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Abstract
1. Dual	RNA-seq	simultaneously	profiles	the	transcriptomes	of	a	host	and	of	a	path-
ogen	during	infection	and	may	reveal	the	mechanisms	underlying	host–pathogen
interactions.	Dual	RNA-seq	is	inherently	a	mixture	of	transcripts	from	at	least	two
species	(host	and	pathogen),	so	this	mixture	must	be	computationally	sorted	into
host	and	pathogen	components.	Sorting	relies	on	aligning	reads	to	respective	ref-
erence	genomes,	which	may	be	unavailable	for	both	species	in	non-model	host–
pathogen	pairs.	This	lack	of	genomic	resources	may	present	challenges	to	applying
dual	RNA-seq	to	non-model	systems.

2. We	assessed	the	accuracy	of	alignments	of	dual	RNA-seq	when	using	the	genomic
resources	of	a	closely	related	species	to	the	species	of	interest	by	simulating	datasets
of	mixed	transcripts	from	a	host	and	pathogen.	Specifically,	we	compared	how	differ-
ent	aligners	performed	across	different	proportions	of	pathogen-to-host	transcripts
and	across	variation	in	the	genetic	distance	between	the	pathogen	genome	and	ref-
erence	genome.	We	performed	extensive	analyses	 for	 a	host	plant	with	a	 fungal
pathogen,	and	then,	we	extended	the	plant–fungus	results	by	repeating	key	analyses	
in	vertebrate	(human)–fungus	and	vertebrate–bacterium	systems.

3.	 Aligners	that	were	able	to	map	pathogen	transcripts	to	the	reference	genome	of	a
species	closely	related	to	the	pathogen	(a	‘related	reference	genome’)	also	mismapped
transcripts	originating	from	the	host	to	the	pathogen's	related	reference	genome.	This
resulted	in	regions	where	this	occurred	being	quantified	as	overexpressed.	If	a	host
reference	genome	was	available,	we	show	that,	to	minimize	host	transcript	mismap-
ping	and	retain	the	ability	to	map	pathogen	transcripts,	one	could	concatenate	the
host	genome	with	the	pathogen's	related	reference	genome,	then	map	transcripts	to
the	concatenated	genomes.	If	a	host	genome	was	unavailable,	assembling	reads	de
novo	prior	to	aligning	substantially	decreased	host	read	mismapping,	while	retaining
the	ability	to	map	pathogen	transcripts	to	a	related	reference	genome.

4. The	application	of	dual	RNA-seq	to	organisms	without	reference	genomes	is	cur-
rently	limited.	We	propose	an	analytical	workflow	that	leverages	the	genomic	re-
sources	of	species	closely	related	to	species	of	interest	to	facilitate	the	application
of	dual	RNA-seq	to	reveal	the	mechanisms	of	host–pathogen	interactions	across	a
wider	array	of	systems.
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1  | INTRODUC TION

Viruses,	 bacteria	 and	 fungi	 can	 invade	 and	 parasitize	 eukaryotic	
host	cells.	Hosts	may	respond	to	infection	by	upregulating	defence	
pathways.	Pathogens,	in	turn,	evade	these	host	immune	responses	
as	they	infect	and	cause	disease.	As	this	process	unfolds	and	each	
organism	 responds	 to	 the	 other,	 gene	 expression	 changes	 in	 both	
the	host	and	the	pathogen	(Kawahara	et	al.,	2012).	Yet,	despite	the	
importance	of	host–pathogen	interactions,	the	genetic	mechanisms	
underlying	 host–pathogen	 interactions	 during	 infection	 remain	
poorly	understood.	(Westermann,	Gorski,	&	Vogel,	2012).

Gene	expression	studies	have	been	revolutionized	by	RNA-	seq	
(Mortazavi,	Williams,	 McCue,	 Schaeffer,	 &	Wold,	 2008).	 In	 infec-
tion	biology,	RNA-	seq	can	involve	sequencing	RNA	extracted	from	
pathogen-	infected	 host	 tissue,	 an	 approach	 Westermann	 et	al.	
(2012)	coined	as	dual	RNA-	seq.	Dual	RNA-	seq	allows	gene	expres-
sion	profiles	of	the	host	and	pathogen	to	be	characterized	simulta-
neously	during	their	 interaction.	For	example,	Teixeira	et	al.	 (2014)	
illustrate	that	the	fungal	parasite	Monoliophthora perniciosa	orches-
trates	the	changes	in	the	metabolism	of	the	cacao	plant	Theobroma 
cacao	that	increase	the	availability	of	nutrients	before	the	pathogen	
ultimately	kills	the	plant.	Yet,	despite	the	power	of	dual	RNA-	seq	as	
a	tool	to	identify	the	genetic	mechanisms	underlying	host–parasite	
interactions,	a	number	of	complications	make	dual	RNA-seq	difficult	
to	adapt	to	non-	model	systems.

Dual	RNA-	seq	data	are	inherently	a	mixture	of	transcripts	from	
both	 host	 and	 pathogen.	Given	 this	mixture,	 the	 host	 and	 patho-
gen	 reads	need	 to	be	 sorted	 from	each	other.	 This	 sorting	 is	 typ-
ically	 done	 by	 an	 alignment	 algorithm	 that	maps	 the	 reads	 to	 the	
two	 reference	 genomes,	 that	 of	 the	 host	 and	 that	 of	 the	 patho-
gen.	To	increase	the	accuracy	of	sorting	and	limit	the	potential	for	
reads	 to	 mismap	 to	 the	 wrong	 reference	 genome	 (i.e.	 pathogen	
reads	mapped	 to	 the	 host	 genome	 and	 vice	 versa),	 dual	 RNA-	seq	
studies	 have	 employed	 a	 variety	 of	 analytical	 approaches	 such	 as	
discarding	reads	that	map	to	both	the	host	and	pathogen	reference	
genomes	 (e.g.	Westermann	et	al.,	2016)	or	concatenating	host	and	
pathogen	 reference	 genomes	 into	 a	 composite	 for	 genome	 align-
ment	 (Aprianto,	 Slager,	 Holsappel,	 &	 Veening,	 2016).	 However,	
both	methods	of	 read	 sorting	 rely	 on	 reference	 genomes,	 limiting	
their	 application	 to	 systems	 in	 which	 the	 host	 and/or	 pathogen	
species	have	developed	genomic	resources.	As	model	species	with	
sequenced	 and	 annotated	 reference	 genomes	 comprise	 a	 small	
fraction	 of	 total	 species	 (https://www.ncbi.nlm.nih.gov/genome),	 
many	 host–pathogen	 systems	 are	 potentially	 excluded	 from	 dual	
RNA-	seq	analysis.

For	organisms	without	complete	reference	genomes,	approaches	
to	 analysing	 RNA-	seq	 data	 include	 assembling	 reads	 de	 novo	 (i.e.	

assembling	many	small	reads	together	 into	fewer	longer	fragments,	
Grabherr	 et	al.,	 2011)	 and	mapping	 reads	 to	 reference	genomes	of	
related	species	(Ekblom	&	Galindo,	2010).	As	dual	RNA-	seq	contains	
a	mixture	of	transcripts	from	the	host	and	pathogen	species,	the	im-
plications	of	the	choice	of	one	of	these	methods	are	complex,	as	ac-
curate	quantification	 levels	of	 gene	expression	 require	 reads	 to	be	
separated	correctly,	and	can	influence	the	accuracy	of	the	biological	
insight	gleaned	from	the	data.	Reference-	based	methods,	especially	
when	using	the	reference	genomes	of	a	related	species,	could	result	in	
reads	not	mapping	if	the	genetic	distance	between	the	target	species	
and	the	reference	species	is	too	high.	Alternatively,	aligners	that	allow	
more	mismatches	 between	 reads	 and	 the	 reference	 genome	 could	
mismap	reads	from	the	wrong	species,	which	could	lead	to	spurious	
inference	of	how	gene	expression	is	affected	by	infection.	De	novo	
assembly	 can	 alleviate	 some	 of	 these	 problems,	 by	 creating	 larger	
fragments	with	which	 to	map,	but	de	novo	assembly	may	 result	 in	
reads	from	the	two	species	assembling	into	longer	fragments,	which	
would	lead	to	inaccuracies	in	subsequent	mapping.	Furthermore,	dual	
RNA-	seq	datasets	vary	in	the	proportion	of	pathogen	reads	to	host	
reads	 in	 the	datasets,	depending	on	 the	system	of	 interest	 (Baddal	
et	al.,	 2015;	 Choi,	 Aliota,	Mayhew,	 Erickson,	 &	 Christensen,	 2014;	
Hayden	et	al.,	2014),	and	this	variation	may	affect	the	accuracy	and	
biological	interpretation	of	various	analytical	methods.

Despite	the	variety	of	analytical	approaches	and	their	potential	
influence	on	the	interpretation	of	dual	RNA-	seq	data,	the	accuracy	
of	 these	methods	has	not	been	 systematically	 assessed.	Here,	we	
determined	if	and	how	dual	RNA-	seq	can	be	utilized	in	non-	model	
host–pathogen	 systems	 in	 which	 genomic	 resources	 are	 limited.	
Specifically,	we	investigated	if	using	the	genomic	resources	of	spe-
cies	 closely	 related	 to	 the	 pathogen	 species	 of	 interest	 can	 facili-
tate	the	use	of	dual	RNA-	seq	in	non-	model	systems.	To	do	this,	we	
simulated	dual	RNA-	seq	datasets.	Simulations	allowed	us	to	manip-
ulate	dataset	characteristics,	like	the	proportion	of	pathogen	to	host	
reads,	 as	well	 as	 facilitated	downstream	assessments	of	 the	accu-
racy	of	various	analytical	approaches.	To	investigate	if	using	the	ge-
nomic	resources	of	a	species	closely	related	to	a	species	of	interest	
to	 analyse	dual	RNA-	seq	 is	 appropriate,	we	 assessed	how	genetic	
divergence	between	the	genome	of	the	pathogen	of	interest	(from	
here	on	referred	to	as	the	target	genome)	and	the	reference	genome	
affected	mapping	accuracy.	Additionally,	we	assessed	how	this	ef-
fect	was	mediated	by	different	alignment	methods	and	the	fraction	
of	 pathogen	 reads	 in	 the	 sample	 (Figure	1).	We	 explored	 four	 dif-
ferent	 approaches:	1.	 aligning	 raw	 reads	 to	 the	 reference	genome	
of	 the	pathogen	or	a	 related	species,	2.	aligning	 reads	 to	 the	host	
genome	first	and	then	mapping	those	reads	that	did	not	map	to	the	
host	genome	to	the	reference	genome	of	the	pathogen	or	a	related	
species	(referred	to	as	the	sequential	approach),	3.	aligning	reads	to	
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a	composite	genome	comprised	of	the	genomes	of	the	host	species	
and	pathogen	or	a	related	species	(referred	to	as	the	place-	to-	go	ap-
proach),	and	4.	assembling	reads	de	novo	prior	to	aligning	(referred	
to	as	the	assembly	approach).	This	assessment	provides	guidance	as	
to	how	to	approach	dual	RNA-	seq	when	studying	organisms	that	do	
not	have	fully	sequenced	genomes.

2  | MATERIAL S AND METHODS

2.1 | Study system

Simulating	 RNA-	seq	 relies	 on	 a	 reference	 genome	 and	 annota-
tion	 file	 as	 inputs;	 therefore,	we	model	 dual	 RNA-	seq	 using	well-	
characterized	 genomes	 for	 both	 host	 and	 pathogen.	 Additionally,	
to	investigate	the	effect	of	genetic	distance	between	the	pathogen	
of	 interest	 and	 the	 reference	 genome	 used	 for	 aligning	 reads,	we	
needed	to	model	a	pathogen	species	for	which	closely	related	sister	
species	were	also	fully	sequenced.	First,	we	used	Arabidopsis thali-
ana and Schizosaccharomyces octosporus	to	represent	host	and	path-
ogen	 species,	 respectively.	While	 this	 is	 not	 a	 naturally	 occurring	

host–pathogen	 system,	 or	 symbiosis	 for	 that	matter,	 as	model	 or-
ganisms,	 these	 species	 have	 fully	 sequenced	 and	 well-	annotated	
genomes,	 which	 were	 ideal	 for	 our	 approach.	 Additionally,	 most	
species	within	the	Schizosaccharomyces	genus	have	sequenced	and	
annotated	 genomes	 (Table	 S1).	 Using	 the	 genomes	 of	 the	 other	
Schizosaccharomyces	species	as	references	for	read	mapping	allowed	
us	 to	 assess	 if	 dual	RNA-	seq	data	 could	be	 analysed	by	using	 the	
genomic	information	of	a	related	species	as	a	reference	when	study-
ing	 a	 species	without	 a	 sequenced	 genome.	 Therefore,	A. thaliana 
and S. octosporus	 allowed	 us	 to	 quantify	 how	 sensitive	 (or	 robust)	
different	 potential	 analysis	 methods	 were	 to	 increasing	 genetic	
distances	between	 the	 focal	pathogen	and	 the	 reference	genome.	
A. thaliana	will	be	referred	to	as	the	host,	and	S. octosporus will be
referred	to	as	the	pathogen.

2.2 | RNA- seq simulations

Flux	 Simulator	 was	 used	 to	 generate	 simulated	 RNA-	seq	 data	
(Griebel	 et	al.,	 2012).	 Flux	 Simulator	 produced	 sequencing	 reads	
from	 a	 reference	 genome	 according	 to	 annotated	 transcripts.	

F IGURE  1 Dual	RNA-	seq	Simulation	Study	Workflow.	We	outline	our	steps	to	investigate	best	approaches	for	analysing	dual	RNA-	seq	
datasets	of	non-	model	systems



transcriptomes	 for	 alignment	 of	 reads	 from	 each	 dual	 RNA-	seq	
dataset.

Read	 mapping	 was	 conducted	 with	 four	 different	 aligners:	
TopHat2,	 STAR,	 MapSplice2	 and	 NextGenMap.	 TopHat2	 (version	
2.1.1)	and	STAR	(version	2.5.1b)	(Dobin	et	al.,	2013;	Trapnell,	Pachter,	
&	Salzberg,	2009)	are	both	splice-	aware	aligners.	TopHat2	relies	on	
a	Burrows–Wheeler	transform	and	FM-	index	to	search	for	matches	
between	a	reference	genome	and	RNA-	seq	reads.	STAR,	which	uses	
a	seed	and	anchor	approach	based	on	a	Maximal	Mappable	Prefix,	is	
more	robust	to	non-	continuous	reads	and	some	mismatches.	Default	
parameter	settings	were	used	for	both	methods.

In	addition	to	these	two	splice-	aware	aligners,	a	de	novo	aligner,	
MapSplice2	(version	2.2.1)	was	used	to	map	reads	to	a	reference	ge-
nome	(Wang	et	al.,	2010).	MapSplice2	detects	splice	junctions	with-
out	any	dependence	on	splice	site	features	(an	annotation	file).	We	
also	mapped	reads	with	an	unspliced	aligner,	NextGenMap	(version	
0.4.12)	to	map	reads	from	each	simulated	dataset	to	each	reference	
transcriptome	 (Li	 &	Durbin,	 2010;	 Sedlazeck,	 Rescheneder,	 &	 von	
Haeseler,	2013).	The	hash-	based	variable	mismatch	threshold	algo-
rithm	of	NextGenMap	maximizes	its	ability	to	utilize	divergent	reads.	
Default	parameter	settings	were	used.

Using	the	genomic	resources	and	aligners	discussed	above,	we	
processed	reads	in	four	different	approaches	to	investigate	the	ef-
fectiveness	 and	 accuracy	 of	 analytical	methods	 for	 dual	 RNA-	seq	
data,	(Workflow	in	Figure	1):

2.3.1 | Raw read mapping

First,	 we	 investigated	 the	 accuracy	 of	mapping	 the	 raw	 sequenc-
ing	 reads	 that	 were	 comprised	 of	 both	 host	 and	 pathogen	 reads.	
We	conducted	alignments	with	the	reference	genome	of	the	target	
pathogen	species,	S. octosporus,	and	those	of	species	closely	related	
to	 the	 target	 species.	 Each	 of	 the	 four	 alignment	 algorithms	 dis-
cussed	above	was	utilized.

2.3.2 | Sequential mapping approach: map to host 
genome first

While	the	decision	of	mapping	first	to	the	host	or	pathogen	is	some-
what	 arbitrary,	 we	 believed	 that	 mapping	 to	 the	 host	 first	 would	
provide	insight	into	the	potential	biases	of	dual	RNA-	seq	and	the	im-
pact	of	unintentional	sequencing	of	a	pathogen	along	with	the	host	
(i.e.	unwittingly	sequencing	an	infected	host).	Thus,	we	first	mapped	
simulated	dual	RNA-	seq	datasets	to	the	host	genome,	then	took	the	
reads	left	unmapped	and	mapped	them	to	the	genome	of	the	target	
species	and	those	of	closely	related	species.	Reads	from	each	simu-
lated	dataset	were	mapped	to	the	host	genome	using	TopHat2	under	
default	parameters.	Following	alignments,	the	output	BAM	files	con-
taining	 unmapped	 reads	were	 converted	 to	 FASTA	 files	 using	 the	
‘bam2fq’	 function	 within	 Samtools	 version	 1.3.1	 (Li	 et	al.,	 2009).	
These	reads	that	did	not	map	to	the	host	genome	were	then	mapped	
to	each	of	the	Schizosaccharomyces	genomes	with	NextGenMap	and	
STAR.

RNA-	seq	data	were	simulated	separately	for	the	host	and	pathogen. 
For	each,	four	datasets	were	simulated	for	a	factorial	combination	
of	two	read	lengths	(76-	bp	or	150-	bp)	and	configuration	(single	end	
or	paired	end).	Each	dataset	included	10	million	reads,	similar	to	the	
simulations	used	in	Baruzzo	et	al.,	2016.	All	other	simulation	param-
eters	were	run	as	default.	Simulated	datasets	were	output	as	FASTQ	
files.	Reads	within	each	dataset	were	labelled	with	unique	species-	
identifying	tags	 (either	 ‘HOST’	or	 ‘PATH’)	to	facilitate	downstream	
assessments	of	alignments.

To	create	dual	RNA-	seq	datasets,	we	randomly	selected	reads	from	
complementing	datasets	(same	read	length	and	configuration)	of	the	
host	and	pathogen	and	mixed	them	together.	For	each	of	the	four	sets	
of	sequencing	parameters,	we	created	12	10-	million	read	datasets	that	
ranged	from	1	to	100%	pathogen	reads.	As	dual	RNA-	seq	is	sequenced	
from	RNA	extracted	from	pathogen-i	nfected	host	tissue,	typical	data-
sets	are	comprised	of	a	very	low	percentage	of	pathogen	reads.	The	
analysis	of	datasets	with	higher	percentages	of	pathogen	 reads	was	
conducted	to	show	when	and	how	patterns	changed		across	the	range	
of	 the	percentages	of	pathogen	 reads.	Some	systems	 investigate	 si-
multaneous	gene	expression	of	host	and	pathogens	by	mechanically	
separating	cells	of	each	species	prior	to	sequencing	(Ellison,	DiRenzo,	
McDonald,	Lips,	&	Zamudio,	2017).	Datasets	with	higher	percentages	
of	 pathogen	 reads	 that	 still	 include	 host	 reads	 could	 represent	 se-
quencing	from	RNA	extracted	after	imperfect	cell	sorting.

2.3 | Dual RNA- seq analysis approaches

For	each	reference-	based	approach,	 the	reference	genomes	and	
annotations	 for	S. octosporus	 (the	 target	pathogen), S. cryophilus, 
S. japonicus and S. pombe	 were	 used,	 downloaded	 in	 April	 2018
from	Fungi	Ensembl	((Rhind	et	al.,	2011),	Table	1).	As	S. octosporus

was	 simulated	 as	 the	pathogen	within	 the	 generated	dual	RNA-	
seq	datasets,	the	genomic	resources	for	the	other	species	within
the	 Schizosaccharomyces	 genus	 facilitated	 the	 investigation	 of

how	 different	 levels	 of	 evolutionary	 distance	 between	 the	 ge-
nome	of	the	target	species	and	reference	genome	affect	mapping
accuracy.	 To	 generate	 a	 reference	 transcriptome,	 the	 BEDTools
‘getfasta’	utility	version	2.25.0	was	used	to	extract	the	transcript
sequences	from	each	of	these	downloaded	genomes	as	specified
by	coordinates	in	the	complementing	annotation	files	(Quinlan	&

Hall,	 2010).	 These	 transcript	 sequences	were	 used	 as	 reference

TAB  L  E  1 Schizosaccharomyces	species	information

Species

1:1 Ortholog 
amino acid identity 
to targeta

Genome 
size

GC content 
(%)

S. octosporus* – 11.5	Mb 38

S. cryophilus 85% 12.5	Mb 38

S. pombe 66% 12.5	Mb 36

S. japonicus 56% 12.5	Mb 44

aTarget	 Species:	 Species	 used	 for	 dual	 RNA-	seq	 simulations	
(S. octosporus).	



2.3.3 | Place- to- go approach: mapping to 
concatenated genome

We	further	investigated	potential	alignment	methods	when	a	host	ge-
nome	is	available	by	mapping	reads	to	concatenated	genomes	of	the	
host	genome	and	either	the	target	pathogen	genome	or	the	genome	
of	a	species	closely	related	to	the	target	pathogen	species.	First,	we	
investigated	 mapping	 accuracy	 with	 the	 composite	 genome	 of	 the	
host	A. thaliana		and	of	the	target	pathogen	species	S. octosporus,	the	
two	species	used	to	simulate	the	dual	RNA-	seq	datasets.	Second,	to	
assess	the	effectiveness	and	accuracy	of	this	method	when	only	the	
genomes	of	species	closely	related	to	the	target	pathogen	species	are	
available,	we	also	created	composite	genomes	of	A. thaliana	and	each	
of	the	three	other	Schizosaccharomyces	genomes.	Read	mapping	was	
conducted	with	the	four	different	aligners	as	described	above.

2.3.4 | Assembly approach: de novo assembly

We	investigated	whether	de	novo	assembly	of	reads	prior	to	mapping	
affected	the	effectiveness	and	accuracy	of	alignments.	Prior	to	map-
ping	reads,	Trinity	(Haas	et	al.,	2013,	version	2.2.0)	was	used	for	de	
novo	assembly.	Default	parameters	were	used.	To	determine	which	
reads	comprised	each	contig,	Bowtie2,	version	2.3.4.1,	was	used	to	
align	 reads	 back	 to	 the	 assembled	 contigs	 (Langmead	 &	 Salzberg,	
2012).	 If	 only	 pathogen	 reads	mapped	 to	 a	 contig,	 the	 contig	 was	
tagged	‘pathogen’.	If	only	host	reads	mapped	to	a	contig,	the	contig	
was	tagged	‘host’.	If	both	pathogen	and	host	reads	mapped	to	a	con-
tig,	the	contig	was	tagged	‘undetermined’.	After	Trinity	assembly	and	
tagging,	contigs	were	mapped	to	each	of	the	Schizosaccharomyces	ge-
nomes	with	NextGenMap	and	STARlong	under	default	settings.

2.4 | Evaluation of alignments

SAM/BAM	 conversions,	 sorting	 and	 indexing	 were	 performed	
with	 SAMtools	 version	 1.3.1	 and	 Picard	 version	 2.2.4	 (Li	 et	al.,	
2009).	For	each	alignment,	the	number	of	mapped	and	unmapped	
reads	 originating	 from	A. thaliana and S. octosporus	was	 counted	
by	parsing	BAM	files	for	the	previously	added	unique	tags	for	each	
species.

To	investigate	how	biological	insight	would	be	affected	by	align-
ment	method,	gene-	wise	counts	were	obtained	with	featureCounts	
(Liao,	Smyth,	&	Shi,	2013)	and	differential	gene	expression	analysis	
was	performed	following	the	 instructions	of	the	 ‘DESeq2’	package	
(Love,	Huber,	&	Anders,	2014)	deposited	in	Bioconductor.	Specifically,	
we	quantified	gene	counts	(reads	overlapping	exons	as	described	in	
the	annotation	build)	for	alignments	to	the	target	pathogen	genome.	
Gene	expression	was	compared	between	alignments	of	the	same	se-
quencing	dataset	among	the	different	aligner	methods.	These	pair-
wise	 comparisons	 did	 not	 have	 replicates	 because	 our	 simulations	
were	performed	without	 stochastic	 sampling.	 To	 address	 that	 lim-
itation,	we	used	the	rlog	transformation	function,	which	transforms	
the	average	of	the	genes	across	samples	to	a	 log2	scale,	as	well	as	
accounts	for	genes	for	which	the	evidence	for	strong	fold	changes	is	

weak	due	to	low	counts.	This	protocol	does	not	produce	p-	values	but	
provides	a	ranked	list	of	genes	by	regularized	fold	changes.

2.5 | Applications to other host–pathogen systems

To	 investigate	 if	 patterns	 observed	 with	 the	 above	 approaches	
held	 across	other	 host–pathogen	 systems,	we	 also	 simulated	dual	
RNA-seq	 involving	another	fungal	pathogen,	Candida albicans,	and	
a	different	host	 species,	Homo sapiens.	Additionally,	we	 simulated	
a	bacterial	pathogen	system	with	Homo sapiens and Escherichia coli. 
Many	species	within	 the	Candida and Escherichia	genera	have	ref-
erence	 genomes	 available.	We	 utilized	 two	 sister	 species	 of	 each	
C. dubliniensis and C. parapsilosis,	and	E. fergusonii and E. albertii	as
reference	 species	 to	 evaluate	 impact	 on	 dual	 RNA-	seq	 analytical
methods	(Table	S2).

3  | RESULTS

3.1 | Generation of simulated datasets

We	simulated	dual	RNA-	seq	datasets	to	investigate	if	and	how	dual	
RNA-	seq	can	be	utilized	in	host–pathogen	systems	in	which	genomic	
resources	 are	 limited.	 Simulated	 datasets	 represented	 a	 factorial	
combination	of	read	length	(76	bp	vs.	150	bp),	sequencing	configu-
ration	(paired	or	single	ended),	and	12	different	ratios	of	host	reads	
to	pathogen	reads.	In	total,	48	dual	RNA-	seq	datasets,	each	with	10	
million	reads,	were	simulated.	Similarly,	we	simulated	dual	RNA-	seq	
datasets	 for	Homo sapiens and Candida albicans, and Homo sapiens 
and Escherichia coli,	 also	with	 varying	 ratios	 of	 pathogen	 reads	 to	
host	 reads.	We	will	 first	 discuss	 the	main	 results	 from	 the	 76-	bp	
single-	end	A. thaliana and S. octosporus	datasets	 relegating	 the	ex-
tensions	and	ancillary	results	to	the	supplement.

3.2 | Comparison of raw read mapping

We	first	assessed	the	accuracy	of	alignments	of	dual	RNA-	seq	raw	
reads	with	different	aligners,	representing	a	cross	section	of	align-
ment	algorithms,	when	using	the	correct	target	genome.	When	map-
ping	 raw	 reads	 to	 the	 target	 genome	of	 the	 pathogen	of	 interest,	
the	 four	 aligners	had	comparable	mapping	 rates	of	 reads	originat-
ing	from	the	pathogen	(Figure	2a).	TopHat2	and	MapSplice2	aligned	
c. 88%	 of	 pathogen	 reads;	 STAR	 and	 NextGenMap	 each	 aligned
over	99%	of	pathogen	reads	to	the	target	reference.	Mapping	rate
of	pathogen	 reads	was	unaffected	by	 the	percentage	of	pathogen
reads	 in	 the	 sequencing	 datasets.	 While	 STAR	 and	 NextGenMap
achieved	a	high	mapping	rate	of	pathogen	reads,	both	aligners	also
mismapped	host	reads	to	the	genome	of	the	target	pathogen	species
(Figure	2b,	S3).	For	STAR	and	NextGenMap	alignments	of	datasets	in
which	there	were	more	host	reads	than	pathogen	reads,	a	common
occurrence	 among	 real	 dual	 RNA-	seq	 datasets,	 mismapped	 host
reads	comprised	25–98%	of	 the	total	 reads	mapped.	 In	sum,	most
pathogen	 reads	 from	a	dual	RNA-	seq	experiment	were	 aligned	by
common	aligners,	but	the	aligners	that	mapped	the	most	pathogen



F IGURE  2 Comparison	of	utility	and	accuracy	of	several	aligners	for	dual	RNA-	seq	analysis.	Factorial	combination	of	four	aligners	
and	the	four	Schizosaccharomyces	reference	genomes.	(a)	Bars	indicate	the	proportion	of	pathogen	reads	that	mapped	to	each	genome/
transcriptome.	Alignments	to	target	pathogen	species	are	shown	in	black,	and	greyscale	gradient	indicates	evolutionary	distance	from	the	
target.	TopHat2	and	MapSplice2	can	only	map	pathogen	reads	when	mapping	to	target	pathogen	genome	and	are	unable	to	effectively	map	
reads	to	genomes	of	related	species.	STAR	and	NextGenMap	are	able	to	map	pathogen	reads	to	reference	genomes	of	related	species.	(b)	
Origin	of	Mapped	Reads.	For	each	bar	plot,	blue	reads	are	those	that	originated	from	host	(Arabidopsis thaliana)	and	yellow	reads	are	those	
that	originated	from	pathogen	(Schizosaccharomyces octosporus).	TopHat2	and	MapSplice2	can	only	effectively	map	pathogen	reads	when	
mapping	to	target	pathogen	genome,	and	are	unable	to	effectively	map	reads	to	the	reference	genomes	of	related	species.	These	plots	are	
therefore	excluded.	STAR	and	NextGenMap	are	able	to	map	pathogen	reads	to	reference	genomes	of	related	species,	but	both	aligners	
result	in	host	reads	mismapping
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reads	 to	 the	source	pathogen	genome	also	 incorrectly	aligned	 the	
most	host	reads	to	the	pathogen	genome.

As	many	pathogen	species	do	not	have	genomic	resources,	we	
investigated	how	each	of	 the	 four	 aligners	 performed	when	map-
ping	reads	to	the	genome	of	a	species	closely	related	to	the	patho-
gen.	TopHat2	and	MapSplice2	performed	poorly,	mapping	<0.5%	of	
pathogen	reads	when	mapping	to	any	genome	of	a	related	species.	
STAR	 and	 NextGenMap	 were	 able	 to	 map	 pathogen	 reads	 when	
using	 the	genomic	 information	of	 a	 related	 species	 as	 a	 reference	
(Figure	2a).	Mapping	rates	of	pathogen	reads	remained	unaffected	
by	 the	 percentage	 of	 pathogen	 reads	 in	 the	 sequencing	 datasets.	
When	using	STAR,	c.	36%	of	pathogen	reads	mapped	to	the	genome	
of	S. cryophilus,	 the	species	most	closely	related	to	the	target	spe-
cies,	S. octosporus.	19%	of	pathogen	reads	mapped	to	the	S. japon-
icus	 genome,	and	3%	mapped	 to	 the	S. pombe	 genome	 (Figure	2a).	
When	using	NextGenMap,	c.	60%	of	pathogen	reads	mapped	to	the	
S. cryophilus	transcriptome,	22%	mapped	to	the	S. pombe	transcrip-
tome	and	28%	mapped	to	the	S. japonicus	transcriptome	(Figure	2a).	
For	both	STAR	and	NextGenMap,	the	percentage	of	pathogen	reads	
mapped	generally	decreased	as	evolutionary	distance	between	the	
target	 and	 reference	 genomes	 increased.	 Thus,	 there	 is	 a	 distinct	
bifurcation	 between	 aligners	 that	 can	 and	 cannot	 effectively	map	
pathogen	reads	when	only	a	related	reference	genome	is	available.

For	STAR	and	NextGenMap,	host	 reads	mismapping	 to	 the	 in-
correct	genome	increased	as	the	evolutionary	distance	between	the	
target	pathogen	species	and	the	reference	species	increased,	while	
TopHat2	and	MapSplice2	only	mapped	a	few	host	reads	(maximum	
of	19	reads)	to	any	of	the	Schizosaccharomyces	 reference	genomes	
under	 any	 sequencing	 parameters	 (Figure	2b,	 S3).	 When	 aligning	
with	 STAR,	 c.	 21%	 of	 host	 reads	mapped	 to	 the	 S. cryophilus and 
S. pombe	genomes.	Although	only	c.	1%	of	host	reads	mapped	to	the	
S. pombe	genome,	only	3%	of	pathogen	reads	mapped	to	the	same	
genome,	so	overall	mapping	rate	was	very	low.	When	aligning	with	
NextGenMap,	c.	25%	of	host	reads	mapped	to	the	S. cryophilus and	
S. japonicus	 transcriptomes,	 and	 c.	 15%	 of	 host	 reads	 mapped	 to	

S. pombe.	The	effects	of	evolutionary	distance-	related	mismapping	
is	 greatest	 in	 datasets	 in	which	 the	 proportion	 of	 pathogen	 reads	
was	low,	as	host	reads	comprise	the	majority	of	total	reads	mapped.

3.3 | Gene counts and differential expression 
analysis

To	investigate	how	biological	insight	would	be	affected	by	host	read	
mismapping,	we	quantified	gene-	wise	counts	of	the	host	reads	that	
STAR	mismapped	 to	 the	 target	 pathogen	 genome.	 The	 sequencing	
dataset	that	resulted	in	the	highest	number	of	host	reads	mismapped	
to	the	target	pathogen	genome	in	which	the	highest	number	of	host	
reads	mismapped	was	 the	datatset	with	highest	proportion	of	host	
reads	 relative	 to	 pathogen	 reads	 (specifically,	 99%	 host	 reads/1%	
pathogen	reads).	The	vast	majority	of	the	mismapped	host	reads	de-
rived	from	repetitive	parts	of	the	genome.	As	determined	by	feature-
Counts,	only	1.6%	of	S. octosporus	genes	had	more	than	50	host	reads	

mismap	to	them	(Table	S5),	and	these	genes	varied	in	biological	func-
tion	(Table	S4).

We	compared	two	alignments	of	the	same	simulated	dataset	to	the	
target	genome	of	S. octosporus;	one	alignment	was	performed	by	map-
ping	raw	reads	to	the	genome	with	TopHat2	(which	did	not	mismap	
host	reads)	and	the	other	was	performed	by	mapping	raw	reads	to	the	
genome	with	STAR	(which	included	host	reads	mismapping).	A	ranked	
list	of	regularized	fold	changes	on	the	log2	scale	is	in	the	supplemen-
tary	material	 (Table	S3).	97.1%	of	genes	 that	were	expressed	differ-
ently	 (above	0.1-	fold	change	on	the	 log2	scale)	between	alignments	
were	overexpressed	in	the	alignment	in	which	host	read	mismapping	
occurred.	This	suggests	that	mismapping	of	reads	to	the	wrong	refer-
ence	in	dual	RNA-	seq	can	result	in	upward	biases	in	estimates	of	gene	
expression.	Thus,	compared	to	an	uninfected	control,	these	upwardly	
biased	genes	would	appear	to	be	‘induced’	by	infection.

3.4 | Alternative mapping strategies may reduce 
mapping problems

We	 considered	 three	 alternative	 approaches	 that	 could	 reduce	
poor	 mapping	 and	 mismapping	 of	 dual	 RNA-	seq	 data.	 We	 first	
investigated	approaches	that	would	be	possible	 if	a	host	genome	
was	available.	We	tried	to	filter	out	host	reads	by	first	aligning	dual	
RNA-	seq	datasets	to	the	host	genome,	and	then	mapping	the	reads	
left	unmapped	to	the	target	pathogen	genome	(or	those	of	related	
species).	This	‘sequential’	approach	decreased	the	amount	of	host	
read	mismapping	only	 slightly	 (Table	2).	For	most	alignments,	 the	
percentage	 of	 total	 mapped	 reads	 that	 originated	 from	 the	 host	
only	decreased	by	1–3%.

We	investigated	a	second	approach	in	which	reads	were	mapped	
to	concatenated	genomes	of	the	host	and	either	the	target	pathogen	
or	that	of	a	closely	related	species	to	the	pathogen.	(a	‘place-	to-	go’	
design).	The	place-	to-	go	method	resulted	in	alignments	using	STAR	
and	NextGenMap	having	substantially	fewer	host	reads	mismapping	
to	the	genome	of	the	pathogen	or	that	of	a	species	closely	related	
to	the	pathogen	compared	to	the	alignments	to	genomes	excluding	
the	host	genome.	Furthermore,	both	aligners	 retained	their	ability	
to	map	pathogen	reads	to	the	genomes	of	closely	related	species	to	
the	target	pathogen	(Figure	3,	Figure	S4).	Therefore,	the	place-	to-	go	
method	may	overcome	some	of	the	limitations	of	mapping	to	a	re-
lated	reference	in	dual	RNA-	seq.

Finally,	we	investigated	a	third	approach	in	which	reads	were	first	
assembled	de	novo	into	longer	fragments,	then	those	fragments	were	
mapped	to	the	genomes	of	the	pathogen	and	species	closely	related	
to	 the	 pathogen	 (‘assembly’	 approach).	 The	 majority	 of	 assembled	
contigs	were	 comprised	entirely	of	 host	 reads	or	 entirely	of	 patho-
gen	reads	(Assembly	metrics	in	Figure	S1).	A	small	fraction	of	contigs	
were	chimeras—that	is,	a	mix	of	host	and	pathogen	reads	(labelled	as	
‘undetermined’).	Alignments	of	 these	 assembled	 transcripts	 to	 each	
of	 the	reference	genomes	resulted	 in	a	substantial	decrease	 in	host	
read	mismapping	while	preserving	the	ability	to	map	pathogen	contigs	
(Figure	4,	Figure	S5).	Across	all	reference	species	and	proportions	of	



F IGURE  3 Concatenated	genome	mapping	(Place-	to-	go	approach)	improve	dual	RNA-	seq	analysis.	Results	are	shown	for	aligners	STAR	
and	NextGenMap	and	four	composite	genomes	comprised	of	the	Arabidopsis thaliana	(host)	genome	and	each	of	four	Schizosaccharomyces 
reference	genomes.	(a)	Bars	indicate	the	proportion	of	pathogen	reads	that	mapped	to	the	part	of	the	composite	genome	originating	from	
the	genome	of	the	pathogen	or	closely	related	species	to	pathogen.	Alignments	to	target	genome	of	the	pathogen	species	of	interest	
are	shown	in	black,	and	greyscale	gradient	indicates	evolutionary	distance	from	target.	STAR	is	able	to	map	almost	all	pathogen	reads	to	
target	genome,	and	27.7%	of	pathogen	reads	to	the	composite	genome	with	genome	of	the	most	closely	related	genome	to	the	target.	
NextGenMap	is	able	to	map	c.	89%	reads	to	target,	and	39%	reads	to	the	composite	genome	with	genome	of	most	closely	related	genome	
to	target.	(b)	Origin	of	reads	that	mapped	to	genome	of	pathogen	or	closely	related	species.	For	each	bar	plot,	blue	reads	are	those	that	
originated	from	host	(Arabidopsis thaliana)	and	yellow	reads	are	those	that	originated	from	target	pathogen	(Schizosaccharomyces octosporus).	
Bar	plots	represent	the	composition	of	reads	that	mapped	to	the	component	of	each	composite	genome	corresponding	to	either	the	target	
pathogen	genome	or	the	genome	of	a	closely	related	species



FIGURE 4 The	Assembly	Approach	improves	alignment	of	dual	RNA-	seq	reads.	Results	are	shown	for	aligners	STAR	and	NextGenMap	and	
four	Schizosaccharomyces	reference	genomes.	(a)	Bars	indicate	the	proportion	of	pathogen	reads	that	mapped	to	each	genome/transcriptome.	
Alignments	to	target	pathogen	species	are	shown	in	black,	and	greyscale	gradient	indicates	evolutionary	distance	from	target.	STAR	can	only	map	
pathogen	contigs	when	mapping	to	reference	genome	of	the	pathogen	and	is	unable	to	effectively	map	contigs	to	reference	genomes	of	related	
species.	NextGenMap	retains	its	ability	to	map	pathogen	contigs	to	transcriptomes	of	related	species.	(b)	Origin	of	assembled	reads	that	mapped	to	
genome	of	pathogen	or	closely	related	species.	For	each	bar	plot,	blue	contigs	are	those	that	originated	from	host	(Arabidopsis thaliana)	and	yellow	
contigs	are	those	that	originated	from	pathogen	(Schizosaccharomyces octosporus).	Contigs	that	were	unable	to	be	determined	as	comprised	of	host	
or	pathogen	reads	are	coloured	green.	The	bar	plots	represent	composition	of	contigs	that	mapped	to	each	reference	genome.	STAR	was	unable	to	
align	more	than	a	few	contigs	for	S. cryophilus, S.pombe and S. japonicus,	so	those	plots	have	been	excluded.	Host	mismapping	was	strongly	reduced



pathogen	reads	in	the	original	datasets,	<1%	of	contigs	comprised	of	
host	reads	mapped	with	NextGenMap.	Furthermore,	c.	99%	of	contigs	
comprised	of	pathogen	reads	mapped	to	the	target	transcriptome	of	
S. octosporus.	Approximately	79%	of	contigs	comprised	of	pathogen	
reads	mapped	to	S. cryophilus,	29%	of	contigs	comprised	of	pathogen
reads	mapped	 to	S. pombe	 and	15%	of	 contigs	 comprised	of	patho-
gen	reads	mapped	to	S. japonicus.	Although	some	of	the	contigs	that
were	unable	to	be	identified	as	comprised	of	pathogen	or	host	reads	
mapped,	 they	comprised	a	minority	of	 the	 total	number	of	mapped	
contigs,	with	a	maximum	of	2.5%.	With	such	a	reduction	in	host	read	
mismapping,	 the	majority	of	all	mapped	contigs	originated	 from	the	
pathogen.	Given	that	a	good	de	novo	assembly	is	possible,	the	assem-
bly	approach	also	clearly	reduced	mismapping.

3.5 | Effect of sequencing parameters

To	investigate	the	effect	of	sequencing	parameters—the	size	of	se-
quencing	 read,	 paired-	end	 vs.	 single-	end	 reads—on	 the	 above	 ap-
proaches,	we	simulated	dual	RNA-	seq	datasets	of	the	same	system	
with	a	longer	read	length	(150	bp)	and	with	paired-	end	sequencing	
(Figure	 S11–S16).	While	 the	 same	 patterns	 largely	 held—that	 raw	
read	mapping	resulted	in	host	reads	mismapping	when	aligning	with	
STAR	and	NextGenMap	and	mapping	reads	 to	a	concatenated	ge-
nome	or	 assembling	 reads	 de	 novo	 prior	 to	mapping	 substantially	
reduced	host	read	mismapping—there	were	some	differences	among	
the	 layouts.	 Specifically,	 longer	 read	 lengths	 not	 only	 resulted	 in	
overall	 lower	host	read	mismapping	rates	(which	is	consistent	with	
the	results	of	mapping	assembled	reads)	but	also	resulted	in	 lower	
pathogen	 read	mapping	 rate,	 especially	when	mapping	 to	 the	 ge-
nomes	 of	 species	 closely	 related	 to	 the	 pathogen.	 Additionally,	
assembling	 76	 paired-	end	 reads	 de	 novo	 prior	 to	mapping	 to	 the	
Schizosaccharomyces	genomes	resulted	in	more	reads	that	could	not	
be	 identified	 as	 from	 the	 host	 or	 pathogen	 (potentially	 chimeras)	
comprising	the	group	of	mapped	reads.	As	expected,	longer	paired-	
end	reads	generally	performed	better	than	other	configurations.

3.6 | Similarities and contrasts in other taxa

The	simulations	above	focused	on	a	fungal	‘parasite’	infecting	a	plant	
host	as	we	believe	that	this	could	be	a	particularly	problematic	sce-
nario,	as	plants	and	fungi	are	both	eukaryotes,	while	other	host–path-
ogen	 systems	 involve	more	 diverged	 species.	 To	 investigate	 if	 and	
how	the	patterns	observed	above	extend	to	other	systems,	we	simu-
lated	two	more	sets	of	dual	RNA-	seq	datasets.	We	simulated	datasets	
across	the	same	range	of	proportion	of	pathogen	reads	for	another	
host–fungal	pathogen	system,	Homo sapiens and Candida albicans,	as	
well	as	a	bacterial	pathogen	system,	Homo sapiens and Escherichia coli. 
While	alignments	of	the	Human-	Candida	raw	reads	to	the	genomes	of	
the	target	species,	C. albicans,	and	two	closely	related	species,	C. dub-
linensis and C. parapsilosis,	did	result	in	a	comparable	level	of	host	read	
mismapping	to	the	above	analyses	(Figure	S6),	alignments	of	Human-	E. 
coli	raw	reads	had	minimal	if	any	host	read	mismapping	(Figure	S10).	
We	 conducted	 the	 same	 three	 approaches	 described	 above	 to	

minimize	host	read	mismapping	with	the	Human-	Candida	alignments,	
and	we	observed	the	same	results	as	described	above—that	mapping	
to	concatenated	genomes	of	the	host	and	closely	related	species,	as	
well	as	de	novo	assembly	prior	to	aligning,	substantially	reduce	host	
read	mismapping	while	 retaining	 the	ability	 to	map	pathogen	 reads	
(Figure	S7–9).	Therefore,	the	mismapping	problems	in	dual	RNA-	seq	
held,	to	varying	degrees,	across	the	systems	we	investigated.

4  | DISCUSSION

Understanding	 the	 genetic	 mechanisms	 of	 host–pathogen	 inter-
actions	may	 be	 improved	 using	 dual	 RNA-	seq	 (Westermann	 et	al.	
2012),	but	several	 limitations	have	contributed	to	the	underutiliza-
tion	of	this	approach.	Dual	RNA-	seq	is	inherently	a	mixture	of	host	
and	pathogen	reads	that	need	to	be	parsed	prior	to	analyses.	This	
parsing	relies	on	mapping	reads	to	the	genomes	of	each	organism.	
Consequently,	 it	 was	 previously	 unknown	 whether	 and	 how	 dual	
RNA-	seq	could	be	applied	to	non-	model	host–pathogen	systems,	in	
which	 there	 are	 limited	or	no	genomic	 resources.	Our	 analyses	of	
simulated	sequencing	identified	as	problematic	several	approaches	
that	might	be	encountered	by	researchers	applying	dual	RNA-	seq	to	
non-	model	host–pathogen	systems.	However,	our	systematic	com-
parison	of	analytical	approaches	also	revealed	a	workflow	that	can	
be	used	to	identify	the	genetic	mechanisms	of	host–parasite	interac-
tions	for	non-	model	organisms.

For	non-	model	organisms,	traditional	approaches	to	analysing	RNA-	
seq	data	include	mapping	reads	to	reference	genomes	of	related	species	
(Benjamin,	Nichols,	Burke,	Ginsburg,	&	Lucas,	2014).	Depending	on	the	
software	for	aligning	sequencing	reads,	we	found	that	using	genomic	
resources	of	a	closely	related	pathogen	can	result	in	one	of	two	error	
modes.	We	found	that	aligners	 like	TopHat2	and	MapSplice2	are	too	
restrictive	with	allowed	mismatches	by	default,	 resulting	 in	pathogen	
reads	failing	to	map	to	genomes	of	the	closely	related	species.	In	con-
trast,	aligners	such	as	NextGenMap	and	STAR	are	too	lenient,	allowing	
for	too	many	mismatches	by	default	and	resulting	in	the	mismapping	of	
host	reads	to	the	genome	of	the	species	closely	related	to	the	pathogen.	
This	was	consistent	when	investigating	simulated	dual	RNA-	seq	data-
sets	of	a	plant	 (Arabidopsis	 thaliana)	and	 fungus	 (Schizosaccharomyces 
octosporus)	as	well	as	simulated	dual	RNA-	seq	datasets	of	human	and	
fungal	 pathogen	Candida albicans.	 In	 contrast,	 host	 read	mismapping	
was	substantially	reduced	for	a	simulated	dataset	of	human	and	bacte-
rial	pathogen,	Escherichia coli,	suggesting	that	this	mapping	inaccuracy	
may	be	a	particular	concern	for	studies	of	fungal	pathogens.

The	difference	in	the	performance	of	the	alignment	tools	likely	re-
flects	the	classic	trade-	off	between	precision	vs.	sensitivity	in	the	un-
derlying	algorithms.	TopHat2	underutilizes	the	dual	RNA-	seq	data	as	it	
relies	on	a	Burrows–Wheeler	transform	and	FM-	index	to	quickly	search	
for	matches	between	 the	 reference	genome	and	 the	RNA-	seq	 reads.	
This	emphasis	on	fast	and	exact	(or	nearly	so)	match	alignment	strug-
gles	to	map	reads	that	have	divergent	bases.	MapSplice2,	a	splice-	aware	
aligner,	applies	a	metric	based	on	Shannon	maximum	entropy	as	applied	
to	a	weighted	de	Bruijn	graph.	This	approach	can	detect	splice	junctions	



without	 any	dependence	on	 splice	 site	 features—potentially	 a	 critical	
feature	when	applying	dual	RNA-	seq	to	poorly	annotated	genomes	or	
closely	related	species.	However,	the	base	alignment	approach	relies	on	
Bowtie	algorithm	and	as	a	result	suffers	from	the	same	 limitations	as	
TopHat2.	 In	contrast,	 the	hash-	based	variable	mismatch	 threshold	al-
gorithm	of	NextGenMap	maximizes	its	ability	to	utilize	divergent	reads	
but	makes	more	erroneous	assignments.	STAR,	which	uses	a	seed	and	
anchor	approach	based	on	a	Maximal	Mappable	Prefix,	is	robust	to	non-	
continuous	reads	and	some	mismatches.	It	performed	almost	as	well	as	
NextGenMap	in	terms	of	data	utilization,	but	again	suffered	from	im-
precision	in	the	form	of	host	reads	mismapping	to	the	wrong	genome.

Host	reads	mismapping	to	the	genome	of	the	pathogen	or	the	ge-
nome	of	a	species	closely	related	to	the	pathogen	can	have	severe	im-
plications	for	the	characterization	of	the	gene	expression	profile	of	the	
pathogen	during	the	infection	process.	Differential	gene	expression	anal-
yses	between	alignments	of	the	same	dual	RNA-	seq	dataset	that	were	
produced	by	mapping	 raw	reads	 to	 the	 target	genome	with	TopHat2	
(in	which	host	reads	did	not	mismap)	and	STAR	(in	which	host	reads	did	
mismap)	indicated	that	the	alignments	produced	with	STAR	had	overall	
higher	 levels	of	overexpression	 than	 that	produced	by	TopHat2.	This	
highlights	that	biological	insight	gained	from	dual	RNA-	seq	data	can	be	
inaccurate	if	certain	steps	are	not	taken.	As	real	sequencing	is	unable	to	
definitively	identify	the	species	origin	of	transcripts,	neglecting	to	take	

measures	to	avoid	host	reads	mismapping	would	result	in	inaccurate	ge-
netic	mechanisms	implicated	in	the	infection	process.

From	 our	 results,	 we	 propose	 a	 workflow	 that	 should	 be	 fol-
lowed	to	determine	the	best	approaches	to	extending	the	use	of	dual	
RNA-	seq	to	a	wider	array	of	systems,	including	non-	model	systems	
(specifically,	eukaryotic	host–fungal	pathogen	systems)	in	which	ge-
nomic	resources	are	available	for	the	species	closely	related	to	the	
pathogen	of	interest	(Figure	5).

• If	 a	host	 genome	 is	 available,	 concatenating	 the	genome	of	 the
host	with	the	genome	of	species	closely	related	to	the	pathogen
of	interest	(place-to-go	approach)	results	in	more	accurate	align-
ments,	 in	which	host	 read	mismapping	 is	 substantially	 reduced,
with	the	aligners,	STAR	and	NextGenMap.

•	 If	a	host	genome	is	not	available,	assembling	reads	de	novo,	prior	to	
aligning	with	NextGenMap	and	STAR	decreased	host	read	mismap-
ping	while	retaining	the	ability	to	map	pathogen	reads.	As	expected,
de	 novo	 assemblies	 do	 exclude	 some	 reads,	 which	 would	 conse-
quently	not	be	quantified.	The	reads	excluded,	however,	were	rare	
and	a	subset	of	them	was	low-complexity	sequences	(Figure	S2).

As	NGS	technologies	and	their	analytical	tools	continue	to	be-
come	more	 affordable	 and	 accessible,	 it	 is	 important	 to	 critically	

F IGURE  5 Suggested	Workflow	for	dual	RNA-	seq	Experiments	of	non-	model	host–pathogen	systems



assess	how	accurate	genomic	analyses	with	these	tools	are.	While	
dual	RNA-	seq	has	been	applied	to	many	model	disease	systems,	we	
remain	woefully	 unaware	of	 how	 the	 accuracy	of	mapping	meth-
ods	utilized	to	separate	host	and	pathogen	reads	affects	dual	RNA-	
seq	 studies.	The	methods	we	used	here	 allowed	us	 to	 assess	 the	
accuracy	of	alignment	approaches	of	dual	RNA-	seq	 in	non-	model	
systems	through	simulated	sequencing,	but	the	biological	truth	of	
the	 origin	 of	 transcripts	 in	 real	 dual	 RNA-	seq	 data	would	 remain	
unknown	and	the	issues	we	identified	would	lead	to	misinterpreta-
tions	of	the	data.	As	infectious	diseases	are	expected	to	increase	in	
the	coming	years,	 it	 is	critical	that	we	investigate	proper	methods	
of	analyses	 to	ensure	accurate	 insights	are	gained	as	systems	are	
explored.
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