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Recent advance in technology enables researchers to
gather and store enormous data sets with ultra high di-
mensionality. In bioinformatics, microarray and next gen-
eration sequencing technologies can produce data with tens
of thousands of predictors of biomarkers. On the other hand,
the corresponding sample sizes are often limited. For clas-
sification problems, to predict new observations with high
accuracy, and to better understand the effect of predictors
on classification, it is desirable, and often necessary, to train
the classifier with variable selection. In the literature, sparse
regularized classification techniques have been popular due
to the ability of simultaneous classification and variable se-
lection. Despite its success, such a sparse penalized method
may have low computational speed, when the dimension of
the problem is ultra high. To overcome this challenge, we
propose a new sparse REgression based multicategory Clas-
sifier (REC). Our method uses a simplex to represent differ-
ent categories of the classification problem. A major advan-
tage of REC is that the optimization can be decoupled into
smaller independent sparse penalized regression problems,
and hence solved by using parallel computing. Consequently,
REC enjoys an extraordinarily fast computational speed.
Moreover, REC is able to provide class conditional probabil-
ity estimation. Simulated examples and applications on mi-
croarray and next generation sequencing data suggest that
REC is very competitive when compared to several existing
methods.
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Probability estimation, Simplex, Variable selection.

1. INTRODUCTION

Classification is an important supervised learning prob-
lem. With a training data set containing both predictors and
labels, the main goal of classification is to build a classifier
and predict labels for new instances with only predictors ob-
served. Classification problems are prevalent in many scien-
tific disciplines. For example, in cancer research, the patients
can benefit most from the treatments if the corresponding
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prediction of their cancer subtype is accurate. In artificial in-
telligence, a precise classifier can help the machines to iden-
tify the characters of different people’s handwriting with a
very high accuracy. Various classifiers have been proposed
in the literature. See, for example, Hastie et al. (2009) and
Zhang and Singer (2010) for a comprehensive review.

In the last decade, fast growing technology has enabled us
to gather massive data sets. For instance, in bioinformatics,
microarray data sets often contain the expression levels for
tens of thousands of genes (see, for example, Zhang et al.,
2001, 2003, and the references therein). The next genera-
tion sequencing data can provide us with information on bil-
lions of read alignments. In neuroimaging (Yue et al., 2010;
Zhang and Zhang, 2010), each image can be converted into
matrices with millions of elements. In contrast to the ultra
high dimensionality of such data sets, the number of observa-
tions is often small, partly due to the high cost of data collec-
tion. Such huge and complex data sets with only handful ob-
servations pose unprecedented challenges for existing analyt-
ical tools. In the literature, margin based classifiers from the
machine learning community can handle high dimensional
problems, and consequently are becoming increasingly pop-
ular. Typically, one can write the optimization problems of
margin based classifiers in the loss + penalty form. The loss
term measures the goodness of fit of the classifier, and the
penalty controls the complexity of the classifier to prevent it
from overfitting. Besides margin based classifiers, tree-based
classification methods are also very effective and commonly
used for practical problems (Zhang, 1998; Srivastava et al.,
2002).

In this paper, we focus on margin based classifiers. Bi-
nary margin based classifiers have been extensively studied
in the literature. For example, the penalized logistic regres-
sion (Lin et al., 2000), the Support Vector Machine (SVMs,
Boser et al., 1992), and the Adaboost (Friedman et al.,
2000) are well known binary margin based classifiers. De-
spite the success of binary margin based classifiers, their
extension for multicategory classification can be challeng-
ing. To handle a multicategory classification problem with k
classes using margin based methods, one possible approach
is to use a sequence of binary classifiers, such as the one-
versus-one and one-versus-rest procedures. In some situa-
tions, these methods may be suboptimal. For instance, in the



binary margin based classifiers, it is sufficient to use one
single function for classification. Analogously, for a k-class
problem, it should suffice to use k − 1 classification func-
tions. However, the regular simultaneous classifiers use k
classification functions and reduce to k − 1 by the sum-to-
zero constraint. This can be inefficient, and the optimiza-
tion problem becomes more involved (Zhang and Liu, 2014).
Recently, Lange and Wu (2008), Wu and Lange (2010),
Wu and Wu (2012) and Zhang and Liu (2014) considered
a new framework of simplex based classification, in which
a classification function vector with length k − 1 is used,
instead of the regular k functions. In the k − 1 dimensional
Euclidean space where this new classification function vector
lies, a centered simplex is constructed with k vertices, and
each class is associated to one vertex of the simplex. This
new classification framework is free of the explicit sum-to-
zero constraint used by the regular simultaneous classifiers,
and hence can enjoy a faster computational speed. Details
of the simplex based classification can be found in Section 2.

In this paper, we propose a sparse REgression based mul-
ticategory Classifier (REC) that employs the simplex classi-
fication structure with the least distance prediction rule and
the squared error loss. We show that with the L1 penalty,
the corresponding optimization can be decoupled into k− 1
smaller LASSO problems (Tibshirani, 1996), and one can
employ parallel computing to further boost the computa-
tional speed. Consequently, REC is very efficient for high
dimensional classification problems with a large number of
classes. We demonstrate in Sections 4 and 5 that REC en-
joys an extraordinary fast computational speed. In particu-
lar, REC is able to handle ultra high dimensional problems
with over 50,000 predictors on one processor, while the op-
timization problems of many other simultaneous classifiers
with variable selection can be computationally intensive.
Moreover, because the squared error loss is differentiable,
we show that REC can naturally be used to estimate class
conditional probabilities, which can be very helpful in many
practical problems.

The rest of the paper is organized as follows. In Section 2,
we review some existing multicategory classifiers, and pro-
pose our REC method. Section 3 studies the statistical prop-
erties of the REC approach. We compare the performance
of REC and some other methods with simulated examples
in Section 4. We conduct analyses on three real cancer re-
search data sets in Section 5. Some discussions are provided
in Section 6. All proofs are collected in the appendix.

2. METHODOLOGY

For a classification problem, we denote by Y the label,
and by X = (X1, . . . , Xp)

T the predictor vector. The pair
(X, Y ) is assumed to follow a fixed but unknown distribu-
tion P(X, Y ). We observe the training data set {(xi, yi); i =
1, . . . , n} i.i.d. from P(X, Y ), and build a classifier with pre-
diction ŷ(·). For any new instance with only x observed, we

one-versus-one scheme, when some classes have relatively 
small sample sizes, it was shown that weighted learning can 
be beneficial and crucial (Qiao et al., 2010). However, how 
to choose the weights among the sequence of binary clas-
sifiers remains unclear. Moreover, when using SVMs, the 
one-versus-one approach may have ties for different classes. 
For the one-versus-rest approach, it can be Fisher inconsis-
tent if there is no dominating class (Liu, 2007). Therefore, 
it is desirable to study classifiers that consider all k classes 
simultaneously in one optimization problem.

In the simultaneous margin based classification litera-
ture, a common approach is to use a classification func-
tion vector of length k. In particular, each class is associ-
ated with one element of the classification function vector, 
and the prediction rule is based on which element is the 
largest. To reduce the parameter space and to obtain some 
theoretical results such as Fisher consistency, a sum-to-
zero constraint on the classification function vector is com-
monly used. Many existing approaches were proposed in this 
framework, for example, Lee et al. (2004), Zhu and Hastie 
(2005), Liu and Shen (2006), Tang and Zhang (2006), 
Zhu et al. (2009), Park et al. (2010), Liu and Yuan (2011) 
and Zhang and Liu (2013).

In high dimensional classification problems, it is well 
known that when many noise predictors are included, proper 
variable selection can help to build a more accurate clas-
sifier (Fan and Li, 2006). For example, in microarray and 
next generation sequencing data sets, many potential house-
keeping genes are included in the set of predictors. With-
out proper variable selection, these noise variables would be 
used in the resulting classifier, which can lead to bias in 
the estimation of the classification function. Hence, appro-
priate screening of the predictors can be crucial for clas-
sification accuracy and interpretability. In ultra high di-
mensional problems, classical model selection methods such 
as stepwise selection can be very unstable. To overcome 
this challenge, it is desirable to train classifiers with build-
in variable selection (Zhang et al., 2006; Wang and Shen, 
2007). However, for many existing simultaneous classifiers, 
solving the optimization problem with sparse penalties can 
be computationally intensive, and sometimes the algorithm 
may fail to converge. For example, for L1 regularization, 
multicategory Support Vector Machines (SVMs) proposed 
by Vapnik (1998), Crammer et al. (2001), Lee et al. (2004), 
Wang and Shen (2007) and Liu and Yuan (2011) use linear 
programming. The ψ-learning proposed by Liu et al. (2005) 
and Liu and Shen (2006) uses difference convex algorithm, 
which essentially requires inner steps of linear programming. 
When the data set is high dimensional, linear programming 
can be very slow. Therefore, it is desirable to have clas-
sifiers with efficient algorithms to solve the corresponding 
large scale optimization problem.

To improve the computational speed, one can first con-
sider to remove the sum-to-zero constraint in the optimiza-
tion of regular multicategory classifiers. In particular, for



use ŷ(x) as its predicted label. The goal is to minimize the
classification error rate, namely, pr(Y �= ŷ(x)), where the
probability is taken with respect to the joint distribution
P(X, Y ).

In a multicategory classification problem with k classes,
we use the label Y ∈ {1, . . . , k}. To consider the mul-
tiple classes together, regular simultaneous margin based
classifiers map x to a k-dimensional classification func-
tion vector f(x) = (f1(x), . . . , fk(x))

T . The correspond-
ing prediction rule is ŷ(x) = argmaxj∈{1,...,k} fj(x). Note
that fj is not an estimate of the conditional probabil-
ity for class j. We will discuss their connection for the
analysis of consistency. To construct f(x), it is common
to apply a sum-to-zero constraint on f to reduce the
parameter space and to ensure some desirable theoreti-
cal properties of the classifier. Namely, we constrain f
such that

∑k
j=1 fj(x) = 0 for all x. Many existing si-

multaneous margin based classifiers employ this constraint.
See, for example, Lee et al. (2004), Zhu and Hastie (2005),
Liu and Shen (2006), Tang and Zhang (2006), Zhu et al.
(2009), Liu and Yuan (2011) and Zhang and Liu (2013).
Note that the fitted classification functions can be used to
estimate class conditional probabilities after some transfor-
mation (such as the inverse logit link in binary logistic re-
gression). See, for example, Zhang and Liu (2013) for a dis-
cussion.

As discussed in Section 1, for regular classifiers with
k classification functions, the sum-to-zero constraint on f
makes the optimization problem more involved. To remove
the sum-to-zero constraint, one possible approach is to con-
sider classification with a k-vertex simplex in a (k − 1)-
dimensional space (Lange and Wu, 2008; Wu and Lange,
2010; Wu and Wu, 2012; Zhang and Liu, 2014). In partic-
ular, let Y = {Yj ; j = 1, . . . , k}, and define

Yj =

{
(k − 1)−1/21, if j = 1,

− 1+
√
k

(k−1)3/2
1+

√
k

k−1ej−1, if 2 ≤ j ≤ k,

where ej ∈ Rk−1 is a vector of 0’s except its jth element
is 1, and 1 = (1, . . . , 1)T (see Figure 1 for k = 3). It can
be verified that each vector Yj has Euclidean norm 1, and
the distances between any pair (Yi,Yj) are equal. Thus,
{Yj ; j = 1, . . . , k} form a symmetric simplex in the (k− 1)-
dimensional space. We then assign each class to a vector
in {Yj ; j = 1, . . . , k}. Without loss of generality, suppose
class j is assigned to Yj ; j = 1, . . . , k. The classification
function vector maps x from the p dimensional space into
f(x) = (f1(x), . . . , fk−1(x))

T ∈ Rk−1. In terms of predic-
tion, Zhang and Liu (2014) proposed to use the least an-
gle rule. In particular, observe that each f defines k an-
gles with respect to Yj , namely, ∠(Yj ,f); j = 1, . . . , k. The

least angle prediction rule is ŷ = argminj ∠(Yj , f̂(x)), which

is equivalent to ŷ = argmaxj〈f̂(x),Yj〉, where 〈x1,x2〉 =

xT
1 x2 is the inner product of x1 and x2. See Figure 1 in

Zhang and Liu (2014) for an illustration of the least angle

Figure 1. The prediction rule when k = 3. The solid
green/red/blue lines correspond to classes 1/2/3. The

mapped f is closest to Y2 (2 in the figure) as d2 < d3 < d1,
hence the predicted label is 2. Moreover, for any x whose
mapped f is in the red region, its corresponding prediction

would be class 2.

prediction rule. Here, the terms 〈f̂(x),Yj〉 can be regarded
as functional margins in this simplex classification structure.
Based on the least angle prediction rule, Zhang and Liu
(2014) proposed the angle-based classifiers, which can be re-
garded as margin based classifiers in this new simplex-based
classification framework. Compared to the original classifi-
cation framework using k functions, the angle-based classi-
fiers proposed by Zhang and Liu (2014) transfer the explicit
sum-to-zero constraint onto the new functional margins in
this simplex representation, namely,

∑k
j=1〈f(x),Yj〉 = 0,

which can be regarded as an implicit sum-to-zero prop-
erty. Zhang and Liu (2014) showed that this can help to
boost computational speed and improve classification per-
formance.

In the literature, Lange and Wu (2008), Wu and Lange
(2010) and Wu and Wu (2012) proposed to use the least dis-

tance prediction rule ŷ(x) = argminj ‖f̂(x)−Yj‖2. The idea
is that for any observation (x, y), we encourage the mapped
classification function f(x) to be close to Yy. See Figure 1
for a simple example of the least distance prediction rule
with k = 3. Lange and Wu (2008), Wu and Lange (2010)
and Wu and Wu (2012) proposed to use the ε-insensitive

loss function to measure the closeness of f̂ and Yy. Note
that both prediction rules split the mapped Rk−1 space into
k non-overlapping sets Cj ; j = 1, . . . , k, where Cj corre-



sponds to class j. In other words, for a new observation x,
its predicted label would be class j if f̂(x) ∈ Cj . Moreover,
one can verify that these two prediction rules are essen-
tially equivalent, in the sense that the non-overlapping sets
Cj ; j = 1, . . . , k of the least angle prediction rule are identi-
cal to that of the least distance rule. However, the classifiers
are based on different motivations, and hence they use dif-
ferent classification loss functions.

In this paper, we propose to use the squared error loss in
the distance based classification framework. In particular,
we propose the REgression based multicategory Classifier
(REC), where the corresponding optimization problem can
be written as

min
βj ,β0j ; j=1,...,k−1

1

n

n∑
i=1

‖f(xi)− Yyi‖22 + λJ(f).(1)

For a given observation in the training data set, the squared
loss term measures the closeness of the mapped f and its
corresponding vertex of the simplex by the Euclidean dis-
tance. Because the data sets we consider are high dimen-
sional, we focus on linear learning in this paper. Specifically,
we let fj(x) = βT

j x+β0j for j = 1, . . . , k−1, and choose the
L1 regularization on f to prevent it from overfitting and to
perform variable selection simultaneously. In other words,

J(f) =
∑k−1

j=1 ‖βj‖1 =
∑k−1

j=1

∑p
l=1 |β

(l)
j |, where β

(l)
j is the

lth element of βj . Note that the lth variable does not con-

tribute to the final classifier if and only if β̂
(l)
j = 0 for all

j = 1, . . . , k−1. In (1), λ is a tuning parameter that controls
the balance between the loss term and the penalty term. In
practice, a proper choice of λ is crucial. More discussions on
how to choose λ are provided in Sections 4 and 5.

The optimization (1) is a (k−1)(p+1)-dimensional prob-
lem, which is typically of the same dimension as the regu-
lar simultaneous margin based classifiers with the sum-to-
zero constraint. However, REC is free of the explicit sum-to-
zero constraint, and hence (1) enjoys a faster computational
speed. More importantly, we show that (1) can be decou-
pled into k − 1 separate standard LASSO regression prob-
lems, each with dimension p + 1. Hence the computational
speed of (1) can be greatly boosted further using parallel
computing.

To begin with, observe that the loss term in (1) is a
quadratic function, and hence can be decomposed into the
sum of distances on each coordinate. The L1 penalty in (1)
is separable. Based on these facts, we can rewrite (1) as

min
βj ,β0j

k−1∑
j=1

[ 1
n

n∑
i=1

(fj(xi)− Y(j)
yi

)2 + λ

p∑
l=1

|β(l)
j |

]
,(2)

where Y(j)
yi is the jth element of Yyi . Note that for a given

j, each component in (2) is a LASSO regression problem as
follows

min
βj ,β0j

1

n

n∑
i=1

(
(xT

i βj + β0j)− Y(j)
yi

)2
+ λ

p∑
l=1

|β(l)
j |,

which can be solved very efficiently. In particular, there
are several existing R packages that can be used to solve
LASSO problems, including LARS (Efron et al., 2004) and
GLMNET (Friedman et al., 2010). Note that the parame-
ter sets involved in different LASSO problems are disjoint.
By decoupling (1) into k− 1 smaller optimization problems
and using parallel computing, REC can enjoy an extraordi-
narily fast computational speed. We confirm this advantage
through numerical studies in Sections 4 and 5.

For real applications, it is common to have problems
where the numbers of observations in various classes are
significantly different. Moreover, it is possible that the cost
of misclassifying class j1 to j2 is different from that of
class j3 to j4, where the ordered pairs (j1, j2) �= (j3, j4).
In these cases, it is known that standard learning such
as (1) can be suboptimal (Qiao and Liu, 2009). To allevi-
ate this difficulty, one can use weighted learning with ap-
propriately chosen weights for the loss terms of different
classes. See Qiao and Liu (2009) and the references therein
for more details on how to choose the weights. Our REC
method can be generalized to the weighted REC as fol-
lows.

Suppose wi is the weight for the ith observation. We can
rewrite (1) as

min
βj ,β0j ; j=1,...,k−1

1

n

n∑
i=1

wi‖f(xi)− Yyi‖22 + λJ(f),(3)

and one can verify that with linear learning and the L1

penalty, (3) is equivalent to solving k − 1 subproblems

min
βj ,β0j

1

n

n∑
i=1

wi

(
(xT

i βj + β0j)− Y(j)
yi

)2
+ λ

p∑
l=1

|β(l)
j |,(4)

for j = 1, . . . , k − 1. Since many existing packages involve
weighted learning, we can obtain the solution to (4) accord-
ingly.

We would like to point out that in the literature, be-
sides the L1 penalty we used in (2) and (4), there are many
other penalties that can perform automatic variable selec-
tion. For instance, when several predictors are correlated,
LASSO tends to select only one among them (Efron et al.,
2004). If it is desirable to select these predictors together,
one can use a combination of the L1 and L2 penalties, such
as the elastic net (Zou and Hastie, 2005). Moreover, one can
use non-convex penalties, for example the smoothly clipped
absolute deviation (Fan and Li, 2001) and the minimax con-
cave penalty (Zhang, 2010), to estimate the parameters with
the oracle property. Among these regularization methods,
many are separable penalties. In this case, one can verify
that the REC method can still enjoy the decomposition
property, which leads to a great boost in the computational
speed.

In the next section, we show that besides the advantage
in computation, REC also enjoys some desirable statistical
properties. In particular, we prove that REC is Fisher con-



sistent, and is able to provide class conditional probability
estimation.

3. STATISTICAL PROPERTIES

3.1 Fisher consistency

Before introducing the Fisher consistency, we define some
further notation. For a given X = x, let Pj(x) = pr(Y =
j|X = x) be the class conditional probability for class j.
Furthermore, let E(‖f − YY ‖22|X = x) be the conditional
expected loss. A measurable function f∗(x) is called the
theoretical minimizer of the conditional expected loss, if

E(‖f∗ − YY ‖22|X = x) = inf
f

E(‖f − YY ‖22|X = x).

For a classification problem, one can verify that the clas-
sifier ŷ∗(x) = argmaxj Pj(x) attains the minimal classifi-
cation error rate for any future observation x, and is often
referred to as the Bayes classifier. Notice that minimizing the
expected classification error rate E

(
I(Y �= ŷ(X))

)
can be

regarded as minimizing the 0− 1 loss function, which is dis-
continuous and non-convex. Consequently, directly finding a
classifier that minimizes the classification error rate on the
training data set can be difficult. To overcome this challenge,
one can employ surrogate loss functions, such as the squared
loss of our REC method in (1). Fisher consistency requires
that, if one uses f∗ as the classifier, the prediction would
be identical to that of the Bayes classifier. In particular,
for an observed x, suppose Pj0(x) is the unique maximum
among {P1(x), . . . , Pk(x)}. Fisher consistency implies that
argminj=1,...,k E(‖f∗(x)−Yj‖22|X = x) = j0 and is unique.
It ensures that with infinitely many training samples and
f in a rich enough functional class, the resulting classifier
achieves the optimal classification error rate. Fisher consis-
tency is a fundamental requirement for classifiers. For the
squared error loss in (1) of our REC method, we have the
following theorem.

Theorem 1. The squared error loss in (1) is Fisher con-
sistent.

Theorem 1 guarantees that if the underlying func-
tional space is rich enough, REC is asymptotically consis-
tent.

3.2 Class conditional probability estimation

In practice, estimation of the class conditional probabili-
ties Pj(x) can provide valuable information on the strength
of the prediction. It can be an important by-product besides
label prediction. How to estimate class conditional proba-
bility accurately has drawn much attention in the litera-
ture. See, for example, Wang et al. (2008), Wu et al. (2010),
Appel et al. (2011), Zhang et al. (2013) and the reference
therein. In this section, we show that our REC method can
naturally provide class conditional probability estimation,
and derive the corresponding formula.

To estimate {Pj(x); j = 1, . . . , k}, a common approach
is to explore the relationship between Pj(x)’s and f∗(x). In
particular, assume that Pj(x) = gj(f

∗) is a function of f∗.

Once the classifier f̂ is obtained, one can substitute f∗(x)

by f̂(x) in gj(·), and this leads to an estimation of the class
conditional probabilities. The following theorem gives the
formulas gj(·) explicitly for our REC method.

Theorem 2. Denote by P = (P1, . . . , Pk)
T the vector of

class conditional probabilities. Let 1 be the vector of length
k with each element being 1, and let Ȳ = (YT ,1)T be a k-
dimensional square matrix. For the REC method, we have
P = Ȳ−1(f∗T ,1)T .

Consequently, for a given f̂ , the estimated class condi-

tional probabilities are P̂ = Ȳ−1(f̂
T
,1)T . Note that we use

transformation of f as in Theorem 2 to estimate the class
conditional probabilities, which already involves the prop-
erties that

∑k
j=1 Pj = 1. See the proof of Theorem 2 in the

appendix for more details.
We would like to point out that the formula given in The-

orem 2 does not guarantee P̂j ∈ [0, 1] for practical problems.

To ensure that all P̂j ’s are in the interval [0, 1] and they sum

up to 1, we consider the following modification on P̂j with

P̂ scaled
j =

P̂j −mini=1,...,k P̂i∑k
m=1(P̂m −mini=1,...,k P̂i)

.(5)

Note that a similar modification was previously used in
Park et al. (2010) and Zhang and Liu (2013). The proposed
scaling function is not unique, and there can be other scaling
methods to make the resulting probabilities proper. Further-
more, the scaling function (5) does not affect the consistency
of our method.

As a remark, we note that Lange and Wu (2008),
Wu and Lange (2010) and Wu and Wu (2012) proposed to
use the ε-insensitive loss ‖Yy−f(x)‖ε = max{‖Yy−f(x)‖−
ε, 0} with some small ε to measure the closeness between f
and Yy. Because the ε-insensitive loss is not differentiable,
the corresponding methods do not provide class conditional
probability estimation.

4. SIMULATED EXAMPLES

In this section, we demonstrate the performance of REC
via three simulated examples. For each example, we generate
data such that the label depends only on a few predictors
(< 20), and we add noise covariates into the problem. We
choose the dimension of covariates to be 100, 1,000, 10,000
and 50,000, and report the corresponding classification per-
formance. To select the best tuning parameter, we build
classifiers on a grid of 30 different tuning parameters using
the training data set, and the best classifier that minimizes
the prediction error rate on a separate tuning data set is se-
lected. We then test the prediction accuracy of the selected
classifier on a testing data set with 105 observations. We



Table 1. The average classification error rates, probability mean absolute error (MAE) and computational time (in seconds)
for the simulated data sets

Example 1 Example 2 Example 3
dim Error MAE Time Error MAE Time Error MAE Time

100 SVM1 0.128 - 32.61 0.131 - 11.37 0.183 - 10.33
SVM2 0.131 - 41.92 0.126 - 13.26 0.181 - 11.25
SVM3 0.141 - 35.28 0.133 - 12.27 0.177 - 11.19
PSVM 0.135 0.082 16.68 0.140 0.147 6.672 0.179 0.155 6.532
VDA 0.129 - 9.823 0.122 - 3.319 0.183 - 3.190
REC 0.129 0.078 5.382 0.125 0.121 1.106 0.179 0.129 0.971

1,000 SVM1 0.139 - 100.4 0.148 - 17.82 0.213 - 15.48
SVM2 0.153 - 133.2 0.139 - 23.61 0.207 - 21.92
SVM3 0.161 - 127.4 0.151 - 21.97 0.201 - 19.79
PSVM 0.147 0.091 88.38 0.144 0.150 12.34 0.229 0.161 10.53
VDA 0.136 - 59.42 0.142 - 5.140 0.208 - 4.786
REC 0.137 0.080 26.81 0.139 0.127 1.859 0.203 0.135 1.655

10,000 SVM1 - - - - - - - - -
SVM2 - - - - - - - - -
SVM3 - - - - - - - - -
PSVM 0.159 0.093 919.3 0.166 0.153 189.4 0.239 0.166 214.4
VDA 0.144 - 412.9 0.143 - 59.77 0.247 - 69.48
REC 0.139 0.081 154.6 0.141 0.131 5.793 0.238 0.138 5.900

50,000 SVM1 - - - - - - - - -
SVM2 - - - - - - - - -
SVM3 - - - - - - - - -
PSVM - - - - - - - - -
VDA 0.149 - 3557 0.167 - 341.8 0.216 - 339.9
REC 0.143 0.081 412.2 0.139 0.132 24.92 0.203 0.140 26.77

P (X|Y = j) ∼ N(μj , σ
2I2); j = 1, . . . , 4, where μj are

equally distributed on the unit circle, and σ is chosen such
that the Bayes error is 0.1. The training and tuning data
sets both have sample size 100. We then add noise covari-
ates, which are i.i.d. from N(0, 0.01).

Example 3. We generate a four class example on R2. For
each class, the joint distribution ofX1 andX2 is normal. The
centers for the classes 1−3 are uniformly distributed on the
unit circle, while the fourth class has the center (0, 0). The
covariance matrices are chosen such that the Bayes error is
0.1. Then we add noise covariates from i.i.d. N(0, 0.01) to
the data. There are 100 observations used for the training
and another 100 for the tuning procedure.

The simulation results are reported in Table 1. One can
see that for problems with dimension ≥ 10,000, the SVM
methods do not work because the linear programming takes
too long to converge. For dimension = 50,000, the PSVM
method does not work due to the large dimension. The
VDA method is free of the commonly used sum-to-zero con-
straint and enjoys a faster computational speed, compared
to the other existing classifiers. However, because the opti-
mization problems for VDA are solved by the majorization-
minimization (MM) algorithm, which requires inner loops
for each MM step, the corresponding optimization can be
computationally intensive for ultra high dimensional prob-
lems. Compared to existing simultaneous classifiers, REC

perform 1,000 replicates for each example, and report the 
average misclassification error rates. We also report the time 
spent on each replicate as a measurement of computational 
speed. We compare the performance of REC with some 
existing simultaneous classifiers: Vapnik (1998) (SVM1), 
Crammer et al. (2001) (SVM2), Lee et al.  (2004) (SVM3), 
Tang and Zhang (2006) (PSVM) and Wu and Lange (2010)
(VDA). Note that we modify the PSVM method proposed 
in Tang and Zhang (2006) to incorporate linear learning.

For variable selection, each existing classifier is trained 
with the L1 penalty. For class conditional probability esti-
mation, we report the mean absolute error (MAE), E|p − p̂|
only for REC and the existing PSVM method, as the simul-
taneous SVMs and VDA do not provide class conditional 
probability estimation directly. All simulation examples are 
performed using R, on a 2.30 GHz AMD processor.

Example 1. We conduct a twenty-class example in R19. 
The marginal distribution of X|Y is normal with equal vari-
ance. The mean vectors of different classes form a simplex 
in R19, and the variance parameters are chosen such that 
the Bayes error is at 0.05. To increase the dimension, we add 
noise covariates following i.i.d. N(0, 0.01) distribution into 
the data set. We generate the training and tuning data sets, 
each of size 400.

Example 2. In this example, we generate a four class 
data set, where pr(Y = j) = 1/4; j = 1, . . . , 4, and



enjoys an extraordinary fast computational speed. One can
see that when the dimensionality is ultra high, REC is at
least 10 times faster than VDA and the other methods. In
terms of classification error rates and probability estimation,
REC is highly competitive as well.

5. REAL DATA ANALYSIS

In this section, we explore the classification performance
of REC through the analysis of three high dimensional can-
cer research data sets. We compare REC with several exist-
ing methods used in Section 4, and demonstrate that REC
can often work competitively in terms of classification accu-
racy and computational speed. Because some existing meth-
ods cannot analyze the full data sets directly due to the ul-
tra high dimensionality of the predictors, we select certain
subsets of the predictors from each data set to explore the
classification performance. In particular, for each predictor,
we compute its ratio of the within-group variance and the
between-group variance. Then we select a subset of predic-
tors that have the smallest ratios among all predictors in the
data. For demonstration, we choose 1,000, 5,000 variables,
and the entire data set for analysis in all three examples. To
select the best tuning parameter, because we do not have
separate tuning and testing data sets, within each replicate,
we choose around 5/6 of the observations as the training
data set, and the rest as the testing set. The best tuning pa-
rameter is selected via a five-fold cross validation. For each
data set, we perform this data splitting process 1,000 times.

The first data set contains the measurement of mi-
croarray gene expression levels for patients with four dif-
ferent Glioblastoma Multiforme (GBM) Cancer subtypes,
namely, Proneural, Neural, Classical and Mesenchymal
(Verhaak et al., 2010). The expression levels of 12,042 genes
for 202 patients are available. For the REC analysis of 1,000
genes, there are 122 genes that are selected more than 500
times out of 1,000 replicates. We show a heatmap of these
122 genes in Figure 2. One can see that each GBM sub-
type has its signature group of genes. This is consistent with
Verhaak et al. (2010).

The second data set is obtained from The Cancer Genome
Atlas (TCGA) research network (http://cancergenome.nih.
gov/). This is a study of four types of squamous lung can-
cers (LUNG): Basal, Classical, Secretory and Primitive. The
numbers of samples within each group are 43, 64, 27 and 42,
respectively. We identify the alternative splicing locations
using the aligned cumulative transcript graph (Singh et al.,
2011). The total number of alternative splicing locations, in-
cluding annotated and novel, are 422,000. At each of these
locations, we extract the percentage spliced-in of the most
expressed splices. The locations with total read coverage of
less than 5 are considered unreliable and are marked as miss-
ing. After we pre-screen the missing values, there are 70,730
predictors available for the classification problem of the four
subtypes of squamous lung cancer.

Figure 2. Heatmap for the top 122 genes selected in the
GBM data set.

For the third data set, we analyze 819 RNA-seq samples
from the TCGA breast cancer study (BREAST), includ-
ing 91 normal samples and 728 tumor samples. The normal
samples are from two molecular subtypes: normal (n1 = 79)
and Luminal A (n2 = 12), and the tumor samples are from
five molecular subtypes of breast cancer including Luminal
A (n3 = 359), Luminal B (n4 = 170), Basal-like (n5 = 123),
HER2-enriched (n6 = 60) and Normal-like (n7 = 16). The
different patients and subtypes may reflect different mix-
tures of cells and possibly different cancer mechanisms. We
use the transcriptomic features extracted from the RNA-
seq data as the predictors in this study. A total of 344,615
splice junctions are extracted from the RNA-seq read align-
ments, where the corresponding raw data can be found
in the TCGA CGHUB repository (https://cghub.ucsc.edu/
datasets/data sets.html). The expression of each splice junc-
tion in every sample, as measured by the number of spliced
reads, is calculated and used as the expression features of the
transcriptomes. After pre-screening, we have 55,188 splice
junctions without missing values. Because the sizes of differ-
ent classes are quite unbalanced, we use weighted learning,
where the weights are proportional to the reciprocal of class
sizes (Qiao and Liu, 2009).

We report the mean classification error rates and mean
computational time in Table 2, based on 1,000 replicates.
From the results in Table 2, we can conclude that REC en-
joys a very fast computational speed, and the corresponding
classification accuracy is highly competitive. This is consis-
tent with the findings in Section 4.

As a further comparison, we report the behavior of a
tree based method and two random forest classifiers on the
LUNG cancer data set. In particular, we employ the
RTREE program (Zhang and Bracken, 1995; Zhang et al.,

http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
https://cghub.ucsc.edu/datasets/data_sets.html
https://cghub.ucsc.edu/datasets/data_sets.html


Table 2. The classification error rates and computational time
(clock time in seconds) for the cancer data sets for various

margin-based classifiers

GBM LUNG BREAST
dim Error Time Error Time Error Time

1,000 SVM1 0.113 55.13 0.359 45.09 0.240 492.3
SVM2 0.105 62.04 0.371 46.37 0.229 559.7
SVM3 0.137 61.16 0.371 44.16 0.235 441.9
PSVM 0.112 33.17 0.366 24.45 0.226 233.8
VDA 0.113 13.44 0.345 9.179 0.228 119.2
REC 0.107 3.168 0.351 3.280 0.231 14.22

5,000 SVM1 0.173 510.6 0.481 347.1 - -
SVM2 0.169 478.0 0.382 365.5 - -
SVM3 0.168 622.3 0.419 337.9 - -
PSVM 0.187 359.4 0.433 208.8 - -
VDA 0.122 79.92 0.335 64.21 0.221 911.3
REC 0.128 20.36 0.333 16.45 0.206 77.24

Full data SVM1 - - - - - -
SVM2 - - - - - -
SVM3 - - - - - -
PSVM 0.217 858.8 - - - -
VDA 0.146 160.3 0.337 727.1 - -
REC 0.132 41.72 0.319 66.80 0.217 525.0

Table 3. The classification error rates and computational time
(clock time in seconds) for the LUNG cancer data set, for
comparison among REC, tree based methods and the

one-versus-rest support vector machine (SVM)

LUNG

dim Error Time

1,000 RTREE 0.355 5.000

randomForest 0.362 7.232

varSelRF 0.360 10.79

SVM 0.366 15.52

REC 0.351 3.280

5,000 RTREE 0.367 25.80

randomForest 0.449 28.93

varSelRF 0.355 122.7

SVM 0.379 259.2

REC 0.333 16.45

Full data RTREE 0.431 247.0

randomForest 0.531 299.6

varSelRF - -

SVM - -

REC 0.319 66.80

the sum-to-zero constraint, the corresponding optimization
problem can enjoy a fast computational speed. More im-
portantly, we show that with the L1 penalty for vari-
able selection, the optimization of REC can be decou-
pled into several smaller LASSO problems, which can be
solved with an extraordinary fast speed. Statistical proper-
ties, such as Fisher consistency and class conditional prob-
ability estimation are obtained. We demonstrate that REC
is highly competitive among existing methods via simu-
lated and real data examples. In particular, for a glioblas-
toma multiforme cancer data set, we are able to iden-
tify signature gene groups for each cancer subtypes, which
are consistent with existing literature. For a TCGA squa-
mous lung cancer data set and a TCGA breast cancer
data set, we show that our REC can achieve better clas-
sification performance compared with several existing clas-
sifiers.

For many bioinformatics problems, the predictors are of-
ten highly correlated. In this case, it is known that the
L1 penalty tends to choose only a few predictors among
a group of highly correlated ones. For instance, in our
glioblastoma multiforme cancer data, the signature gene
groups identified by Verhaak et al. (2010) is larger than
those reported in Figure 2. To overcome this difficulty, one
can consider other penalties to encourage the highly cor-
related predictors to be selected simultaneously. For exam-
ple, one can use the elastic net penalty (Zou and Hastie,
2005) or the group LASSO penalty (Yuan and Lin, 2006).
Because these penalties are also separable, one can em-
ploy a similar decomposition approach as in Section 2,
and solve the corresponding optimization problem effi-
ciently.

1996), which can be found at http://c2s2.yale.edu/software/
rtree/. For random forests, we use the R packages ran-
domForest and varSelRF. The former package is an 
implementation of Breiman’s random forest algorithm 
(Breiman, 2001), and the latter includes variable selec-
tion (Diaz-Uriarte and de Andrés, 2005). For the RTREE 
program, we use the one-versus-rest method, and per-
form the analysis 50 times. For varSelRF, we select the 
best tuning parameters via a five-fold cross validation (see 
Diaz-Uriarte and de Andrés, 2005, and the manual of the 
package for details about the tuning parameters). We re-
peat the procedure 1000 times for random forest methods. 
Furthermore, we apply a one-versus-rest approach using 
standard SVMs with L1 penalization on the LUNG data 
to examine the corresponding performance in 1,000 repli-
cates.

The results of RTREE, random forest methods and one-
versus-rest SVM for the LUNG data are reported in Ta-
ble 3. One can see that the computational time of tree based 
methods without variable selection is competitive, yet the 
corresponding classification performance deteriorates when 
the dimension increases. For random forest with variable 
selection, its classification accuracy improves, however the 
computational burden is much heavier. The one-versus-rest 
SVM performs poorly on this example. Overall, REC is 
highly competitive among existing methods.

6. DISCUSSION

In this paper, we propose the REC method for mul-
ticategory classification problems using the simplex rep-
resentation for the class labels. Because REC is free of

http://c2s2.yale.edu/software/rtree/
http://c2s2.yale.edu/software/rtree/


APPENDIX

Proof of Theorem 1. Denote by S the conditional loss, and
rewrite it as

S =

k∑
j=1

Pj‖f − Yj‖22.

Take partial derivative of S with respect to the mth element
of f , fm, and we have

∂S

∂fm
|f∗ =

k∑
j=1

2Pj(f
∗
m − Y(m)

j ) = 0,

which can be further rewritten as

YP = f∗.(6)

Now without loss of generality assume that P1 > P2. It
suffices to show that ‖f∗ − Y1‖22 < ‖f∗ − Y2‖22. This is
equivalent to showing that

Δ :=‖f∗ − Y1‖22 − ‖f∗ − Y2‖22
=‖YP − Ye1‖22 − ‖YP − Ye2‖22 < 0.

After some calculation, we have Δ = 2(e1 − e2)
TYTYP −

(e1 − e2)
TYTY(e1 + e2). One can verify that YTY = (1 −

t)Ik + tJk, where Ik is the identity matrix, Jk is the ma-
trix whose elements are all 1, and t = YT

i Yj is a con-
stant regardless of the choice of i and j. Hence, one can
verify that (e1 − e2)

TYTY(e1 + e2) = 0, and YTYP =
(−(t + 1), t + 1, 0, . . . , 0)T . Because P1 > P2 and |t| < 1,
Δ = 2(e1 − e2)

TYTYP = 2(P2 − P1)(1 + t) < 0. This com-
pletes the proof.

Proof of Theorem 2. Note that (6) is a linear system of P
with k unknowns and k − 1 equations. The result follows
from combining (6) with the fact that

∑k
j=1 Pj = 1, solving

for P , and substituting f∗ with f̂ .

ACKNOWLEDGEMENT

The authors would like to thank the Editor, Prof. Hep-
ing Zhang, for helpful suggestions. The authors were sup-
ported in part by US National Science Foundation and En-
gineering Research Council of Canada (NSERC), NSF grant
DMS1407241, IIS1054631, NIH grants CA149569, HG06272,
CA142538, P30CA177558, and National Natural Science
Foundation of China (NSFC 61472475).

Received 22 December 2015

REFERENCES

Appel, I. J., Gronwald, W. and Spang, R. (2011). Estimating
Classification Probabilities in High-dimensional Diagnostic Studies.
Bioinformatics 27 2563–2570.

Boser, B. E., Guyon, I. M. and Vapnik, V. N. (1992). A Training Al-
gorithm for Optimal Margin Classifiers. In Proceedings of the Fifth
Annual Workshop on Computational Learning Theory. COLT’92
144–152. ACM, New York, NY, USA.

Breiman, L. (2001). Random Forests. Machine learning 45 5–32.
Crammer, K., Singer, Y., Cristianini, N., Shawe-taylor, J. and

Williamson, B. (2001). On the Algorithmic Implementation of
Multiclass Kernel-based Vector Machines. Journal of Machine
Learning Research 2 265–292.

Diaz-Uriarte, R. and de Andrés, S. A. (2005). Variable Selection
from Random Forests: Application to Gene Expression Data.

Efron, B., Hastie, T. J., Johnstone, I. and Tibshirani, R. J.

(2004). Least Angle Regression. Annals of Statistics 32 407–499.
MR2060166

Fan, J. and Li, R. (2001). Variable Selection via Nonconcave Penal-
ized Likelihood and Its Oracle Properties. Journal of the American
Statistical Association 96 1348–1360. MR1946581

Fan, J. and Li, R. (2006). Statistical Challenges with High Dimension-
ality: Feature Selection in Knowledge Discovery. Proceedings of the
International Congress of Mathematicians 3 595–622. MR2275698

Friedman, J. H., Hastie, T. J. and Tibshirani, R. J. (2000). Addi-
tive Logistic Regression: A Statistical View of Boosting. Annals of
Statistics 28 337–407. MR1790002

Friedman, J., Hastie, T. J. and Tibshirani, R. J. (2010). Regular-
ized Paths for Generalized Linear Models via Coordinate Descent.
Journal of Statistical Software 33.

Hastie, T. J., Tibshirani, R. J. and Friedman, J. H. (2009). The
Elements of Statistical Learning, 2nd ed. New York: Springer.
MR2722294

Lange, K. and Wu, T. T. (2008). An MM Algorithm for Multicate-
gory Vertex Discriminant Analysis. Journal of Computational and
Graphical Statistics 17 527–544. MR2528236

Lee, Y., Lin, Y. and Wahba, G. (2004). Multicategory Support Vector
Machines, Theory, and Application to the Classification of Microar-
ray Data and Satellite Radiance Data. Journal of the American
Statistical Association 99 67–81. MR2054287

Lin, X., Wahba, G., Xiang, D., Gao, F., Klein, R. and Klein, B.

(2000). Smoothing Spline Anova Models for Large Data Sets with
Bernoulli Observations and the Randomized GACV. Annals of
Statitics 28 1570–1600. MR1835032

Liu, Y. (2007). Fisher Consistency of Multicategory Support Vector
Machines. In Eleventh International Conference on Artificial Intel-
ligence and Statistics 289–296.

Liu, Y., Shen, X. and Doss, H. (2005). Multicategory ψ-learning and
Support Vector Machine: Computational Tools. Journal of Compu-
tational and Graphical Statistics 14 219–236. MR2137899

Liu, Y. and Shen, X. (2006). Multicategory Ψ-learning. Journal of the
American Statistical Association 101 500–509. MR2256170

Liu, Y. and Yuan, M. (2011). Reinforced Multicategory Support Vec-
tor Machines. Journal of Computational and Graphical Statistics
20 901–919. MR2878954

Park, S. Y., Liu, Y., Liu, D. and Scholl, P. (2010). Multicategory
Composite Least Squares Classifiers. Statistical Analysis and Data
Mining 3 272–286. MR2726657

Qiao, X. and Liu, Y. (2009). Adaptive Weighted Learning for
Unbalanced Multicategory Classification. Biometrics 65 159–168.
MR2665857

Qiao, X., Zhang, H. H., Liu, Y., Todd, M. J. and Marron, J. S.

(2010). Weighted Distance Weighted Discrimination and Its Asymp-
totic Properties. Journal of the American Statistical Association
105 401–414. MR2656058

Singh, D., Orellana, C. F., Hu, Y., Jones, C. D., Liu, Y., Chi-

ang, D. Y., Liu, J. and Prins, J. F. (2011). FDM: A Graph-based
Statistical Method to Detect Differential Transcription Using RNA-
seq Data. Bioinformatics 27 2633–2640.

Srivastava, A., Han, E. H.,Kumar, V. and Singh, V. (2002). Parallel
Formulations of Decision-tree Classification Algorithms. Springer.

Tang, Y. and Zhang, H. H. (2006). Multiclass Proximal Support Vec-
tor Machines. Journal of Computational and Graphical Statistics 15
339–355. MR2256148

http://www.ams.org/mathscinet-getitem?mr=2060166
http://www.ams.org/mathscinet-getitem?mr=1946581
http://www.ams.org/mathscinet-getitem?mr=2275698
http://www.ams.org/mathscinet-getitem?mr=1790002
http://www.ams.org/mathscinet-getitem?mr=2722294
http://www.ams.org/mathscinet-getitem?mr=2528236
http://www.ams.org/mathscinet-getitem?mr=2054287
http://www.ams.org/mathscinet-getitem?mr=1835032
http://www.ams.org/mathscinet-getitem?mr=2137899
http://www.ams.org/mathscinet-getitem?mr=2256170
http://www.ams.org/mathscinet-getitem?mr=2878954
http://www.ams.org/mathscinet-getitem?mr=2726657
http://www.ams.org/mathscinet-getitem?mr=2665857
http://www.ams.org/mathscinet-getitem?mr=2656058
http://www.ams.org/mathscinet-getitem?mr=2256148


Tibshirani, R. (1996). Regression Shrinkage and Selection via the
LASSO. Journal of the Royal Statistical Society, Series B 58 267–
288. MR1379242

Vapnik, V. (1998). Statistical Learning Theory. Wiley. MR1641250
Verhaak, R. G., Hoadley, K. A., Purdom, E., Wang, V., Qi, Y.,

Wilkerson, M. D., Miller, C. R., Ding, L., Golub, T.,
Mesirov, J. P., Alexe, G., Lawrence, M., O’Kelly, M.,
Tamayo, P., Weir, B. A., Gabriel, S., Winckler, W., Gupta, S.,
Jakkula, L., Feiler, H. S., Hodgson, J. G., James, C. D.,
Sarkaria, J. N., Brennan, C., Kahn, A., Spellman, P. T., Wil-

son, R. K., Speed, T. P., Gray, J. W., Meyerson, M., Getz, G.,
Perou, C. M., Hayes, D. N. and Cancer Genome Atlas Re-

search Network (2010). Integrated Genomic Analysis Identifies
Clinically Relevant Subtypes of Glioblastoma Characterized by Ab-
normalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17
98–110.

Wang, L. and Shen, X. (2007). On L1-norm Multi-class Support Vec-
tor Machines: Methodology and Theory. Journal of the American
Statistical Association 102 595–602. MR2370855

Wang, J., Shen, X. and Liu, Y. (2008). Probability Estimation for
Large Margin Classifiers. Biometrika 95 149–167. MR2409720

Wu, T. T. and Lange, K. (2010). Multicategory Vertex Discriminant
Analysis for High-Dimensional Data. Annals of Applied Statistics 4
1698–1721. MR2829933

Wu, T. T. andWu, Y. (2012). Nonlinear Vertex Discriminant Analysis
with Reproducing Kernels. Statistical Analysis and Data Mining 5
167–176. MR2910025

Wu, Y., Zhang, H. H. and Liu, Y. (2010). Robust Model-Free Mul-
ticlass Probability Estimation. Journal of the American Statistical
Association 105 424–436. MR2656060

Yuan, M. and Lin, Y. (2006). Model Selection and Estimation in Re-
gression with Grouped Variables. Journal of the Royal Statistical
Society, Series B 68 49–67. MR2212574

Yue, Y., Loh, J. M. and Lindquist, M. A. (2010). Adaptive Spatial
Smoothing of FMRI Images. Statistics and its Interface 3 3–13.
MR2609707

Zhang, H. P. (1998). Classification Trees for Multiple Binary Re-
sponses. Journal of the American Statistical Association 93 180–
193.

Zhang, C. H. (2010). Nearly Unbiased Variable Selection under Min-
imax Concave Penalty. Annals of Statistics 894–942. MR2604701

Zhang, H. P. and Bracken, M. B. (1995). Tree-based Risk Factor
Analysis of Preterm Delivery and Small-for-gestational-age Birth.
American Journal of Epidemiology 141 70–78.

Zhang, H. P., Holford, T. and Bracken, M. B. (1996). A Tree-
based Method in Prospective Studies. Statistics in Medicine 15 37–
49.

Zhang, C. and Liu, Y. (2013). Multicategory Large-margin Unified
Machines. Journal of Machine Learning Research 14 1349–1386.
MR3081927

Zhang, C., Liu, Y. and Wu, Z. (2013). On the Effect and Remedies of
Shrinkage on Classification Probability Estimation. The American
Statistician 67 134–142. MR3303796

Zhang, C. and Liu, Y. (2014). Multicategory Angle-based Large-
margin Classification. Biometrika 101 625–640. MR3254905

Zhang, H. P. and Singer, B. (2010). Recursive Partitioning and Its
Applications, 2nd ed. Springer Verlag.

Zhang, H. P., Yu, C. Y. and Singer, B. (2003). Cell and Tumor
Classification using Gene Expression Data: Construction of Forests.
Proceedings of the National Academy of Sciences 100 4168–4172.

Zhang, C. M. and Zhang, Z. J. (2010). Regularized Estimation of
Hemodynamic Response Function for FMRI Data. Statistics and
its Interface 3 15–32. MR2609708

Zhang, H. P., Yu, C. Y., Singer, B. and Xiong, M. (2001). Re-
cursive Partitioning for Tumor Classification with Gene Expression
Microarray Data. Proceedings of the National Academy of Sciences
98 6730–6735.

Zhang, H. H., Ahn, J., Lin, X. and Park, C. (2006). Gene Selection
using Support Vector Machines with Non-convex Penalty. Bioinfor-
matics 22 88–95.

Zhu, J. and Hastie, T. J. (2005). Kernel Logistic Regression and the
Import Vector Machine. Journal of Computational and Graphical
Statistics 14 185–205. MR2137897

Zhu, J., Zou, H., Rosset, S. and Hastie, T. J. (2009). Multi-class
Adaboost. Statistics and Its Interface 2 349–360. MR2540092

Zou, H. and Hastie, T. J. (2005). Regularization and Variable Selec-
tion via the Elastic Net. Journal of the Royal Statistical Society,
Series B 67 301–320. MR2137327

Chong Zhang
Department of Statistics and Actuarial Science
University of Waterloo
Canada
E-mail address: chong.zhang@uwaterloo.ca

Xiaoling Lu
Center for Applied Statistics
School of Statistics
Renmin University of China
China
E-mail address: xiaolinglu@ruc.edu.cn

Zhengyuan Zhu
Department of Statistics
Iowa State University
USA
E-mail address: zhuz@iastate.edu

Yin Hu
Sage Bionetworks
USA
E-mail address: snowy8677@gmail.com

Darshan Singh
Department of Computer Science
University of North Carolina at Chapel Hill
USA
E-mail address: darshan@cs.unc.edu

Corbin Jones
Department of Biology
University of North Carolina at Chapel Hill
USA
E-mail address: cdjones@email.unc.edu

Jinze Liu
Department of Computer Science
University of Kentucky
USA
E-mail address: liuj@cs.uky.edu

Jan F. Prins
Department of Computer Science
University of North Carolina at Chapel Hill
USA
E-mail address: prins@email.unc.edu

http://www.ams.org/mathscinet-getitem?mr=1379242
http://www.ams.org/mathscinet-getitem?mr=1641250
http://www.ams.org/mathscinet-getitem?mr=2370855
http://www.ams.org/mathscinet-getitem?mr=2409720
http://www.ams.org/mathscinet-getitem?mr=2829933
http://www.ams.org/mathscinet-getitem?mr=2910025
http://www.ams.org/mathscinet-getitem?mr=2656060
http://www.ams.org/mathscinet-getitem?mr=2212574
http://www.ams.org/mathscinet-getitem?mr=2609707
http://www.ams.org/mathscinet-getitem?mr=2604701
http://www.ams.org/mathscinet-getitem?mr=3081927
http://www.ams.org/mathscinet-getitem?mr=3303796
http://www.ams.org/mathscinet-getitem?mr=3254905
http://www.ams.org/mathscinet-getitem?mr=2609708
http://www.ams.org/mathscinet-getitem?mr=2137897
http://www.ams.org/mathscinet-getitem?mr=2540092
http://www.ams.org/mathscinet-getitem?mr=2137327
mailto:chong.zhang@uwaterloo.ca
mailto:xiaolinglu@ruc.edu.cn
mailto:zhuz@iastate.edu
mailto:snowy8677@gmail.com
mailto:darshan@cs.unc.edu
mailto:cdjones@email.unc.edu
mailto:liuj@cs.uky.edu
mailto:prins@email.unc.edu


Yufeng Liu
Department of Statistics and Operations Research
Department of Genetics
Department of Biostatistics
Carolina Center for Genome Sciences
UNC Lineberger Comprehensive Cancer Center
University of North Carolina at Chapel Hill
USA
E-mail address: yfliu@email.unc.edu

mailto:yfliu@email.unc.edu

	Introduction
	Methodology
	Statistical properties
	Fisher consistency
	Class conditional probability estimation

	Simulated examples
	Real data analysis
	Discussion
	Appendix
	Acknowledgement
	References
	Authors' addresses

