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Abstract
Lymphoma incidence in sub-Saharan Africa (SSA) is increasing due to HIV and population aging. Diffuse Large B-cell 
lymphoma (DLBCL), the most common lymphoma in SSA and worldwide, is highly associated with HIV, but molecular 
studies of HIV-associated DLBCL are scarce globally. We describe profiling of DLBCL from Malawi, aiming to elucidate 
tumor biology and identify clinically meaningful biomarkers specifically for SSA. Between June 1, 2013 and June 1, 2016, 
59 cases of DLBCL (32 HIV+/27 HIV−) enrolled in the Kamuzu Central Hospital Lymphoma Study were characterized, of 
which 54 (92%) were negative for Epstein–Barr virus. Gene expression profiling (GEP) by whole transcriptome sequencing 
was performed on the first 36 cases (22 HIV+/14 HIV−). Immunohistochemistry (IHC) and GEP results were compared 
with published data and correlated to clinical outcome and pathologic features. Unsupervised clustering strongly segregated 
DLBCL by HIV status (p = 0.0003, Chi-squared test), indicating a marked contribution of HIV to expression phenotype. 
Pathway analysis identified that HIV-associated tumors were enriched in hypoxia, oxidative stress, and metabolism related 
gene expression patterns. Cell-of-origin subtype, determined by sequencing and IHC, did not associate with differences in 
overall survival (OS), while Ki-67 proliferation index ≥80% was associated with inferior OS in HIV+ DLBCL only (p = 
0.03) and cMYC/BCL2 co-expression by IHC was negatively prognostic across the entire cohort (p = 0.01). This study 
provides among the first molecular characterizations of DLBCL from SSA, demonstrates marked gene expression 
differences by HIV status, and identifies genomic and immunophenotypic characteristics that can inform future basic and 
clinical investigations.

Introduction

Lymphoma incidence in sub-Saharan Africa (SSA) is
increasing due to epidemic levels of HIV infection,

population growth, and aging [1–3]. Diffuse Large B-cell
Lymphoma (DLBCL), the most common lymphoma
worldwide and in SSA, is highly associated with HIV, but
thorough studies of HIV-associated DLBCL are globally
scarce. While the striking genetic heterogeneity of sporadic
DLBCL in HIV-naive patients has been extensively studied
[4–10], this work has been challenging to conduct in HIV-
positive patients, as prospective, clinically annotated
cohorts of HIV-associated lymphoma are uncommon in
settings where HIV infection is most frequent. Independent
studies in HIV-positive patients may provide unprece-
dented and generalizable insight into lymphoma biology
and inform prevention and treatment strategies regionally
and worldwide. Moreover, as treating patients with
DLBCL is now often possible and safe in SSA, risk stra-
tification is of paramount importance in a region where
supportive care is limited and endemic opportunistic bur-
den is high [11, 12]. Prognostic and predictive biomarkers
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of DLBCL that are widely accepted in resource-rich
regions and incorporated into the current classification
schemes have not been effectively studied in resource-
limited settings [13]. When such efforts have been under-
taken for lymphoma in SSA, they have been limited by
incomplete ascertainment of HIV status, clinical outcomes,
and nonstandardized treatment [14]. Whether or not these
markers are valid in settings characterized by the distinct
genetic, environmental, and socioeconomic pressures of
SSA remains uncertain.

Herein we describe whole transcriptome sequencing of
DLBCL cases from the ongoing Kamuzu Central Hospital
(KCH) Lymphoma Study in Lilongwe, Malawi, where HIV
burden is high and DLBCL treatment and follow-up are
standardized for enrolled patients. The study affords unique
opportunities to investigate genomic differences related to
HIV status, and to assess the applicability of well-
recognized prognostic biomarkers in the context of regio-
nal resource limitations.

Materials and methods

Patient selection and treatment

Patients were enrolled in the KCH Lymphoma Study
(NCT02835911) after pathologic diagnosis and clinical
screening, as previously described [11, 15]. The prospective
observational study enrolls all newly diagnosed patients
with confirmed lymphoproliferative disorders at the national
teaching hospital in Malawi’s capital, Lilongwe. CD4, HIV
RNA viral load, and antiretroviral therapy (ART) status
were documented for all HIV-infected patients, as were
lymphoma-related clinical and laboratory data. Tissue
biopsies were performed at KCH and processed in the on-
site pathology laboratory, where diagnoses are issued
after weekly multidisciplinary telepathology conferences
between clinicians and pathologists in Malawi and pathol-
ogists at the University of North Carolina (UNC) [15, 16].
After primary diagnosis, the pretreatment, formalin-fixed
and paraffin embedded (FFPE) tissue blocks were submitted
to UNC for additional assessment by immunohistochem-
istry (IHC), and gene expression profiling (GEP) by whole
transcriptome sequencing (RNA-seq). IHC and GEP results
were compared with published expression data and corre-
lated to clinical outcome and pathologic features. Reflecting
the regional standard of care for DLBCL in most of SSA,
patients were treated with cyclophosphamide, doxorubicin,
vincristine, prednisone chemotherapy, and concurrent ART
if HIV-positive. Rituximab is not routinely available in the
Malawi public sector. All participants were followed until
death, or administrative censoring on September 30, 2017.
No patients were lost to follow-up.

RNA sequencing

RNA was extracted from diagnostic, pretreatment FFPE
tumor blocks using the Ribo-Zero kit (Illumina, San Diego,
CA) per manufacturer’s recommendation. RNA libraries
were prepared with the Illumina TruSeq RNA Preparation
Kit v2 and sequenced by the Illumina HiSeq2000 and
NextSeq. MapSplice v2.0.1.9 [17] was used for RNA read
alignment to hg19 and transcript quantification was per-
formed using RSEM v1.1.13 [18]. We used median-
adjustment for batch correction, and all data were normal-
ized using upper quartile normalization and log2
transformation.

Cluster assignment and gene expression analysis

Samples were clustered using the 1500 most variable genes
with a median normalized count >10 in Consensu-
sClusterPlus [19], with a maximum cluster assignment (k)
of 6, with 50 iterations for 80% of the samples. Based on
the consensus cumulative density function, samples were
divided into two clusters.

Gene set enrichment analysis was performed using
GSVA to compute a module score and then linear regres-
sion to test associations, using the Hallmark gene set from
Molecular Signatures Database (http://software.broa
dinstitute.org/gsea/msigdb/index.jsp) [20, 21]. Pathways
found to be prognostic in this cohort were evaluated in a
recent publication of sequenced de novo DLBCL from
Reddy et al. using their processed RNA-seq matrix to cal-
culate gene sets modules using GSVA [10].

We used two algorithms to calculate the cell-of-origin
(COO): (1) the algorithm described in Wright et al. [7]
which provided categorical assignment as germinal center
(GC) or post-germinal center activated B-cell (ABC), and
(2) using genes from Wright et al. we subtracted the mean
of the median centered genes that were upregulated from the
mean of the median centered genes that were down-
regulated. The latter provided a continuous value for the
COO measure.

Immunohistochemistry and in situ hybridization

Primary diagnosis was aided by manually performed IHC
using antibodies available in Lilongwe, Malawi: CD3
(clone PS1), CD20 (clone L26), CD30 (clone 15B3), CD45
(code NCL-L-LCA-RP), CD138 (clone MI15), BCL2
(clone bcl2/100/D5), Ki-67 (Clone MM1), TdT (Clone
TdT-338), and HHV8 (NCL-HHV8-LNA), from Leica
Biosystems (Buffalo Grove, IL, US). In the United States,
additional IHC and in situ hybridization (ISH), when
necessary, was performed on a Leica Bond platform (Leica
Biosystems) according to manufacturer’s instructions. COO
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was assigned by IHC using the algorithm described by Hans
et al. using CD10 (clone NCL-CD10-270) and BCL6 (code
PA0204) from Leica Biosystems, and MUM1 (code
M7259m) from Dako (Carpinteria CA, USA) [22].
Expression of BCL2 (clone 124) and cMYC (clone y69)
was assessed by IHC using antibodies from Ventana
Medical Systems (Tucson, AZ, USA) performed on the
Ventana Discovery Ultra. cMYC staining of >40% of
neoplastic cells together with BCL2 expression in >70%
was interpreted as positive staining and defined the “double-
protein expressers” (DPE) [23, 24]. Ki-67 was quantified by
light microscopy in 5% increments.

Statistical analysis

Expression cluster assignment association with HIV status
was measured by Chi-squared test, and Kaplan–Meier
curves were used to assess overall survival (OS) for
expression data using Cox proportional hazards model.
Patient clinical characteristics and IHC differences between
HIV-infected and HIV-uninfected patients were compared
by Mann–Whitney U Test (for continuous data) or by Fisher
Exact Test (categorical data). The log-rank test, and corre-
sponding hazard ratio (HR) and confidence interval (CI),
was used to assess differences in survival between clinical
and IHC subgroups using GraphPad Prism 8 (San Diego,
CA, USA).

Results

Between June 1, 2013 and June 1, 2016, 59 cases of
DLBCL were enrolled in the KCH Lymphoma Study and
fully pathologically characterized at UNC; 32 (54%) of
these arising in HIV-infected individuals. Clinical char-
acteristics and EBV tumor status as defined by EBER-ISH
staining, are listed in Table 1. The International Prog-
nostic Index (IPI) at diagnosis was not different between
HIV-positive and HIV-negative patients. EBV was infre-
quent in the cohort, identified by EBER ISH in two (7%)
of HIV-positive DLBCL cases and three (10%) of HIV-
negative cases. For HIV-infected patients, median CD4
count was 117.5 cells/μl, with 60% on ART at time of
enrollment.

Whole transcriptome and pathway analysis

Resources were available to perform RNA-seq on the
first 36 cases of DLBCL. The clinical characteristics of
this group did not differ significantly from the larger
cohort (Table 1). An unsupervised cluster assignment
strongly segregated DLBCL by HIV status (Chi-squared

Table 1 Clinical and pathologic characteristics of study patients and
sequenced subset.

HIV-positive
(n= 32)

HIV-negative
(n= 27)

p

Age, years, median
(range)

45 (24–63) 55 (11–79) 0.0293

Male, n (%) 21 (66%) 17 (63%) 0.8118

International prognostic
index, ≥3, n (%)

9 (28%) 7 (26%) 0.8644

OS, median (months) 11.8 13.7 0.9611

PFS, median (months) 7.4 8.1 0.7943

HIV viral load, log10
copies/ml, median
(range)

3.39 (0 to
>10,000)

– –

ART at enrollment,
n (%)

19 (60%) – –

Duration on ART,
years (range)

4.1 (0.1–13.2) – –

CD4 count, cells/μl
(range)

117.5
(32–1013)

– –

EBV+, n (%) 2 (6%) 3 (11%) 0.4914

COO IHC, n (%) 32 27

GC 18 (56%) 16 (60%) 0.7586

Non-GC 14 (44%) 11 (40%)

Ki-67% 32 26

≥80% 22 (71%) 13 (50%) 0.1078

<80% 10 (29%) 13 (50%)

MYC/BCL2 24 17

DPE+ 9 (38%) 3 (18%) 0.1727

DPE− 15 (62%) 14 (82%)

Sequenced cohort HIV-positive
(n= 22)

HIV-negative
(n= 14)

p

Age, years, median
(range)

47 (24–60) 55 (11–77) 0.1326

Male, n (%) 16 (73%) 9 (64%) 0.7159

International prognostic
index, >3, n (%)

6 (27%) 5 (36%) 0.5729

OS, median (months) 11.8 11.6 0.3808

PFS, median (months) 8.6 7.9 0.4527

HIV viral load, log10
copies/ml, median
(range)

2.15 (0 to
>10,000)

– –

ART at enrollment,
n (%)

12 (55%) – –

Duration on ART,
years (range)

3.3 (0.1–8.3) – –

CD4 count, cells/μl
(range)

104.5
(48–1013)

– –

EBV+, n (%) 0 (0%) 3 (21%) 0.0270

OS overall survival, PFS progression free survival, ART antiretroviral
therapy, COO cell-of-origin by Hans classifier, IHC immunohisto-
chemistry, GC germinal center type, non-GC nongerminal center type,
DPE double-protein co-expressers by IHC.



test, p= 0.0003), with 18 of 22 HIV-positive cases (82%)
clustering together (Fig. 1a). A total of 2,523 genes were
differentially expressed between the clusters with a false
discovery rate (FDR) adjusted p value of <0.1. Of note, 3 of
4 HIV-associated DLBCLs that clustered with the HIV-
negative cases were on relatively long durations of ART
prior to DLBCL diagnosis (range 38–98 months) with
suppressed HIV viral loads. The outlying HIV-associated
DLBCL patients did not show significant differences with
respect to CD4 count, viral load, or other clinical variables.

We performed gene set enrichment using the 50 Hall-
mark gene sets and found that HIV and cluster assignment
had a few differentially regulated modules in common, such
as hypoxia and metabolic genes (q values < 0.1 by linear
regression, FDR adjustment, Fig. 1b). However, even
though only six samples were discordant between HIV
status and cluster assignment, there was a much stronger
signal for differential regulation by cluster assignment of
angiogenesis (HIV status q value= 0.2, cluster assignment
q value= 0.002), Notch signaling (HIV status q value=
0.2, cluster assignment q value= 0.006), and epithelial
mesenchymal transition (HIV status q value= 0.3, cluster
assignment q value= 0.002) gene sets.

DLBCL COO was determined by GEP using the Wright
et al. algorithm [7], with 18 cases defined as GC, 13 as
ABC, and 5 as “unclassified” (Fig. 2a). We next calculated
a single COO score using our own algorithm (see Methods)
using the genes described by Wright et al. [7] (Fig. 2b),
which enabled us to create a continuous metric, as opposed
to a categorical result. By this method, the “unclassified”
cases grouped more closely with ABC DLBCL, as pre-
viously reported [22, 25]. By GEP, HIV-positive DLBCL
cases trended toward the GC-type (GC n= 13 vs. n= 5
ABC), while HIV-negative DLBCL cases were more evenly
distributed (GC n= 6 vs. ABC n= 8, p= 0.0934, Chi-
square test HIV+ vs. HIV−, Fig. 2c). Of “unclassified”
DLBCL cases, defined by the Wright et al. algorithm, 4 of 5
were HIV-associated.

Clinical outcomes and association with gene
expression

IPI was associated with mortality in our cohort (data not
shown; p < 0.0001), as previously reported for all
DLBCLs in the KCH Lymphoma Study [11, 12]. How-
ever, neither HIV status, expression cluster, nor COO
classification was associated with OS differences (Fig. 3).
Hallmark gene expression modules including unfolded
protein response, MYC pathways, KRAS signaling,
interleukin (IL)-6 and IL- 2 signaling, coagulation, and
angiogenesis, were prognostic across all sequenced cases
(p < 0.1, Cox proportional hazards regression model,
Fig. 4). These gene expression modules were also sig-
nificantly prognostic in a large cohort of de novo DLBCL
in the US (q < 0.05, FDR multiple testing correction) [10].
Gene expression modules related to interferon gamma
(IFNγ) and IFN alpha (IFNα) signaling were positively
prognostic in the HIV-positive cases only (p < 0.05, Cox
proportional hazards regression model), but not in the
large cohort of HIV-negative DLBCL or the de novo
DLBCL from the United States (Fig. 4).

Clinical outcomes associated with tumor marker
expression by immunohistochemistry

Prognostic IHC markers of DLBCL widely used in
resource-rich settings for clinical reporting were evaluated
using expression data and the larger cohort of Malawi
DLBCL. The IHC COO classifier was concordant with our
expression algorithm in 14 of 17 (82%) GC cases, and 12 of
17 (71%) of ABC/non-GC cases (overall concordance:
76%, Fig. 5a). The IHC COO classifier was then applied to
the larger cohort (Table 1). As with GEP, there were no OS
differences related to COO subtype by IHC (Fig. 5b).

Semiquantitative assessment of tumor cell proliferation
by Ki-67 and cMYC/BCL2 co-expression was assessed on
available cases using IHC (Table 1). Among HIV-positive

Fig. 1 Transcriptome analysis of DLBCL. a Principle component
analysis (PCA) of expression differences between HIV+ and HIV−
DLBCL. b Gene sets differentially expressed in sequenced DLBCL
related to cluster assignment (left) or HIV status (right). Gene set

included if it was significant by either HIV status or cluster assignment
(q value < 0.1). Color of dot represents the coefficient. Positive is
greater in cluster 2 (enriched for HIV+) and negative is greater in
cluster 1 (enriched for HIV–).



DLBCL cases, Ki-67 staining fractions of ≥80% was
associated with inferior OS (median survival 8.57 months
vs. not reached, p= 0.03; HR 2.845 with 95% CI
1.085–7.508, Fig. 5c). In the HIV-negative cohort, a similar
trend related to proliferation index by IHC was identified
(p= 0.1). Cases with cMYC/BCL2 co-expression (DPE by
IHC assessment), representing 29% of all cases, also
showed an inferior OS compared with those that did not co-
express cMYC and/or BCL2 irrespective of HIV status
(1.70 vs. 20.17 months; p= 0.012; HR 3.558 with 95% CI
1.322–9.576, Fig. 4d). DPE status did not associate with
IHC COO (p= 0.161) (Fig. 5d).

Discussion

B-cell lymphomas in patients with HIV arise in the unique
and heterogeneous context of varying degrees of ongoing
HIV replication, immune dysregulation, and concurrent
environmental pressures that are permissive for the acquisi-
tion of genetic lesions, transformation, and proliferation of
malignant B cells [26, 27]. However, the molecular char-
acterization of HIV-associated lymphomas has been a global
challenge, and such methods to date have not been widely
applied to HIV-positive patients. To our knowledge, this
represents among the first published RNA-seq investigations

Fig. 2 Cell-of-origin (COO) analysis by transcriptional profile.
a Analysis by conventional Wright et al. algorithm (left: activated
B-cell (ABC) score; right: germinal center (GC) score; “unclassified”

in black). b Waterfall plot analysis of ABC and GC gene expression
and overlay from Wright et al. classifier. c Overlay of HIV status on to
COO expression category.

Fig. 3 Outcome associated with HIV status, expression cluster, and COO. Kaplan–Meier survival curves of DLBCL associated with HIV
status (a), cluster assignment (b), and COO by GEP (c).



of HIV-associated DLBCL worldwide, remarkably from one
of the economically poorest countries in the world.

In resource-rich countries, such studies are difficult to
conduct as HIV prevalence is low, and large, prospective,
clinically annotated cohorts of HIV-associated lymphomas
with appropriate biospecimens are relatively uncommon.
Furthermore, matched HIV-negative DLBCL control cases
with otherwise similar patient characteristics apart from
HIV have not been established. Conversely, in areas with
high HIV burden, diagnostic, clinical, and research infra-
structure often preclude accurate diagnosis, treatment stan-
dardization, measurement of known prognostic factors, and
long-term follow-up to determine outcomes.

To address these gaps, and building on years of lym-
phoma research capacity investments in Malawi, we
uniquely performed whole transcriptome analysis of pro-
spectively enrolled HIV-positive and HIV-negative DLBCL
cases from SSA who received standardized treatment with
longitudinal follow-up, and validated biomarkers used for
risk assessment from resource-rich regions. The confounder
of EBV on lymphomagenesis, particularly in immuno-
compromised hosts, was limited in this study, as all
sequenced HIV-positive DLBCL cases were EBV-negative
by EBER ISH. As previous molecular characterizations
demonstrated significant genomic differences related to
EBV infection, this cohort identifies transcriptional

Fig. 4 Clinical outcomes
associated with gene sets.
Forest plots depicting hazard
ratios and 95% confidence
intervals for Hallmark gene
expression modules with a
nominal p value < 0.05 in all
Malawi DLBCL (light gray) or
Malawi DLBCL HIV-positive
cases only (dark gray). These
were compared with previously
published de novo DLBCL [10]
(black). The shape of the dot
represents the p value status: x ≥
0.1, square ≤ 0.01, diamond ≤
0.05, and triangle ≤ 0.1.

Fig. 5 Clinical outcomes associated with immunohistochemical
markers. a Overlay of conventional Wright et al. COO algorithm with
immunohistochemical assignment by Hans et al.; b overall survival

(OS) by immunohistochemical COO classifier by Hans et al.; c OS of
HIV+ DLBCL by Ki-67 staining fraction; d OS of all DLBCL by
MYC/BCL2 double-protein co-expression (DEP) by IHC.



differences in EBV-negative DLBCL in the HIV-infected
population [28].

In this cohort, unsupervised hierarchical clustering of
RNA-seq data demonstrated a strong contribution of HIV
status to DLBCL expression phenotype, with the majority
of HIV-positive DLBCL cases (82%) clustering together.
Mechanisms underlying this phenomenon are unclear but
may reflect systemic or microenvironmental pressures on
lymphoma development or evolution in the unique setting
of HIV infection. Compared with HIV-negative cases, HIV-
associated DLBCL was enriched for hypoxia-induced genes
and expression modules related to oxidative stress, and the
expression cluster heavily enriched for HIV DLBCL also
showed significant differences related to angiogenesis.
These findings are in keeping with previously published
histologic and phenotypic observations, demonstrating
stromal and vascular differences in HIV-associated lym-
phoma [29].

While the strong association of expression profile with
HIV status is itself remarkable, three of four HIV-positive
DLBCL cases that clustered with the HIV-negative cases
had relatively long durations of ART prior to lymphoma
diagnosis, and cluster assignment, rather than HIV status,
showed stronger differential regulation of gene sets asso-
ciated with angiogenesis, Notch signaling, and epithelial
mesenchymal transition gene sets. This suggests significant
tumor microenvironment differences related to the immu-
nologic and virologic environments in which the DLBLC
occurs and raises the possibility that DLBCLs differ within
the HIV-infected cohort based on the length of preceding
HIV treatment. Thus, tumors developing in the context of
long-term ART may have more in common with those
arising in HIV-negative, than HIV-positive patients. The
pattern of dysregulation supports a primitive wound-healing
microenvironment in the HIV+ DLBCL expression cluster,
characterized by fibrosis, hypoxia, and angiogenesis, that
requires further investigation.

By univariate analysis, there were no survival differences
with respect to HIV status or expression cluster, although
the median OS in our setting is lower than in resource-rich
settings [11, 12]. While validity of clinical prognostic scores
(IPI) has been demonstrated previously in our cohort,
prognostic biomarkers of disease have not been validated.
As treatment resources for DLBCL become increasingly
available in SSA where HIV infection rates are high, bio-
marker validation for DLBCL in SSA is critical to guide
therapy, minimize treatment-related morbidity, appro-
priately allocate scarce resources, and direct future clinical
trials and translational research.

By RNA-seq, we identified prognostic signatures related
to unfolded protein response, MYC pathways, KRAS sig-
naling, IL-6 and IL-2 signaling, coagulation and angio-
genesis, which were similarly prognostic in a large study of

de novo DLBCL of primarily US origin [10]. This asso-
ciation reinforces the global applicability of these studies
and highlights the biological overlap of disease across
geographic regions. Amongst HIV-positive DLBCL in our
cohort, IFNγ and IFNα signaling was positively prognostic,
suggesting that in HIV infection, higher IFN response
associates with better DLBCL outcomes. Larger cohort
studies are necessary to validate these expression pattern
differences and further assess functional pathways.

Molecular profiling of sporadic, HIV-negative DLBCL
has identified clinically meaningful prognostic expression
signatures [5, 6, 8]. Nearly two decades ago, the COO
subtypes in HIV-negative DLBCL were identified, differing
in their genetic alterations, signaling pathways, and out-
comes [4, 7, 9]. The ABC subset showed an inferior sur-
vival compared with GC-type DLBCL, but differentially
altered pathways have highlighted potential therapeutic
targets to improve outcomes for ABC-type DLBCL
[30–33]. As comprehensive expression profiling of clinical
tumor samples is not yet universally applied, immunohis-
tochemical algorithms are often used as surrogates for
DLBCL COO subtypes [22, 34–36] and may be more
amenable to application in resource-limited settings. A
common such classifier, originally published by Hans et al.
shows acceptable correlation with GEP and is indepen-
dently prognostic [22]. Studies of HIV-associated DLBCL
have shown variable associations with COO subtypes, but
the high prevalence of EBV in DLBCL of immunocom-
promised populations associates strongly with ABC subtype
and confounds analyses of DLBCL in HIV-infected indi-
viduals [37, 38].

Although the cases in our cohort can be effectively
stratified by COO subtype, both by GEP and IHC algo-
rithms, COO status was not prognostic. This may reflect
differences in underlying biology, but it is also likely that
the risk imparted by COO subtype is confounded by non-
biological patient and health system factors that influence
survival in resource-limited settings more than in resource-
rich environments. Of note, however, COO subtype using
the IHC classifier was similarly not shown to associate with
OS for HIV-associated DLBCL patients treated in United
States AIDS Malignancy Consortium trials [37]. Moreover,
when expression of genes that define COO are plotted as a
continued variable, there appears to be an even distribution
between those with a “high-ABC” to “high-GC” score,
irrespective of HIV status (Fig. 2b). This gradient in COO
expression may have biologic or treatment implications
beyond simple dichotomization that requires further study.

Additional genomic alterations associate with COO and
other DLBCL subtypes. DLBCL harboring rearrangements
of BCL2 and cMYC showed dramatically worse survival
compared with cases without this genomic “double hit”
[36], despite being GC-type [39, 40]. More recently,



DLBCL expressing both cMYC and BCL2 by IHC show a
similarly poor prognosis, independent of rearrangements
identified by fluorescence in situ hybridization (FISH) stu-
dies [23, 41]. The majority of these cMYC/BCL2 “double-
protein expressers” (DPE) show an ABC immunophenotype
[23]. In our cohort, DPE was associated with inferior OS
irrespective of HIV status. While there was no association
of DPE status with COO, the sample size is limited.
Resource, technical and tissue limitations remain significant
obstacles, and precluded FISH evaluation of cMYC and
BCL2 translocation status.

Finally, the prognostic significance of proliferative
capacity, as measured by Ki-67 (MIB-1) IHC, has also been
extensively investigated. While some have shown inferior
outcomes associated with increased Ki-67 staining fractions
[42–44], others, including analysis of HIV-associated
DLBCL, have demonstrated the opposite [37, 45, 46].
The reasons for these differences across studies remain
unclear. In our cohort, high Ki-67 proliferative index
(≥80%) was associated with an inferior prognosis only for
HIV-associated DLBCL. This finding differs from analyses
of AIDS Malignancy Consortium trial participants in the
United States [37], among whom improved survival was
associated with high Ki-67 staining. However, there are
many notable differences between the United States and
Malawi, including treatment of many of the AIDS Malig-
nancy Consortium patients with rituximab and/or con-
tinuous infusion chemotherapy regimens developed
specifically to more effectively treat highly proliferative B-
cell lymphomas [47–49].

To conclude, the unbiased bulk tumor transcriptomic
analysis of DLBCL cases from Malawi uniquely identifies
marked expression differences between HIV-positive and
HIV-negative DLBCL. Prognostic differences related to
cMYC/BCL2 co-expression and Ki-67 staining in HIV-
positive DLBCL patients were identified, but COO status
did not associate with outcome. These findings underscore
the need for validation of HIV-specific and region-specific
prognostic markers to inform clinical care. This work also
suggests that greater understanding of unique aspects of
lymphoma biology for HIV-infected patients in SSA is
possible and should be an important regional research
priority moving forward.
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