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Abstract
Objective: We explored both within-method and between-method rigor and reproducibility in

the field of eating disorders genetics.

Method: We present critical evaluation and commentary on component methods of genetic

research (family studies, twin studies, molecular genetic studies) and discuss both successful and

unsuccessful efforts in the field.

Results: Eating disorders genetics has had a number of robust results that converge across com-

ponent methodologies. Familial aggregation of eating disorders, twin-based heritability esti-

mates of eating disorders, and genome-wide association studies (GWAS) all point toward a

substantial role for genetics in eating disorders etiology and support the premise that genes do

not act alone. Candidate gene and linkage studies have been less informative historically.

Discussion: The eating disorders field has entered the GWAS era with studies of anorexia ner-

vosa. Continued growth of sample sizes is essential for rigorous discovery of actionable varia-

tion. Molecular genetic studies of bulimia nervosa, binge-eating disorder, and other eating

disorders are virtually nonexistent and lag seriously behind other major psychiatric disorders.

Expanded efforts are necessary to reveal the fundamental biology of eating disorders, inform

clinical practice, and deliver new therapeutic targets.

Resumen
Objetivo: Exploramos tanto el rigor y reproducibilidad dentro del método y entre el método en

el campo de la genética de los trastornos de la conducta alimentaria.

Método: Presentamos una evaluación crítica y comentarios en los componentes del método de

investigación genética (estudios familiares, estudios en gemelos, estudios de genética molecular)

y discutimos tanto los esfuerzos de éxito y no éxito en el campo.

Resultados: La genética de los trastornos de la conducta alimentaria ha tenido un robusto

número de resultados que convergen a través de componentes metodológicos. La agregación

familiar de trastornos de la conducta alimentaria, los estimados de heredabilidad basados en

gemelos de los trastornos de la conducta alimentaria, los estudios de asociación genoma ancho

(genome-wide association studies, GWAS) todos apuntan a un papel sustancial de la genética en

la etiología de los trastornos de la conducta alimentaria y apoyan la premisa de que los genes no

actúan solos. Los genes candidato y los estudios de vinculación históricamente han sido menos

informativos.

Discusión: El campo de los trastornos de la conducta alimentaria ha entrado la era GWAS con

estudios de anorexia nervosa. El crecimiento continuado de los tamaños de la muestra es esen-

cial para el descubrimiento riguroso de variación accionable. Los estudios de genética molecular

de bulimia nervosa, trastorno por atracón y otros trastornos de la conducta alimentaria, son vir-

tualmente no existentes y están seriamente retrasados detrás de otros trastornos psiquiátricos

mayores. Los esfuerzos ampliados son necesarios para revelar la biología fundamental de los

trastornos de la conducta alimentaria, informar la práctica clínica y desarrollar nuevos objetivos

de tratamiento.
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1 | INTRODUCTION

The goal of genetic research in eating disorders is to decipher basic mech-

anisms that contribute to or modulate risk of developing these complex

phenotypes. Eating disorders, like all psychiatric illnesses, are complex

traits that that are influenced by hundreds or even thousands of variants

of small to moderate effect (i.e., polygenicity) together with environmen-

tal factors (Gelernter, 2015; Plomin, Haworth, & Davis, 2009).

Genetic findings inform a wide array of functional investigations

from genetically modified cells to animal models, and can potentially

guide new drug development or repurposing of existing medications

(Breen et al., 2016; Yilmaz, Hardaway, & Bulik, 2015). Health science

research for eating disorders is underfunded relative to their contribu-

tion to global disability adjusted life-years (Insel, 2015; Murray, Pila,

Griffiths, & Le Grange, 2017). Consequently, the use of resources

must be optimized to guarantee the generation of reproducible and

robust findings. Genetic research offers myriad opportunities to

understand eating disorders on molecular, cellular, and systems biol-

ogy levels and is envisioned to improve risk prediction, therapeutic

interventions, and preventive strategies (Sullivan et al., 2018).

DNA is the underlying blueprint of the organism and interindivi-

dual changes in this blueprint are partially responsible for the observed

differences between individuals. Our genome is assigned at conception

and remains essentially stable throughout life. This stability means that

it is prone to far fewer confounding factors than are necessary to

attend to in other fields, including epidemiology and epigenetics. Spe-

cifically, genetics is robust to reverse causation, and, with epidemiologi-

cally informed statistical analyses, allows for causal interpretation of

findings. For genomics to be optimally informative, it is important to

achieve the broadest possible coverage of the genome.

There are tens of millions of common genetic variants

(i.e., present in at least 1% of the population), of many different types,

throughout the genome. The most common variants are single base

pair changes, such as adenine (A) to thymine (T), which are referred to

as single nucleotide polymorphisms or SNPs. Current technology

based on DNA microarrays allows direct measurement (“genotyping”)

of SNPs at between 500,000 and 5 million positions. Thereafter,

imputation methods are used in conjunction with reference panels

from whole genome sequencing (1000 Genomes Project Consortium

et al., 2012; International HapMap Consortium, 2005; McCarthy et al.,

2016) to boost the information content in the data by allowing the

prediction of genotypes at positions not measured on the arrays,

thereby increasing coverage of the genome and improving power to

detect associations.

Eating disorders genetics to date has yielded many robust, rigorous,

and reproducible results, both within and across component methodolo-

gies (see Table 1). In this review, we will focus on family, twin, and

molecular genetic approaches highlighting convergent results and briefly

review the history of candidate gene studies in eating disorders. First,

TABLE 1 Heritability (h2) estimates derived from different genetic

study designs for other psychiatric disorders and eating disorders
(Sullivan et al., 2018; Yilmaz et al., 2015)

Disorder Twin-h2 Family-h2 SNP-h2

Other psychiatric disorders

Schizophrenia 81% (Sullivan,
Kendler, &
Neale, 2003)

64%
(Lichtenstein
et al., 2009)

45%
(Schizophrenia
Working
Group of the
Psychiatric
Genomics
Consortium,
2014)

Bipolar
disorder

68% (Polderman
et al., 2015)

55% (Song et al.,
2015)

21% (Psychiatric
GWAS
Consortium
Bipolar
Disorder
Working
Group, 2011)

Major
depressive
disorder

37% (Sullivan,
Neale, &
Kendler,
2000)

32% (Wray &
Gottesman,
2012)

8.9% (Ripke
et al., 2013)

Eating disorders

Anorexia
nervosa

57% (Dellava
et al., 2011)

64% (Strober
et al., 1990)

�20% (Duncan
et al., 2017)

Bulimia
nervosa

62% (Bulik et al.,
2010)

Not available Not available

Binge-eating
disorder

39% (Javaras
et al., 2008)

57% (Javaras
et al., 2008)

Not available

Purging
disorder

Not availablea Not available Not available

ARFID Not available Not available Not available

Note. ARFID = avoidant and restrictive food intake disorder;
h2 = narrow-sense heritability.
a Munn-Chernoff et al. (2015) conducted a twin study of purging dis-

order and identified that 44% of the variance attributable to familial
factors, but were unable to distinguish between additive genetic and
shared environmental factors.

BOX 1

Narrow-sense vs. broad-sense heritability

The reader should be mindful of the difference between h2

(narrow-sense heritability) which captures the proportion of

variance attributed to variation in additive genetic values and

H2 (broad-sense heritability), which captures the proportion of

variance attributed to variation in total genetic values

(Visscher, Hill, & Wray, 2008).



we introduce the concept of heritability, which is central to understand-

ing genetic studies of eating disorders. We recommend returning to this

section after reading the entire paper to consolidate your understanding

of the concept. Second, we briefly introduce the methodologies cov-

ered in this review: family, twin, linkage, candidate gene, genome-wide

association studies (GWAS), their follow-on approaches, whole genome

and exome sequencing, and epigenetics. Finally, we review four critical

concepts necessary to evaluate the rigor of eating disorders genetics lit-

erature in an informed manner: phenotype, relatedness, population

stratification, and sample size. Of note, comprehensive reviews of the

findings of genetic studies in eating disorders are available, see Brandys

et al. (2015), Breithaupt, Hübel, and Bulik (2018), Davis (2015), Hinney

and Volckmar (2013), Yilmaz et al. (2015).

2 | HERITABILITY (H2)

In general, heritability (h2) refers to the proportion of phenotypic vari-

ance due to inherited (nonenvironmental) factors (see Box 1).

Numerically, h2 estimates range from 0 (i.e., no effect of genes on

phenotypic variation) to 1.0 (genes are the only contributor to pheno-

typic variation). The h2 estimates for eating disorders can be derived

from family studies (Javaras et al., 2008; Strober, Lampert, Morrell,

Burroughs, & Jacobs, 1990), twin studies (Baker, Mitchell, Neale, &

Kendler, 2010; Bulik et al., 2006, 2010; Bulik, Sullivan, & Kendler,

1998; Dellava, Thornton, Lichtenstein, Pedersen, & Bulik, 2011;

Javaras et al., 2008; Klump, Miller, Keel, McGue, & Iacono, 2001; Kor-

tegaard, Hoerder, Joergensen, Gillberg, & Kyvik, 2001; Mazzeo et al.,

2009, 2010; Mitchell et al., 2010; Trace et al., 2013; Wade, Bulik,

Neale, & Kendler, 2000), adoption studies (Klump, Suisman, Burt,

McGue, & Iacono, 2009), and genomic studies (Duncan et al., 2017).

The extent to which h2 estimates across various methods converge is

one measure of reproducibility in eating disorder genetics. As

described below, differences in h2 estimates across approaches should

be expected and indeed are observed (reasons for this are covered in

greater detail in section SNP-based h2; Table 1). Critical to recognize

is that h2 is a population statistic (not an individual measure) and

refers to a given population at a given point in time. The occurrence

and frequencies of genetic variants can differ across populations for

several reasons, including chance, migration, mutation, and selection

(Wray & Visscher, 2008). Therefore, applying results from one popula-

tion to another and developing predictors, such as polygenic risk

scores, require well-matched population samples. Sampling bias

should also be considered: ascertainment approaches and inclusion

and exclusion criteria can limit the representativeness of the sample

and the applicability of the results to the general population. For

example, gender, ethnicity, type of disorder, age, geography, and

socioeconomic status should all be considered when designing ascer-

tainment strategies.

2.1 | Twin-based heritability (twin-h2)

Twin-based h2 estimates are derived from the phenotypic similarity

(i.e., phenotypic correlations) between monozygotic (identical twins)

and dizygotic twins (fraternal twins), their known proportion of shared

genomes (100 and 50%, respectively), and their expected shared envi-

ronment (Rijsdijk & Sham, 2002). The standard ACE twin model

(Figure 1) captures the relative contribution of additive genetic (A),

common environmental (C), and unique environmental (E) factors on

trait variation. Importantly, in standard twin models, these are not

measured, but rather inferred. The proportion of variance of a trait

accounted for by A, C, and E is equal to the square of the connecting

paths (a, c, and e, respectively). In this model, a2 represents the h2 esti-

mate, c2 captures the variance of the shared environmental factors (all

factors that serve to make twins similar), and e2 captures the variance

of all factors that serve to make twins different and includes error of

measurement (Figure 1).

Twin-based h2 (twin-h2 or a2) estimates of most behavioral traits

(including eating disorders) fall roughly between 30 and 80%

(Polderman et al., 2015). Twin-h2 estimates are influenced by several

factors including: (a) how the trait under investigation is measured,

(b) trait prevalence, (c) the population, (d) sex, (e) developmental stage

or age, (f ) time of measurement, and (g) geographical area (Visscher

et al., 2008). Therefore, h2 estimates for the same trait do and are

expected to differ across studies, across populations, and across time.

2.2 | Single nucleotide polymorphism-based
heritability (SNP-h2)

The h2 contributed by common genetic variation can be calculated

from genotype data from SNP arrays or GWAS summary statistics

(SNP-h2; Yang, Zeng, Goddard, Wray, & Visscher, 2017). Modern

methods for estimating SNP-h2 include genome-wide complex trait

analysis (GCTA; Yang, Lee, Goddard, & Visscher, 2011) and linkage

disequilibrium (LD) score regression (LDSC; Bulik-Sullivan et al., 2015).

GCTA derives estimates by comparing the degree to which individuals

share their genomes to their similarity on a particular trait. LD score

regression estimates h2 from regressing the association statistics for

SNPs against their summed correlation with nearby SNPs (for further

details, see Yang et al., 2017).

As mentioned previously, estimates of SNP-h2 are typically and

expectedly lower than twin-h2 estimates. This has held true in twin

studies in eating disorders and other psychiatric disorders (Table 1;

E C A

Twin 1

A C E

Twin 2

MZ & DZ = 1

MZ = 1
DZ = 0.5

h ehce c

FIGURE 1 Standard ACE model of the classical twin design. Latent

underlying factors: A = additive genetic factors; C = common/shared
environmental factors; E = nonshared environmental factors and
measurement error. Squares of paths: a2 = heritability, which is in
some depictions interchangeable with h2, c2 = variance of common
environmental factors, e2 = nonshared environmental factors



Brainstorm Consortium et al., 2018; Cross-Disorder Group of the Psy-

chiatric Genomics Consortium et al., 2013). The SNP-h2 for anorexia

nervosa (AN) is �20% (Duncan et al., 2017) in comparison to twin-h2

estimates ranging from 28 to 74% (Bulik et al., 2006, 2010; Dellava

et al., 2011; Klump et al., 2001; Kortegaard et al., 2001; Mazzeo et al.,

2009; Wade et al., 2000). This differential is consistent with other

complex traits and is likely due to fundamental differences in what

each measure captures. Whereas SNP-h2 captures h2 due primarily to

common variation, twin-h2 also captures h2 due to rare genetic varia-

tions (mutations) as well as passive, evocative, and active gene–

environment correlations (McAdams et al., 2014), and gene–

environment interactions (Vinkhuyzen & Wray, 2015). It is important

to note, however, that although h2 estimates are a central outcome of

twin studies, the goals of GWAS, in contrast, reach far beyond h2 esti-

mates and rather seek to identify actual causal variants that affect

disease risk.

3 | CORE METHODS IN THE GENETICS OF
EATING DISORDERS

3.1 | Family history and family studies

The familial aggregation of AN, bulimia nervosa (BN), and binge-eating

disorder (BED) have been widely documented and replicated (Hudson

et al., 2006; Javaras et al., 2008; Kassett et al., 1989; Lilenfeld et al.,

1998; Mangweth et al., 2003; Stein et al., 1999; Strober, Freeman,

Lampert, Diamond, & Kaye, 2000,2001; Strober et al., 1990; Strober,

Morrell, Burroughs, Salkin, & Jacobs, 1985). In their most basic form,

family studies are designed to determine whether a trait or disorder

“runs in families”. The “family history” method in which one or a few

family members act as informants about the status of other family

members is less effortful but also less informative than the family study

method (Hudson, Pope, Jonas, & Yurgelun-Todd, 1983; Hudson, Pope,

Jonas, Yurgelun-Todd, & Frankenburg, 1987; Keck et al., 1990; Rivinus

et al., 1984). In the “family study” method, every family member is que-

ried or interviewed about their own history (and can also serve as an

informant on other family members). Although methods do exist to

determine the extent to which genes affect the familial aggregation of

a trait or illness from a family study (Hudson et al., 2006; Javaras et al.,

2008; Kassett et al., 1989; Lilenfeld et al., 1998; Mangweth et al.,

2003; Stein et al., 1999; Strober et al., 1985,1990,2000,2001), they are

more effective in identifying the existence of familial aggregation rather

than the extent to which genetic or environmental factors cause that

aggregation (Visscher et al., 2008).

Population level family studies compare the overall population

prevalence with the disease risk of family members with an index case

in their family (a proband) and yield relative risk estimates taking into

account the relationship to the proband (McGuffin & Burke, 2014).

For instance, siblings of individuals with AN were four times more

likely to suffer from AN than siblings of unaffected control probands

in a Danish nationwide registry study (Steinhausen, Jakobsen, Hele-

nius, Munk-Jørgensen, & Strober, 2015).

More sophisticated family designs can also be conducted in large

populations when different degrees of relatedness in multigenera-

tional registers are used to tease apart genetic and environmental fac-

tors while controlling for genetic confounding of these environmental

factors (i.e., gene–environment correlations). For example, a child may

Self
1

Child
0.50

Grand
child
0.25

Great
grand
child
0.125

Father
0.50

Grand
father
0.25

Grand
mother

0.25

Full 
brother

0.50

Mother
0.50

Niece
0.25

Half
sister
0.25

Uncle
0.25

Grand
father
0.25

Grand
mother

0.25

Great
uncle
0.125

Cousin
0.125

Niece*
0.0625

FIGURE 2 Different degrees of genetic relatedness of family members. (Asterisk) Niece scientifically and linguistically correctly named as first

cousin once removed [Color figure can be viewed at wileyonlinelibrary.com]

wileyonlinelibrary.com


grow up in an environment where both parents smoke: the parents

will most probably have passed on variants of genes that make the

child more likely to smoke but may also create a family environment

where the child is exposed to smoking behavior and second hand

smoke (i.e., passive gene–environment correlation). The child may

actively choose its environment where its peers smoke (i.e., active

gene–environment correlation) and then may ask for cigarettes and

receive them (i.e., evocative gene–environment correlation; Narusyte

et al., 2008). In this design, multigenerational registers can be used to

specify different family relationships between individuals who share

known and varying proportions of genetic factors and environmental

factors (Figure 2). Comparing the degree of genetic relatedness and

similarities of the trait or disorder over several generations—both

expressed in correlations—allow the researcher to make cautious

causal inferences and estimate the relative contribution of genetic

and environmental factors (D'Onofrio, Lahey, Turkheimer, & Lichten-

stein, 2013).

3.2 | Twin studies

After verifying familial aggregation of a trait or disorder in family stud-

ies, the next logical step is to determine the extent to which the

observed familiality is due to genetic or environmental factors. Twin

studies are an approach to address this question and were the main-

stay of genetic epidemiology for decades (Figure 1). Encouragingly,

estimates of the genetic and environmental contributions to eating

disorders represent robust findings in our field (Polderman et al.,

2015). Twin studies conducted on patients with eating disorders in

European-ancestry populations yielded h2 point estimates ranging

from 28 to 74% for AN, from 55 to 65% for BN, and from 33 to 45%

for BED (Baker et al., 2010; Bulik et al., 1998, 2006, 2010; Dellava

et al., 2011; Javaras et al., 2008; Klump et al., 2001; Kortegaard et al.,

2001; Mazzeo et al., 2009, 2010; Mitchell et al., 2010; Trace et al.,

2013; Wade et al., 2000). Due to the low prevalence of the disorders

and thus relatively few cases in twin registries, most estimates have

fairly wide confidence intervals (Yilmaz et al., 2015).

The validity of twin results rests on several important assump-

tions. First, twin studies assume that identical (monozygotic or MZ)

twins are 100% genetically identical, whereas fraternal (dizygotic or

DZ) twins share on average 50% of their segregating alleles

(i.e., version of genes inherited from their parents; Rijsdijk & Sham,

2002). As our ability to query the genome advances, it is becoming

clear that minor genetic and epigenetic differences do exist between

MZ twins (Bruder et al., 2008; Charney, 2012; Wong et al., 2010);

however, the impact of these differences on results is minimal (Liu,

Molenaar, & Neiderhiser, 2018). Second, twin studies assume that

environmental factors of relevance to the trait under investigation are

shared equally between MZ and DZ twins (i.e., the equal environ-

ments assumption or EEA). Two large studies tested the EEA by, first,

correcting twin-h2 estimates by a measure of similarity between twins

(Felson, 2014) and, second, by investigating the similarity between

twins who had been falsely assigned as DZ when they were actually

biologically MZ (Conley, Rauscher, Dawes, Magnusson, & Siegal,

2013). Neither approach revealed a gross violation of the EEA. Third,

twin studies assume that the prevalence of trait under investigation is

similar in twins as in the general population. For example, one study

reported a 1.5-fold greater prevalence of AN in twins than in single-

tons in Sweden (Goodman, Heshmati, Malki, & Koupil, 2014).

Although this observation requires replication, it highlights the impor-

tance of comparing prevalences in twins relative to the general popu-

lation to ensure that twin-specific risk factors are not operative.

3.3 | Candidate gene studies

Candidate gene studies should be viewed in their historical context,

which was limited by the fact that large scale genotyping arrays that

concurrently measure several million genetic markers only became

available and affordable in the last decade. In the candidate gene

approach, a researcher chooses one or a few genes (i.e., extremely

low coverage of the genome) that they hypothesize could contribute

to eating disorders and compares the frequency of the variants of that

gene in a sample of cases versus a sample of controls. Due to the

many shortcomings of the candidate gene studies, they have fallen

out of favor as an approach to the initial identification of genes

involved in the etiology of psychiatric disorders (Duncan & Keller,

2011; Vinkhuyzen & Wray, 2015). Candidate gene studies are limited

by pre-existing knowledge about the trait under study and about the

selected genes, are physically limited to loci within and near genes

(e.g., promoter, coding regions, and introns), and have typically been

grossly underpowered. In addition, the same subtle biases that can

affect genome-wide studies such as cryptic relatedness and popula-

tion stratification can affect candidate gene studies.

In eating disorders, the selection of candidate genes was based

on educated guesses about the biology of eating disorders (e.g., genes

related to serotonin which is known to influence both appetite and

mood). Knowing now that complex traits such as eating disorders are

likely to be influenced by hundreds if not thousands of genes, it is

understandable that these complex behavioral syndromes could not

be explained via the function of one or a few genes. Many of the sam-

ples collected during the candidate gene era have been meaningfully

carried forward to genome-wide studies. Current standards dictate

that candidate gene studies should only be employed to replicate find-

ings from existing GWAS and never as an initial step in genetic ana-

lyses. No candidate gene study of eating disorders has ever produced

robust and reproducible findings (Yilmaz et al., 2015).

3.4 | Linkage studies

The fundamental premise of linkage studies is based on the observa-

tion that the genetic variants in genes that reside physically close on a

chromosome remain linked during meiosis (i.e., specialized type of cell

division to create germ cells) and tend to do so over several genera-

tions if those variants are close together. Linkage analysis allows the

assessment of the strength of linkage between genetic variants char-

acterizing a region and disorder or disorder status in families. In partic-

ular, this methodology is favored for the detection of large effect

genetic mutations, especially those that have sufficient penetrance to

cause observable dominant or recessive inheritance of disorders. We

now know that such examples are rare in psychiatric disorders

[although they do exist, such as the chromosome 1:11 translocation in



schizophrenia (St Clair et al., 1990)]. However, linkage studies con-

ducted on AN and BN examining affected relative pairs have by and

large not yielded robust or reproducible findings (Bacanu et al., 2005;

Bergen et al., 2003; Bulik et al., 2003; Devlin et al., 2002; Grice

et al., 2002).

3.5 | Genome-wide association studies (GWAS)

GWAS is currently the workhorse of psychiatric genetics, and, as the

name implies, is a genome-wide approach. Unlike candidate gene

studies, a GWAS employs millions of markers across the genome and

compares their frequency between cases and controls for binary

traits, or their correlation with a trait, such as BMI, in a population.

Sample sizes are usually large—in the tens or even hundreds of thou-

sands. Given the sheer number of comparisons, most of the results

that cross the nominal association threshold of 0.05 do so by

chance—so rigorous control for multiple testing must be employed.

There are approximately 10−8 independent tests involved in a GWAS.

Consequently, the Bonferroni multiple testing corrected p values of

5 × 10−8 is regarded as genome-wide significant, which is crucial for

rigor in GWAS (Dudbridge & Gusnanto, 2008; Risch & Merikangas,

1996). Given this stringent threshold, many true associations remain

nonsignificant often due to practical limitations in power, which is

dependent on sample size and allele frequencies of variants of interest

in the sample.

Very large sample sizes are required to achieve adequate statisti-

cal power for the detection of variants within the expected effect size

range for complex disorders, usually between odds ratios (OR) of 1.0

and 1.2 in case-control studies (Park et al., 2011; Wang, Barratt, Clay-

ton, & Todd, 2005). Although researchers used to larger effect sizes

may find these to be small, they must be interpreted in the context of

the polygenic model of complex traits in which thousands of genes in

concert influence a phenotype. Interpreting GWAS effect sizes in the

tradition of Cohen inevitably leads to false conclusions, results in mis-

interpretation, and premature rejection of results (Chen, Cohen, &

Chen, 2010). Sample size is the critical ingredient for GWAS success

and can be estimated using publicly available power calculators

(Purcell, Cherny, & Sham, 2003; Sham & Purcell, 2014). The Psychiat-

ric Genomics Consortium (PGC) has facilitated achieving required

sample sizes in the tens to hundreds of thousands by fostering

unprecedented international collaborations (Sullivan et al., 2018).

Research in schizophrenia and major depressive disorder has revealed

a nearly linear relationship between the number of detected genome-

wide significant regions (i.e., associations) and increases in sample size

(Hyman, 2014). Current goals of the PGC are to achieve sample sizes

of 100,000 for each major psychiatric disorder, including eating

disorders.

Such collaboration also enabled the identification of the first

genome-wide significant locus for AN by the Eating Disorders Work-

ing Group of the PGC. The locus on chromosome 12 has been previ-

ously implicated in a range of autoimmune disorders, such as

rheumatoid arthritis and type 1 diabetes (Duncan et al., 2017). Until

now, no GWASs of BN or BED have been conducted, but sample col-

lection is underway.

Other factors that are important in evaluating GWAS include the

screening of controls for the disorder or trait under study, especially if

the disorders are common in the population, as well as for strongly

correlated phenotypes. The rationale for this is a control group that

contains a large proportion of cases decreases the statistical power to

detect the association of a genetic variant with the disorder. Ancestry,

relatedness, population stratification, and reliable phenotype assess-

ment are crucial in GWAS (see Section 4) and should be carefully con-

sidered in the study design. Extensive quality control is applied to

genotype data: data sets are checked for genotyping quality (i.e., SNP

and individual missingness); expected frequencies of the alleles in the

population (i.e., deviation from Hardy-Weinberg equilibrium); and, if

imputed, for imputation quality (i.e., INFO score; for detailed informa-

tion see Coleman et al., 2016). Finally, replication of identified associa-

tions between genetic variants and a disorder should be pursued in an

independent data set, which is often difficult due to the large sample

sizes required for GWAS, but will become easier with the emergence

of large biobanks.

The interpretation of GWAS results is complicated as common

variant association signals can come from loci well outside of any

known genes and from loci that are hard to annotate functionally or

understand their precise role in the disorder. If a genomic region asso-

ciated with a trait harbors genes, it may well be >30 genes, making

the selection of which to carry forward in animal or organoid models

challenging (Sekar et al., 2016). Estimates show that it is possible to

create a hypothesis from about 80% of the associated and annotated

genes in GWAS underscoring the problem of gene selection

(Hawrylycz et al., 2012). Additionally, identified genomic regions can

interact with genes that are located further away on the same or other

chromosomes. Genetic variants located within the alpha-ketoglutarate

dependent dioxygenase (FTO) gene, for instance, are robustly associ-

ated with type 2 diabetes and obesity; however, these genetic vari-

ants interact with iroquois homeobox 3 (IRX3) which is several

hundred thousand base pairs away from FTO due to complicated fold-

ing structures of the human chromosomes. IRX3 appears to be the

gene most strongly affecting BMI (Claussnitzer et al., 2015; Smemo

et al., 2014). Genetic variants that are very far away from implicated

genes—not just neighboring genes—can have surprisingly strong

effects on the observed phenotype.

3.6 | Follow-on approaches

A common question raised after loci are identified via GWAS is:

“What next?” This is a complex question worthy of its own paper, and

indeed several authors have addressed the question extensively

(de Leeuw, Neale, Heskes, & Posthuma, 2016; Maier, Visscher, Robin-

son, & Wray, 2017; Yang et al., 2017). GWAS results can be prioritized

and carried forward into systematic analyses including polygenic risk

scoring (PRS), SNP-based genetic correlations, and pathway analyses

in order to estimate genetic liabilities, identify genetic overlap

between traits, understand extended biological pathways, and inform

studies of functional biology, such as animal, cell, and organoid stud-

ies. These follow-on approaches combine many SNPs of small effect

to capture the polygenic nature of complex traits. For our purposes in

addressing rigor and reproducibility in eating disorders genetics, we



will focus on a few widely employed methods. Reproducibility in ani-

mal (Peers, South, Ceuppens, Bright, & Pilling, 2014) and cell studies

(González, Boué, & Izpisúa Belmonte, 2011; Maherali & Hochedlinger,

2008; Young-Pearse & Morrow, 2016) are reviewed elsewhere.

3.7 | Polygenicity: Polygenic risk scoring

The results generated by GWAS (i.e., summary statistics) contain a

plethora of information. In addition to significant loci, genomic regions

below the genome-wide significance threshold of 5 × 10−8 also carry

valuable signal. To capture the full polygenic signal, one can calculate

PRS with software such as PLINK (Chang et al., 2015) or PRSice

(Euesden, Lewis, & O'Reilly, 2015). A PRS is the sum of the genetic

risk alleles carried by an individual, multiplied/weighted by their effect

size. The effect sizes are determined from the largest available discov-

ery GWAS. For instance, assume that A represents the risk allele at a

given locus. As all individuals carry two alleles at the same locus, they

can either carry two risk alleles (AA), one risk allele (A and T), or no risk

alleles (TT). The risk allele “count” in the locus is then multiplied by the

effect size (i.e., odds ratio or beta) and all risk loci are summed to form

the total PRS value. The higher the PRS, the more risk variants an indi-

vidual carries. For a practical guide see (Maier et al., 2017). PRS can be

incorporated into regression analyses as predictors of, for example,

case status, treatment outcome, or disorder severity (Figure 3).

PRS prediction studies require independent discovery and target

samples. Summary statistics from a GWAS for a trait or disorder in the

discovery sample are used to create the PRS, which is then applied to

individuals in the target sample. In a regression model, we can then

test how well the PRS derived from the discovery sample predicts

case status in the target sample.

Rigorous application of PRS should ensure that the discovery and

target samples are truly independent, with the same individuals or

close relatives not represented in both samples. In addition, genetic

variants in close physical proximity are not independent and therefore

must be clumped to a single marker (Dudbridge, 2013, 2016; Wray

et al., 2013, 2014). Inclusion of correlated markers would lead to over-

fitting of the model and inflate the association between PRS and trait.

It is also important to use two samples stemming from the same

ancestry group and to correct for population stratification within

these groups (see below). Furthermore, it is important to determine

the genome-wide significance threshold that should be used to decide

which genetic markers to include in the PRS. This can be achieved by

fitting regression models at different genome-wide significance

thresholds. This method, however, is subject to multiple testing

because fitting a regression at every p value threshold represents a

statistical test. This can be solved by permutation (Phipson &

Smyth, 2010).

PRS need to be interpreted on the population level, meaning the

absolute value of an individual's PRS needs to be compared with the

PRS of the rest of the population. The distribution of PRS, therefore,

is often divided into deciles. Furthermore, PRS should not be inter-

preted deterministically. Even though an individual may carry a sub-

stantial number of genetic risk variants (i.e., have a high PRS), they

may never develop a disorder due to either protective environmental

factors, absence of exposure to environmental triggers, or other

genetic factors that could contribute to resilience. The opposite can

also occur: an individual with a low PRS may develop a disorder

because of adverse environmental exposures or other genetic factors

that influence risk.

Other applications of PRS exist. PRS can be incorporated into

imaging genetics to investigate the relationship between an individ-

ual's polygenic load and brain structure (Dima & Breen, 2015). PRS

can also be used to investigate gene × environment interactions. For

example, Agerbo et al. (2015) discovered a positive G × E interaction

for schizophrenia where a higher schizophrenia PRS interacted with a

positive family history increasing liability for the psychiatric disorder.

However, this finding requires replication in a larger independent sam-

ple. Furthermore, genome-wide by environment interaction studies

FIGURE 3 Manhattan plot of genome-wide association study (GWAS) of body fat in UK Biobank. The x- axis displays all 22 autosomes and the

y axis the -log10 of the p values of the association of every genetic marker (i.e., single nucleotide polymorphism, SNP). The magenta line marks
the genome-wide significance level of 5 × 10−8 and the blue area underneath indicates SNPs that did not reach genome-wide significance but
may carry genetic information that can be summarized in polygenic risk scores (PRS) [Color figure can be viewed at wileyonlinelibrary.com]

wileyonlinelibrary.com


(GWEIS) can measure gene × environment interactions. For example,

an interaction between stressful life events and genetic variants asso-

ciated with depressive symptoms has been reported (Dunn et al.,

2016) and another larger investigation in the UK Biobank revealed an

interaction between self-reported traumatic experiences and genetic

variants associated with depression (Coleman et al., 2018). However,

both findings also require replication.

3.8 | Pleiotropy: Genetic correlations

Pleiotropy (i.e., the extent to which genetic variants influence two or

more traits) is common in genetics and may explain the frequent co-

occurrence of specific traits and disorders (i.e., comorbidity). The cal-

culation of SNP-based genetic correlations (rg) from GWAS summary

statistics is one way to determine the extent to which disorders or

traits share causal genetic variants. Like other correlations, SNP-based

rg have values between 0 and 1 and can be either positive or negative.

A positive rg indicates that the same genetic variants influence both

traits in the same direction, and a negative rg indicates that the same

genetic variants influence both traits, but in opposite directions. For

example, significant rg from the latest AN GWAS, revealed a positive

rg between AN and schizophrenia and between AN and a cross disor-

der phenotype from the PGC, both confirming that AN is genetically

related to other psychiatric disorders (Duncan et al., 2017). Intrigu-

ingly, a palette of significant positive genetic correlations emerged

with favorable metabolic parameters (high-density lipoprotein concen-

trations), and a parallel palette of negative genetic correlations with

what are considered to be unfavorable metabolic parameters (insulin

and glucose-related parameters). In addition, AN was negatively

genetically correlated with BMI and obesity measures. Together these

observations provide insight to the manner in which shared genetic

variants influence AN and other psychiatric and metabolic/anthropo-

metric traits and underscore the importance of addressing metabolic

as well as psychiatric aspects of the illness.

3.9 | Biology: Pathway analyses

Methods developed in systems biology allow us to discern functional

pathways that are activated in eating disorders. Genes rarely function

entirely independently, but rather are embedded in a highly complex

network of pathways that interact with each other leading to down-

stream effects. Molecular components that are parts of reactions,

such as nucleic acids and proteins, build networks of biological inter-

actions and are grouped into pathways within those databases. Exam-

ples of these biological pathways are innate immune function,

apoptosis, and neurotransmitter signaling.

Pathway analysis reduces the number of tests conducted by

grouping genes into pathways; however, correction for multiple com-

parisons remains necessary. An extensive review on pathway analyses

can be found by Kao et al. (2017). Although the current AN GWAS

was underpowered to detect significant pathways associated with the

disorder, larger sample sizes will lead to more robust signals and will

facilitate future pathway analyses (Duncan et al., 2017). Pathway anal-

ysis results have the potential to reveal tissues that are relevant to the

disorders, can inform downstream cell and animal studies that are

designed to further explicate the biology of the illness or aspects of

the illness, and can inform pharmacologic targets for interventions.

3.10 | Drug repurposing and development

If evidence emerges for a specific drug-related pathway from a

genome-wide study, the drug is more likely to show efficacy in the

treatment of the disorder under study (Nelson et al., 2015). GWASs

have already demonstrated the ability to identify and confirm previ-

ously known drug targets, such as the dopamine receptor D2 for

schizophrenia, the common target of antipsychotic medications

(Schizophrenia Psychiatric Genome-Wide Association Study (GWAS)

Consortium, 2011). The genetic signal from GWASs, therefore, can be

used as part of a drug discovery or drug repurposing pipeline to priori-

tize drug targets and their binding partners (Gaspar & Breen, 2017).

4 | FACTORS TO CONSIDER WHEN
EVALUATING RIGOR AND REPRODUCIBILITY
OF THE GENETICS OF EATING DISORDERS

4.1 | Phenotype

A phenotype is the set or a subset of the observable characteristics of

an individual. The validity and reliability of the phenotype studied is

an important factor to consider in evaluating the genetics literature. In

eating disorders genetics, many different phenotypes have been

employed. In the absence of biomarkers or laboratory values that reli-

ably index the presence or absence of an eating disorder, the most

valued phenotype in research has been a diagnosis conducted via a

structured clinical interview, by a trained clinician. Even though the

structured clinical interview was the benchmark against which all

other phenotypes were measured, it is still subjective, not perfectly

reliable, and a potential source of error in genetic studies of eating dis-

orders. This approach is also impractical and expensive for large stud-

ies. Moreover, diagnostic flux across eating disorder presentations is

well-documented and reduces the reliability of eating disorders diag-

noses (Castellini et al., 2011; Eddy et al., 2008; Ekeroth, Clinton, Nor-

ring, & Birgegård, 2013; Milos, Spindler, Schnyder, & Fairburn, 2005;

Schaumberg et al., 2018).

Other methods that capture diagnostic phenotypes include clini-

cal records, national patient registers, self-report of ever having had

an eating disorder, parent report, and self-report of symptoms that

BOX 2

Potential impact of relatedness

Imagine that John hears about a genetic study of AN and given

his history of the illness, decides to participate by donating a

blood sample for DNA. At a holiday gathering, he tells his three

siblings and all 21 of his cousins about the study. Although only

a few of them have talked openly about their eating disorder,

seven of them have had AN, and they all go home, login, and

sign up for the study.



are combined through an algorithm into a diagnosis. Each of these has

advantages and disadvantages that should be considered carefully.

The measurement of a phenotype should be also considered when

evaluating reproducibility, as different ways to define an eating disor-

der can measure slightly different characteristics or phenotypes,

which in turn affects the variants we discover.

With statistical power always being a critical consideration, and

the prevalence of eating disorders being fairly low, diagnostic catego-

ries have often been relaxed in order to increase the number of avail-

able cases. This boost in sample size, however, could theoretically

hamper gene discovery for the intended phenotype, as we might sam-

ple a more heterogeneous sample. For example, the twin-h2 of AN

decreases as diagnostic criteria broaden (Dellava et al., 2011).

Even more common is the use of self-report questionnaires that

capture dimensions purported to be relevant to the etiology of eating

disorders such as body dissatisfaction, dietary restraint, drive for thin-

ness, etc. In reality, we have no idea whether these constructs index the

same underlying biology/genetics that the core diagnoses of AN, BN,

and BED do. Yet we often assume that we are speaking about highly

related constructs. Some of the methods outlined above such as com-

puting SNP-based rg between these continuous phenotypes and eating

disorders diagnoses will allow us to address this question directly.

Other approaches to consider include incorporating continuous

dimensions from the Research Domain Criteria (RDoC) model to mea-

sure domains relevant to eating disorders such as reward, inhibition,

and social communication (Wildes & Marcus, 2015) and incorporating

objective measures including, for example, biomarkers, digital pheno-

typing, and accelerometer measurements to improve measurement

precision and reduce error.

4.2 | Relatedness

If the researcher is conducting a genetic case–control association

study comparing the genomes of cases to the genomes of controls,

and several related individuals are in the case sample, the sample

might be biased enough to cause trouble (see Box 2).

The fact that related individuals share large proportions of their

segregating alleles (i.e., genomes) on average (e.g., identical twins

100%; full siblings on average 50%; first cousins on average 12.5%)

increases the likelihood that related individuals carry the same genetic

alteration at a certain genomic locus (Figure 2; Astle & Balding, 2009).

If a sample includes cryptic relatedness, any observed genetic differ-

ences between cases and controls could actually be due to related-

ness rather than the eating disorder phenotype under investigation.

Control for this can be achieved calculating a relatedness matrix from

a genome-wide marker data that estimates the degree of relatedness

between individuals in the data set. These estimates can be included

in the statistical model, which controls for their genomic similarity and

enables the researcher to retain the participants (Hellwege et al.,

2017). Another approach is to exclude related individuals

(i.e., individuals who share >0.03%, such as second cousins or the

grandchild of a cousin) from all analyses (Coleman et al., 2016).

4.3 | Population stratification and leveraging diverse
populations

Population stratification refers to systematic differences in allele fre-

quency at certain positions throughout the genome in groups of indi-

viduals that are ancestrally from different geographical locations.

When an undetected or unaccounted for systematic bias in allele fre-

quencies between populations coincides with systematic difference in

a phenotype under investigation, it can cause false positive or nega-

tive results (Box 3; Hellwege et al., 2017).

Most researchers are aware of the threat of population stratifica-

tion when comparing broader ancestral groups (e.g., Africans, Asians,

Europeans, Native Americans, etc.), but population stratification can

even obscure results within the same continent or country, if ancestry

is not properly accounted for (Marchini, Cardon, Phillips, & Don-

nelly, 2004).

Population stratification reflects drift (i.e., random effect of alleles

being dropped out or being enriched in a population), bottlenecks

(i.e., a small ancestral population at any time point in the population's

history), and non-random mating (i.e., you are more likely to mate with

someone who lives near you and is ancestrally similar to you; Price,

Zaitlen, Reich, & Patterson, 2010). Even in this highly mobile world,

the pattern is remarkably visible in our genomes. An all-European

investigation by Novembre et al. (2008) basically recreated the geo-

graphical map of Europe by projecting genetic similarity between

study participants onto a two-dimensional space (Figure 4).

Most studies now use principal components to correct for ances-

try effects by including ancestry principal components as covariates

(Hellwege et al., 2017; Pritchard, Stephens, & Donnelly, 2000; Zhang,

Shen, & Pan, 2013). Although large ancestrally homogeneous samples

are powerful, including individuals from diverse ancestral backgrounds

can increase the power of a genetic study (Pulit, Voight, & de Bakker,

2010). Statistical simulations comparing European-only with diverse

ancestry GWAS showed that multiethnic samples increase power

especially for the detection of variants with frequencies lower than

5% (Pulit et al., 2010). Thus, admixed populations may be another

BOX 3

Example of population stratification

One classic example of an association caused by population

stratification is that of the genetic variant encoding increased

lactase persistence into adulthood with height. Lactase persis-

tence refers to the continued activity of the lactase enzyme

that is responsible for digesting lactose in milk into adulthood.

In most mammals (including humans), the activity of lactase is

dramatically reduced after weaning. In humans this results in

lactose intolerance. Epidemiologically, both height and lactase

persistence increase towards Northern Europe, although there

is no causal relationship between the two traits. Therefore, if

one analyses people of European ancestry without taking into

account their region of origin, the lactase persistence variant

and height appear to be associated. If one properly matches

cases and controls by their ancestry, e.g., Greeks with Greeks

and Scandinavians with Scandinavians, the association

disappears.



powerful and underused resource for genetic studies (Zhang &

Stram, 2014).

4.4 | Sample size

Large sample sizes are clearly essential to GWAS success, but the

question of how big is big enough is highly relevant to eating disorder

genetic rigor and reproducibility. For each psychiatric disorder, geno-

mic discovery has accelerated as sample size has increased. The cur-

rent goal of the PGC is to achieve sample sizes of 100,000 for each of

the ten disorders under study. However, the optimal sample size

depends to a large extent on the genetic architecture of the illness

under study. Figure 5 presents the discovery trajectory that can be

expected in complex traits such as eating disorders (adapted from Sul-

livan et al., 2018). This curve illustrates the “dead zone” when sample

sizes are inadequate for discovery of significant hits, through sample-

size-induced acceleration of discovery, to the ultimate asymptote. The

PGC recommends striving for a “good enough” point where “most

genes are identified at least once and the majority of genes in salient

biological processes are highlighted” (Sullivan et al., 2018). With this in

mind, it is clear that statistical power in the initial two AN GWAS

FIGURE 4 Population structure within Europe. Displayed are the genetic data of 1,387 Europeans based on principal components (PC1 vs. PC2).

The PC axes are rotated to emphasize the similarity to the geographic map of Europe. AL, Albania; AT, Austria; BA, Bosnia-Herzegovina; BE,
Belgium; BG, Bulgaria; CH, Switzerland; CY, Cyprus; CZ, Czech Republic; DE, Germany; DK, Denmark; ES, Spain; FI, Finland; FR, France; GB,
United Kingdom; GR, Greece; HR, Croatia; HU, Hungary; IE, Ireland; IT, Italy; KS, Kosovo; LV, Latvia; MK, Macedonia; NO, Norway; NL,

Netherlands; PL, Poland; PT, Portugal; RO, Romania; RS, Serbia and Montenegro; RU, Russia, Sct, Scotland; SE, Sweden; SI, Slovenia; SK, Slovakia;
TR, Turkey; UA, Ukraine; YG, Yugoslavia. Reprinted by permission from RightsLink: Springer Nature, Nature, Genes mirror geography within
Europe, Novembre et al.© (2008) [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 5 Hypothetical relation between numbers of cases and

genome-wide significant associations for a human complex disease or
trait. After an initial dead zone with no genome-wide significant
associations an inflection point will be reached. At this inflection point
the first genome-wide significant associations are detected and
mostly their number increases linearly. The initial dead zone is
dependent on the velocity of sample collection and effect sizes
(adapted from Sullivan et al., 2018) [Color figure can be viewed at
wileyonlinelibrary.com]

wileyonlinelibrary.com
wileyonlinelibrary.com


(Boraska et al., 2014; Wang et al., 2011) occupied the dead zone.

Combining these efforts and adding new samples has edged eating

disorders genetics into the discovery phase; however, many more

samples are needed in order to reach the “good enough” point.

A point worth considering is that an individual's genome has one

extraordinary advantage, namely stability over time. A given individual

has to be sampled and genotyped only once and the resultant data

can then be used repeatedly to address a host of research questions.

For example, if an individual was a regular heavy smoker and had BN,

their genotype data could contribute to both a smoking and a BN

GWAS. Given the need for large samples for genomic discovery,

mega-analytic and meta-analytic approaches are common and appro-

priate methods to combine GWAS data from large international con-

sortia. Such approaches are even more essential in the search for rare

variants (Evangelou & Ioannidis, 2013; Lin & Zeng, 2010; Sung et al.,

2014). Heterogeneity, however, can be introduced from various

sources, including phenotype definition, the inclusion of individuals

from diverse ancestral groups, and different genotyping platforms or

imputation software. Well-designed meta- and mega-analyses take

these issues into account and address them appropriately

(Evangelou & Ioannidis, 2013).

5 | RARE VARIATION AND COPY NUMBER
VARIANTS

The genetic architecture of a trait comprises all genetic variants, their

effect sizes, frequencies, interactions with each other, and with envi-

ronmental factors through epigenetic factors (Timpson, Greenwood,

Soranzo, Lawson, & Richards, 2018). Rare variants (i.e., present

in <1% of the population) can also contribute to etiology and can be

investigated via whole-genome (WGS) or whole-exome sequencing

(WES). In schizophrenia, this approach identified genetic variants that

were not captured by GWAS and are assumed to be etiologically rele-

vant (Richards et al., 2016). WGS, however, is still costly (around

$2,000 per genome) and therefore not yet affordable for large-scale

epidemiological studies (Schwarze, Buchanan, Taylor, & Wordsworth,

2018; Timpson et al., 2018). If we assume that rare variants are pre-

sent in about 1% of the population, in an optimal scenario, we would

need to sample 1,000 cases to identify 10 carriers, which should be

compared to at least 1,000 controls. This may require even larger sam-

ple sizes than GWAS. Copy number variants (CNVs) are large-scale

structural changes of the genome that span >1 kb (i.e., 1000 base

pairs), including insertions, deletions, and duplications. Most CNVs are

inherited, but some arise de novo (Thapar & Cooper, 2013). Carriers

of large, rare, pathogenic CNVs often show profound phenotypes

including intellectual disability and malformations, rendering them

unlikely candidates for eating disorders if not accompanied by other

severe clinical manifestations. However, it is possible that smaller

CNVs that are more difficult to analyze with current methods could

still be relevant for eating disorders. Investigations of CNVs in AN

have showed no association so far (Yilmaz et al., 2017), but efforts are

currently underway on larger samples.

6 | EPIGENETICS

Epigenetics investigate mechanisms of gene regulation that are hypoth-

esized to mediate the interaction of our genome with environmental

stimuli. Three types of epigenetic modifications have been described:

methylation, histone modifications, and noncoding RNAs. A compre-

hensive review on epigenetic modification and their mechanisms can

be found at (Bartel, 2009; Kundaje et al., 2015). All three modifications

change the accessibility of DNA and enable or disable the translation

of certain DNA segments into proteins. Epigenetic research in eating

disorders has not yet yielded consistent findings. Methylation is the

only epigenetic modification that has been studied and most studies

focused on AN. Very small sample sizes have hampered interpretation

and replication. For the future, longitudinal epigenome-wide associa-

tion studies (EWAS) that control for environmental confounders, such

as sex, age, smoking, alcohol consumption, medication, and diet, and

that include thousands of eating disorder cases, will complement other

genetic approaches. A comprehensive review of epigenetics is beyond

the scope of this article, but can be found elsewhere (Hübel, Marzi,

Breen, & Bulik, 2018; Thaler & Steiger, 2017).

7 | CONCLUSION

Intensifying the search for contributing genetic factors in eating disor-

ders is essential not only to explicate the biological causal mechanisms

underlying the illnesses, but also to improve our ability to understand

why environmental factors differentially influence individuals. We

acknowledge the important role of environment in the etiology of eat-

ing disorders. Indeed, the contribution of environment is inherent in

the fact that eating disorders are not 100% heritable. One advantage

of lagging behind other disorders in terms of progress in psychiatric

genetics, is that teams working on other conditions such as schizophre-

nia and major depressive disorder, have paved the way by developing

and refining methodologies and analytic strategies. This focuses our

efforts on amassing adequate sample sizes to enable the identification

of underlying biological processes. Rigorous genetic investigations will

not only improve our understanding of the molecular biology of eating

disorders, but will also allow us to identify resilience and risk factors

involved in the complex interplay of genetics, development, and a mul-

titude of environmental factors implicated in eating disorders (Wray

et al., 2014). Poorly conducted analyses, inaccurate interpretations, and

overly optimistic reporting of spurious associations can lead to a waste

of resources and distort our understanding of the biological mecha-

nisms for years to come (Henriksen, Nordgaard, & Jansson, 2017). Reli-

able and replicated results, in contrast, will stimulate follow-on

research that will lead to better understanding of the illnesses and ulti-

mately improvement of prevention and intervention for individuals

with eating disorders. In the long run, the confident identification of

genes and pathways implicated in eating disorders etiology will enable

the repositioning of available medications and even the development

of novel medications to alleviate symptoms or target causal or main-

taining mechanisms in eating disorders (Breen et al., 2016).

In addition, being able to quantify genetic risk through the use of

PRS and other techniques not yet developed, may improve our ability to



determine individual risk, compare environmental effects between high-

or low-risk individuals with and without eating disorders to identify trig-

gering and/or protective environmental effects, offer preventative inter-

ventions (if appropriate), be more vigilant for early symptoms in high-risk

individuals, and inform personalization of treatment. We underscore that

genetic risk is only one factor in determining whether an individual

develops a given illness. Even someone with a high PRS for AN may

never develop the illness (e.g., due to other resilience or protective genes

and/or under favorable environmental conditions). Likewise, someone

with low genetic risk could develop AN for other reasons (e.g., other

genetic risk factors or high burden of adverse environmental exposures).

Ultimately, the goals of genetic research are to deliver rigorous “action-

able” findings for eating disorders, defined as genomic results that

(a) reveal the fundamental biology of the illnesses, (b) inform clinical prac-

tice, and (c) deliver new therapeutic targets (Sullivan et al., 2018).
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