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Abstract

Interbreeding species often produce low-fitness hybrids due to genetic incompatibilities between 

parental genomes. Whether these incompatibilities reflect fixed allelic differences between 

hybridizing species, or, alternatively, standing variants that segregate within them, remains 

unknown for many natural systems. Yet, evaluating these alternatives is important for 

understanding the origins and nature of species boundaries. We examined these alternatives using 

spadefoot toads (genus Spea), which naturally hybridize. Specifically, we contrasted patterns of 

gene expression in hybrids relative to pure-species types in experimentally produced tadpoles from 

allopatric parents versus those from sympatric parents. We evaluated the prediction that 

segregating variation should result in gene expression differences between hybrids derived from 

sympatric parents versus hybrids derived from allopatric parents, and found that 24% of the 

transcriptome showed such differences. Our results further suggest that gene expression in hybrids 

has evolved in sympatry owing to evolutionary pressures associated with on-going hybridization. 

Although we did not measure hybrid incompatibilities directly, we discuss the implications of our 

findings for understanding the nature of hybrid incompatibilities, how they might vary across 
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populations over time, and the resulting effects on the evolutionary maintenance––or breakdown––

of reproductive barriers between species.

1 INTRODUCTION

Hybridization between species can lead to offspring that exhibit reduced fitness (e.g., 

reduced survival or fertility) relative to pure-species types (Arnold, 1997; Barton & Hewitt, 

1985; Coyne & Orr, 2004). Because reduced hybrid fitness constitutes a barrier to gene flow 

between species and helps maintain species boundaries, understanding the causes and 

evolution of reduced hybrid fitness is a focus of speciation research (Abbott et al., 2013; 

Coyne & Orr, 2004; Wolf et al., 2010)

Reduced hybrid fitness can result from deleterious epistatic interactions between genetic 

variants in pure-species genomes (such interactions are referred to as “Bateson-Dobzhansky-

Muller Incompatibilities”, hereafter “BDMs”; Coyne & Orr, 2004; Cutter, 2012; Mack & 

Nachman, 2017; Orr, 1995). Alleles that contribute to BDMs in hybrids are often assumed to 

represent fixed differences in the parent species, but this does not have to be the case (Cutter, 

2012; Larson et al., 2018). In some instances, loci that contribute to BDMs might be 

polymorphic in one or both parent species (Cutter, 2012; Gerard & Presgraves, 2012; Larson 

et al., 2018; Matute et al., 2014). In this latter scenario, the nature and extent of BDMs 

between hybridizing species could depend on the standing genetic variation present in the 

specific populations that undergo hybridization.

Evaluating whether BDMs arise from fixed differences between parental species or 

segregating variants within either parental species is difficult without knowing the loci 

involved in BDMs. In systems where this information is unknown or difficult to obtain 

because mapping populations are absent (as in natural systems with non-model organisms), 

gene expression in hybrids relative to pure-species types can provide insight, particularly 

when BDMs generate regulatory incompatibilities (Brill et al., 2016; Gomes & Civetta, 

2015; Landry et al., 2007; Lopez-Maestre et al., 2017; Mack & Nachman, 2017; Malone et 

al., 2007; Meiklejohn et al., 2014; Michalak & Noor, 2003, 2004; Moehring et al., 2007; 

Ortiz-Barrientos et al., 2007; Wolf et al., 2010). Specifically, BDMs impacting gene 

expression might produce over-or under-expression of genes in hybrids relative to pure-

species types, which, in some cases, might reduce hybrid fitness and contribute to 

reproductive isolation between species (Landry et al., 2007; Mack & Nachman, 2017).

To the extent that gene expression reflects possible BDMs and the genetic variation that 

might contribute to them, comparing hybrids and pure-species types across populations 

could lend insight into the nature of BDMs. In particular, if BDMs arise from fixed allelic 

differences between the species, as is often assumed (Cutter, 2012), then patterns of gene 

expression in hybrid types should be the same regardless of the populations from which the 

hybrids’ pure-species parents are derived. If, however, BDMs largely arise from alleles still 

segregating within either parental species, patterns of gene expression in hybrid types 

relative to the pure-species types might vary depending on the populations from which the 

hybrids’ parents are derived. Moreover, further insights into the nature of BDMs could be 

gained by contrasting patterns of expression in genes that differ in expression between 
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species versus those that do not. Specifically, if expression differences between species often 

result from fixed allelic differences between the species, then gene expression in hybrids 

should be less likely to vary across populations. By contrast, if similar gene expression in the 

pure species reflects segregating variation, then hybrid gene expression might be more likely 

to vary among populations in such genes.

Understanding whether or not BDMs involve segregating variation within the parent species 

is important for understanding the consequences of hybridization. In particular, if BDMs 

arise from segregating loci, then drift, gene flow, and/or selection acting on alleles at these 

loci can result in the evolution of BDMs. To the extent that BDMs impact gene expression, 

patterns of gene expression in hybrids relative to pure-species types could therefore change 

over time as a consequence of these evolutionary mechanisms. For example, selection could 

disfavor alleles that contribute to deleterious BDMs or selection could favor alleles that 

modify and ameliorate BDMs. The resulting decline in frequency of deleterious alleles (or 

increase in frequency of modifier alleles) would reduce the adverse fitness effects of 

hybridization and hybrids could become more similar to the pure-species types over time 

(Barton & Hewitt, 1985, 1989; Lammers et al., 2013; Ritchie et al., 1992; Sanderson, 1989; 

Schilthuizen & Lammers, 2013). Regardless of how BDMs evolve (via selection or 

otherwise), change in BDMs will impact the nature of introgression between species and the 

maintenance of species boundaries.

Evaluating whether BDMs evolve can be challenging, especially in systems where the loci 

involved in the BDMs are unknown. Indeed, even in cases where the loci involved in BDMs 

have been identified and shown to be polymorphic, that information does not indicate 

whether BDMs change over time (i.e., evolve). Instead, approaches that either allow direct 

observations of evolution (e.g., experimental evolution studies) or enable inference that 

evolution has occurred are needed.

One means of inferring whether BDMs evolve is to experimentally simulate “initial contact” 

between species by breeding individuals from allopatric populations (that have never 

experienced hybridization) and contrasting the resulting hybrids with hybrids produced by 

breeding individuals from sympatric populations (where hybridization has been ongoing). 

As described above, if BDMs arise from fixed allelic differences between species, then 

patterns of gene expression should not differ between sympatric and allopatric hybrids 

(assuming gene expression adequately captures BDMs; see above). Moreover, hybrids 

should be less likely to show expression differences between sympatry and allopatry in those 

genes that differ between the pure-species types as opposed to those genes that do not differ 

between the pure-species types. If, however, BDMs are caused by segregating variation in 

either of the pure-species types (with the potential for evolution in BDMs), then expression 

patterns of hybrids relative to pure-species types should differ between sympatry and 

allopatry.

A limit of this approach is twofold. First, in naturally hybridizing species that occur in 

sympatry, introgression can homogenize the two species and their hybrids so that they 

become more similar to each other and increasingly different from pure-species types that 

occur in allopatry. Second, sympatry and allopatry might differ ecologically, thereby 
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resulting in distinct evolutionary patterns that are unrelated to hybrid fitness and BDMs. 

Because of these issues, contrasts of gene expression that include both pure-species and 

hybrid types from sympatry and allopatry can provide necessary controls to evaluate the 

extent to which hybrids might vary in gene expression due to the evolution of possible 

BDMs as opposed to ecological adaptation or introgression.

Here, we take such an approach using spadefoot toads. In particular, we contrast pure-

species and hybrid types generated by interbreeding allopatric pure-species parents and 

sympatric pure-species parents. This design allowed us to achieve two general goals. First, 

we determined if gene expression in hybrids relative to pure-species types differs between 

allopatry and sympatry. Second, we evaluated if and how any such population-level variation 

in hybrid gene expression was associated with whether or not pure-species types themselves 

differed in gene expression. To the extent that gene expression captures the impacts of 

BDMs, our findings suggest that BDMs could depend on segregating variation within the 

hybridizing species and that they can therefore vary across populations and evolve over time.

2 MATERIALS AND METHODS

2. 1 Study system

We used as our study system spadefoot toads, Spea bombifrons and S. multiplicata, which 

hybridize in the southwestern USA. Hybrids are viable, but F1 males are sterile and females 

are less fecund than pure-species types (Pfennig & Simovich, 2002; Simovich, 1994; 

Wünsch & Pfennig, 2013). Introgression between the two species occurs because hybrid 

females will breed with pure-species males (Schmidt & Pfennig, 2016; Simovich, 1985), and 

subsequent cross types appear at least partially fertile and capable of reproducing (Pfennig et 

al., 2012; Pfennig & Simovich, 2002; Pierce et al., 2017; Sattler, 1985; Simovich, 1985; 

Wünsch & Pfennig, 2013).

As tadpoles, the survival of F1 hybrids depends on which species is maternal. When S. 
multiplicata is maternal, F1 hybrids have lower survival than either S. bombifrons or S. 
multiplicata tadpoles. When S. bombifrons is maternal, F1 hybrids survive as well as either 

pure-species type (Pfennig & Simovich, 2002). Moreover, hybrids have intermediate growth 

rates between the faster developing S. multiplicata and slower developing S. bombifrons 
tadpoles (Pfennig & Simovich, 2002). Because faster development is favored in the 

ephemeral ponds where tadpoles develop, F1 hybrid tadpoles have higher fitness relative to 

S. bombifrons tadpoles but not S. multiplicata tadpoles (Pfennig, 2007; Pfennig & Simovich, 

2002).

The combination of these aspects of fitness generates opposing patterns of selection on 

hybridization behavior in females of the two species (Pfennig & Simovich, 2002). Because 

hybrids with S. multiplicata mothers develop slower and have lower survival and reduced 

fertility than pure-S. multiplicata types, selection favors S. multiplicata females that do not 

hybridize. Indeed, female S. multiplicata mate choice shows hallmark patterns of divergent 

mating behaviors between sympatry and allopatry, as is expected if reinforcement has 

occurred (Pfennig, 2000; Pfennig & Rice, 2014), and reinforcement has potentially caused 

hybridization to decline in some populations (Pfennig, 2003).
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In contrast to S. multiplicata females, S. bombifrons females benefit by hybridizing in 

ephemeral ponds where hybrids have a fitness advantage relative to pure S. bombifrons 
tadpoles (Pfennig, 2007; Pfennig & Simovich, 2002). Consequently, S. bombifrons females 

facultatively hybridize with S. multiplicata males in ephemeral ponds, but not long-lasting 

ponds (Pfennig, 2007). This context-dependent behavior evolved in sympatry: allopatric 

females do not discriminate between conspecific and heterospecific males (Pfennig, 2007). 

Thus, hybridization, as well as the interbreeding of hybrids with pure-species types, occurs 

in sympatry (Pfennig et al., 2012; Pfennig & Simovich, 2002; Sattler, 1985).

Spadefoot natural history makes them well suited for addressing our goals (see 

Introduction). Specifically, as described below, we evaluated if gene expression in hybrids 

differs between crosses derived from sympatric individuals (in populations where 

hybridization is on-going) and allopatric individuals (simulating hybrids produced by “first 

contact” between the species).

2.2 Sample production and preparation

We crossed allopatric and sympatric S. bombifrons and S. multiplicata to generate eight 

pure-species and hybrid cross types. Table 1 shows these cross types, their corresponding 

abbreviations used throughout the paper, and the number of sequenced biological replicates 

per cross type.

To generate hybrid tadpoles from allopatric populations, we bred S. multiplicata from 

populations in Arizona, USA, outside the western range limit of S. bombifrons, with S. 
bombifrons from populations in Colorado, USA, outside the northern range limit of S. 
multiplicata. Because of the geographic distance between the populations used to create 

allopatric hybrids, we generated comparable sympatric hybrids by pairing S. multiplicata 
and S. bombifrons from sympatric populations in Arizona and Texas (i.e., sympatric hybrids 

were not derived by crossing individuals from the same population). So that species identity 

and population identity were not confounded, half of the families had S. multiplicata parents 

from Arizona and S. bombifrons from Texas, whereas half had S. multiplicata parents from 

Texas and S. bombifrons from Arizona.

To induce breeding, adults were injected with 0.07 mL 0.01ug/ml gonadotropin releasing 

hormone (GnRH) agonist. Males and females were placed as pairs in separate aquaria with 

10 L of dechlorinated water and allowed to oviposit. We generated at least three replicate 

families per cross type (Table 1). After egg release was complete, adults were removed from 

the tanks and the eggs were aerated until hatching. When tadpoles were swimming freely, 

we selected a subset of 16 tadpoles at random from each family. For each family we divided 

the tadpoles into two groups of eight and placed each group in a tank (34 cm X 21 cm X 

11.5 cm) filled with dechlorinated water. All were fed shrimp and detritus (their natural diet) 

ad libitum. At approximately 1 week old, we euthanized tadpoles by placing them in 

MS-222 and freezing them in liquid nitrogen. Spadefoot tadpoles reach metamorphosis in as 

few as three weeks (Pfennig & Simovich, 2002). Thus, 1-week-old tadpoles represented 

tadpoles that were well along in development and therefore had the potential to exhibit 

differential expression in genes that impact growth and survival during the tadpole stage.
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To prepare samples for RNA extraction, we randomly selected a single whole frozen tadpole 

from each family, ground each tadpole with a mortar and pestle, and then homogenized each 

of our samples in 15 ml centrifuge tubes. Each tadpole had a mass of approximately 0.2 g. 

We extracted RNA from each tadpole sample using Invitrogen PureLink extraction columns 

with TRIzol reagent. We obtained RNA from 28 samples total (biological replicates; Table 

1; Supplementary Table S1). 3’ RNA-seq libraries were generated using the Lexogen 

Quantseq FWD kit and sequenced on an Illumina NextSeq500 (Illumina, San Diego, CA, 

USA) using a single end 75 bp kit with an actual read length of 86 bp. Resulting read counts 

are reported in Supplementary Table S1. Library preparation and sequencing were 

performed at the Cornell University Institute of Biotechnology.

2. 3 Measurement of gene expression

To measure gene expression across our different cross types (Table 1), we began by 

trimming the 3’ RNA-seq reads to remove adapter and poly-A contamination using 

Trimmomatic (Bolger et al., 2014) with recommended parameters. Individual reads, as well 

as pooled reads from all pure individuals were mapped to the S. multiplicata genome, which 

is described in Seidl et al. (in review), using STAR aligner (Dobin et al., 2013) with default 

parameters. We used bedtools genome_cov (Quinlan & Hall, 2010) to generate bed coverage 

files at all positions. We performed peak discovery by finding all continuous windows of 

coverage ≥ 50. We defined the peak as the base with the maximum coverage in each 

window. We then extracted coverage of each peak for each individual using the bedtools 

coverage tool. Gene expression measurements within a sample were normalized by library 

size x 10−6 and log2 transformed. The table containing measurements from all samples was 

then digitally normalized using the R function normalize.quantiles() from the 

preprocessCore package (Bolstad, 2016). The following analyses were performed entirely in 

R. For each gene, we first fit the following global model to data:

expression = sampletype + error,

where expression corresponds to a vector of normalized log2 expression measurements for 

the samples, sampletype corresponds to each of our eight cross types (Table 1), and error 
denotes the vector of residuals. We used this model because we did not have a full-factorial 

design and alternative models would have inappropriately nested the parent and hybrid 

terms. Models were fit using the lm() function, P-values were extracted for each model using 

the summary() function, and point-wise FDR values (i.e., q-values) were then obtained using 

the qvalue package (Storey et al., 2018). We used a significance threshold of FDR ≤ 0.05.

We identified 10,695 protein-coding genes in the transcriptome, and, of these, we found a 

total of 9,327 genes that showed a significant effect of sample type at an FDR of 5%. For 

these 9,327 genes in this initial analysis, we next ran nine post hoc contrasts aimed at 

identifying expression differences among our treatment groups. Specifically, we performed 

contrasts between the pure-species types, among the hybrid cross types, and between 

allopatry and sympatry (Table 2).
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To perform these contrasts, we used the function lsmeans() (Lenth, 2016) followed by the 

contrast() function. We considered a post hoc test as significant if P <= 0.0056 (i.e., 0.05 

divided by the nine contrasts), and this procedure resulted in 5,453 genes showing at least 

one significant difference in the post hoc contrasts (see Results). This number represents 

58% of the 9,327 genes initially identified as significant, and is a consequence of the 

conservative alpha level threshold that controls for the large number of post hoc tests 

performed for each gene. However, we ran the analyses using a less stringent threshold (P 
<= 0.05) that did not correct for multiple post hoc tests per gene, and the results were 

qualitatively similar. Therefore, we report the results from the more conservative analysis 

here.

Genes could be significant in multiple contrasts, so we used the R package limma (Ritchie et 

al., 2015) to generate a Venn diagram for visualizing the overlap of the gene sets (Figure 1). 

We then used chi-square tests to contrast the number of genes in these overlapping sets to 

evaluate whether patterns of expression in hybrids from different populations were 

consistent with the expectation that BDMs derive from fixed variation between, versus 

segregating variation within, either species.

2.4 Gene Ontology analysis in gene sets identified as significant in post hoc tests

Because the post hoc analyses revealed significant differences among our cross types (see 

Results), we evaluated if any of the gene sets identified in the post hoc contrasts (Table 2) 

showed enrichment or depletion of biological process gene ontology (GO) terms. Doing so 

allowed us to determine whether the significant genes were more likely to arise among 

certain processes (e.g., fertility).

To perform the GO analysis, we compared the number of genes with or without a particular 

GO term in a given focal set of genes to the number of genes with or without that term in 

those genes not in the given focal set (Cai et al., 2006). For each GO term, we performed a 

chi-square test using the chisq.test() function in R and corrected for multiple testing based 

on the false discovery rate using the qvalue package (Storey et al., 2018).

2.5 Subsequent analysis of expression levels in subsets of genes that differed between 
species or hybrids

As described in the Introduction, BDMs are typically assumed to arise from fixed allelic 

differences, such that hybrid gene expression should not vary across populations. We found 

a large number of genes that were significantly different in expression between hybrids 

derived from sympatry versus allopatry. Moreover, hybrids were less likely to differ between 

sympatry and allopatry in genes that were also different between the two species (see 

Results). However, we also identified a number of significant genes that varied among 

hybrids but were not significantly different between the pure-species.

Based on these findings from post hoc contrasts (Table 1; see also Figure 1), we next sought 

to contrast gene expression among all of our cross types in three subsets of genes. 

Specifically we contrasted patterns of expression among all of our cross types in: 1) genes 

that differed between the pure-species types; 2) genes that did not differ between the species 

but that did differ in at least one hybrid contrast; and 3) genes that did not differ between 
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species or within species between sympatry and allopatry, but were nevertheless different 

between allopatric and sympatric hybrids. The first and second subsets of genes allowed us 

to examine how hybrids vary relative to pure-species types as a function of whether the pure-

species themselves differed in expression. The third set of genes were those genes that were 

seemingly invariant within and between the species, but still revealed variation in the 

hybrids. We took two approaches to examining gene expression in our genes of interest: a 

multivariate approach that contrasted overall patterns of expression among cross types, and a 

gene-level approach that identified which genes showed similar patterns of expression in our 

cross types.

For the multivariate approach, we performed separate principal component analyses (PCA) 

on each of these three sets of genes using the princomp() function in R. Then, using the top 

two principal components (PC) scores from each PCA, we contrasted the locations of the 

hybrid and pure-species types in PC space for each of the three gene sets. We used the 

pairwise() function in the RRPP package to calculate the distance (and corresponding 

empirically derived P values) among all cross types using a nonparametric randomized 

residual permutation procedure (Collyer et al., 2015).

To evaluate gene-level patterns of expression in our three subsets of genes, we used k-means 

clustering, with the kmeans() function in R, from k=1 to k=10 to identify clusters in our 

gene sets. We determined the appropriate number of clusters in a given analysis by applying 

the elbow method to the total within group sum of squares obtained for each level of k. We 

plotted heatmaps of the matrix of expression values ordered by the output of the k-means 

clustering using the heatmap3() function from the heatmap3 package in R (Zhao et al., 

2015). To determine the relationships between samples in each k-cluster, we calculated 

Euclidian distance on the matrix of per sample averaged gene expression values using the R 

function dist(), clustered these distance values using the R package hclust() and plotted 

dendrograms for each cluster of genes using the R package ape (Paradis & Schliep, 2018).

3 RESULTS

Using post hoc contrasts (Table 2), we identified 5,453 genes that showed at least one 

significant difference among our cross types (Figure 1). Of these 5,453 genes, 3,094 (57% of 

the significant genes) differed between the species, and 3,268 (60% of the significant genes) 

differed in some way among hybrids (Figure 1). A large number of genes, 2,703, also 

differed between crosses derived from sympatry versus those derived from allopatry (Figure 

1). Of the genes that differed between sympatric and allopatric crosses, 93% differed among 

hybrids whereas only 12% differed in the pure-species types (Figure 1). Excluding the 5% 

that differed in both, we found that hybrids were significantly more likely than the pure-

species types to differ depending on whether they were derived from sympatry versus 

allopatry (assuming a 50:50 random expectation; χ2 = 1909.8; df = 1; P < 0.001).

The finding that most of the genes that differ between the sympatric and allopatric crosses 

were in the hybrid types is consistent with the possibility that BDMs might derive from 

segregating variation as opposed to fixed allelic differences between the species. To further 

evaluate this possibility, we assessed whether sympatric and allopatric hybrids are more 

Seidl et al. Page 8

Mol Ecol. Author manuscript; available in PMC 2020 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



likely to show expression differences in genes that do not differ in the pure-species types 

versus those that differ between the pure-species types. We found that, of the 2,526 genes 

that differed between sympatric and allopatric hybrids, 736 (29%) also differed between 

species. By contrast, 1,790 (71%) of these 2,526 genes were not different between the two 

species, a pattern that was significantly different from random 50:50 expectation (χ2 = 

439.79; df = 1; P < 0.001). Thus, hybrids are less likely to show population differences in 

gene expression in those genes that differ in expression between species.

Much of the overall variation among the hybrid types appears to have been driven by these 

differences between sympatric and allopatric hybrids. In particular, the 2,526 genes that 

differed between sympatric and allopatric hybrids constituted 77% of the 3,268 genes that 

differed among all hybrid contrasts (Figure 1; see also Table 2), whereas 742 (23%) of the 

genes that differed between at least one hybrid type were not associated with differences 

between sympatry and allopatry. This pattern was significantly different from random 50:50 

expectation (χ2 = 973.89; df = 1; P < 0.001). Interestingly, of these 742 genes, 504 (68%) 

were not different between the pure-species types, whereas 238 (32%) were different 

between the two species, a pattern that was also significantly different from random 50:50 

expectation (χ2 = 95.36; df = 1; P < 0.001). This result provides further evidence that our 

hybrid types were less likely to differ in expression in those genes that differ between 

species.

We evaluated whether any particular processes or pathway might be driving the significant 

genes in our post hoc contrasts. However, when we used gene ontology (GO) analysis 

corrected for multiple tests, we found no evidence for enrichment of any GO term in any of 

the genes identified in the four types of post hoc contrasts (i.e., “Pure-species”, “Hybrids”, 

“Sympatry versus allopatry, pure-species”, “Sympatry versus allopatry, hybrids”; Table 2).

We also sought to examine levels of expression among all of our cross types in genes that: 1) 

differed between the pure-species types (N = 3,094); 2) did not differ between the species, 

but did differ between hybrids (N = 2,294); and 3) did not differ between species or within 

species between sympatry and allopatry, but were nevertheless different between allopatric 

and sympatric hybrids (N = 1,712).

In the PCA of those 3,094 genes that differed between the species, the first two PCs 

combined to explain 56.0% of the variance in the data and, as expected, distinguished the S. 
bombifrons and S. multiplicata samples (Figure 2a; Supplementary Table S2). Generally, the 

hybrid cross types were intermediate to the pure-species types (Figure 2a), When we 

compared distances among all groups, we found that BMa was not significantly different 

from any other cross type; MBs differed from all other groups except BMa; MBa differed 

from BBa and MBs; and BMs differed from both MM types and BBa, but not BBs (Figure 

2a, b; Supplementary Table S2). Notably, the distance, 0.552, between the sympatric hybrid 

types (MBs and BMs) and the distance, 0.529, between the MB cross types (MBs and MBa) 

were similar in magnitude to the distances (ranging from 0.515 to 0.559) among the pure-

species types (BB to MM) (Figure 2a, b; Supplementary Table S2). Thus, in terms of 

multivariate patterns of gene expression, hybrid types can show differences from each other 

that are on the order of that seen between species.
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Surprisingly, the distance between the sympatric hybrid types (BMs to MBs = 0.552), was 

twice that of the distance between the allopatric hybrid types (BMa to MBa = 0.221). In 

other words, hybrids with different species as mother actually were more dissimilar in the 

sympatric hybrids versus the allopatric hybrids. Part of this pattern was driven by BMs being 

more similar to the BBs type (0.237; Figure 2a, b; Supplementary Table S2). However, part 

of the result was the very large difference in MBs expression relative to the other sympatric 

cross types (Figure 2a, b; Supplementary Table S2).

The above patterns in multivariate space were recapitulated in the gene-level k-means 

analysis. We identified two clusters that were driven by the differences in expression 

between the species (Figure 2c). Although the hybrids were generally intermediate between 

the pure-species types, we did find that, in both clusters, patterns of expression relative to the 

pure-species types were similar for the BMa, BMs, and MBa hybrid types. By contrast, MBs 

was distinct from these hybrid types. Taken together with the PCA results, these findings 

highlight that our sympatric and allopatric hybrids differed in gene expression relative to 

pure-species types even for genes where the species exhibited expression differences.

When we used PCA to evaluate multivariate expression in the 2,294 genes that did not differ 

between the pure-species types but did vary among hybrids, we found that the first two PCs 

explained 49.9% of the variance. In this analysis, PC space was characterized by differences 

among hybrids as expected (Figure 3a). We found that MBs hybrids were significantly 

different from all other groups except BBa; MBa hybrids were different from BBa, BMs, 

and MBs; BMa hybrids were different from all groups except MBa and MMa; and BMs 

hybrids were different from all groups except BBs and MMs (Figure 3a, b; Supplementary 

Table S2). For this set of genes, as with those above, the distance between the sympatric 

hybrid types (BMs to MBs = 0.560) was twice as large as that between allopatric hybrid 

types (BMa to MBa = 0.272). Thus, the hybrids produced from sympatric parents were more 

dissimilar in gene expression than those produced by allopatric parents. Moreover, the 

magnitude of difference between allopatry to sympatry for hybrids of each maternal type 

was similar and represented the largest differences observed in the analysis (BMa to BMs = 

0.605; MBa to MBs = 0.617; Supplementary Table S2). However, the nature of the 

differences between allopatry to sympatry differed between hybrid types: the BM crosses 

differed along PC2, whereas the MB crosses differed along PC1 (Figure 3a).

The k-means clustering highlighted these different gene-level expression patterns. Three sets 

of genes showed distinct patterns of expression among the hybrids (Figure 3c). For most of 

the genes (in clusters 1 and 2; Figure 3c), MBs hybrids were distinct from the other cross 

types in expression. By contrast, BMs clustered with both the MBa and BBs cross types in 

most of the genes (clusters 2 and 3; Figure 3c), although for the 44% of genes in cluster 1, 

the BMs group was distinct from the pure-species types and other hybrids (Figure 3c).

Finally, we evaluated expression patterns in the 1,712 genes that differed only between 

sympatric and allopatric hybrids. In the PCA analysis of these genes, the first two principal 

components explained 54% of the variance. We found that the BMa cross type differed from 

all other cross types except MMa and MBa (Figure 4 a, b), whereas the BMs cross type 

differed from both MB cross types, the BMa cross type and the BBa cross type. The MBa 
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cross type differed from BMs, MBs and BBa, whereas the MBs cross type differed from all 

other cross types except BBa. A noteworthy pattern is that BMs was more similar to the 

sympatric pure-species types (BBs and MMs) than BMa. By contrast, MBs was more 

different from the pure-species types that MBa (Figure 4a, b; Supplementary Table S2).

When we evaluated the gene-level patterns underlying the PCA results, we found three 

clusters of expression patterns (Figure 4c). In clusters 1 and 3 (representing 60% of the 

1,712 genes in the analysis), MBs were distinct from the other groups, including the pure-

species types. By contrast, for these same genes, BMs clustered more closely with the pure-

species cross types. For the remaining genes in cluster 2, BMs and MBa clustered together. 

Nevertheless, although MBs grouped with the other cross types for this gene set, they were 

distinct within the group and showed notably higher expression relative to the other cross 

types (Figure 4c).

DISCUSSION

Using spadefoot toads and their F1 hybrids, we evaluated gene expression in pure-species 

and hybrid tadpoles derived from two population types: sympatry, where hybridization 

occurs, and allopatry, where hybridization has not occurred. If BDMs arise from fixed allelic 

differences between species, then sympatric and allopatric hybrids should be more likely to 

show similar patterns of gene expression. If, however, BDMs arise from segregating 

variation within the species, then hybrid gene expression should depend on the populations 

from which the pure-species parents derive. Perhaps more critically, any such variation in 

the pure species could be subject to drift, gene flow, or selection, so that BDMs could 

evolve. By contrasting experimentally produced hybrids from allopatric parents (thereby 

simulating “first contact”) with hybrids produced from sympatric parents, we could infer 

whether BDMs might have evolved in populations where hybridization is on-going.

A major caveat of our study is the limits of using gene expression to gain insights into 

BDMs. Patterns of gene expression in hybrids do not directly correspond to BDMs, because 

even when hybrids differ from the pure-species types in gene expression, such “mis-

expression” might not correspond to reduced fitness that would characterize BDMs (Landry 

et al., 2007). Moreover, the number of genes that do show expression differences provide 

limited insights in the quantity of BDMs that might be involved because one or a few major 

loci might have cascading effects that impact the expression of many genes (Landry et al., 

2007). Nevertheless, although not all patterns of gene expression represent BDMs, we 

assume that our data capture BDMs that impact gene expression at the tadpole stage we 

sampled. Using gene expression in this way lends itself to the study of BDMs (Landry et al., 

2007; Mack & Nachman, 2017), especially in natural systems like ours where mapping 

populations do not exist and direct identification of BDMs is difficult. Indeed, despite the 

limitations of our approach, the general patterns of expression we observed in the sympatric 

hybrids broadly correspond to the known fitness consequences of hybridization in this 

system. Thus, to the degree that our measures of gene expression in hybrids captures BDMs, 

our study can provide insights into whether BDMs involve segregating variation in the pure 

species and the potential for BDMs to evolve over time.
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We identified 2,526 protein-coding genes that exhibited expression differences between Spea 
hybrids produced from sympatric versus allopatric parents (Figure 1). These genes 

represented both a high proportion of the overall transcriptome (24%) and a large proportion 

(77%) of the 3,268 genes that varied among hybrids in some way (Figure 1, Table 2). 

Although we found that genes were less likely to differ in expression between sympatric and 

allopatric hybrids when those genes did differ in expression between the two species (as 

might occur if there are fixed allelic differences between the species), we also found that, 

even when the pure-species differed in expression, sympatric and allopatric hybrids could 

still differ in expression (Figure 2). Thus, segregating variation, as evidenced by population 

effects on hybrid gene expression, might contribute to BDMs.

One explanation for expression differences between our sympatric and allopatric hybrids is 

that introgression in sympatry homogenizes all types, including the pure-species. 

Consequently, as cross types become more similar to each other in sympatry (owing to 

introgression), each will become more different from its analog in allopatry. A further 

explanation for expression differences between sympatric and allopatric hybrids is that 

sympatry and allopatry constitute different habitats favoring different patterns of gene 

expression. Consequently, local adaptation would generate differences in gene expression 

between sympatry and allopatry in the species and their hybrids.

Neither of these explanations are supported by our data. In particular, we identified relatively 

few genes (311, representing 2.9% of the transcriptome; Figure 1) that showed expression 

differences between pure-species types derived from sympatry versus allopatry. That genes 

within the pure-species types do not show widespread population differences in expression 

indicates that neither introgression homogenizing the species within sympatry nor major 

ecological differences adequately explain the patterns we observed. Indeed, in the PCA 

using the genes for which the two species differ in expression, we did not observe any 

changes in the distance of the allopatric versus sympatric pure-species types relative to one 

another (Figure 2; Supplementary Table S2); if the two species were converging due to 

introgression, then sympatric pure-species types should have been more similar to each other 

in expression. Moreover, we would have expected both sympatric hybrid types (BMs and 

MBs) to be more similar to both pure-species types and each other, which was not the case 

(Figure 2; Supplementary Table S2).

Although introgression within sympatry does not fully explain the observed results, our 

finding that the sympatric hybrid types (BMs and MBs) consistently differed could be 

accounted for by differential introgression of the X chromosome in sympatry (Presgraves, 

2018). Differential movement of the X chromosome relative to introgression in the 

remainder of the genome could also possibly account, at least in part, for the exaggeration 

(or reduction) of BDMs in sympatric hybrids relative to allopatric hybrids. Sex 

determination in Spea is currently unknown (patterns of hybrid fertility are consistent with 

an X-Y system), and work with other frog species that lack heteromorphic sex chromosomes 

reveal mixed evidence of differential introgression of the X chromosome (Dufresnes et al., 

2016; Gerchen et al., 2018). Thus, the possibility of differential sex chromosome 

introgression needs further evaluation in this system. Moreover, we would expect that any 
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such introgression would generate differences within either species between sympatry and 

allopatry, which was not observed (Figure 1; see also Figure 2).

A further issue with our data is that, because of introgression, the sympatric pure-species 

parents we used to generate the offspring in our experiment might have included alleles from 

the alternate species in their genomes (and the presence/location of such alleles might have 

varied across the parents). Interbreeding them might have thereby exposed incompatibilities 

that would not have been similarly exposed in the allopatric crosses (e.g., because of 

dominance). Consequently, sympatric families might have been more variable and such 

noise could have impacted our findings. Although we cannot rule out this effect entirely, we 

do not believe such an effect is the primary driver of our findings. Inspection of Figures 2–4, 

where each cross is presented as points in panel A and as columns in panel C, reveals two 

points that suggest this is not an issue. First, the dispersion of points in multivariate space, is 

not consistently greater in the families derived from sympatry than in the families derived 

from allopatry. Second, the heat maps do not show substantial variation within each cross 

type relative to the patterns among cross types. Moreover, as in the PCA, the families 

derived from sympatry are not consistently more variable than the families derived from 

allopatry. Thus, although we cannot rule out the possibility of greater variability in BDMs in 

our sympatric crosses relative to the allopatric crosses, the patterns of gene expression we 

observed does not suggest that such variability had a large impact on our results.

Despite being unable to entirely rule out these different impacts of introgression on our 

results, our findings nevertheless highlight two key points. First, our findings are consistent 

with the possibility that BDMs in hybrids are not necessarily driven by fixed differences 

between species (Cutter, 2012). If BDMs derive from fixed differences between the species, 

patterns of gene expression in hybrids should not depend on the population from which the 

pure-species parents were derived. Given the extensive variation in hybrid gene expression 

that we observed (Figure 1), our findings are more consistent with the possibility that 

segregating variation within either of the pure species generates expression differences in 

hybrids that depend on the parents’ population.

Second, our finding that so many genes differed between sympatric and allopatric hybrids 

emphasizes the possibility that BDMs can evolve. In particular, if BDMs arise from 

segregating variation within the pure-species (Cutter, 2012), then the occurrence and severity 

of incompatibilities produced in hybrid offspring and subsequent hybrid/hybrid or pure-

species/hybrid crosses could vary over time depending on drift, gene flow, or selection. In 

the case of selection, for example, variation in BDMs could produce variation in phenotypes 

among hybrids upon which selection can act to either purge deleterious allelic combinations 

or favor modifier alleles that improve hybrid fitness (Barton & Hewitt, 1985, 1989; 

Lammers et al., 2013; Ritchie et al., 1992; Sanderson, 1989; Schilthuizen & Lammers, 

2013). At the level of gene expression, selection acting in this way might result in hybrids 

becoming more similar in expression to either of the pure-species types over time, especially 

if selection favors pure-species expression patterns.

For some of the genes we identified, our results for hybrids produced by S. bombifrons 
females are consistent with the possibility that selection has ameliorated BDMs in sympatry. 
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Specifically, the PCA and k-means analyses show that the BMs cross type is consistently 

more similar to the sympatric pure-species cross types (BBs and MMs) than it is to either 

allopatric pure-species cross type (BBa and MMa; Supplementary Table S2). This pattern 

was emphasized in those genes that only differed in sympatric versus allopatric hybrids and 

thereby controlled for confounding variation between and within species (Figure 4; 

Supplementary Table S2). As might be expected, the BMs cross type was more similar to 

pure-species patterns of expression than the “first contact” BMa cross type (although this 

varied across different gene clusters; Figure 4). If the expression differences between hybrids 

and pure-species types correspond to BDMs that reduce fitness in hybrid types, then our 

findings with the BM cross types suggest that BDMs could have been ameliorated in 

sympatry. Whether this is actually the case requires further study.

Although more work must be done to fully evaluate whether BDMs have been evolutionarily 

ameliorated in the BM cross direction, it is noteworthy that this cross direction is the one 

that is favored by natural selection in some environments (Pfennig, 2007), and it is the cross 

direction more frequently observed in nature (Pfennig & Simovich, 2002). Indeed, S. 
bombifrons females preferentially hybridize when doing so is adaptive (Pfennig, 2007). 

Thus, the cross direction that is regularly exposed to selection is the one in which we 

observed patterns of gene expression that are consistent with the possibility that selection 

has acted to mitigate BDMs. Generally, any such mitigation of BDMs could reduce the 

strength of selection against hybrids. Or, if hybridization is actually favored in some 

circumstances, mitigation of BDMs could broaden the conditions under which it would be 

favored.

At the same time, our data also indicate that BDMs can evolve to become more exaggerated. 

Indeed, for many of the genes, the MBs cross type stands out as distinct from most of the 

other cross types, and the MBa hybrids were more similar to the pure-species types than 

MBs hybrids. These results diametrically contradict the prediction that selection will 

ameliorate incompatibilities, and pose the question of why BDMs should evolve to become 

more severe. One explanation is that the changes that occurred to mitigate BDMs in the BM 

cross direction generate more severe incompatibilities in the MB direction. A further 

explanation is that the directionality in hybrid production contributes to differential 

introgression of the sex chromosome(s) as described above, and this differential 

introgression contributes to the maternal effect that is observed in the differences between 

sympatric and allopatric hybrids. Disentangling these different explanations for the observed 

patterns will require additional work.

Regardless of why the MBs cross type is distinct, the expression patterns might account for 

the relatively low fitness of MB hybrids and, concomitantly, selection favoring S. 
multiplicata to avoid hybridizing with S. bombifrons males in sympatry (Pfennig, 2000; 

Pfennig & Rice, 2014; Pfennig & Simovich, 2002). Indeed, selection on S. multiplicata 
females to avoid hybridization appears to have driven reinforcement in this system (Pfennig, 

2000, 2003; Pfennig & Rice, 2014). Generally, reinforcement is most likely when both the 

costs and risk of hybridization are high, but it can be impeded by gene flow between species 

(Coyne & Orr, 2004; Pfennig & Pfennig, 2012; Price, 2008; Servedio & Noor, 2003). If, as 

suggested by our results, the fitness costs of hybridization can become increasingly severe in 
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sympatry, reinforcing selection could be maintained even in the face of introgression. Thus, 

our results also lend insight into the underlying mechanisms that might contribute to 

differential selection on hybridizing species (Pfennig & Simovich, 2002), while also 

indicating how reinforcement and adaptive hybridization can potentially occur in the same 

system (cf., Pfennig, 2003, 2007).

Taken together, the results of our study suggest the potential for BDMs to evolve after 

species come into contact and experience on-going hybridization. How BDMs evolve––

whether by selection, gene flow, drift, or as correlated effects of these processes acting at 

other loci––remains an open area of inquiry, and future work in needed to evaluate the 

problem. Doing so is important, because BDMs constitute key reproductive isolating 

mechanisms between species. To the degree that they vary in space or time, so too will 

reproductive isolation. Speciation theory generally does not account for the possibility that 

BDMs vary among populations or evolve over time. Additional theoretical and empirical 

work is needed to understand whether BDMs do vary in space and time and what the 

implications of this variation might be for the origins and maintenance of diversity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Venn diagram showing number (and overlap) of significant genes in each set of post hoc 
contrasts: between pure species (BB versus MM; “Pure-species”), between populations from 

which pure species were derived (BBa versus BBs and MMa versus MMs; “Sym vs. allo, 

pure-species”), between hybrids (all pairwise combinations of the hybrid cross types; 

“Hybrids”), and between populations from which hybrids were derived (BMa versus BMs 

and MBa versus MBs; “Sym vs. allo, hybrids”).
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Figure 2. 
Patterns of gene expression among cross types in those genes that differed between the 

species (N = 3,094). Shaded portion of icon indicates where these genes correspond to 

Figure 1. (a) Results from PCA contrasting cross types in multivariate space. Each point 

represents a replicate family/tadpole for each cross type; polygons are for illustration only to 

indicate groups by cross type. (b) Heatmap of the magnitude of pairwise distances among 

groups; bold outlines denote which groups were significantly different from each other. 

Distances are provided in Supplementary Table S2. (c) Heatmap of expression values 
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(log2(fold coverage) scaled by Euclidian distance from row mean) Each row corresponds to 

one gene and each column corresponds to one sample (i.e., one family/tadpole). Numbers 

provided to the left denote cluster membership as determined by k-means clustering. On the 

right of each cluster is a dendrogram showing the Euclidian distance of mean gene 

expressions between samples. Colors associated with cross types at top of heatmap 

correspond to those in (a).
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Figure 3. 
Patterns of gene expression among cross types in those genes that did not differ between the 

species, but did differ between hybrids (N = 2,294). Shaded portion of icon indicates where 

these genes correspond to Figure 1. Results from PCA and k-means clustering are depicted 

as in Figure 2.
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Figure 4. 
Patterns of gene expression among cross types in those genes that did not differ between 

species or within species between sympatry and allopatry, but were nevertheless different 

between allopatric and sympatric hybrids (N = 1,712). Shaded portion of icon indicates 

where these genes correspond to Figure 1. Results from PCA and k-means clustering are 

depicted as in Figure 2.
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Table 1.

Cross types used in the experiment with their abbreviations used throughout text and figures. In the text, the 

BMs and MBs hybrids are referred to as “sympatric hybrids”, whereas the BMa and MBa hybrids are referred 

to as “allopatric hybrids.” Note that allopatric hybrids would not be produced in nature.

Population Parents (Female x Male) Abbreviation used in text Number of replicate families

Allopatry S. bombifrons x S. bombifrons BBa 4

Allopatry S. multiplicata x S. multiplicata MMa 3

Allopatry S. bombifrons x S. multiplicata BMa 3

Allopatry S. multiplicata x S. bombifrons MBa 4

Sympatry S. bombifrons x S. bombifrons BBs 3

Sympatry S. multiplicata x S. multiplicata MMs 4

Sympatry S. bombifrons x S. multiplicata BMs 3

Sympatry S. multiplicata x S. bombifrons MBs 4
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Table 2.

Number of significant genes at P <= 0.0056 (0.05/number of contrasts) for each contrast performed as well as 

categories in which each contrast was included (see also Figure 1).

Contrast 1 Contrast 2 Significant genes Category

BB (BBs & BBa) MM (MMs & MMa) 3,094 Pure-species

BMa MBa 344 Hybrids

BMa MBs 978 Hybrids

BMs MBa 248 Hybrids

BMs MBs 1,930 Hybrids

BMa BMs 438 Hybrid; Sympatry versus allopatry, hybrids

MBa MBs 2,255 Hybrid; Sympatry versus allopatry, hybrids

BBa BBs 232 Sympatry versus allopatry, pure-species

MMa MMs 80 Sympatry versus allopatry, pure-species
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