.

2.3 Variant calling
Included with ABRA2 is a simple somatic indel caller named Cadabra

that is capable of calling somatic indels on ABRA2 realigned BAM

files. Reads that map unambiguously to an indel arising from a contig

are used to gather variant counts. These reads are identified using

SAM tags inserted during realignment. Fisher’s Exact Test is used to

evaluate somatic variant status in a fashion similar to Varscan2

(Koboldt et al., 2012). In the presence of repeats, only reads that span

the full repeat are evaluated (Gymrek et al., 2012). Additional simple

filters are used to filter variants including a read orientation bias filter

similar to that implemented in GATK, a low positional read complex-

ity filter based upon the difference of the max and min starting pos-

ition of a variant in the supporting reads and a filter for variant loci

where a majority of spanning reads have a mapping quality of zero.

Optional variant quality penalties are applied at loci with short tan-

dem repeats and homopolymer runs to accommodate increased errors

that may be caused by slippage during Polymerase Chain Reaction

(PCR) amplification.

3 Results

3.1 Evaluation of somatic DNA variant calling
To assess the performance of ABRA2 on somatic DNA calling we

begin with a simulated matched tumor/normal exome dataset. To

create a challenging dataset, 665 SNVs and 1092 indels were spiked

in at variant allele frequencies of 10, 25 and 50%, and indel lengths

ranging from 1 to 100 bp with a median length of 31 bp. Variants

were called using Mutect2 and Strelka2, both with and without

ABRA2 alignments. Lancet variants were called without ABRA2.

ABRA2 has a small effect on SNV detection (Fig. 2a) and enables

Fig. 2. Evaluation of somatic variant calling in DNA. (a) Precision and recall of

somatic SNV detection on a challenging simulated exome dataset containing

insertions and deletions ranging in length from 1 to 100 bp and variant allele

frequency ranging from 10 to 50%. Strelka2, Strelka2/Manta, Mutect2 and

Lancet are evaluated with Strelka2 and Mutect2 also applied to ABRA2

realignments. (b) Precision and recall of somatic indel detection on the exome

dataset. In addition to the SNV callers, Cadabra is applied to the ABRA2

realignments. Pipelines including ABRA2 produce the best overall results. (c)

Somatic SNV calling on the ICGC Dream Somatic Mutation Calling Challenge

5 dataset. Strelka2, Mutect2 and Lancet are evaluated with Strelka2 and

Mutect2 also applied to ABRA2 realignments. (d) Somatic indel calling on the

ICGC Dream Somatic Mutation Calling Challenge 5 dataset. In addition to the

SNV callers, Cadabra is applied to the ABRA2 realignments. ABRA2 com-

bined with Cadabra or Strelka2 produces the best overall results
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a substantial improvement in indel detection (Fig. 2d). The

CadabraþABRA2 combination produces superior accuracy to all

other methods. Mutect2 and Strelka2 show a substantial improve-

ment in accuracy when using ABRA2 realignments compared to

Mutect2 alone and Strelka2 run in conjunction with Manta (Chen

et al., 2016). Notably, the three ABRA2 cases show improved indel

detection accuracy compared to all other methods, with Lancet as

the next best performing method. Compared to the original ABRA

implementation, ABRA2 provides increased sensitivity for indel de-

tection on this dataset (Supplementary Fig. S1). The ABRA2 runtime

on this dataset was 39 min using 8 cores compared to 1 h 45 min for

the original ABRA.

We also assessed the performance of ABRA2 on this dataset

both with and without assembly. Notably, high accuracy is achiev-

able without utilizing localized assembly although assembly does

offer a boost in recall for longer insertions. The version of ABRA2

run with localized assembly disabled detected 17 fewer insertions

with a median length of 60 nucleotides. All other variants were de-

tectable without the use of assembly (Supplementary Fig. S2). The

runtime for ABRA2 with localized assembly disabled was 32 min.

By contrast, when assembly is forced to execute across all target

regions, the ABRA2 runtime was 610 min. This assemble all regions

approach detected no additional variants detected compared to

ABRA2 run with selective assembly. While localized assembly can

be beneficial for variant detection, from a computational perform-

ance standpoint it can be helpful to perform this step selectively.

We assessed the impact of utilizing known indels on this dataset

by running ABRA2 with the truth set of indels passed as candidate

loci to the realigner. As expected, we observed improved accuracy

when utilizing known indel information and most calls revealed by

using known indels as input are longer insertions (median 49 bases)

(Supplementary Fig. S3). A majority of these calls are local repeats

(26 out of 31). Local repeats are likely to map to the region of inter-

est, but can confound assembly due to cycles in the graph. An add-

itional 52 long insertions (median length 61.5) of the correct length

and position were called after realignment with known indels, but

not at nucleotide resolution. Over 90% of these calls were insertions

of sequence arising from a distant location of the genome (i.e. mo-

bile insertions). By comparison, there were eight true positive calls

not at nucleotide resolution in the ABRA2 de novo dataset all of

which are mobile insertions. In contrast with local repeats, reads

that span a mobile insertion with a length greater than half of the

read length are likely to align elsewhere in the genome resulting in

no reads spanning the full insertion in the region of interest, thus

causing difficulty in variant identification for localized processing.

All non-nucleotide resolution calls were filtered from the result set

in the precision/recall plots.

We also evaluated ABRA2 on the somatic whole genome ICGC-

TCGA-DREAM Somatic Mutation Calling Challenge #5 dataset

(Ewing et al., 2015). As with the exome dataset, ABRA2 has min-

imal impact on SNV detection (Fig. 2c). Indel sizes on this dataset

are generally smaller with a median length of 7 bp and as a result re-

call is higher among all methods (Fig. 2d). CadabraþABRA2 and

Strelka2þABRA2 are the top performers in this dataset with

ABRA2 enabling a marked improvement in recall.

3.2 Evaluation of RNA-Seq variant calling
ABRA2’s impact on variant calling on RNA-Seq data was evaluated

using two sets of reads generated using the BEERs simulation engine

(Grant et al., 2011). We modified BEERs to generate reads contain-

ing indels of length 1–19 bp for a dataset of moderate difficulty and

1–75 bp for a more challenging dataset. Variants were called using

Freebayes, GATK-HC and Strelka2 in germline mode, both with

and without ABRA2 run on STAR alignments. Transindel was run

against the STAR alignments and GATK-HC was additionally run

against GSNAP alignments (Wu et al., 2016). On the moderate data-

set, ABRA2 enables improvements for Freebayes, Strelka2 and

GATK-HC in SNP detection (Fig. 3a). For indels, a clear improve-

ment in recall is observed in the ABRA2 realignments for Freebayes,

Strelka2 and GATK-HC (Fig. 3b). On the challenging dataset,

ABRA2 results in substantial improvements in SNP detection for

both GATK-HC and Freebayes as well as a noticeable improvement

for Strelka2 (Fig. 3c). The improvement in SNP detection accuracy

in many cases was due to misalignments where the longer indel

lengths cause problems for the variant callers in the non-ABRA2

cases. For indels, the 3 ABRA2 configurations yield the best results

along with Strelka2 (Fig. 3d).

3.3 Genome in a bottle assessment
We next evaluated ABRA2’s performance using Genome in a Bottle

(GIAB) (Zook et al., 2016) data for subject NA12878. Genotypes

were called using Freebayes, Strelka2 and GATK-HC both with and

without ABRA2 on a whole genome dataset. ABRA2 has little im-

pact on SNP detection across the three methods (Fig. 4a). For indels,

ABRA2 enables a clear improvement in Freebayes accuracy, and has

a small impact on GATK-HC and Strelka2 (Fig. 4b). We additional-

ly acquired RNA-Seq reads for the same subject from Gene

Expression Omnibus (Sample GSM2308414) (The ENCODE

Project Consortium, 2012) for evaluation. Variants were called

using Freebayes, Strelka2 and GATK-HC both with and without

ABRA2. TransIndel was also used for variant calling without

Fig. 3. Evaluation of RNA-Seq variant calling. (a) Precision and recall of RNA-

Seq variant calling for SNPs on a simulated dataset of moderate difficulty

containing indels ranging in length from 1 to 19 bp. Freebayes, Strelka2 and

GATK-HaplotypeCaller (GATK-HC) are used in this evaluation. Freebayes,

Strelka2 and GATK-HC are run with and without ABRA2 on STAR alignments.

GATK-HC is also run on GSNAP alignments and Transindel is run on bwa-

mem alignments. ABRA2 results in improvements for Freebayes, Strelka2

and GATK-HC in RNA SNP detection. (b) Precision and recall of RNA-Seq vari-

ant calling for indels on the moderate difficulty RNA-Seq dataset. A clear im-

provement in accuracy is observed in the ABRA2 realignments for Strelka2,

Freebayes and GATK-HC. (c) Precision and recall of RNA-Seq variant calling

for SNPs on a more challenging dataset containing indels ranging in length

from 1 to 75 bp. ABRA2 results in substantial improvements in SNP detection

for both GATK-HC and Freebayes with improvements for Strelka2 also

observed. (d) Precision and recall of RNA-Seq variant calling for indels on the

challenging dataset. Here, the 3 ABRA2 pipelines produce the best results

along with Strelka2
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ABRA2. In the absence of ground truth specifically in the context of

RNA-Seq, we report the number of called alleles that are concordant

and discordant with the GIAB whole genome truth set. Among unfil-

tered calls, SNPs that fit the profile of A-to-I RNA editing dominate

the discordant call set with C-to-U calls also being somewhat ele-

vated. By contrast, the transition/transversion ratio for the concord-

ant SNPs is 2.2 (Supplementary Fig. S4b, c). To address the impact

of these potential RNA edits on the discordant calls, SNPs found in

the Rigorously Annotated Database of A-to-I RNA Editing

(RADAR) (Ramaswami and Li, 2014) were filtered which resulted

in a substantial reduction of discordant calls (i.e. 79% of discordant

A-to-I calls were removed for ABRA2þFreebayes at QUAL 30 and a

total of 8 concordant calls were removed) (Supplementary Fig. S4a).

ABRA2 has a small impact on SNP detection in this dataset

(Fig. 4c), and enables a substantive improvement in overall perform-

ance in indel detection for both Freebayes and Strelka2 with an in-

crease in concordant calls also observed in GATK-HC (Fig. 4d).

3.4 EGFR deletions in TCGA lung adenocarcinoma
Deletions in Epidermal Growth Factor Receptor (EGFR) exon 19

have oncogenic potential and can be indicators for treatment with

Gefitinib or Erlotinib, making accurate detection of these variants

clinically vital. Deletions ranging in length from 9 to 24 bp were

detected in 23 samples of the TCGA Lung Adenocarcinoma (LUAD)

cohort using matched tumor/normal DNA samples (The Cancer

Genome Atlas Network, 2014). Additionally, Ye et al. identified 8

complex indels (Ye et al., 2016) in the same cohort with 3 overlap-

ping the TCGA set for a total of 28 cases, of which 27 have available

RNA-Seq data. We attempted here to detect these deletions from

RNA-Seq alone. Variant calling pipelines were run as described in

the GIAB RNA-Seq experiment. GATK-HC, Freebayes and Strelka2

detect 1, 0 and 9 deletions respectively without ABRA2. Using the

ABRA2 alignments, all callers detect all 27 deletions (Fig. 5a). Non-

trivial variants in this exon prove to be particularly difficult to ac-

curately identify due to nearby introns (Fig. 5c–d).

3.5 Clinically validated indels
RNA sequencing was performed on 67 subjects that were previously

found to harbor 88 coding indels in cancer genes via DNA matched

tumor/normal sequencing as part of the UNCSeq project (Jeck et al.,

2014; Patel et al., 2018). These 88 variants were all confirmed as

part of standard of care molecular testing in the Molecular

Pathology and Genetics laboratory at UNC Medical Center. Variant

calling pipelines on RNA-Seq data for these 67 subjects were run as

previously described. ABRA2 increases the number of these clinical-

ly confirmed indels detected from RNA-Seq alone across all three

variant callers (Fig. 5b).

3.6 TCGA breast and lung adenocarcinoma
We used ABRA2 and Cadabra to detect somatic indels in 1068

TCGA Breast (BRCA) and 506 Lung Adenocarcinoma (LUAD) sub-

jects with matched tumor/normal DNA and tumor RNA (The

Cancer Genome Atlas Network, 2012; The Cancer Genome Atlas

Research Network, 2014). We additionally ran ABRA2 and

Cadabra on 98 whole genome tumor/normal DNA pairs in the

BRCA cohort.

954 and 473 subjects contained at least one somatic protein cod-

ing indel in the BRCA and LUAD cohorts respectively. Detected

deletions ranged in size from 1 to 461 bases with a 75th percentile

of 9 bases, while insertions ranged in size from 1 to 242 bases with a

75th percentile of 3 bases. In the BRCA cohort GATA3, TP53,

CDH1 and MAP3K1 contained somatic indels in more than 5% of

subjects (106, 84, 80 and 55 subjects respectively). Evidence of ex-

pression of the indel mutations for each of these genes is present in

85% of subjects or more (94, 89, 85, 95%) (Fig. 6a). In the LUAD

cohort, somatic indels were detected in TP53 and EGFR in more

than 5% of samples (37 and 33 subjects respectively). 84% of the

TP53 indels were expressed and 100% of the EGFR indels were

expressed (Fig. 6b). More generally, genes previously identified as

Fig. 4. Genome in a bottle assessment. (a) Precision and recall of whole genome

DNA germline SNP variant calling on the Genome in a Bottle dataset. Freebayes,

Strelka2 and GATK-HC were run with and without ABRA2. (b) Precision and re-

call of whole genome DNA germline indel variant calling on the Genome in a

Bottle dataset. ABRA2 improves accuracy for Freebayes and has a small impact

on Strelka2 and GATK-HC. (c) Evaluation of RNA-Seq SNP variant calling on the

Genome in a Bottle dataset. In the absence of ground truth for RNA-Seq, we re-

port counts of calls concordant and discordant with the Genome in a Bottle truth

set. Strelka2, Freebayes and GATK-HC were run with and without ABRA2 while

TransIndel was run without ABRA2 only. (d) Evaluation of RNA-Seq indel variant

calling on the Genome in a Bottle dataset. ABRA2 improves overall performance

for both Freebayes and Strelka2 as well as recall for GATK-HC with the

ABRA2þFreebayes combination achieving the highest accuracy

Fig. 5. TCGA LUAD EGFR deletions and cancer gene panel clinical validation.

(a) Number of clinically actionable TCGA EGFR exon 19 indels detected from

RNA alone by GATK-HC, Freebayes and Strelka2. All callers were run both

with and without ABRA2. ABRA2 enabled detection of all 27 deletions that

were originally detected in DNA by each of the evaluated callers. (b) Number

of clinically validated indels from the UNCSeq project detected from RNA

alone. ABRA2 increases the number of indels detected in RNA by Freebayes,

GATK-HC and Strelka2. (c) STAR alignments of a complex EGFR variant

flanked by introns. Reads containing the variant are soft clipped and the

alignments do not accurately reflect the variant. (d) Complex EGFR variant

flanked by introns and revealed by ABRA2

2970 L.E.Mose et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz033#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btz033#supplementary-data


significantly mutated in the TCGA studies were more likely to ex-

hibit increased variant allele frequency (Fig. 6b, d) of indels.

Notably, 100% of the LUAD EGFR indels are in frame whereas

84% of the LUAD TP53 indels are frameshift variants. Additionally,

elevated gene expression levels were observed in the LUAD EGFR

indel mutated samples suggesting possible oncogenic activity

(Fig. 6e). By contrast, TP53 gene expression was reduced in LUAD

TP53 indel mutated subjects indicating a possible disruption of

tumor suppression activity (Fig. 6f).

For these TCGA datasets, ABRA2 was run using 16 cores for

WXS and RNA-Seq processing. Median runtimes for WXS tumor/

normal joint realignment and RNA-Seq realignment were 40 min

and 5.1 h and RAM usage was roughly 16GB and 24GB respective-

ly. WGS tumor/normal pairs were realigned using 32 cores with a

median runtime of 15.5 h using 60GB of RAM or less.

4 Discussion

Variant detection and identification of indels are important for both

research and clinical diagnoses in a variety of areas including Cancer

and Mendelian disorders. The ability to accurately identify indels in

DNA has been an area of focus by multiple groups and good pro-

gress has been made. Detecting variants that have been expressed in

RNA-Seq enables greater insight into function. In the context of can-

cer diagnoses and research, detecting expressed mutations has the

potential of enabling better understanding of mutations with onco-

genic potential, identification of neoantigens and potential assess-

ment of mutational burden.

ABRA2 improves upon the original ABRA implementation

enabling increased accuracy of indel detection in DNA via

realignment of NGS reads. ABRA2 additionally improves upon

ABRA in the areas of speed and scalability. ABRA2 was designed

with RNA-Seq in mind and does not require special processing to

treat RNA-Seq data as if it were DNA. By directly making use of

splice junction information, ABRA2 is able to achieve greatly

improved accuracy over other methods. Alignment of each contig to

each putative transcript is currently the computational bottleneck

for ABRA2 and we believe this coud potentially be optimized by

using a graph representation (Garrison et al., 2018; Paten et al.,

2017) for contig alignment instead of distinct linear representations

of each transcript.

ABRA2 can also be used to realign individual samples or mul-

tiple samples jointly such as in the case of matched tumor/normal

pairs. Indels identified in DNA can optionally be used to inform

RNA alignments although RNA can also be processed independent-

ly. As we have shown in several assessments on both real and

simulated data, ABRA2 can be used to improve alignments in a var-

iety of scenarios including both germline and somatic variant calling

as well as targeted sequencing, whole genomes and transcriptomes.

The improved alignments produced by ABRA2 enhance variant de-

tection by a variety of downstream tools with substantial improve-

ment demonstrated for indel detection in both DNA and RNA. This

method should lead to the identification of additional patients with

previously undetected somatic mutations and indels as well as

improving assessment of expressed variants, thus leading to

improvements in patient care and precision medicine.

5 Methods

5.1 Exome simulation
To generate DNA exome simulated data, trimmed fastq files for sub-

ject NA12878 were downloaded from: ftp://ftp-trace.ncbi.nih.gov/giab/

ftp/data/NA12878/Garvan_NA12878_HG001_HiSeq_Exome.

Bamsurgeon (Ewing et al., 2015) was used to insert SNVs and indels

into exome targeted reads. The output of Bamsurgeon is a normal

BAM without the simulated variants and a tumor BAM containing the

simulated variants. Inserted sequences include repeats, mobile elements

and randomly generated sequence. Indel sizes range from 1 to 100 bp.

5.2 RNA-Seq simulation
Simulated RNA-Seq data were generated using the BEERs simula-

tion engine. We modified BEERs to generate reads containing indels

of length 1–19 bp for a dataset of moderate difficulty and 1–75 bp

for a more challenging dataset. For the challenging dataset, the

STAR aligner was configured to use a minimum intron length of 76.

5.3 Read prep and alignment
Initial DNA alignments were performed using bwa-mem version

0.7.9a and 0.7.16a. RNA-Seq alignments were performed using STAR

version 2.5.3 in two pass mode with unmapped reads included in the

output and Gencode annotations provided to the aligner. Parameters

outFilterScoreMinOverLread and outFilterMatchNminOverLread

were set to .45, which allows STAR to align only one end of a read

pair when alignment for both ends is not possible. STAR output was

post-processed to assign unmapped reads to the locus of its mapped

mate when applicable as is the recommended practice per the

Sequence Alignment/Map Format Specification (https://samtools.

github.io/hts-specs/SAMv1.pdf). For the challenging RNA simulation,

alignIntronMin is set to 76. When applicable, STAR was run separate-

ly with outSAMmapqUnique set to 60 which was required to allow

processing by the GATK. GSNAP version 2017-11-15 is additionally

Fig. 6. TCGA breast and lung adenocarcinoma indels. (a) Frequency of genes

harboring somatic coding indels in the TCGA BRCA cohort with evidence of

expression of the indel mutation. Frequency is computed by simple counts of

subjects containing coding mutations and does not take into account exon

lengths of each gene. (b) Comparison of RNA Variant Allele Frequency (VAF)

of coding indels between genes previously identified as ‘significantly

mutated’ (SMG) and not significantly mutated (non-SMG) in the BRCA cohort.

(c) Frequency of genes harboring somatic coding indels in the TCGA LUAD

cohort with evidence of expression of the indel mutation. (d) Comparison of

RNA VAF of coding indels between genes previously identified as ‘significant-

ly mutated’ and not significantly mutated in the LUAD cohort. (e) EGFR gene

expression for tumor RNA samples containing an EGFR coding indel versus

those without an EGFR coding indel in the TCGA LUAD cohort. EGFR is more

highly expressed in samples containing an indel. (f) TP53 gene expression for

tumor RNA samples containing a TP53 coding indel versus those without a

TP53 indel in the TCGA LUAD cohort. TP53 expression is lower in samples

containing an indel
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used for comparison purposes in the RNA simulations. Prior to align-

ment, read trimming for TCGA DNA reads was performed using

SeqPurge version 0.1-874-g426ed18 (Sturm et al., 2016). Duplicates

were marked using either biobambam (Tischler and Leonard, 2014)

or Picard Tools.

5.4 Realignment with ABRA2
Realignments were performed using ABRA2 version 2.14 for most

cases, with versions 2.11 and 2.12 also used for TCGA whole gen-

ome processing. In all cases the –undup flag was set, allowing reads

erroneously marked as duplicates to be rescued in cases where one

end of a read pair is initially mapped and both ends are mapped

post-ABRA2. This requires that duplicate marking be re-run post

ABRA2. For somatic cases, the tumor and normal are realigned to-

gether. For whole genomes, regions of abnormally high depth with a

read count greater than 2000 were skipped. Gencode annotations

and splice junctions identified in the original alignments were used

to inform ABRA2 of potential junctions during RNA-Seq realign-

ment. The maximum distance to move reads was increased to

5 00 000 and unmapped reads were not utilized in assembly. Reads

containing indels abutting splice junctions were filtered as necessary

to allow downstream variant callers to run to completion. For the

TCGA analysis, somatic indels identified in DNA were used to in-

form the RNA-Seq ABRA2 realignments. Known indels were not

utilized in any of the other analyses with the exception of the known

indel assessment on the exome simulation.

5.5 Variant calling
Evaluated variant caller versions are Strelka2 (version 2.9.2), Freebayes

(commit c15b070639d54d112988946a6902d945357e40f0), GATK

HaplotypeCaller and Mutect2 (version 4.0.3.0), Lancet (version 1.0.1),

Manta (version 1.2.2) and TransIndel (version 0.1). For RNA-Seq vari-

ant calling with GATK Haplotyper, the GATK version at git commit

8103bde7ef90c22e66f9f639809cc91122928ffd was used. In general,

default settings are used with a few exceptions. On the exome simula-

tions, Strelka2 maxIndelSize was set to 100. Short Tandem Repeat pen-

alties were disabled for Cadabra on the Dream Challenge dataset.

Lancet calls filtered by only the StrandBias filter are converted to PASS

which appears to produce improved results on the simulated datasets

as was also observed in Narzisi et al. For the GIAB RNA-Seq analyses,

SNPs found in the RADAR database were filtered. RADAR version 2

was used and ‘lifted over’ from hg19 to hg38 (Kent et al., 2002). For

the TCGA analysis, DNA indels were called using Cadabra and RNA

indel calling was performed independently using a beta binomial test

based upon the UNCeqR implementation (Wilkerson et al., 2014).

Variants arising from low complexity regions were filtered as described

by Li (2014). Variant calls were annotated using VEP (McLaren et al.,

2016). For each variant caller, a single metric was used for thresholding

values in the precision/recall plots. For Mutect2 the TLOD score was

used. For somatic Strelka2 the QSS_NT and QSI_NT scores were used

for SNVs and indels respectively. For Cadabra, Lancet, Freebayes,

GATK-HC and germline Strelka2 the QUAL score was used.

TransIndel did not provide a statistic indicating variant call quality and

we used a single point to reflect its performance.

5.6 Variant calling evaluation
Variant calls were evaluated using happy (https://github.com/Illumina/

hap.py) combined with RTG Tools (https://github.com/RealTime

Genomics/rtg-tools) for the GIAB datasets. The default behavior of

hap.py is to assess genotype accuracy. For the GIAB RNA-Seq dataset,

we instead use the allele match method described by Krusche et al.

(2018). All other datasets were evaluated using RTG Tools.
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