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Abstract

This paper presents a spatially and temporally adaptive boundary condition to

specify the volumetric flow rate for lattice Boltzmann methods. The approach

differs from standard velocity boundary conditions because it allows the veloc-

ity to vary over the boundary region provided that the total flux through the

boundary satisfies a prescribed constraint, which is a typical scenario for lab-

oratory experimental studies. This condition allows the boundary pressure to

adjust dynamically to yield a specified boundary flow rate as a means to avoid

unphysical mismatch between the boundary velocity and the interior flow field

that can arise when a standard velocity boundary condition is applied. The

method is validated for simulation of one- and two-fluid flow in complex mate-

rials, with conditions determined to match typical experiments used to study

flow in porous media.
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1. Introduction

It is often desirable to design computational protocols that match partic-

ular experimental conditions. Setting appropriate boundary conditions is an

important aspect of this endeavor. In computational methods, artificial bound-

ary conditions are routinely imposed as a way to focus computational effort on5

a particular region of interest [1]. Lattice Boltzmann methods (LBMs) are a

broad class of computational methods that are used widely to study complex

fluid flows [2, 3, 4, 5, 6, 7, 8]. Boundary conditions for the LBM differ from

standard Neumann and Dirichlet boundary conditions used for partial differ-

ential equations (PDEs) because of the way that LBMs are constructed. The10

LBM originates as a discrete form of the Boltzmann equation, and the number

of unknown quantities at the boundary is determined by this choice. Boundary

conditions must determine each unknown distribution, with the total number

of unknowns determined by the discrete velocity structure and boundary shape.

Commonly used boundary conditions for LBMs include pressure, velocity, pe-15

riodic and outflow boundary conditions [9, 10]. For experimental studies of

flows in porous media, microfluidics, and other complex materials, it is com-

mon to monitor (or to control directly) the total volumetric injection rate into

the system. To be specific, we will call this common volumetric flux boundary

condition a macroscale condition since it is an integrated quantity applied on20

the boundary. The common alternative conditions are microscale conditions

because these conditions prescribe point-wise values of fluid velocities or pres-

sures at the microscale, or lattice scale. Under such conditions, the microscale

velocity profile at the boundary will be known only on rare occasions. Veloc-

ity boundary conditions that are inconsistent with the interior flow present a25

particular challenge, since such conditions are a source of physical inaccuracy.

When setting velocity boundary conditions, inaccuracy can result if the con-

dition assigned leads to a rapid change in flow conditions near the boundary

region. In particular, large gradients in an underlying potential field may result.

Since potential gradients induce flow, spurious behavior can arise to correct ar-30
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tifacts in the potential field. Since the potential and velocity cannot be indepen-

dently determined, a velocity boundary condition can lead to direct enforcement

of potential gradients along the boundary. When the potential is determined im-

plicitly, flow may be inconsistent with the local potential field. Setting constant

microscale potential boundary conditions (e.g. a pressure boundary condition)35

is simpler and often more physically reasonable. However, in this scenario,

the macroscale boundary flow rate is determined as a result of the microscale

system dynamics, and cannot be prescribed using established approaches. We

consider the case where the total macroscale volumetric flux through a partic-

ular boundary is specified, and seek a boundary condition consistent with this40

condition.

Thus, the overall goal of this work is to derive a macroscale flux boundary

condition that applies to the LBM simulation of flow through porous media that

is stable and efficient. The specific objectives of this paper are (1) to formulate a

general boundary condition to control the volumetric flux in lattice Boltzmann45

methods; (2) to validate the numerical approach based on analytical results;

and (3) to apply the method to match experimental conditions for single-fluid

and two-fluid flows.

2. Methods

LBMs are a computationally efficient class of numerical method that are

widely used to model flows in complex geometries. Inspired by kinetic theory,

LBMs solve for the evolution of a fluid flow by considering a set of distributions

fq, each associated with a discrete velocity ξq with q ∈ {0, 1, . . . Q−1}. Subject

to constraints on symmetry and Gallilean invariance, LBMs have been developed

using various different discrete velocity sets to model flows in two (e.g. D2Q9)

or three dimensions (e.g. D3Q13, D3Q15, D3Q19, D3Q27) [11, 12, 13, 14],

where D denotes the spatial dimensionality and Q the cardinality of the set of

discrete velocity vectors. In this work, we present a volumentric flux boundary

condition for the popular D3Q19 model. The same general principles can be
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used to derive analogous boundary conditions for other models. In the D3Q19

model, the set of discrete velocities are

ξq =



{0, 0, 0}T for q = 0

{±1, 0, 0}T , for q = 1, 2

{0,±1, 0}T , for q = 3, 4

{0, 0,±1}T for q = 5, 6

{±1,±1, 0}T , for q = 7, 8, 9, 10

{±1, 0,±1}T , for q = 11, 12, 13, 14

{0,±1,±1}T for q = 15, 16, 17, 18 .

(1)

The distributions evolve according to the lattice Boltzmann equation

fq(x+ ξqδt, t+ δt) = fq(x, t) + Ωq(x, t) , (2)

where x are points on a three-dimensional lattice, δt is the time step, and50

Ωq(x, t) is a collision operator that accounts for intermolecular collisions and

other interactions (as in Boltzmann’s equation). The key physics of the method

are contained in the collision operation. By constructing different collision op-

erators, LBMs have been constructed to recover the Navier-Stokes equations

[15, 16] and model a wide range of physical processes including multiphase flow55

[17, 18, 19, 20, 21], heat transfer [22, 23, 24, 25], diffusion [26, 27, 28], reac-

tive transport [29, 30, 31] and others. Since the basic approaches used to set

boundary conditions are similar, the boundary condition developed here can be

extended to other physical contexts as well.

In this work, an adapted multi-relaxation time (MRT) LB model is imple-60

mented for single-/two-fluid flow as described in McClure et al. [32], which is

based on the “color” model initially proposed by Gustensen et al. [17]. More

details of the model can be found in Appendix A. In short, an MRT formulation

for a DdQq lattice structure models the relaxation processes individually on a

set of q moments determined from the distributions, where each moment relaxes65

toward its equilibrium value at a unique rate specified by relaxation parameters.

Following the previous work by Pan et al. [33], the fluid kinematic viscosity ν is
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related to one of the relaxation parameter τ by ν = c2s(τ−0.5)δt, where cs is the

LBM speed of sound. Other relaxation parameters can be found in Appendix

A.70

The interpretation of the distributions is key to constructing LBMs to model

different physical phenomena. Based on this, moments of the distributions

track the behavior of physical quantities of interest. Often the distributions are

defined to determine the evolution of the density,

ρ =

Q−1∑
q=0

fq , (3)

and the mass flux (momentum density),

j = ρ0u =

Q−1∑
q=0

fqξq , (4)

where ρ0 is a reference density used to obtain incompressible flow. This rep-

resents a typical LBM formulation, although distributions may also be defined

to track other physical quantities of interest. In the LBM, the pressure is often

directly linked to the density,

p = c2sρ , (5)

which is an expression of the ideal gas law. Boundary conditions are needed to

determine unknown distributions along the boundary, which in turn determine

the density ρ and momentum density ρ0u.

The most familiar context for fluid flow simulations is to set pressure and/or

velocity boundary conditions. The basic ideas used to set pressure or velocity75

boundary conditions for LBMs were first introduced by Zou and He for the

D2Q9 model [34]. Along a boundary region Γ, only a subset of the distributions

will be unknown. For some x ∈ Γ, distributions fq are unknown for all q

such that x − ξqδt 6∈ D, where D is the domain. At the inlet, the unknown

distributions are: f5, f11, f14, f15 and f18. Three of the unknown distributions80

can be determined based on Eqs. 3–4. As a consequence of the continuity

equation, it is not possible to set both ρ and uz along the z inlet or outlet.

When setting a pressure (i.e. density) boundary condition at the z inlet, a
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consistency condition establishes the associated velocity uz as a function of the

known distributions and density85

uz =
ρ

ρ0
− 1

ρ 0

[
f0 + f1 + f2 + f3 + f4 + f7 + f8 + f9 + f10 +

2(f6 + f12 + f13 + f16 + f17)
]
. (6)

The consistency condition will be used to derive an adaptive pressure boundary

condition that satisfies a specified macroscale boundary volumentric flux.

In this work, we seek to specify the total volumetric rate across the boundary,

which is defined as

Qz =

∫
Γin

uzdr , (7)

where Γin is the inlet boundary. We note that at each microscale point on the

boundary uz can be determined prior to setting the pressure boundary condition

based on the consistency condition. Combining Eq. 6 with Eq. 7 we obtain90

Qz =

∫
Γin

ρ

ρ0
− 1

ρ0

[
f0 + f1 + f2 + f3 + f4 + f7 + f8 + f9 + f10 +

2(f6 + f12 + f13 + f16 + f17)
]
dr . (8)

Our objective is to determine the value of ρ that will produce a user-specified Qz,

where ρ is constant over the boundary Γin. The expression can be rearranged

to solve for ρ in terms of the known distributions on Γin

ρ =
ρ0Qz
A

+
1

A

∫
Γin

[
f0 + f1 + f2 + f3 + f4 + f7 + f8 + f9 + f10 +

2(f6 + f12 + f13 + f16 + f17)
]
dr , (9)

where A is the area of the inlet. Integrating the consistency condition over the

boundary thereby determines ρ. As with other boundary conditions for the95

LBM, the condition must be applied after streaming and prior to collision. At

each timestep, the boundary condition is set in two steps; first ρ is determined

by integrating the consistency condition according to Eq. 9, then a pressure

boundary condition is enforced in the usual way based on Eqs. 5 and 9. For

the pressure boundary condition, the strategy to determine the remaining two100
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unknowns for the D3Q19 model is based on the work by Hecht and Harting [35]

(see more details in Appendix B). An analogous calculation can be performed

at the outlet boundary, although it is not necessary or advantageous to set

a flux boundary condition at both boundaries. Since the potential field is in

general only known up to a constant, it is convenient to set a flux boundary105

condition at one end of the sample and rely on a pressure boundary condition at

the other end of the domain, where the other four boundaries can be assigned

using periodic or no flow conditions. We have constrained our case to match

typical experimental conditions, but the notions can be extended to other sorts

of systems as well.110

3. Results and Discussion

3.1. Single-Phase Poiseuille Flow

In this section, to verify the accuracy and to also demonstrate the advan-

tage of the proposed macroscale volumetric flux boundary condition, a three-

dimensional (3D) Poiseuille flow simulation in a square tube is performed and

compared against the standard velocity boundary condition [34, 35], which is

commonly used in the literature. The size of the simulation domain, in the dis-

crete unit of the grid, i.e. lattice unit (lu), is (Lx, Ly, Lz) = (70, 70, 52) lu. The

time step of the LB simulation is in the unit of lattice time (lt). The width and

length of the tube are 40 lu, and the tube is located at the center of the domain

(i.e., 15 lu of wall nodes on each side). At both the inlet and outlet of the tube,

6 layers of pure fluid nodes are placed as a buffer zone. The flow direction is

along the z-axis. For a square tube, if the Cartesian origin is at the center of

the plane normal to the flow axis, and the flow region is: −w ≤ x ≤ w and

−w ≤ y ≤ w, the 3D Poiseuille flow is known to have a steady-state solution

given by [36]:

uz(x, y) =
16w2

νπ3

(
−dp
dz

) ∞∑
k=1,3,5,...

(−1)(k−1)/2

{
1− cosh[kπx/(2w)]

cosh(kπ/2)

}
cos[kπy/(2w)]

k3
,

(10)
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where w is half of the width of the square tube, dp/dz is the pressure gradient

along the flow axis of the tube, and ν is the kinematic viscosity of the fluid.

The infinite series in Eq.10 was truncated at k = 200 to allow for a good

approximation of the theoretical prediction. For the numerical simulations, the

criterion used to determine steady state flow is∑
x |u(x, t)− u(x, t− 1000)|∑

x |u(x, t)|
≤ 10−6 . (11)

Figure 1: Single fluid-phase flow through a square tube: proposed boundary condition (left),

and standard velocity boundary condition (right), respectively, for the case of inlet uz =

5× 10−4 lu/lt. The cross-sectional view of the magnitude of the velocity at the central plane

of the tube is also presented. The boundary of the square tube is depicted in semi-transparent

gray. The velocity boundary condition is inconsistent with the interior flow, imposing a non-

physical constraint on the system solution.

Three cases of inlet fluid velocity, uz = {5× 10−5, 5× 10−4, 5× 10−3} lu/lt

are applied to the boundary, and a relaxation time τ = 1.0 is used. Fig.1 shows

the steady-state velocity field under the proposed and the standard velocity115

boundary condition for the case of inlet uz = 5 × 10−4 lu/lt; it is immediately

evident that the standard velocity boundary condition imposes a uniform veloc-

ity profile at the boundary that is inconsistent with the interior flow behavior.

By enabling the boundary velocity profile to adapt to the flow conditions in the
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Figure 2: The velocity profiles of Poiseuille flow along the central line (y = 35 lu) at the

middle plane of the square tube (z = 26 lu), under the proposed flux boundary condition (left)

and the standard velocity boundary condition (right). The solid lines indicate the theoretical

solutions given by Eq.10.

Figure 3: The slice-averaged pressure profiles of the Poiseuille flow for the case of inlet

uz = 5 × 10−4 lu/lt, excluding the inlet/outlet reservoir layers; left: with the proposed flux

boundary condition, and right: with the standard velocity boundary condition. The solid

lines are the least-square fit to obtain the pressure gradient within the tube, which is used to

obtain the analytical solution given by Eq.10. The full pressure profile is shown in the inset,

with the reservoir layers highlighted in pink and the flow region in green.
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medium, the flux boundary condition allows the boundary profile to adapt to120

the interior flow. As shown in Fig.2 the flux condition achieves much better

agreement with the analytical solution given by Eq.10. For this type of situa-

tion, the deficiency of the standard velocity boundary condition is due to the

enforcement of a velocity profile that necessarily influences the velocity within

the system, particularly close to the inlet boundary. Furthermore, Fig.3 shows125

that the standard velocity boundary condition imposes a large artificial pressure

drop at the inlet. This is due to the consistency condition that relates the pres-

sure and velocity profile at the boundary (Eq.6). As a consequence, a constant

velocity profile can only be achieved by imposing a large potential gradient at

the boundary. This problem is resolved based on the flux boundary condition.130

3.2. Immiscible Displacement at Constant Capillary Number

The simulation of single-phase Poiseuille flow in the previous section vali-

dates the accuracy of the proposed boundary condition in terms of the momen-

tum transport; now if the mass transport is also added to the model, which can

be coupled with the momentum transport by the velocity field, our model is135

readily available to simulate two-phase flow problems.

3.2.1. Setup of Displacement Simulation

The LBM is often used to simulate immiscible two-fluid displacement in

porous media. We consider a typical experiment in which the following quanti-

ties are known:140

1. Qz the volumetric flow rate (e.g. in mL/min),

2. Lx × Ly × Lz the physical dimensions of the sample (e.g. in mm),

3. ε the porosity of the sample,

4. µw, µn the dynamic viscosity for each fluid (e.g. in mPa · s), and

5. γwn the interfacial tension between fluids (e.g. mN/m).145

To match experimental conditions with a simulation, physical quantities must

be expressed in terms of the lattice length δx and the timestep δt. When
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the input geometry is provided from experimental micro-computed tomography

(µCT), the lattice spacing δx is determined based on the width of a voxel (i.e.

the image resolution). The relationship for time is obtained by considering

appropriate non-dimensional quantities and choosing the simulation parameters

such that experimental conditions are met. For an experiment where one fluid

is displacing another and compressibility effects are negligible, the flow rates for

each fluid will satisfy
∂Sw
∂t

=
Qz
εV

, (12)

where Sw is the wetting-phase saturation, and V is the total volume of the

system. The conversion between the lattice timestep δt and physical units can

therefore be determined based on the rate of change in saturation. Noting that

this choice does not uniquely determine the parameters, for two-fluid flows it is

desirable to match the capillary number,

Ca =
µwQz
γwnεA

, (13)

where A is the area of the inlet boundary Γin. An additional constraint is

obtained by choosing the simulated capillary number to match the experimental

value:

Qsimz = εAsim
γsimwn
µsimw

Ca. (14)

To reduce the number of time steps required, it is desirable to choose Qsimz to

be as large as possible, since this will induce the largest change in saturation

per time step. At fixed Ca, this is accomplished when γsim/µsim is as large as

possible. The values of γsim and µsim are constrained by numerical stability

and the mobility (i.e. the ratio of µn to µw); for the color-gradient based150

LBM used in this work [32], the stable range for fluid parameters explored

was 1 × 10−5 ≤ γsimwn ≤ 1 × 10−2, 1/15 ≤ νi ≤ 1/3 and 0.01 ≤ ρi ≤ 1.0

for i ∈ {w, n}. As a general rule of thumb, LBMs tend to become unstable

if flow velocity (|u|) exceeds ∼ 0.1 anywhere on the lattice. Combinations of

parameters that create this situation can result numerical instability (since the155

LBM is an explicit method) and compressibility errors (since the continuum

physics are only recovered in the limit of small Mach number) [37, 38].
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3.2.2. Immiscible Two-Fluid Displacement in a Realistic Porous Medium

The proposed boundary condition is investigated with both primary drainage

and imbibtion simulations in an X-ray µCT image of Bentheimer sandstone sam-160

ple. A sub-domain of 3603 lu3 of the original image was used, with an image

resolution of 4.95 µm/lu [39]. The computation domain consists of the µCT im-

age sandwiched by a non-wetting phase reservoir (NWR) and a wetting phase

reservoir (WR), each with six layers of pure fluid nodes. Three flow conditions,

Ca = {10−5, 10−4, 10−3}, are examined; for drainage, the corresponding bound-165

ary flux Qsimz is calculated according to Eq.14, and at the end of drainage, the

boundary flux of −Qsimz is applied for imbibition. A 0◦ contact angle is used.

In Fig.4, the temporal change of the saturation is shown in solid line, com-

paring against the theoretical prediction (in dashed line) given by Eq.12. The

drainage simulation is performed until the most advanced phase front starts to170

enter WR, at which a full percolation path is formed; before the percolation, it

can be seen that the temporal change of Sw matches the theoretical prediction

very well; for the case of Ca = 10−5, since the displacement process is more to-

wards the capillary force dominated flow, the entry effect at pore throat becomes

more significant, thus the actual change of saturation appears slower compared175

to the theory; whereas for larger Ca, the flow is predominantly driven by the

viscous pressure gradient, and the agreement is better. Beyond the percolation,

the change of the saturation begins to deviate from the theoretical prediction

(not shown), due to (i) the boundary reservoir effect, and (ii) the fact that the

branch of non-wetting phase starts to invade narrower pores where the capillary180

force plays a major role to overcome the entry pressure and locally the satu-

ration changes much slower. The non-wetting fluid distributions at the end of

drainage are also shown in Fig.4, where a light grey slice at the right-end of the

domain is present to pinpoint the boundary between the porous medium and

the WR.185

The imbibition is then initialized based on the end state of drainage and an

opposite boundary flux is applied. Overall, it again shows a good agreement
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between the simulation and theory; however, as the imbibition process goes

on, a commonly known phenomenon, the snap-off of non-wetting phase, occurs

frequently, where the invading wetting phase enters pore throat and breaks the190

connectivity of non-wetting phase; as a result, some snapped-off non-wetting

fluid becomes immobile and is thus trapped in the pore body; once the entirety

of the trapped non-wetting phase becomes disconnected from the NWR, it can

be seen from Fig.4 that the change of water saturation again deviates from

the theoretical prediction and in fact reaches plateau. For Ca = 10−5, due195

to the prolonged simulation time and finite amount of checkpoint data saving,

the imbibtion was not initialized from the exactly same end state of drainage,

thus giving the discontinuity in the temporal Sw profile when switching from

drainage to imbibition; in such a capillary force dominated regime, it also took

longer time for the interface adjustment, and the saturation slowly ramps up to200

pick up the desired displacement rate.

Moreover, to illustrate the capability of the proposed boundary condition

to locally adjust the inlet flux, the two-dimensional uz(x, y) profile at the inlet

boundary of NWR, for the case of Ca = 10−4 is shown in Fig.5. Since the NWR

consists of pure fluid nodes, a contour line in black delineating the fluid-solid205

boundary of the first layer of the porous medium is also shown. It can be seen

that the proposed boundary condition only directs non-zero flux towards the

pore space of the medium, while maintaining zero flux for where the solid phase

is present. Near the pore-solid boundary, the bounce-back of the directed flow

causes negative uz; the velocity towards the interior of some pore bodies may210

also be negative, again due to the bounce-back of the invading fluid from the

narrow throats further into the medium; in any cases, the adaptive flux bound-

ary condition locally regulates the voxel-based velocity based on the interior

structure of the medium, such that the total volumetric flow rate satisfies the

prescribed capillary number and gives stable displacement rate.215
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Figure 4: The water saturation of the primary drainage and imbibition, is plotted against

the simulation time (normalized by the total time step), for a sub-sample of the Bentheimer

sandstone, at Ca = {10−5, 10−4, 10−3}. The simulation and the theoretical prediction are

shown in solid and dashed lines, respectively. The non-wetting fluid distributions at the end

of drainage and imbibtion are also shown, where for visual clarity, the wetting fluid and the

solid matrix are made transparent.

4. Conclusions

In this paper, we present a volumetric flux boundary condition for multiphase

lattice Boltzmann methods. The approach is derived based on a consistency

condition that is associated with a pressure boundary condition. By integrating

the consistency condition over the relevant boundary region, a spatially-constant220

potential can be determined and enforced along that boundary to produce a de-

sired volumetric flow rate. The local velocity can vary in time and space along

the boundary depending on the interior flow dynamics, providing an advantage

relative to the standard velocity boundary conditions used in conjunction with

LBMs. The boundary condition is validated for one- and two-fluid lattice Boltz-225

mann schemes in realistic porous medium, and achieved very good agreement
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Figure 5: The cross-sectional view of the velocity field uz(x, y) (in the unit of lu/lt) at the

inlet boundary of NWR in Bentheimer sandstone primary drainage simulation for the case

of Ca = 10−4. The black contour line depicts the fluid-solid boundary of the first layer of

the medium. The velocity field was extracted at time step 900,000 lt when the steady state

displacement was reached.

between the theoretical prediction and the simulation. We thus believe the pro-

posed approach is a robust and accurate way of setting up numerical simulation

to match experimental conditions for two-fluid flow, so that more pore-scale

displacement phenomena can be explored in a more realistic context.230

Appendix A: Momentum and mass transport in multiphase lattice-

Boltzmann model

The multiphase “color” LBM used in this work is based on the implementa-

tion described in McClure et al. [32]. The momentum transport is modeled by

the lattice-Boltzmann equation (LBE) as:

fq(x+ ξqδt, t+ δt)− fq(x, t) =

Q−1∑
k=0

M−1
q,kSk,k(meq

k −mk) ,

15



where the transformation matrix Mq,k (its inverse M−1
q,k ) maps the distribution

function to its moments by mk =
∑Q−1
q=0 Mq,kfq, and diagonal matrix Sk,k

specifies the relaxation rates for each moment. For D3Q19 lattice structure, the

Mq,k can be found in [40], and the 19 moments are defined as:

m = (ρ, e, ε, jx, qx, jy, qy, jz, qz, 3pxx, 3πxx, pww, πww, pxy, pyz, pzx,mx,my,mz) ,

These 19 moments {mk | k = 0, 1, ..., 18} are the mass density (m0 = ρ), the

part of the kinetic energy independent of the density (m1 = e), the part of

the kinetic energy square independent of the density and kinetic energy (m2 =

ε = e2), the momentum flux (m3,5,7 = jx,y,z), the energy flux (m4,6,8 = qx,y,z),

the symmetric traceless viscous stress tensor (m9 = 3pxx, m11 = pww, and

m13,14,15 = pxy,yz,zx), the vectors of quartic order (m10 = 3πxx, m12 = πww),

and the vectors of cubic order (m16,17,18 = mx,y,z) [40]. The relaxation rates

for each moment are given by:

S = diag(0, se, sε, 0, sq, 0, sq, 0, sq, sν , sπ, sν , sπ, sν , sν , sν , sm, sm, sm) ,

where, the relaxation rates for the conserved moments, the density ρ and the

momentum (jx, jy, jz), are set to zero, since they are not affected by collisions.

Following the reported work in [41], the relaxation rates for the non-conserved

moments are set as

se = sε = sπ = sν , sq = sm = 8
(2− sν)

(8− sν)
.

The fluid kinetic viscosity ν is given by:

ν = c2s(
1

sν
− 1

2
) ,

and in the main text, the commonly used relaxation time τ is defined as τ = s−1
ν .

In the case of multiphase flow, the equilibrium moments meq
q are set such

that the stress tensor matches that of a Newtonian fluid with an anisotropic235

contribution due to the interfacial tension. Following McClure et al., the non-
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zero equilibrium moments are given by: [32]

meq
1 = (j2

x + j2
y + j2

z ) + α|C|

meq
9 = (2j2

x − j2
y − j2

z ) + α
|C|
2

(2n2
x − n2

y − n2
z)

meq
11 = (j2

y − j2
z ) + α

|C|
2

(n2
y − n2

z)

meq
13 = jxjy + α

|C|
2
nxny

meq
14 = jyjz + α

|C|
2
nynz

meq
15 = jxjz + α

|C|
2
nxnz ,

where the parameter α is linearly related to the interfacial tension, and C is the

color gradient, which is defined as the gradient of the phase field:

C = ∇ϕ ,

where the phase field ϕ is defined based on the densities of the non-wetting and

wetting fluids, ρn and ρw, respectively, which is given by:

ϕ =
ρn − ρw
ρn + ρw

.

n = (nx, ny, nz) is the unit normal vector of the color gradient and is calculated

as:

n =
C

|C|
.

The phase indicator field is tracked by solving two additional mass transport

LBEs that rely on the three-dimensional, seven velocity model (D3Q7). The

seven velocities for the D3Q7 model correspond to q = 0, 1, . . . , 6 in the D3Q19

model. D3Q7 distributions model the evolution of the number density of each

fluid, NA and NB , respectively, which are given by

NA =

6∑
q=0

Aq , NB =

6∑
q=0

Bq , and φ =
NA −NB
NA +NB

.
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The distributions are updated based on

Aq(x+ ξqδt, t+ δt) = wqNA

[
1 +

9

2
u · ξq + β

NB
NA +NB

n · ξq
]
,

Bq(x+ ξqδt, t+ δt) = wqNB

[
1 +

9

2
u · ξq − β

NA
NA +NB

n · ξq
]
,

where β controls the interface width, w0 = 1/3 and w1,...,6 = 1/9. The mass

transport LBEs ensure phase separation based on the color gradient, which then240

couples to the momentum transport.

Appendix B: Pressure Boundary Condition for D3Q19

At the inlet, the unknown distributions are f5, f11, f14, f15 and f18. The

above expressions can be rearranged to place the unknowns on the left-hand

side:245

f5 + f11 + f14 + f15 + f18 = ρ− (f0 + f1 + f2 + f3 + f4 + f6 + f7 +

f8 + f9 + f10 + f12 + f13 + f16 + f17)

f11 − f14 = ρ0ux − (f1 − f2 + f7 − f8 + f9 − f10 − f12 + f13)

f15 − f18 = ρ0uy − (f3 − f4 + f7 − f8 − f9 + f10 − f16 + f17)

f5 + f11 + f14 + f15 + f18 = ρ0uz + (f6 + f12 + f13 + f16 + f17) .

It is clear that the sum f5 +f11 +f14 +f15 +f18 is determined either by choosing

ρ or by choosing ρuz; both conditions cannot be set independently. If a pressure

boundary condition is use to determine ρ, then a consistency condition can be

established by eliminating the sum of the unknowns from

ρ −(f0 + f1 + f2 + f3 + f4 + f6 + f7 + f8 + f9 + f10 + f12 + f13 + f16 + f17) =

ρ0uz − (−f6 − f12 − f13 − f16 − f17) , (15)

which can then be solved to determine the associated velocity

uz =
ρ

ρ0
− 1

ρ 0

[f0+f1+f2+f3+f4+f7+f8+f9+f10+2(f6+f12+f13+f16+f17)] .

(16)
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The equilibrium distributions for the D3Q19 model are

feqq (ρ,u) = wi

[
ρ+ ρ0

(
3ξq · u+

9

2
(ξq · u)2 +

3

2
u · u

)]
. (17)

With both ρ and u known, the unknown distributions are chosen by assuming

that the bounce-back rule applies to the non-equilibrium part of the unknown

distributions, for example:

fq − feqq = fq − feqq , (18)

where ξq = −ξq. This can be solved for the unknown distribution250

fq = fq + feqq − f
eq
q (19)

= fq + 6ρ0wi(ξq · u) , (20)

where the definition of the equilibrium distributions has been inserted, using

the fact that ξq = −ξq. This is used to determine

f5 = f6 +
1

3
ρ0uz .

This leaves four remaining unknowns and only three equations. Hecht and

Harding resolve the closure problem by defining

Nz
x =

1

2
[f1 + f7 + f9 − (f2 + f10 + f8)]− 1

3
ρ0ux (21)

Nz
y =

1

2
[f3 + f7 + f10 − (f4 + f9 + f8)]− 1

3
ρ0uy , (22)

and then providing a closed system based on the equations

f11 − feq11 = f12 − feq12 −Nz
x (23)

f14 − feq14 = f13 − feq13 −Nz
x (24)

f15 − feq15 = f16 − feq16 −Nz
x (25)

f18 − feq18 = f17 − feq17 −Nz
x , (26)
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which can be simplified to the form

f11 − f12 =
1

6
ρ0(ux + uz)−Nz

x (27)

f14 − f13 =
1

6
ρ0(−ux + uz) +Nz

x (28)

f15 − f16 =
1

6
ρ0(uy + uz)−Nz

y (29)

f18 − f17 =
1

6
ρ0(−uy + uz) +Nz

y . (30)

These expressions can be rearranged to solve for the unknown distributions for255

either the inlet or outlet.
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