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EPIGRAPH 

“With only a slight touch of levity one may say that rhythms are one of the few constants 
in the biological regime.” 

 
– Wanliss et al., 2018 
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DEDICATION 

 

I would like to dedicate this work to humanity: those who are, those who have been, and 

those to come. We’re all in this together. 
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ABSTRACT 

Few biological systems are as ubiquitous as the circadian rhythm, a distributed yet inter-

connected “system of systems” that coordinates the timing of physiological processes via 

a self-regulating, flexible network present at every level of biological organization, from 

cells to cities. Its functional role as the interface between time-dependent internal processes 

and external environmental cues exposes the circadian rhythm to disruption if these drift 

out of synchrony. This is especially common in industrialized human societies, where the 

abundance of resources – in combination with the fact that anthropogenic calendars have 

largely supplanted the sun as the primary determinant of our daily cycles of rest, activity, 

and sleep  – disrupts the circadian rhythm’s ability to synchronize biological processes with 

each other and the geophysical solar day. Humans are now beholden to two increasingly 

disconnected clocks, and the ever-accelerating curve of human progress suggests our bio-

logical and social times will only grow more disconnected. 

Longitudinal “out-of-clinic” monitoring is an ecologically valid alternative to well-

controlled laboratory studies that can provide insight into how human circadian and behav-

ioral rhythms exist in day-to-day life, and so has great potential to provide contextual data 
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for translating chronobiological science into clinical intervention. However, methodologi-

cal diversity, inconsistent terminology, insufficient reporting, and the sheer number of po-

tential factors has slowed progress. Herein is presented scientific work focused on detect-

ing and quantifying some of these factors, particularly “sociogenic” determinants such as 

the seven-day week. Through rhythmometric analysis of longitudinal in-home actigraphy, 

weekly behavioral patterns were observed in both young adult males (n = 24, mean age = 

23.46 years) and older adults with Parkinson’s disease (n = 13 [7 male], mean age = 60.62 

years, mean Hoehn & Yahr Stage = 2.31) that evince a seven-day “circaseptan” rhythm of 

circadian and sleep disruption. This is hypothesized to be dependent upon the seven-day 

calendar week, particularly the regular and abrupt shifts in timing between work and rest 

days. These perturbations vary by chronotype in young adults, and by disease severity in 

Parkinson’s disease. Collectively, these results contribute to the growing evidence that our 

daily rhythms are shaped by sociogenic factors in addition to well-documented environ-

mental and biological mechanisms. Moreover, the study of these subtle infradian patterns 

presents serious – yet surmountable – methodological challenges that must be overcome in 

order to accurately monitor, quantify, analyze, report, and apply findings from observa-

tional studies of naturalistic human behavior to scientific and clinical problems. 
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PREFACE 

There is so much to see in this world, so much to learn and study, to interpret and com-

municate, to build and protect. No single lifetime is enough to do it all; the best one can 

do is experience as much as possible, and this is what led me to the study of rhythms. Os-

cillatory patterns are ubiquitous in nature, from the vibrations of an atomic nucleus to the 

life cycle of a star. Rhythms are a function of information and time; they are emergent 

patterns from natural systems that give insight into their organization; they are a common 

language for mapping the imperceptible connections between seemingly unrelated phe-

nomena; and yet they are also mundane and familiar, underpinning nearly every aspect of 

our lives, and so common and fundamental that rarely do we consciously acknowledge 

their existence. We move through invisible cycles, guided by natural forces we are only 

just beginning to understand, and we must be thorough in our examination because we do 

not know what we do not know. As we continue to push the limits of our technology and 

expand the scope of our perspective, we must acknowledge how far we’ve come and how 

far we have left to go. Humanity’s fate lies starside, and we as a species have only just 

begun to appreciate the magnitude and implications of this blunt reality. It is my earnest 

hope that our work on biological rhythms may contribute to our species’ ability to safely 

explore, study, and colonize extraterrestrial space. Through a better understanding the 

material nature of our biological rhythms, their organization and origins, their role in 

health and disease, and the major factors that influence them, I hope to deepen our 

knowledge of ourselves and our environment so that we may apply it to our imperative 

goals of exploring, studying, and ultimately understanding our place in the universe.  
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CHAPTER ONE: BACKGROUND 

Introduction 

Amongst the fundamental emergent properties of our universe is rhythmicity, or the ten-

dency for some thing to regularly and repeatedly alternate between multiple states. Rhyth-

micity is agnostic to field and scale, and has been observed at every level of nature, from 

the infinitesimal fluctuations in an atom’s potential energy, to the revolution of our planet 

and its orbit around the Sun, to the stellar life cycle that produced the “starstuff” currently 

reading this manuscript. Biological systems - at all scales, both spatially and temporally - 

exhibit rhythmicity, including cellular division, neuronal firing, temperature homeostasis, 

social behavior, prey-predator population dynamics, and the life cycle itself. Many of these 

are emergent from interactions between more fundamental factors such as chemical diffu-

sion and electrical conductance; they therefor contain information about the system they 

arose from, information which can inform and optimize other biological systems that in-

teract with the rhythmic process. For example, the metabolic enzyme phosphofructokinase 

(PFK) is inhibited by the Adenosine Tri-Phosphate (ATP) it produces, which creates a 

rhythmic negative feedback loop that inhibits ATP production when it is abundant within 

the cell and increases when ATP is scarce; this helps maintain cellular energy homeostasis 

and conveys information (through the concentration of ATP) about the cell’s energy avail-

ability to other cellular systems (e.g. deoxyribonucleic acid [DNA] replication)1 (Fall, 

2002). 

	
1 ATP is not produced by PFK, but is produced downstream of the glycolytic pathway PFK is a 
part of 
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Fascinatingly, the process of natural selection has led to the evolution of centralized 

systems that sustain, amplify, adapt, and coordinate these emergent biological rhythms to 

exploit their latent information and synergistically maximize their efficiency in response 

to cues from endogenous (i.e. biological) and exogenous (i.e. environmental) cycles. Col-

lectively, these biological rhythms serve to synchronize an organism’s physiology to itself 

and its habitat to maintain homeostasis, regulate its behavior (e.g. eating and sleeping), and 

optimize its ability to exploit its environment. Disruption of these rhythmic regulators 

therefore reduces overall fitness through the accumulation of myriad minor inefficiencies, 

analogous to how accelerating a spacecraft before it reaches periapsis will use more fuel 

than if it accelerated at periapsis itself. Biologically, this means the disrupted organism will 

have to expend more energy to maintain certain rhythmic processes (e.g. thermoregulation) 

to overcome sub-optimal internal and external environments. For example, human body 

temperature and therefore muscular contraction velocity (Bell & Ferguson, 2009) are at 

their lowest point in the early morning when physical movement is least needed due to 

sleep; physical movement during this time will less efficiently convert stored energy into 

biomechanical force, reducing fitness. In humans, pathological and environmental factors 

(e.g. Parkinson’s disease [PD] and jet lag, respectively) interfere with biological rhythms, 

leading to negative outcomes such as fatigue, sleep disruption, and misalignment of bio-

logical rhythms. 

This chapter will discuss how biological rhythms emerge from and are maintained 

by biochemical and anatomical systems, their functional systemic role in and with healthy 
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and pathological biological systems, how these biological rhythms are quantified and mod-

elled, and the causes and consequences of their disruption - particularly in the uniquely 

human context of technologically advanced societies that no longer depend on biological 

or astronomical rhythms to organize themselves. 

 

The Circadian Rhythm 

Amongst the biological rhythms, the most well known and most intensely studied is the 

circadian rhythm. While any rhythm with a period of 24 hours may be accurately called a 

circadian (circa- “about”, -dian  “day”) rhythm, the term “circadian rhythm” usually refers 

to the systemic, self-sustaining, and entrainable oscillation of biological processes - and 

their myriad controllers and drivers - observed in virtually all eukaryotic life on Earth (M. 

Bailey & Silver, 2014)2. For example, the daily oscillation in human core body tempera-

ture, our daily cycle of restful sleep and active wakefulness, the excretion of hormones 

such as cortisol at regular daily intervals, and the neuropsychological phenomenon of 

“sleep pressure” are all facets of our circadian rhythm. In other words, the circadian rhythm 

is a “system of systems”, a distributed yet coordinated network of independent biological 

rhythms that collectively harmonize vital functions at all levels of organization, from cel-

lular to behavioral. 

	
2 Unless otherwise noted, “circadian rhythm” refers to the biological circadian rhythm throughout 
this manuscript 
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Functionally, this prepares an organism for certain expected events and/or behav-

ioral states, such as eating, physical activity, or sleeping. For example, the contraction ve-

locity of a muscle is partially dependent on its temperature (Bell & Ferguson, 2009); in 

humans, body temperature oscillates by approximately half a degree Fahrenheit across a 

24-hour day (Harding et al., 2019), reaching its nadir in the early morning, when humans 

are usually asleep and sedentary, and peaking in the early evening when we are most likely 

to be active and most in need of optimal muscle contraction time. Similarly, melatonin - a 

hormone involved in sleep regulation, especially sleep induction - increases in concentra-

tion several hours before an individual’s normal bed-time (Vetter, 2018). In these and other 

ways, the circadian rhythm enables an organism to anticipate and prepare for expected 

future conditions and is thus an essential systemic regulator that conveys a potent evolu-

tionary advantage. 

 

Natural History 

An organism’s ability to exploit their environment has been the central driver of the evo-

lution of life on Earth. In order to reproduce, life requires energy and raw material; extract-

ing more energy and resources from their surroundings therefore improves the odds that a 

given organism will survive, reproduce, and pass on its genetic information. As life grew 

increasingly complex and diverse, random mutations enabled new ways of exploiting the 

environment. For example, the evolution of photosynthesis - the transformation of solar 

radiation into storable chemical energy - allowed access to a vast source of untapped en-

ergy. Those organisms which could most efficiently exploit solar radiation therefore gained 
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an immense evolutionary advantage, and photosynthesis now represents the single largest 

source of biological energy in Earth’s biosphere. Of course, the sun is not a permanent 

fixture in the sky. Due to Earth’s rotation, photosynthetic organisms were only exposed to 

sunlight during certain times of day. Moreover, the relative stability of Earths rotation 3 

meant that daylight availability was periodic - i.e. occurred at consistent, regular intervals 

- and thus represented a natural and consistent clock. 

The consistency of the geophysical light-dark cycle made sunlight a potent zeit-

geber (German: “time giver”) - a temporal reference point for biological rhythms (Daan & 

Gwinner, 1998). Biological systems sensitive to this cue (through photosynthesis, temper-

ature change, radiation sensitivity, vision, etc.) now had access to temporal information 

about the current state of their environment and were subsequently subjected to tremendous 

evolutionary pressure. This is because organisms that can accurately monitor the current 

time have an innate advantage over their temporally agnostic peers, as it allows them to 

anticipate future conditions (e.g. cyanobacteria and sunlight) and apply this information to 

proactively optimize themselves for those conditions. In doing so they increase their ability 

to exploit their environment compared to those organisms which can only react to changes 

in the environment. The evolution of more efficient photosynthetic proteins and larger pho-

tosynthetic substrates would help to capture more energy, but “learning”  only needed to 

	
3 The Earth constantly experiences minute variations in rotational period due to terrestrial and as-
tronomical cycles. Overall, the rotational period is thought to be gradually slowing across geolog-
ical timescales due to tidal forces; e.g. a recent study estimated that the Earths rotational period was 
~5.5 hours shorter 1.4 billion years ago (Meyers & Malinverno, 2018). It is assumed that these 
gradual changes are imperceptible to biological systems day-to-day (and thus don’t interfere with 
circadian entrainment), and that their influence only manifests across evolutionary timescales. 
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expend energy on photosynthesis or mitigating heat shock during part of the day allowed 

organisms to conserve energy, energy which could then be spent on resource gathering, 

reproduction, etc. This evolutionary pressure is likely the source of the circadian rhythm 

(Bhadra et al., 2017). 

To continue using the example of photosynthesizers (e.g. cyanobacteria), this tem-

poral information would manifest as a periodic fluctuation in energy production directly 

tied to Earth’s rotation - a circadian rhythm. Downstream biochemical processes dependent 

on energy production would likewise exhibit this circadian rhythm. For example, nitrogen 

fixation is essential to cyanobacteria, but the oxygen byproduct of photosynthesis directly 

inhibits nitrogen fixation. Since cyanobacteria are unicellular prokaryoates, they cannot 

spatially sequester these reactions as eukaryotes do via membrane-bound organelles such 

as mitochondria (or as heterocystous filamentary cyanobacteria do via specialized nitro-

gen-fixing cells). Instead, ancient cyanobacteria developed the means to sequester these 

incompatible biochemical reactions temporally: photosynthesis occurs during the day 

when sunlight is available, and nitrogen fixation occurs at night once photosynthetic by-

products are cleared (Bhadra et al., 2017). 

 

A System of Systems 

The biological substrates of circadian rhythms found in cyanobacteria and those found in 

complex life (e.g. mammals) are vastly different in their scale and complexity, yet exhibit 

the same three, basic properties: an “innate" biological oscillation that maintains a 24-hour 
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period across a range of temperatures, sensitivity to and ability to be entrained by endoge-

nous temporal cues (i.e. zeitgebers, especially sunlight), and the ability to independently 

maintain circadian rhythmicity in the absence of said zeitgebers (Brown et al., 2019). 

The circadian rhythm in cyanobacteria is maintained by a Post-Translational Oscil-

lator (PTO) (S. E. Cohen & Golden, 2015), a stereotyped sequence of protein phosphory-

lation and dephosphorylation events that gate access to physiological signaling pathways 

by selectively binding signaling molecules dependent on the current phosphorylation state. 

The phosphorylation-dephosphorylation cycle takes ~24 hours to complete across a wide 

range of temperatures, and can be “reset” (i.e. entrained) by the presence of byproducts of 

photosynthetic redox reactions. DNA replication, chromosome configuration, and many 

other critical cellular processes are downstream from – and so regulated by – the PTO. In 

summary, the prokaryotic PTO exhibits all three circadian properties: it continuously and 

autonomously undergoes an about daily phosphorylation cycle resistant to temperature-

dependent changes in reaction velocity, which can be modified by temporal cues from the 

environment, and which persists in their absence. 

Note that the PTO is not just a central clock that can synchronize to its environment; 

while the PTO itself can be defined by a relatively small number of proteins and their 

phosphorylation events, it is more accurately described in the context of the cellular milieu. 

To wit, the PTO lies at the physiological nexus of a distributed network of cellular systems 

and pathways, where the flow of temporal information, its biochemical computation, and 

its translation into physiological application is a continuous dynamic process orchestrated 

by the PTO. By facilitating the efficient transfer of information between a cell’s myriad 
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systems, the PTO enables the organism to flexibly integrate environmental and physiolog-

ical information to temporally coordinate and optimize biological processes downstream 

of the PTO. Much like how the development of standardized clocks allowed the nascent 

transcontinental railroad network to efficiently coordinate its widely distributed arrivals 

and departures, or how a conductor synchronizes the individual musicians in an orchestra 

to create cohesive music, the PTO enables the cell’s distributed systems to communicate 

temporal information and coordinate systemic physiological processes like photosynthesis 

and nitrogen fixation to create a “system of systems” greater than the sum of its part 

(Bhadra et al., 2017; S. E. Cohen & Golden, 2015). 

Unlike cyanobacteria, eukaryotic circadian oscillators involve transcriptional and 

translational processes - respectively, the production of Ribonucleic Acid (RNA) from 

DNA and the production of proteins from RNA. Although there are many notable differ-

ences between the cyanobacterial PTO and the eukaryotic Translational-Transcriptional 

Feedback Loop (TTFL), the basic premise of both systems is strikingly similar - a stereo-

typed series of proteomic events whose current state gates access to downstream cellular 

signaling pathways that control critical biological processes (Buhr & Takahashi, 2013; 

Dibner et al., 2010; M. H. Hastings et al., 2014). Like the PTO, the TTFL is a proteomic 

pacemaker that coordinates a distributed system of systems facilitating the maintenance 

and dissemination of temporal information to physiological systems. In mammals, cellular 

TTFLs are found in every nucleated cell4 and represent the finest, smallest “tier” of the 

	
4 Erythrocytes exhibit molecular, rather than genetic, feedback loops that resemble cyanobacterial 
PTOs (Bhadra et al., 2017; O’Neill & Reddy, 2011) 
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circadian rhythm’s distributed network. While TTFLs coordinate biological processes at 

the cellular level, the cells themselves are synchronized at the tissue level and share tissue-

specific modifications to their TTFL and its downstream pathways tailored to the specific 

physiological systems they support (Michael H. Hastings et al., 2003). This is accom-

plished through the TTFL-dependent expression of Clock Controlled Genes (CCGs) and 

their downstream pathways; expression of CCGs varies by tissue and is selectively up- or 

down-regulated during specific points in the TTFL (i.e. time of day).   

Collectively, these “peripheral oscillators” - and their constituent cellular TTFL’s - 

are synchronized to each other and the environment through endocrine, neurological, 

and/or metabolic cues that ultimately stem from the Suprachiasmatic Nucleus (SCN), the 

“central oscillator” or “central pacemaker” of the mammalian circadian rhythm that re-

ceives mono-synaptic photic input via the Retinohypothalamic Tract (RHT). Although pe-

ripheral oscillators are incapable of detecting photic cues from their environment5, and thus 

are reliant on the SCN for this information, many are capable of reacting and synchronizing 

to physiological cues, such as food intake or body temperature (Michael H. Hastings et al., 

2003; Heyde & Oster, 2019). In addition, peripheral oscillators reinforce their mutual syn-

chrony via interactions between their physiological processes; e.g. the diurnal cycle in 

blood pressure emerges from the interaction between vasodilation/vasoconstriction and 

heart rate, which are independently regulated (in part) by TTFL-controlled CCG’s in vas-

cular and cardiac tissue TTFL’s, respectively (Michael H. Hastings et al., 2003). These 

	
5 Peripheral oscillators in “lower” species such as Drosophila melanogaster are light-sensitive, but 
this property is absent in mammals (Michael H. Hastings et al., 2003) 
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emergent systemic rhythms provide yet another tier in the circadian hierarchy that can be 

fine-tuned by top-down regulators like the SCN, or bottom-up via local physiological sig-

nals. This is analogous to how an individual (i.e. cells) may set their clock to the time 

shown on their local news station (i.e. tissues and organs), who in turn set that time based 

on the United States’ National Institute of Standards and Technology’s atomic clock (i.e. 

SCN), which measures time by observing the natural resonance of cesium atoms (i.e. sun-

light).  

This model of circadian organization can be likened to an orchestra: each individual 

musician plays off the same sheet music, yet they struggle to play in harmony when they 

only have themselves (and perhaps their neighbors) to synchronize with. The individual 

can keep their own rhythm and play their assigned notes, but without a central timekeeper 

the orchestra as a whole will rapidly drift out of sync as the growing discordance interferes 

with the ability to hear and align with the other musicians. Eventually the intended music 

will be indiscernible from random noise. This is why the conductor is so essential to the 

orchestra: they provide a rhythmic reference point each musician can see and synchronize 

to, and from their harmony emerges music6. Where each musician is an individual compo-

nent in the larger system of the orchestra, each peripheral oscillator is likewise an individ-

ual constituent of an organism’s circadian rhythm; and while a single musician can main-

tain a rhythm and make music (i.e. PTO in cyanobacteria), an orchestra composed of many 

	
6 It’s not a coincidence that both the circadian rhythm and music benefit from synchrony. Destruc-
tive and constructive interference are natural properties of all rhythmic processes: misalignment 
deteriorates (“cancels out”) their signal and synchrony reinforces it. 
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different individuals (i.e. cellular TTFL’s) with unique functions and instruments (i.e. tis-

sue-specific CCG’s) require a central conductor (i.e. SCN) to achieve harmony and create 

music (i.e. maintain optimal homeostasis).  

In summary, the circadian rhythm is a distributed system of systems, a network of 

interconnected rhythms (ranging in scale from cellular to systemic, and from central to 

peripheral) that individually regulate biological processes within their respective domains, 

reinforce each other through harmonious physiological processes, and which are collec-

tively coordinated at the organismal level by a central pacemaker synchronized with the 

environmental day-night cycle (top-down regulation) while retaining some degree of self-

sustaining autonomy and sensitivity to local physiological signals (bottom-up regulation). 

The circadian rhythm is an emergent property of the self-optimization of our biological 

processes, the product of an integrated, dynamic, adaptable, centrally coordinated, and pe-

ripherally distributed system of systems. 

 

Circadian Anatomy in Mammals 

The SCN is the central oscillator – often colloquially referred to as the “central pacemaker” 

or “master clock” - of the mammalian circadian rhythm. The SCN receives direct photic 

inputs from photosensitive retinal ganglion cells via the RHT and physiological infor-

mation from the Median Raphe Nucleus (MRN) and Intergeniculate Leaflet (IGL) of the 

thalamus, integrates these signals to maintain an autonomous and intrinsic physiological 

oscillation at a constant phase relative to the day-night cycle, and distributes this infor-

mation to the myriad peripheral circadian rhythms throughout the body via extensive direct 
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and indirect projections (Dibner et al., 2010; Lawrence P Morin, 1999; Lawrence P. Morin, 

2013; D. K. Welsh et al., 2010).  

As its name implies, the SCN is located immediately superior to the optic chiasm - 

the merging and decussation (crossing the midline) of optic fibers as they course caudally 

from the retina - and consists of two symmetrical nuclei that flank the third ventricle in the 

inferior hypothalamus. The SCN is relatively small, with each nucleus containing ~8,000 

- 10,000 neurons in mice, ~20,000 in rats, and ~50,000 in humans (M. Bailey & Silver, 

2014). It is conspicuously cell-dense compared to the adjacent diffuse grey matter of the 

anterior hypothalamus, and is readily visualized with a Nissl stain; due to its paucity of 

internal and crossing axonal fibers, it is also easily visualized with Golgi impregnation or 

a myelin stain (Van den Pol, 1980). Its gross shape is roughly oblong or “tear shaped”, with 

a swollen ventral portion and a tapering dorsal tail (Lawrence P. Morin, 2013). As with 

many aspects of the SCN, this varies by species; for example, rats have a more oblate SCN. 

The SCN has been organized according to neurochemical, functional, and anatom-

ical criteria. Two main sub-divisions are generally recognized: a compact ventrolateral 

core that is encapsulated within a somewhat diffuse dorsomedial shell (M. Bailey & Silver, 

2014; M. H. Hastings et al., 2014; Lawrence P. Morin, 2013). Additional and/or different 

sub-divisions have been identified in species with uniquely specialized circadian systems, 

such as desert-dwelling mammals. For example, the camel SCN is unusually large and 

differentiated7, and has been divided into three partitions along the rostral-caudal axis 

based on immunohistochemical analysis (El Allali et al., 2017). In addition to differences 

	
7 Potentially due to finer control of water retention and thermoregulation needed in hot, arid desert 
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in cell density, these regions are distinguishable by their distinct neurochemical makeups: 

the core contains neurons that express Vasoactive Intestinal Peptide (VIP) and/or Gastrin 

Releasing Peptide (GRP), where-as shell neurons express Arginine Vasopressin (AVP) 

(Dibner et al., 2010). The SCN is rich in inhibitory Gamma Aminobutyric Acid (GABA), 

and the core and shell are commonly visualized through the colocalization of GABA and 

VIP/GRP or GABA and AVP, respectively; calbindin is also a popular alternative, as it is 

found only in part of the core (Lawrence P. Morin, 2013). This neurochemically defined 

model has been supported by observed differences in the physiology – shell neurons pos-

sess robust diurnal rhythms in their spontaneous firing rate and PER gene expression, 

where-as core neurons have weak rhythms easily reset by light (Jobst & Allen, 2002) – and 

through study of afferent/efferent projections of the core and shell, most notably the obser-

vation that RHT neurons synapse almost exclusively on core neurons (El Allali et al., 2017; 

Lawrence P. Morin, 2013). Functionally, the retinorecipient cells (i.e. those which receive 

direct projections from retinal ganglion cells) in the core are capable of resetting the phase 

of neuronal oscillations in the shell through VIP-mediated paracrine signaling, which con-

veys temporal information to other regions through direct and indirect projections 

(Kriegsfeld et al., 2004); in other words, the shell is the “clock” that encodes time, and the 

Core is the “synchronizer” that keeps it in phase with the environment. 

The SCN receives diverse inputs from numerous brain regions: ~35 brain regions 

directly (monosynaptically) innervate the SCN, and this number increases to 85 if indirect 

(multisynaptic) projections are included (Lawrence P. Morin, 2013). Although the SCN is 
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widely innervated, the bulk of its afferents are found in three major pathways: photic stim-

ulus from the retina via the RHT, thalamic input from the IGL, and serotonergic innervation 

from the MRN. These inputs convey circadian information from both the environment 

(photic RHT) and the body (non-photic IGL and MRN) capable of influencing SCN’s la-

tent circadian oscillation, effectively creating a central “master clock” sensitive to both 

endogenous and exogenous zeitgebers (Dibner et al., 2010). Mapping the terminal fields 

of these pathways has been a major objective of neuroanatomical research on the SCN 

(Lawrence P. Morin, 2013).  

Photic input from the retina via the RHT forms the largest and most influential 

afferent to the SCN, as evinced by its large terminal field in the SCN core and the sensitiv-

ity of the SCN’s latent oscillation to environmental light (Lawrence P. Morin, 2013). RHT 

afferents consist of melanopsin-positive intrinsically photosensitive Retinal Ganglion Cells 

(ipRGC) that directly synapse on VIP+ retinorecipient cells in the SCN core (Dibner et al., 

2010). Although the RHT is the dominant photic input in virtually all mammals, the extent 

and concentration of retinorecipient cells varies between species (Karatsoreos, 2004). For 

example, interspecies differences in RHT terminal fields have been identified in the ven-

trolateral SCN in both hamsters (Johnson et al., 1988) and mice (Abrahamson & Moore, 

2001), with the latter being significantly more dense and containing additional sparse dor-

somedial RHT inputs, where-as retinorecipient cells are found only in the ventral SCN in 

the rat (R. Y. Moore, 1996). ipRGC’s project to at least 30 other brain regions in addition 

to the SCN (Lawrence P. Morin, 2013), including adjacent hypothalamic structures that are 

reciprocally connected with the SCN, notably the IGL and subparaventricular Zone (sPVZ) 
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(Dibner et al., 2010; Kriegsfeld et al., 2004; Major et al., 2003). Interestingly, individual 

ipRGC axons have been observed to bifurcate and project to both SCNs, or to one SCN 

and either the IGL, Olivary Pretectal nucleus (OPT), the superior colliculus, or the contra-

lateral SCN (L.P. Morin et al., 2006). 

Fibers characterized by the presence of Neuropeptide Y (NPY) and GABA project 

from the IGL to the SCN via the Geniculohypothalamic Tract (GHT) (Dibner et al., 2010). 

These NPY+ cells synapse on retinorecipient neurons in the SCN core, and are particularly 

dense in rodents (Abrahamson & Moore, 2001) and dromedaries (El Allali et al., 2017). 

The IGL is bilaterally connected with over a hundred brain regions in addition to the retina 

and SCN (Lawrence P. Morin, 2013), and is believed to be an important source of inte-

grated multimodal circadian information for the SCN in non-primate mammals (L.P. Morin 

& Allen, 2006). The Pregeniculate Nucleus (PGN) is believed to be the functional analog 

of the IGL in primates as it contains NPY+ positive cells that receive overlapping photic 

and serotonergic projections from the retina and Dorsal Raphe Nucleus (DRN), respec-

tively. Moreover, their concentration and volume vary between nocturnal and diurnal pri-

mates, which would be expected of a multimodal circadian integration system (Pinato et 

al., 2009). However, there is no primate homologue of the GHT, and NPY+ fibers are 

scarce and diffuse in the human, indicating an altered functional role of the PGN in circa-

dian processing in primates (Lima et al., 2012). 

The SCN receives strong serotonergic input from the MRN and, to a lesser extent, 

the DRN via the serotonergic pathway (Dibner et al., 2010; Lawrence P Morin, 1999). In 
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rodents, serotonergic fibers synapse on ventromedial neurons in the SCN, partially over-

lapping with the core’s VIP+ RHT terminal fields (Lawrence P. Morin, 2013). Much like 

the IGL, serotonergic projections from the MRN and DRN are believed to convey inte-

grated photic and non-photic information. For example, desert-dwelling mammals such as 

the camel (El Allali et al., 2017) and jerboa (Lakhdar-Ghazal et al., 1995), possess a re-

markably large and dense serotonergic projection to the dorsomedial SCN. This implies 

that the MRN feeds the SCN extensive integrated information – primarily non-photic – to 

fine-tune the circadian rhythm and maintain tight synchrony between their peripheral os-

cillators and their harsh and dynamic environment. 

The SCN’s extrinsic efferents consist predominantly of short-distance monosynap-

tic hypothalamic projections, especially to Paraventricular Nucleus (PVN), Preoptic Area 

(POA), IGL, and sPVZ (Kriegsfeld et al., 2004), which in turn project to numerous auto-

nomic and endocrine neural controllers (Lawrence P. Morin, 2013). This hierarchal net-

work processes and distributes the temporal information encoded in the SCN throughout 

the nervous and endocrine systems, enabling the SCN to synchronize hundreds of physio-

logical processes with distinct phases (e.g. melatonin secretion and body temperature) 

through a relatively small number of projections (Dibner et al., 2010). Anatomical studies 

have provided the evidence showing that these hypothalamic projections are essential for 

circadian function, as their destruction – either through direct transection or the ablation of 

intermediate nuclei (e.g. the PVN) – suppresses diurnal rhythms such as melatonin con-

centration and abolishes the regular period of sleep-wake cycle (Abrahamson & Moore, 

2006; Vrang et al., 1995). Beyond the hypothalamus, the SCN projects inhibitory GABA-
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ergic fibers to the melatonin-producing pineal gland; it is through this pathway that envi-

ronmental light inhibits the production of melatonin, a critical component of normal circa-

dian behavior (Dibner et al., 2010; Kriegsfeld et al., 2004). In total, the SCN monosynap-

tically projects to ~15 distinct brain regions (Lawrence P. Morin, 2013).  

Lastly, the SCN contains extensive intrinsic efferents, both to the contralateral nu-

cleus and ipsilaterally between the core and shell of a single nucleus (Lawrence P. Morin, 

2013). The majority of intrinsic efferents project from the core to the ipsilateral and, to a 

lesser extent, the contralateral shell, with sparse shell-to-core reciprocal connections. Alt-

hough the function of the contralateral projections are poorly understood, core efferents to 

the ipsilateral shell are believed to supplement the photic information conveyed through 

VIP-mediated paracrine signaling (Hamnett et al., 2019; Kriegsfeld et al., 2004). 

 

Circadian Physiology in Mammals 

The SCN regulates our circadian rhythm through three distinct components: (1) intrinsic 

oscillators in the SCN shell that autonomously maintain a 24-hour rhythm, (2) photic stim-

uli via the RHT capable of synchronizing the phase of shell oscillations to the environment 

via the core, and (3) numerous direct and indirect projections that convey temporal infor-

mation to central neurological controllers (M. Bailey & Silver, 2014; Dibner et al., 2010). 

Synchrony between SCN neurons and sub-divisions is maintained through VIP-

mediated paracrine signaling (Buhr & Takahashi, 2013; Hamnett et al., 2019). This pro-

cess, referred to as ‘photic entrainment’, maintains the synchronicity of the SCN’s latent 
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TTFLs to environmental light and consequently ensures the SCN as a whole is synchro-

nized to a common phase (Hamnett et al., 2019; D. K. Welsh et al., 2010). VIP is released 

by SCN retinorecipient cells (primarily in SCN’s core) in response to photic stimuli via the 

RHT. The released VIP then binds to adjacent, non-retinorecipient cells in the SCN’s shell 

containing VIP Receptor 2 (VPAC2). This triggers a molecular cascade that induces mem-

brane depolarization and increased intracellular calcium retention, priming the cell for ac-

tivity; note that the highest spontaneous SCN activity is generally observed during the day, 

when photic input is strongest (M. H. Hastings et al., 2014). This paracrine cascade also 

directly upregulates the expression of period (PER) and cryptochrome (CRY), two genes 

at the center of the TTFL, effectively resetting the neurons “clock” and synchronizing the 

VPAC2 neuron’s TTFL to environmental light (D. K. Welsh et al., 2010). Note that shell 

neurons are not perfectly in sync; paracrine signaling and is restricted by diffusion and 

distance, so VPAC2 neurons exhibit staggered TTFLs that are spatiotemporally encoded 

based on their distance from the retinorecipient core, a wave of phasic synchronization that 

spreads across the SCN (Hamnett et al., 2019). 

The TTFL is ubiquitous in mammalian nucleated cells, and is the fundamental 

driver of both the central pacemaker (i.e. the SCN) and the peripheral oscillators (Dibner 

et al., 2010; M. H. Hastings et al., 2014). Although there are tissue- and species-specific 

exceptions, the generic mammalian TTFL consists of two protein heterodimers: the 

CLOCK/BMAL1 heterodimer consisting of Circadian Locomotor Output Cycles Kaput 

(CLOCK) and Brain and Muscle Aryl hydrocarbon Receptor Nuclear Translocator-Like 

protein 1 (ARNTL) Like 1 (BMAL1), and the PER/CRY heterodimer formed from Period 
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1/2/3 (PER1/PER2/PER3) and Cryptochrome 1/2 (CRY1/CRY2) proteins (Buhr & 

Takahashi, 2013; Dibner et al., 2010; M. H. Hastings et al., 2014). Both heterodimers are 

transcriptional regulators that together form a continuous feedback loop: CLOCK/BMAL1 

increases expression of PER, CRY, and numerous CCGs, and PER/CRY inhibit 

CLOCK/BMAL1 transcriptional activity. Numerous cellular and metabolic functions are 

closely tied to the TTFL via CCGs that are up-regulated by CLOCK/BMAL1. As their 

expression is dependent on the central TTFL oscillator, CCGs enable the propagation of 

temporal information to downstream processes and, ultimately, the synchronization of 

physiological functions (e.g. cell division, protein expression) to optimize efficiency (Ko-

renčič et al., 2015).  

The same basic molecular machinery used by SCN is also found throughout the 

various peripheral oscillators, although the exact protein composition of the cellular TTFLs 

and the specific CCGs they activate varies widely between tissues according to their func-

tional role and physiology; on average,  ~10% of the transcriptome in a given tissue is 

under circadian regulation via TTFL/CCG (Michael H. Hastings et al., 2003). While pe-

ripheral TTFLs are usually out of phase with the SCN by ~4-8 hours, their timings relative 

to each other are maintained and stabilized by temporal information via intermediate neu-

rological (e.g. PVN), endocrine (e.g. pineal gland and melatonin), and homeostatic (e.g. 

hypothalamic control of body temperature) relays that receive mono- and multi-synaptic 

SCN efferents. Once thought to be functionally dependent on the SCN, peripheral oscilla-

tors have since been shown to be self-sustaining (Yoo et al., 2004), resilient to large dif-

ferences in temperature (Dibner et al., 2009), and persistent through cell division (Nagoshi 
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et al., 2004). Note that while peripheral TTFLs can sustain themselves in SCN-lesioned 

animals for several weeks, their individual phases will gradually desynchronize from each 

other (Guo et al., 2006). This suggests that the SCN is required to maintain phase coherence 

within a tissue (Dibner et al., 2010), analogous to a conductor maintaining harmony in an 

orchestra. 

In addition to direct (e.g. hormone secretion) and intermediate (e.g. RAR and body 

temperature) pathways, the SCN entrains the billions of autonomous cellular TTFLs indi-

rect pathways as well. Consider food intake, which prompts numerous physiological and 

homeostatic changes through the production of metabolites (e.g. glucose), secretion of hor-

mones (e.g. leptin), and alteration of cellular metabolism (e.g. redox ratio) to prepare the 

body for digestion (Dibner et al., 2010). The SCN indirectly entrains food-seeking behavior 

by restricting the times when animals are mobile and able to feed, which is determined by 

their circadian rest-activity rhythms (RAR) - the daily cycle of waking activity and som-

nolescent torpor, itself reinforced by the circadian fluctuation in body temperature and cel-

lular metabolism. However, this can lead to peripheral TTFLs receiving conflicting tem-

poral information. As shown by artificial disruptions of the phase of RAR, temperature, 

sleep, and other “indirect pathways”, these are capable of decoupling peripheral oscillators 

from the SCN; e.g. limiting feeding opportunities to the day in nocturnal animals - effec-

tively inverting their RAR by forcing them to seek food when they would normally be 

asleep - desynchronizes peripheral oscillators in cardiac, pancreatic, hepatic, and renal tis-

sues from the SCN (Damiola, 2000; Stokkan, 2001). Although the liver primarily synchro-

nizes to the central pacemaker - and thus can optimally coordinate its processes with other 
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biological rhythms like body temperature - this coupling can be overwritten by acute phys-

iological changes that occur outside their anticipated time; writ large, this property allows 

an organism to flexibly adapt to dynamic environments at the cost of short-term decohesion 

of its circadian rhythm and the subsequent stresses and inefficiencies. 

In light of these examples, the circadian rhythm may once again be appreciated as 

a distributed yet coordinated network of semi-autonomous systems who regulate and sta-

bilize each other via top-down and bottom-up integration of exogenous and endogenous 

zeitgebers in order to optimally adapt to their environmental and physiological conditions. 

 

Circadian Biomarkers and Assessment 

As a distributed system of systems, the circadian rhythm is detectable in some form or 

another in almost all biological measures. This includes the aforementioned diurnal fluc-

tuations in body temperature, cortisol, and melatonin, as well as hormonal regulators of 

appetite such as ghrelin and leptin (Challet, 2015; P. C. Smith & Mong, 2019), metabolic 

processes such as glucose uptake and insulin concentration (Panda, 2016), neurotransmit-

ters like dopamine (Poceta et al., 2009) and serotonin (Matheson et al., 2015), biological 

responses such as inflammation and the immune response (Bellet et al., 2013), homeostatic 

regulators such as heart rate (Morris et al., 2012) and cutaneous blood flow (Vaughn et al., 

2018), biochemical reactions such as mitochondrial respiration and gene expression (de 

Goede et al., 2018), and even anatomically as demonstrated by diurnal fluctuations in the 

amount of fluid in the thorax (Kirchner et al., 2015). Although any biomarker with a diurnal 
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fluctuation may be used as a measure of the circadian rhythm, melatonin and body temper-

ature have been the most popular due to their relative ease of measurement, robust ampli-

tude of oscillation, and their “centrality” to the circadian rhythm vis-à-vis the large role the 

SCN plays in their regulation (Benloucif et al., 2005). In addition to specific biomarkers 

and biological processes, an individual’s circadian rhythm may be assessed through their 

behavior; specifically, both the sleep-wake cycle and RARs exhibit a strong circadian pat-

tern (Ancoli-Israel et al., 2003; Pollak et al., 2001). In other words, humans regularly and 

periodically shift between gross behavioral states in synchrony with the solar day, a circa-

dian rhythm which can be measured through self-report (e.g. sleep diaries) and/or objective 

monitoring (e.g. wearable accelerometers). 

The circadian rhythm has been assessed in numerous models using a multitude of 

measures since antiquity (McClung, 2019). The first written record of a circadian process 

was made by Androsthenes, a 4th century Greek explorer who accompanied Alexander the 

Great, when he noted that certain tree leaves moved in a predictable pattern throughout the 

day (Androsthenes, n.d.; Bretzl, 1903, p. 412). Over 2,000 years after Androsthenes penned 

“The Navigation of the Indian sea”, French biologist Jean-Jacques d'Ortous de Mairan pro-

duced the first experimental evidence of an intrinsic circadian rhythm when he observed 

that the diurnal movement of plants continued even in complete darkness (de Mairan, 

1729). A century later, Swiss botanist Augustin Pyramus de Candolle showed that shifting 

the light-dark cycle subsequently shifted the daily rhythm of movement, the first evidence 

of exogenous entrainment (de Candolle, 1832).  
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Throughout the mid-1900’s, German physician Jurgen Aschoff contributed to sev-

eral fundamental findings about human chronobiology, including the first description of 

circadian fluctuations in body temperature; he is also credited with coining zeitgeber to 

describe environmental cues capable of entraining the circadian rhythm (Daan & Gwinner, 

1998; Foster & Roenneberg, 2008). Together with Rütger Wever, Aschoff pioneered novel 

methods such as an isolation “bunker” for human subjects where zeitgebers could be rig-

orously controlled, an experimental paradigm that has since become fundamental to the 

field of chronobiology. 

Much of our understanding of circadian biology has been derived from in-labora-

tory experiments built upon the foundation of Wever’s and Aschoff’s methodology. This 

approach allows for careful experimental design and precise measurement with which sub-

tle effects may be detected and distinguished (Vetter, 2018). However, controlled labora-

tory settings cannot replicate the circadian rhythm’s in situ function for several reasons. 

Consider sleep studies, normally conducted in-clinic with polysomnography (PSG); clearly 

the unfamiliar technicians, myriad instruments attached to the subject, and the dramatically 

different clinical setting each have poorly understood effects on sleep biology (Roenneberg 

et al., 2015). Moreover, while controlled sleep studies have advanced our knowledge of 

sleep’s structure and neurological substrates, they have given relatively little insight into 

the functional interactions between an individual’s sleep and circadian rhythm, and their 

behavior and normal environment. Said another way, in-laboratory studies lack ecological 

validity: they offer unparalleled resolution and specificity, yet this narrow scope inherently 
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limits their generalizability and therefore our ability to translate their findings into clinical 

and functional applications (Andrade, 2018; Roenneberg et al., 2015; Vetter, 2018). 

In contrast, field and observational studies – which monitor an individual’s “natu-

ral” behavior outside of the laboratory – offer ecologically valid data at the cost of reduced 

precision and control (Andrade, 2018; Bei et al., 2016; Vetter, 2018). By measuring the 

cumulative effect of the interactions between an individual’s biology, environment, and 

behavior through a systemic circadian marker (e.g. sleep timing), one can measure that 

individual’s authentic8 circadian rhythm as it exists in their day-to-day life. More practi-

cally, the reduced cost of out-of-laboratory methods allows for larger cohorts to be assessed 

over longer periods of time, but this also increases the variance of the sample. This is both 

a benefit and a drawback: while the data may be ecologically valid and clinically relevant, 

one cannot easily distinguish between the numerous effects that may have influenced the 

measured rhythm from each other, or from normal inter- and intra-individual variance. For 

example, Jane may have disrupted sleep, but is it attributable to a sleep disorder, a restless 

bed partner, binge drinking, a stressful work-week, or just an artifact of normal intra-indi-

vidual variance in the measurement? 

 

	
8 Observation bias and the white-coat effect undeniably exist even in observational and field stud-
ies, though the use of subject diaries, wearable sensors, and lengthy out-of-clinic recording periods 
with minimal contact with research staff reduces the magnitude of these confounding effects. 
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Chronotype 

Much like personality, there is considerable variability in the precise phase of an individ-

ual’s circadian rhythm relative to the light-dark cycle. One’s “circadian phenotype” is re-

ferred to as their chronotype, defined as “the individual phase of entrainment, i.e. the phase 

at which an individual synchronizes to the 24 hr day” (Roenneberg et al., 2012; Vetter, 

2018). More generally, chronotype refers to one’s preference for “morningness” or 

“eveningness”, embodied by the colloquial idioms “morning lark” and “night owl”9. 

Although chronotypes vary widely in humans, there are predictable population-

level trends related to age and sex; in general, women and older people are more likely to 

have a morningness chronotype. A cross-sectional analysis of self-reported chronotype 

showed that children tend toward morningness, then progress toward eveningness with in-

creasing age throughout adolescence and peaking at ~20 years old (19.5 for females, 21 for 

males), and thenceforth gradually shifting back toward morningness with increasing age 

(Foster & Roenneberg, 2008; Roenneberg, 2004). The sex difference in peak eveningness 

- specifically the 1-2 year delay in males - may explain why men are typically observed to 

have later chronotypes then women, especially in age-controlled studies. However this sex 

difference diminishes as age increases beyond the early 20’s and disappears (i.e. men and 

women’s average chronotype is the same) at ~52 years of age, which is also the typical age 

for menopause (Foster & Roenneberg, 2008). Beyond 52, interpretation becomes difficult 

	
9 “Robin” has been proposed as a moniker for intermediate chronotypes with neither a strong morn-
ingness nor eveningness preference (Hancock & Szalma, 2008, p. 234) 
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due to high variance in the data and the possibility of statistical confounders (i.e. survivor 

bias, limited sample size, unrelated age-dependent factors, etc.). 

 

Infradian Rhythms 

Although the circadian rhythm is by far the most well-known and documented, rhythms 

with longer and shorter periods have also been observed in biological systems. For exam-

ple, ~4-hour rhythms in dopamine concentration in the brain and in locomotor activity have 

been observed in mice (Blum et al., 2014), and the human menstrual cycle has a regular 

period of ~28 days. Rhythms with periods shorter than 20 hours or longer than 28 hours 

are referred to as ultradian and infradian rhythms, respectively (F. Halberg, 1960; Reinberg 

et al., 2017)10. This mirrors the nomenclature used for classifying wavelengths of electro-

magnetic radiation; i.e. ultraviolet light has a longer wavelength than visible light, and 

infrared light likewise has a shorter wavelength than visible light. 

Just as the circadian rhythm ultimately derives from the light-dark cycle caused by 

earth’s rotation, most infradian rhythms are likewise tied to periodic macroscopic changes 

in the environment attributable to the earth’s astronomical properties; i.e. seasons and 

years. A well-known example is hibernation, a behavioral state characterized by reduced 

metabolic demand, lowered body temperature, and decreased locomotor activity that typi-

cally occurs in the winter. Hibernation is induced through several endogenous circannual 

	
10 Rhythms with periods between 20 and 28 hours are considered circadian, as these represent the 
approximate range of periods that the SCN can adapt to 
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(circa- “about”, -annual “year”) rhythms, such as changes in sleep duration (with the max-

ima occurring in winter), thermogenesis, and vasoconstriction that persist even when envi-

ronmental conditions are kept constant (Frare et al., 2019; Walker et al., 1980). Hibernation 

is considered a systemic behavioral outcome that emerges from physiological circannual 

rhythms, analogous to how sleep is a systemic behavioral outcome produced by a conflu-

ence of physiological circadian rhythms. Interestingly, hibernation and sleep are both in-

duced through similar rhythmic physiological changes - decreased body temperature, vas-

oconstriction, and increased sensitivity of adenosine A1 receptors (Frare et al., 2019) – 

albeit on dramatically different temporal scales. 

Seasonal variations in behavior, physiology, and pathology have also been ob-

served in humans. Stothard and colleagues (2017) demonstrated that the length of the bio-

logical night - i.e. when melatonin secretion is elevated, usually co-occurring with sleep 

and night-time - adapts to seasonal differences in the light-dark cycle, growing longer in 

the winter as nights also grow longer. As light is the primary zeitgeber in humans, the 

presence of artificial lighting confounds and largely abolishes the circannual rhythm in 

melatonin secretion, instead inducing a relatively constant duration of biological night that 

resembles those observed in the natural summer photoperiod. Cortisol exhibits a strong 

circannual rhythm (Morgan et al., 2017), as does body temperature, although it’s been ar-

gued that the increases/decreases in temperature observed in the summer/winter (respec-

tively) are attributable to ambient temperature and fall within a constant homeostatic range 

(Harding et al., 2019). Behaviorally, human reproduction exhibited a profound circannual 

rhythm in pre-industrial societies and varied by as much 60% across the year, although the 
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amplitude has since fallen to ~0-5% in modern industrialized populations (Foster & 

Roenneberg, 2008)11. Similar trends and their diminishment have been observed in other 

population-level statistics: seasonality is observed in the frequencies of births, deaths, and 

diseases, but the amplitude of these fluctuations is lower in more industrialized countries. 

While lunar cycles are essential for certain ecosystems (e.g. tidal zones), and although they 

have been fundamental in shaping human cultures and calendars, there is little evidence 

that lunar cycles directly influenced our biological evolution (Foster & Roenneberg, 2008). 

 

Circaseptan Rhythms 

Of special interest to this dissertation are circaseptan rhythms (circa- “about”, -septan 

“seven”), a class of infradian rhythms with a period of ~7 days (Franz Halberg et al., 1965; 

Levi & Halberg, 1982). The extent to which circaseptan rhythms arise from innate biolog-

ical processes, as opposed to emerging from non-biological circaseptan cycles such as the 

seven-day week, is a topic of much study and controversy. 

Unlike days (earth’s rotation), months (lunar cycle), and years (earth’s revolution), 

the week has no clear astronomical or geophysical correlate (Franz Halberg, 1984; Levi & 

Halberg, 1982; Reinberg et al., 2017). In other words, there is no apparent natural zeitgeber 

capable of entraining circaseptan rhythms à la the 24-hour light-dark cycle that entrains 

	
11 Unlike most animals who reproduce and rear offspring during specific periods of the year, hu-
mans reproduce year-round and care for their young for several years after birth; this precludes 
strong, centrally controlled circannual rhythms tied to reproduction, and thus human birth-rates are 
much more sensitive to exogenous changes in resource availability, temperature, and other envi-
ronmental circannual rhythms, as well as sociocultural factors like the summer migration of Inuit 
families resulting in more opportunities for intimacy (Condon’ & Scaglion, 1982), and historical 
events like famines and wars. 
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circadian rhythms or the seasonal changes that entrain circannual rhythms. This naturally 

leads to the hypothesis that all circaseptan rhythms are artificial or emergent from interac-

tions between artificial constructs and biological processes. For example, the habit of sleep-

ing in on the weekend creates a circaseptan rhythm in the timing of sleep and activity that 

oscillates between later on the weekends and earlier during the work week (Beauvalet et 

al., 2017; Hulsegge et al., 2019; Vetter, 2018). 

Numerous endogenous circaseptan rhythms have nevertheless been documented in 

spite the lack of a natural circaseptan zeitgeber (Reinberg et al., 2017), including water 

uptake in pole bean (Phaseolus vulgaris) seeds (Spruyt et al., 1987), melatonin production 

in the pike fish (Esox lucius) SCN (Cornélissen et al., 1995), physical activity in the beach 

beetle (Chaerodes trachyscelides) (Meyer-Rochow & Brown, 1998), Immunoglobulin Y 

(IgY) antibody concentration in chicken (Gallus gallus domesticus) egg yolk (He et al., 

2014), and myriad physiological biomarkers in rodents: melatonin content of the pineal 

gland (Sánchez de la Peña et al., 1986), urinary sodium content while on high-sodium diets 

(Uezono et al., 1987), and systemic responses to therapeutic interventions like vaccines 

(DeLisi et al., 1983) and toxic conditions such as irradiation (Reinberg et al., 2017). 

 

Sleep 

Essential for health yet poorly understood, sleep is “an active, repetitive and reversible 

brain process of reduced perception and responsiveness to environmental stimuli” (Dahl & 

Lewin, 2002; Krueger et al., 2016). Being diurnal, humans are normally active during the 

day and sleep during the night, a behavioral rhythm promoted by our circadian biology and 
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thus entrained by the geophysical light-dark cycle. Specifically, photic input to our retinas 

(which is greatest during daylight hours) is received by specialized retinal ganglion cells 

and relayed to the SCN via the RHT, effectively “resetting” the SCN’s intrinsic oscillators 

and ultimately causing a shift in the timing of the SCN’s, and thenceforth the body’s, cir-

cadian rhythm (M. H. Hastings et al., 2014). Physiologically, peak “sleepiness” usually 

occurs between 03:00 and 04:00 when the rate of melatonin excretion is greatest and body 

temperature is lowest, two systems closely regulated by the circadian rhythm (Lack & 

Wright, 2007). Although sleep and wakefulness are promoted by the circadian rhythm at 

certain times of day, humans can (and often do) consciously delay sleep for myriad reason, 

and sleep itself is homeostatically regulated through “sleep pressure” independently of the 

circadian rhythm. Sleep may therefore be seen as a systemic behavioral output partially 

regulated by the circadian rhythm: sleep timing is entrainable via diurnal rhythms in body 

temperature and melatonin, yet sensitive to other factors such as conscious control and 

homeostatic sleep pressure (Vetter, 2018). 

 

Architecture and Classification 

Sleep is heterogeneous in terms of its physiological and neurological markers, which have 

been used to divide sleep into distinct stages. At the grossest level, sleep is part of a spec-

trum of behavioral states that reflect different levels of arousal. Colloquially defined as an 

evoked response especially in the context of waking up from sleep, arousal in scientific 

contexts generally refers to the overall activity of the central nervous system (CNS) in 
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relation to the sleep-wake cycle (Oken et al., 2006). Arousal’s functional meaning is de-

pendent on the field: for example in the context of behavior arousal refers to the sensitivity 

of an organism to stimuli (Beri & Reddy K, 2019), and in neurophysiology it refers to the 

overall activity and capacity of a neurological system (Schiff, 2008). In this manuscript, 

these definitions are combined, with arousal referring to generalized behavioral states char-

acterized by differences in responsiveness to stimuli and cortical activity (Goldfine & 

Schiff, 2011). 

While arousal is typically conceptualized as a spectrum of behavioral states, this 

continuity is often divided into two broad categories - sleep and wake - with sleep being 

further divided into two distinct states. In descending order of sensitivity to stimuli and 

neurological activity, these three broad arousal states are: wakefulness, Rapid Eye Move-

ment (REM) sleep, and non-REM (NREM) sleep (Goldfine & Schiff, 2011). As these are 

systemic states that affect the entire organism, they can be differentiated using a broad 

variety of biomarkers (e.g. heart rate, muscle activity, response to stimuli, metabolic rate, 

etc.). In sleep and circadian research, polsysomnography (PSG) is considered the most ac-

curate and reliable method (the “gold standard”) for identifying the level of arousal, as 

sleep entails major changes to neurological function readily visualized via electroenceph-

alography (EEG) (Ancoli-Israel et al., 2015; Colten & Altevogt, 2006). PSG also fre-

quently incorporates physiological and biomechanical measures in addition to EEG, such 

as heart rate, blood oxygenation (aids in screening obstructive sleep apnea), electromyog-

raphy of lower limbs (aids in screening restless leg syndrome), electrooculography (to de-

tect eye-blinks and associated EEG artifacts), and respiration rate. 
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Sleep has historically been divided into five stages - NREM1, NREM2, NREM3, 

NREM4,12 and REM - based on Rechtschaffen and Kales’ (1968) criteria for scoring sleep 

off of cortical EEG data13. These criteria have been reviewed several times since, with the 

most recent standards being set by the American Academy of Sleep Medicine’s (AASM) 

official guidelines (Moser et al., 2009). In addition to changes in scoring and reporting, 

these new standards define only four sleep stages (N1, N2, N3, and REM) with N4 and N3 

being merged together; N3 is often referred to as slow-wave sleep (SWS). 

Humans normally progress through the sleep stages in a regular, stereotyped cycle 

with an approximate duration of 90 minutes: starting from wakefulness, an individual will 

enter N1 upon falling asleep and progress to the “deeper”14 stages of N2, N3, and finally 

to REM, before returning to N1 and repeating the cycle (Atkin et al., 2018). The time spent 

in each stage varies predictably throughout the night, with REM growing longer and N3 

shorter with each successive cycle. The cycle is also significantly affected by age, with 

older individuals experiencing longer N1 and N2 stages, a shorter N3 stage, and fewer full 

sleep cycles on a given night (Mander et al., 2017). Older age is also associated with ad-

vanced (i.e. earlier) sleep timing, greater sleep onset latency, higher sensitivity to arousing 

	
12 Often abbreviated as N1, N2, N3, and N4, respectively 
13 Two additional stages were included in these criteria: Wake for periods of wakefulness, and 
Movement Time for periods where movement artifacts prevented accurate scoring. Movement Time 
has since been removed from the official AASM standards, and such periods are now scored based 
on data from proximal epochs. 
14 Colloquially, it is more difficult to rouse someone from a “deeper” sleep than from a “lighter” 
sleep. Sleep stages also follow this paradigm: an individual would be less responsive to stimuli in 
N3 than they would be in N1.  
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stimuli, and a corresponding increase in sleep fragmentation and Wake After Sleep Onset 

(WASO). 

Each stage has distinct resting and transient waveforms created by differences in 

neural activity, which are used to identify sleep stages in cortical EEG recordings. Briefly, 

N1 is the transition from wakefulness to sleep and is marked by a pronounced theta oscil-

lation (~4 - 7 Hz) and the absence of the waking alpha rhythm (~8 - 15 Hz). N2 is charac-

terized by a greater amplitude in the theta rhythm and the appearance of low-frequency K-

complexes and high-frequency sleep spindles, the latter of which is produced by 

thalamocortical interactions (Atkin et al., 2018). N3 is the deepest stage of NREM and is 

frequently referred to as SWS due to the presence of relatively low frequency delta waves 

(~0.1 - 3 Hz). Collectively, NREM stages (especially N3) are characterized by reductions 

in body temperature, breathing rate, blood pressure, muscle tone, and diminished activity 

in cognitive, memory, and emotional systems. Note that, although muscle tone decreases 

in NREM, it is still present and the individual can unconsciously respond to potentially 

dangerous stimuli, suggesting that motor and somatosensory systems are less dampened 

(Atkin et al., 2018; Koella, 1982; Schulz, 2008). 

Aside from its titular rapid eye movements, REM sleep is distinguished from 

NREM by arousal of the CNS, the appearance of low-amplitude high-frequency theta 

waves in EEG, the abolition of muscle tone throughout the body, and a relaxation of ho-

meostatic regulation resulting in fluctuating body temperature, heart rate, blood pressure, 

and so on (Atkin et al., 2018; Parmeggiani, 2011). REM is also referred to as “paradoxical 

sleep” due to the observation that the increased cortical activity resembles that seen in an 
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awake brain - despite the fact they’re asleep. Dreaming occurs primarily in REM sleep - 

likely facilitated by the sudden arousal of cognitive and memory systems - whereas para-

somnias such as sleepwalking usually occur in N3 (Atkin et al., 2018). Since NREM is 

characterized by the depression of higher order brain functions and maintenance of motor 

systems, NREM parasomnias usually involve motor acts (e.g. sleepwalking) without con-

scious awareness; in contrast, dreams in REM sleep can be recalled and narratively de-

scribed due to arousal of cognitive systems, but the physical actions occurring in those 

dreams are suppressed by the loss of muscle tonicity (Koella, 1982; Schulz, 2008). 

 

Homeostatic and Circadian Regulation of Sleep 

Sleep timing is believed to be regulated through the interplay of two circadian rhythms 

(Landolt & Dijk, 2019): a centrally controlled oscillation in melatonin secretion, and a 

physiological “sleep pressure” that increases while awake due to the accumulation of cer-

tain neuromodulators (referred to as somnogens) in the central nervous system (CNS). 

These systems and their interactions are collectively known as the “two process model” of 

sleep regulation. 

Melatonin is secreted from the pineal gland in response to indirect innervation from 

the SCN via the hypothalamic Paraventricular Nucleus (PVN). Melatonin is a chronobiotic 

- i.e. a modulator of the timing of biological rhythms - that is primarily secreted during 

periods of darkness and which is associated with decreased physical activity and increased 

sleep proposensity (Arendt & Skene, 2005; Silva et al., 2019). The duration of melatonin 

secretion proportionally reflects seasonal changes in environmental light, allowing it to 
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entrain photoperiodic processes dependent on the length of the night (e.g. sleep timing, 

body temperature), and feeds back on the SCN via G-protein coupled receptors to adjust 

the phase of its TTFLs (Pévet, 2016). The sudden increase in melatonin secretion before 

sleep is referred to “dim light melatonin onset” (DLMO), occurring around dusk and fol-

lowed by a marked increase in sleepiness and decrease in body temperature. The proximity 

of the pineal gland to the SCN in terms of synaptic intermediaries and latency, as well as 

the relative ease by which melatonin can be measured and the high amplitude of its crepus-

cular secretion, has made DLMO a popular and robust indicator of circadian phase (Pévet, 

2016). 

In contrast to the centrally regulated DLMO, the accumulation of somnogens is 

thought to be a byproduct of normal neurometabolic processes during wakefulness – e.g. 

extracellular adenosine, a classic somnogen, is produced from ATP catabolism (Lazarus et 

al., 2019). Numerous somnogenic molecules have been identified, including the aforemen-

tioned adenosine, prostoglandin-2, and several cytokines. Although the production, neuro-

logical targets, and anatomical localization of several somnogens have been well charac-

terized, the complexity and broad distribution of the neurological sleep propensity system 

has slowed the consolidation of a unified theory of sleep-wake regulation (Landolt & Dijk, 

2019). Where-as DLMO prepares the body for sleep based on environmental conditions 

(time of day), sleep pressure does so based on neurobiological conditions (time spent 

awake). Their interaction through sleep regulation at a systemic level allows for the inte-

gration of exogenous and endogenous cues into a cohesive behavioral output. 
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Sleep and Circadian Disruption 

In previous sub-chapters, the anatomical, physiological, and functional aspects of the cir-

cadian rhythm have been discussed in the context of an idealized organism that is effec-

tively synchronized with its environment. As with any other biological system, however, 

the circadian rhythm can be disrupted by intrinsic and extrinsic factors. The impacts of 

circadian disruption are myriad and generalized, manifesting as impairments to systemic 

processes like cognition, sleep, metabolic efficiency, and disease risk. Although the causes 

of circadian disruption (e.g. misalignment between biological and environmental phases) 

are well understood and in fact a core element of chronobiological experimental design, 

the precise biological mechanisms that translate misalignment into systemic impairments 

are poorly understood (Vetter, 2018). Circadian disruption is becoming increasingly com-

mon in humans for myriad reasons: artificial zeitgebers created by technological (e.g. arti-

ficial lighting) and sociological (e.g. food availability) factors can interfere with the circa-

dian rhythm’s ability to synchronize to the geophysical day/night cycle, individuals can 

and often do choose to shift their sleep timing out of phase with their circadian rhythm in 

response to personal, professional, and social pressures, and activities unique to modern 

society – such as long distance travel and daylight savings time – can abruptly decouple 

one’s circadian rhythm from the environment with deleterious consequences (Chattu et al., 

2018; Colten & Altevogt, 2006). Certain populations (e.g. shift workers) are disproportion-

ately vulnerable to circadian disruption, and the circadian rhythm can be further disrupted 

directly and/or indirectly by numerous pathologies, such as Parkinson’s Disease (PD). 
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Definition and Scope 

Any discussion of circadian disruption must account for the fact that the circadian rhythm 

is innately adaptive. The circadian rhythm constantly receives and integrates internal and 

external zeitgebers to optimize the timing and coordination of biological processes. Con-

sider the fact that the TTFL - the fundamental oscillator in the mammalian circadian rhythm 

- has an innate period of ~24.2 hours (Burgess & Eastman, 2005; Czeisler et al., 1999). 

Without constant entrainment to environmental cues (i.e. light), the circadian TTFL (and 

it’s downstream processes such as CCGs) would gradually drift out of sync with the envi-

ronment even in ideal conditions. In other words, the circadian rhythm is constantly “dis-

rupted” because it is a dynamic system of systems that is constantly adapting to changes in 

exogenous and endogenous zeitgebers. Small changes in timing are easily tolerated; for 

example, the gradual day-to-day change in sunrise time is a constant challenge, but the 

shift of several dozen seconds per day is easily and quickly accommodated with minimal 

systemic effects (i.e. we are not jet lagged every morning). In other words, humans can 

tolerate some degree of variance in the relative timing and amplitude of our myriad circa-

dian rhythms and their zeitgebers/regulators. Therefore any discussion of circadian disrup-

tion must distinguish between normal adaptations, tolerable variation, and abnormal dis-

ruptions in the circadian system/endpoint of interest (Vetter, 2018). 

In this context, circadian disruption refers to a significant challenge to the circadian 

rhythm (i.e. an unexpected or out-of-phase stimulus) and the adverse negative outcomes it 

incurs. The circadian rhythm’s distributed and multifaceted nature means it cannot “turn 

on a dime” - human circadian rhythms can adapt by ~1 hour/day on average (Vetter, 2018) 
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- meaning larger deviations are proportionally more difficult to adapt to. For example, fly-

ing from New York to Los Angeles phase advances environmental (i.e. solar) time by three 

hours relative to biological time within a single day, a shift several orders of magnitude 

larger than the normal day-to-day change in daylight. Such a dramatic shift results in a 

multitude of negative symptoms as the circadian rhythm “lags behind” and slowly resyn-

chronizes with the environment; colloquially referred to as jet lag, these symptoms include 

daytime sleepiness, mood shifts, and difficulty sleeping.  

Building upon the seminal example of jet lag, consider the different zeitgebers and 

their interaction with the circadian rhythm in this hypothetical New York to Los Angeles 

flight. The retinorecipient SCN core quickly detects the abnormal environmental shift via 

signals from retinal ganglion cells and begins resetting its non-retinorecipient shell TTFLs 

to align with the new Los Angeles time. As this information slowly propagates throughout 

the SCN via paracrine signaling, the body’s peripheral oscillators (which are largely insen-

sitive to environmental conditions) continue unaware of the shift. As the sun begins to set 

in New York (yet is still high in the Los Angeles sky), the peripheral oscillators enter “bi-

ological night” as melatonin is secreted, heart rate slows, temperature decreases, and so on. 

Some are influenced by conflicting temporal information conveyed by non-photic behav-

ioral and physiological zeitgebers. For example, the individual is awake past their usual 

bedtime, resulting in greater buildup of somnogens and reduced cognitive performance. 

Meals are suddenly taken at a later time, forcing the liver and other digestive organs to 

work at a reduced efficiency as the body is homeostatically prepared for fasting, causing 

indigestion and nausea. They wake up too early after their first night in Los Angeles, a 
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consequence of their body temperature and peripheral blood flow increasing with the rising 

sun in New York, and they experience daytime sleepiness due to their “sleep debt”; i.e. 

residual somnogens that were not cleared due to an incomplete night of sleep. Meanwhile, 

the SCN and its neurological relays, now well on their way to synchronizing with the Los 

Angeles day, are entraining the peripheral oscillators at varying rates depending on their 

scale, functional “distance” from the SCN, and the influence of non-photic zeitgebers like 

feeding. The symptoms of jet lag emerge from these conflicting stimuli and misaligned 

biological processes, and it takes several days before the combination of top-down (i.e. 

SCN and light) and bottom-up (i.e. digestive organs and feeding) signals fully adapt to the 

new environment and each other. Of course, the individual then returns to New York and 

once again decouples the phase of their circadian rhythm from the environmental phase. 

Despite the common perception of jet lag as a minor annoyance that causes drowsiness, 

headaches, and nausea, its symptoms demonstrate the fundamental importance and sys-

temic influence the circadian rhythm has on our biology (Evans & Davidson, 2013): a rel-

atively minor misalignment of biological and environmental times is enough to cause cir-

cadian disruption, resulting in myriad minor inefficiencies from unoptimized biological 

processes that cumulatively manifest as generalized systemic symptoms. 

As mentioned earlier, circadian disruption has been used as a general term to de-

scribe the adverse effects that manifest as the circadian rhythm resynchronizes itself to 

environmental zeitgebers and its constituent rhythms to each other (Vetter, 2018). More 

discretely, the study of circadian disruption refers to its myriad potential disruptions (e.g. 
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jet lag, neurodegenerative disease, unique photoperiods such as polar latitudes, genetic pre-

disposition) acting through a range of mechanisms (e.g. misalignment, sleep disruption, 

behavioral interference, etc.) at different levels of biological organization (e.g. cellular, 

tissue, systemic, behavioral) (Potter et al., 2016). Furthermore, behavioral and environ-

mental factors may only disrupt specific aspects of the circadian rhythm; e.g. by shifting 

meal times while keeping environmental zeitgebers unchanged, the diurnal fluctuation in 

blood glucose concentration can be discretely decoupled from the circadian rhythm (Vetter, 

2018; Wehrens et al., 2017). Circadian disruption is often treated as an umbrella term that 

takes on different meanings and scopes in different scientific and clinical contexts, in much 

the same way that “mental illness” may refer to a broad spectrum of pathologies, or to 

specific symptoms and etiologies. This manuscript will use the definition provided by Qian 

and Scheer (2016, p. 4): “circadian disruption is a disturbance of biological timing, which 

can occur at different organizational levels and/or between different organizational levels, 

ranging from molecular rhythms in individual cells to misalignment of behavioral cycles 

with environmental changes.” 

Sleep disruption is closely related to and is often used as a proxy for circadian dis-

ruption - e.g. jet lag can be quantified by changes in sleep timing relative to the local envi-

ronment (Vetter, 2018). There is considerable overlap in terms of their causes, mecha-

nisms, and symptomology (Potter et al., 2016): one can be caused by the other (e.g. shift 

work disorder), both can be the consequence of a common insult (e.g. jet lag), and both can 

synergistically contribute to a common symptom. For example, both sleep and circadian 

disruption contribute to obesity: the former through reduced metabolic function, the latter 
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through dysregulation of the gut microbiome, and both interfere with normal endocrine 

function (Potter et al., 2016). Obese individuals are more likely to develop sleep disorders 

such as Obstructive Sleep Apnea (OSA), which in turn can further disrupt sleep (and thus 

circadian rhythms related to it) via sleep fragmentation. Conversely, sleep fragmentation 

can occur as a result of the misalignment between circadian and somnogenic rhythms 

caused by jet lag, and the abrupt change in sleep timing can decouple elements of the cir-

cadian rhythm from each other and/or the environment (Vetter, 2018). Circadian disruption 

can also directly cause sleep disruption. For example, a study evaluating different combi-

nations of on/off duty shifts on United States Naval vessels found that a 5-hour ON / 10-

hour OFF shift had the greatest reduction in performance despite spending more hours 

asleep than any other shift. The authors attributed this seemingly paradoxical finding to the 

fact that the timing of 5/10 sleep periods was highly irregular and misaligned with both 

their natural environment and their circadian rhythm; i.e. they induced chronic circadian 

disruption, which subsequently disrupted their sleep and thus their performance (Shattuck 

& Matsangas, 2016). Lastly, sleep disruption (as with circadian disruption) can be caused 

by behavioral and social factors that restrict sleep duration and timing, such as staying up 

late for a social event, waking up early to go to work, etc. Put simply, sleep disruption can 

be considered a specific type of circadian disruption. 

In summary, the circadian rhythm is a distributed yet coordinated system of systems 

that dynamically adapts to constantly changing internal and external conditions. Dysregu-

lating, misaligning, or otherwise disrupting one system inevitably impacts the adjacent sys-

tems it’s integrated with. While this interconnectedness increases the susceptibility of the 
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circadian rhythm to disruption, it is also protective in the sense that the effects of an isolated 

insult will be attenuated and dissipated by the unaffected systems, analogous to a trampo-

line distending to absorb kinetic energy, or an out-of-time musician falling back in measure 

with their orchestra. The circadian rhythm is innately adaptive; following acute disruption 

it will, over time, resynchronize its constituent biological rhythms to each other and (via 

the SCN) the environment (Vetter, 2018). Ultimately, circadian disruption describes this 

period of dynamic adaptation, its functional and biological etiologies, and the adverse ef-

fects that emerge during it. 

 

Epidemiology and Consequences 

Sleep and circadian disruption are widespread in modern industrialized societies (Colten 

& Altevogt, 2006; D. R. Hillman & Lack, 2013), and have been found to be associated 

with numerous health issues, including but not limited to obesity and metabolic diseases 

(Potter et al., 2016), cardiovascular disease (Portaluppi et al., 2012), neuropsychiatric dis-

orders (Musiek & Holtzman, 2016), neurodegenerative diseases (Colten & Altevogt, 2006; 

Videnovic, Lazar, et al., 2014), and disruption of the endocrine system (Bedrosian et al., 

2016; Vetter, 2018). Acute symptoms of circadian disruption (e.g. fatigue and impaired 

attention) have contributed to the occurrence of fatal accidents (Gottlieb et al., 2018) - the 

rate of which has increased in the United States of America (USA) over the past decade 

(Murphy et al., 2018) - and has been implicated as a contributing factor in numerous high 

profile accidents and catastrophes such as the Three Mile Island disaster, the Chernobyl 

disaster, the Exxon Valdez oil tanker spill, the Space Shuttle Challenger disaster, and the 
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Union Carbide disaster in Bhopal, India (Colten & Altevogt, 2006; RAND Corporation, 

2016). Insufficient sleep, which is both a cause and consequence of circadian disruption, 

has been linked with seven of the fifteen most common causes of death in the USA15 

(RAND Corporation, 2016) and is associated with worse academic performance in school-

children and undergraduates (Okano et al., 2019). 

Epidemiological studies quantifying the full extent of circadian disruption are 

scarce due its multifaceted and indistinctly defined nature (D. R. Hillman & Lack, 2013); 

however, epidemiological studies of sleep disruption have estimated that over a third of 

Americans experienced insufficient sleep (Liu et al., 2016) and a similar proportion of 

Australians reported sleep disorders (D. R. Hillman & Lack, 2013). Another study esti-

mated that young and middle aged French adults slept ~1.5 hours less than recommended 

(Léger et al., 2011). Sleep disruption is not limited to western countries and is as or even 

more common in Asian countries, including China, Taiwan, Thailand, and Singapore (Lin 

et al., 2017). An international survey (National Sleep Foundation, 2013) estimated that over 

half of Japanese adults achieved less than seven hours a sleep a night; by comparison, the 

proportion of insufficient sleep amongst American, British, German, and Canadian adults 

ranged from 26% to 45% (RAND Corporation, 2016). Moreover, the problem appears to 

be worsening over time: retrospective analyses of Swedish and Finnish cohort studies sug-

gest that sleep duration has declined by as much as 18 minutes/night over a period of ~30 

years (Kronholm et al., 2008; Rowshan Ravan et al., 2010), and the prevalence of sleep 

	
15 Cardiovascular disease, malignant neoplasm, cerebrovascular disease, accidents, diabetes, septi-
cemia, and hypertension 
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disruption is expected to continue rising, particularly in at-risk populations (Ferrie et al., 

2011). 

A recurring16 theme in the study of the circadian and sleep regulation is the sheer 

breadth and interconnectedness of their constituent elements, including the complex sys-

temic properties that arise from their dynamic interactions. This is well demonstrated by 

the myriad risks associated with increased sleep disruption, which run the gamut from bi-

ological to artificial and include behavioral, genetic, and social factors. To wit, lower sleep 

duration has been associated with higher Body Mass Index (BMI), habitual cigarette smok-

ing, habitual consumption of sugary drinks, low physical activity, being at high risk of 

experiencing mental health problems, experiencing financial stress, having children, being 

male, being divorced, never having been married, experiencing workplace stress, incon-

sistent work schedules (i.e. shift workers), having long commute times, and having limited 

workplace autonomy (RAND Corporation, 2016). Determining the causal relationship of 

these risk factors with respect to sleep and circadian disruption – i.e. the degree to which 

disruption gives rise to and/or is caused by, e.g., obesity – is a major objective of current 

chronobiological research. Furthermore, multiple populations have been identified as hav-

ing an elevated risk and/or incidence of sleep disruption. For example, the demanding 

schedule of United States Military Academy cadets leaves them severely sleep deprived 

throughout their education (Miller et al., 2010) and into their military service (Miller et al., 

2011), and medical residents on intensive care units often work lengthy hours and conse-

quently suffer from sleep disruption during their residency, leading to increased rates of 

	
16 No pun intended. 
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serious medical errors compared to residents working less demanding schedules (Colten & 

Altevogt, 2006; Landrigan et al., 2004; Lockley et al., 2004). Night-time shift workers, 

employees with unusual schedules (e.g. off-shore oil workers), and those with unpredicta-

ble shifts (e.g. emergency first responders) risk decoupling their circadian rhythm from 

natural zeitgebers via behavioral disruption, with the resultant circadian maladjustment 

leading to sleep disruption; in other words, their daily schedule changes independently of 

the day-night cycle, depriving biological circadian regulators access to a consistent zeit-

geber schedule (Colten & Altevogt, 2006). 

Analogous to how desynchrony between different zeitgebers gives rise to biological 

inefficiencies that manifest as systemic symptoms, circadian disruption impairs the effi-

ciency of employees with significant economic implications. Increased rates of fatigue, 

absenteeism, presenteeism, and accidents undoubtedly reduce productivity, and the en-

demic nature of circadian disruption in modern industrialized societies has made these in-

efficiencies increasingly common. While it is difficult to unambiguously separate out 

productivity lost due to sleep and circadian disruption from other causes, the use of symp-

tomatic proxies such as fatigue and behavioral outcomes like tardiness has allowed for  

estimation. In 2002, the total economic cost of lost productive time at work was estimated 

at $226 billion per year in the USA alone, of which 70% was attributable to reduced per-

formance at work caused by personal health reasons (Stewart et al., 2003). 14 years later, 

one international model (RAND Corporation, 2016) estimated that this cost had increased 

to ~$350 billion, making up over half of the $680 billion estimated yearly economic burden 

across the combined American, German, British, Japanese, and Canadian economies, and 
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ranging from ~0.85% to 2.92% of their national Gross Domestic Products (GDP). In Aus-

tralia, the estimated economic burden roughly doubled between 2004 and 2017, reaching 

~$45 billion per year (D. Hillman et al., 2018; Koritala & Çakmaklı, 2018). 

The increasing prevalence of sleep disruption, accumulating evidence of its numer-

ous deleterious health outcomes, identification of numerous risk factors and susceptible 

populations, and a growing burden on the global economy has led to its recognition as a 

public health crisis, a modern day  (Bonnet & Arand, 1995; Chattu et al., 2018; Colten & 

Altevogt, 2006; D. R. Hillman & Lack, 2013; Wittmann et al., 2006).   

 

The Seven-Day Week and Sociogenic Circaseptan Rhythms 

The social construct of a “week” was likely borne from a confluence of utilitarian, socio-

logical, and potentially biological factors (Meyer-Rochow & Brown, 1998; Zerubavel, 

1989). The seven-day week serves an important utilitarian function as an intermediary unit 

of time between the natural circadian (daily) periodicity of Earth’s rotation and the larger 

circatrigintan (monthly) and circannual (yearly) periodicity of the Moon’s revolution about 

the Earth and Earth’s revolution about the Sun, respectively. In the same way that it is 

easier to carry $0.55 as two quarters and a nickel than as 55 pennies, it is easier to define 

the sabbath as “the last day of the week” than as “the 7th, 14th, 21st, and 28th days of the 

lunar cycle”. In other words, tiered units of proportional magnitude (i.e. day, week, month, 

year) can convey information more efficiently than the absolute number of the smallest 

unit (i.e. day) and so entail a utilitarian benefit. Sociologically, the week acts as a “temporal 

scaffold” around which societies can order themselves: the week’s utilitarian function as 
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an intermediary unit of time provides a tractable means to establish, organize, and maintain 

societal customs and activities that cannot be accomplished within a single day but which 

would be inefficient or inappropriate to extend over the course of a month (e.g. work and 

rest days). Biologically, circaseptan (i.e. weekly) periodicity has been documented in hu-

mans in biological phenomena – e.g. 17-ketosteroid concentration in urine (Franz Halberg 

et al., 1965) – as well as secondary biological outcomes – e.g. sudden cardiac death (Rab-

kin, 1980). 

Whether these effects are attributable to an intrinsically circaseptan biological pro-

cess, are the consequence of our biology conforming to an exogenous socially-mandated 

7-day week, or a mixture of both remains an open question. Even if one assumes that there 

are no natural phenomena with an intrinsically circaseptan period, it is still a reasonable 

assertion that the first societies to employ a seven-day week did so by quartering the ~29 

day lunar cycle into four seven-day periods (Levi & Halberg, 1982) - or perhaps derived it 

from the circaseptan harmonic of the circadiseptan rhythm in spring and neap tides driven 

by the lunar cycle (Meyer-Rochow & Brown, 1998). In other words, if the observed cir-

caseptan periodicities in our biology did not emerge from natural circaseptan pressures in 

human evolution, then they did so as a consequence of how modern humans organized 

their society. 

Notwithstanding the biological, sociological, and/or utilitarian origins of the 7-day 

week, it has now become fundamental to the organization of our society and therefore has 

quantifiable implications on our behavior and health (Levi & Halberg, 1982). The common 

interest in the periodicity and long-term trends of variation in biological processes was first 
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quantitatively realized by Santorio Sanctorios who, in the 17th century, accumulated nearly 

thirty years of longitudinal metabolic data. Although Sanctorios’ data was lost, a more 

recent and similarly inspired longitudinal collection of metabolic data – specifically urinary 

volume and 17-ketosteroid secretion – was found to contain a significant circaseptan com-

ponent (Franz Halberg et al., 1965). More recently, an increased incidence of sudden car-

diac events on Mondays has been documented for nearly half a century using cohorts dating 

back to the second World War (Rogot et al., 1976). Interestingly, this may be associated 

with an intrinsic circaseptan rhythm in the secretion of neurohypophyseal hormonal secre-

tions (Rabkin, 1980), and exacerbated by the psychological (e.g. anxiety), environmental 

(e.g. pollutants), and physical (e.g. activity) stressors that accompany the return to societal 

and professional obligations at the beginning of the work week. It is conceivable that these 

same stressors, regularly experienced on a seven-day cycle, would also impact other as-

pects of health such as sleep and rest-activity cycles (Rabkin, 1980). In other words, our 

social calendar, societal organization, and their influence on our behavioral, emotional, and 

psychological states may disrupt biological rhythms independently of intrinsic biological 

and extrinsic environmental challenges, a phenomenon referred to a sociogenic (socio-: 

social, -genic: origin) disruption in this manuscript. 

 

Sociogenic Disruption 

Humans are innately social creatures who self-organize into complex cooperative systems 

- i.e. societies. Amongst the myriad benefits of communal organization is the logistical 

ability to synchronize activities to optimize efficiency and minimize energy consumption, 
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analogous to how the circadian rhythm synchronizes biological processes to maximize the 

organism’s fitness. Much in the same way the evolution of photosynthesis opened up a new 

source of energy in the form of solar radiation, humanity’s development of technology, 

language, and science has given us access to vast new sources of energy - fire, wood fuel, 

animal husbandry, hydropower, steam, fossil fuels, electricity, nuclear fission, and even 

artificial photosynthesis vis-à-vis solar power - and led to our dominance of Earth’s bio-

sphere. Industrialized human society embodies the epitome of biological evolution, con-

cerned primarily with optimizing the efficient and widespread exploitation of our environ-

ment to improve our fitness and resiliency. Ironically, this has increasingly divested us 

from the biological systems we evolved to exploit. The unique capacity of humans to 

gather, infer, integrate, record, communicate, and apply information has enabled us to ex-

ploit our environment in ways never before seen on Earth, but it has also made us dependent 

upon the artificial systems and technologies we use to do so. Moreover, our technological 

development has rapidly outpaced our biological evolution. Consider the fact that most 

modern Homo sapiens in industrialized regions live independently of the geophysical solar 

day; i.e. a doctor in Chicago need not look outside to know if she should eat, sleep, or leave 

work, only at her watch and her calendar. She no longer sleeps in synchrony with the sun, 

but with her shift schedule. 

This is not unique to medicine, as many industries function autonomously from the 

geophysical day based on their practical needs: a cargo ship will dock when it’s cheapest 

and safest to do so, not because the sun is at a certain point in the sky. This independence 

from the geophysical day is enabled by technology; before sonar, the aforementioned cargo 
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ship may have only been able to safely dock during the day when the offshore reefs were 

visible and could be navigated around. Such restrictions imposed on human behavior and 

social time by the day-night cycle have been gradually alleviated by technology, allowing 

the artificial pressures of economics, logistics, and convenience to grow in influence. Glob-

alism, international trade, electronic media, air travel, and the internet have increased the 

interconnectedness (and interdependence) of human societies around the globe, contributed 

to the modern phenomenon of “24/7” industry, and exacerbated the growing irrelevance of 

local solar time to human society. These are reminders that modern society keeps its own 

time; one might note that our modern calendar is to our society what our circadian rhythm 

is to our body. While the calendar does not have a circadian rhythm, we do. Fundamentally, 

it is this disconnect between our social calendar and our biological circadian rhythm that 

leads to sociogenic circadian disruption (Foster & Roenneberg, 2008; Roenneberg et al., 

2015; Vetter, 2018). 

Perhaps one of the most well-studied sociogenic disruptions is Social Jet Lag (SJL), 

the habitual discrepancy in behavioral chronotype between days of the week, especially 

work days and rest days (Roenneberg et al., 2012; Vetter, 2018; Wittmann et al., 2006). 

SJL arises from the difference in internal (i.e. biological) and external (i.e. social) timing 

systems; put simply, people do not always get to choose when they wake up. Much of the 

population is forced by social and professional obligations to adapt to a social schedule too 

early or too late for their natural chronotype during work days, and then revert back to their 

natural preference once these social constraints are removed on rest days. This is analogous 

to jet lag: crossing time zones imposes an immediate artificial shift in time and behavior 
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(e.g. sleep), and waking up early to go to work likewise abruptly decouples the behavioral 

rest-activity rhythm from the biological circadian clock. People who experience SJL may 

therefore be described as living in two separate time zones: a social time during the work 

week, and a biological time during the rest week (Roenneberg et al., 2015). Looking across 

multiple weeks, this periodic transition between social and biological “time zones” may be 

described as a circaseptan rhythm of chronic circadian disruption, where-as jet lag is acute, 

non-rhythmic, and relatively infrequent by comparison. 

SJL is usually assessed subjectively through self-reported sleep times and stand-

ardized instruments like the Munich Chronotype Questionnaire (MCTQ) or Morningness-

Eveningness Questionnaire (MEQ), and/or objectively with actigraphy collected by wear-

able accelerometers (Roenneberg et al., 2019). The low cost, ease of use, and good scala-

bility of these methods have led to SJL being widely assessed in numerous studies; how-

ever, the rapid proliferation of SJL as an endpoint has led to considerable methodological 

inconsistencies in its application, calculation, and interpretation (Beauvalet et al., 2017; 

Roenneberg et al., 2019). Nonetheless, there is a growing consensus that SJL (like other 

forms of sleep disruption) is widespread in modern populations and associated with similar 

negative health outcomes: greater SJL has been linked with decreased academic perfor-

mance (Díaz-Morales & Escribano, 2015; Haraszti et al., 2014), a higher chance of smok-

ing cigarettes (Wittmann et al., 2006), developing metabolic disorders (Koopman et al., 

2017; Wong et al., 2015), including obesity (Alves et al., 2017; Malone et al., 2016; Par-

sons et al., 2015; Roenneberg et al., 2012; Rutters et al., 2014), poor diet (Almoosawi et 

al., 2018), and may be a risk factor and/or side effect of depression (Cespedes Feliciano et 
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al., 2019; Malone et al., 2016; West & Bechtold, 2015; Wittmann et al., 2006), although 

this is debated (Knapen et al., 2018; Roenneberg et al., 2019). 

Epidemiologically, SJL is widespread in the general population (Islam et al., 2020; 

McMahon et al., 2019; Sűdy et al., 2019), with over 30% of European adults reporting two 

or more hours of SJL (Roenneberg et al., 2012). Those living in latitudes further from the 

equator may have increased SJL, potentially due to latitudinal changes in exposure to and 

intensity of sunlight (Leocadio-Miguel et al., 2018). This effect was observed to be more 

pronounced in persons with the 4-repeat PER3-(4/4) allele, itself associated with a prefer-

ence for evening chronotype (Hida et al., 2018). Secondary evidence, such as the delayed 

timing in power grid consumption on weekends versus weekdays (Stowie et al., 2015) and 

in peak social media usage (Leypunskiy et al., 2018), further supports the notion of a reg-

ular delay in sleep timing on weekends in a large portion of the general population. 

Certain cohorts, especially those already known to be susceptible to circadian dis-

ruption (e.g. shift workers, students, first responders, etc.), are more susceptible to devel-

oping SJL (Parsons et al., 2015). Moreover, the severity of SJL is closely related to chro-

notype, with evening chronotypes being disproportionately more likely to have SJL 

(Roenneberg et al., 2019; Takahashi et al., 2018; Wittmann et al., 2006; Zerbini et al., 

2020). While the distribution of chronotypes in the general population is broad, ranging 

from extreme eveningness to extreme morningness, the distribution of work schedules is 

far more compact and constrained by nonbiological factors such as economics, logistics, 

law, and culture; chronotypes whose natural sleep timing preference overlaps with social 
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and professional obligations therefore are more likely to have SJL. Other factors such as 

commute time, can further impinge upon one’s chronotypical sleep time and induce SJL. 

Closely related to SJL is Sleep Debt, the cumulative effect of sleep deprivation over 

time (Saghir et al., 2018). Where-as SJL is the difference in sleep timing between work and 

rest days, Sleep Debt is calculated as the difference in sleep duration between work and 

rest days (Wong et al., 2015). On average, human adults require 6 – 9 hours of sleep a night 

to feel rested and to avoid Excessive Daytime Sleepiness (EDS), as recommended by the 

American Centers for Disease Control (Hirshkowitz et al., 2015). Although the body may 

be able to adapt to minor changes in sleep timing (J. Horne, 2011), chronic sleep depriva-

tion will lead to increased sleep pressure and tiredness, and the body will homeostatically 

compensate by extending sleep duration (unless otherwise interrupted, e.g., by waking up 

early for work) until the “debt is paid”. These variations in sleep duration also extend to its 

quality, and vary by age and chronotype; e.g. both adults and schoolchildren tend to sleep 

longer, later, and poorer on weekend nights, reflecting increased Sleep Debt, SJL, and sleep 

disruption, respectively (Bei et al., 2016; Crowley & Carskadon, 2010; Taylor et al., 2008). 

As with SJL, these effects are more pronounced in those with chronotypes (usually 

eveningness) whose preferred sleep time conflicts with their social obligations (i.e. work). 

When this obligation is removed on rest days, they “sleep in” to make up the sleep debt 

accumulated during the workweek (Vitale et al., 2015). In this way Sleep Debt and SJL 

can compound each other: those with high SJL are likely to have high Sleep Debt, so not 

only will they sleep and wake later on weekends, their wake time will be further delayed 
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as they recoup their Sleep Debt, which in turn delays their rest-activity rhythm, light expo-

sure, meal times, social interactions, and other important influential zeitgebers. 

In summary, humans, as social creatures, are beholden to two times: solar time 

(which entrains our circadian rhythm and maintains synchrony between our body and our 

environment) and social time (which constrains our behaviors, responsibilities, and our 

interactions with others). For most of human history, social time has been defined by solar 

time. With the advent of industrialization and the ensuing growth in population and pro-

duction - further accelerated by the exponential increase in producing and harnessing en-

ergy - social time needed to expand beyond daylight hours to maintain social order and 

cohesion. The proliferation of standard calendars and clocks and artificial lighting has fur-

ther detached social time from solar time. However, our biology - when we feel tired, when 

we eat, when we seek out shelter - is still entrained solar time. As a result, our behavior is 

increasingly disconnected from our biology. This manifests as chronic circadian disruption, 

a growing 'sleeping crisis' in modern industrialized societies (Chattu et al., 2018; Colten & 

Altevogt, 2006; D. R. Hillman & Lack, 2013). 

 

Parkinson’s Disease 

Idiopathic Parkinson’s disease (PD) is the second most common neurodegenerative dis-

ease, affecting 1% of the population over 60 (de Lau & Breteler, 2006). The onset of PD’s 

characteristic motor symptoms – bradykinesia, tremor, rigidity, and postural instability and 

gait disturbances (PIGD) (Kalia & Lang, 2015) – occurs years or even decades after the 
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initial appearance of neuropathology in the CNS. There are numerous non-motor symp-

toms associated with PD as well, including cognitive impairment, autonomic dysfunction, 

and disruption of sleep and the circadian rhythm (Jellinger, 2015). These features have 

been clinically defined and the initial diagnosis of PD is based on their observation in a 

neurological exam (Postuma et al., 2015). However, in the absence of validated biomarkers 

– i.e. measures sensitive to a biological or pathological process (Lana M. Chahine & Stern, 

2017; Espay et al., 2017; Horak & Mancini, 2013) – the gold standard diagnostic criteria 

remains post-mortem confirmation of PD neuropathology in the substantia nigra pars com-

pacta (SNpc) (Kalia & Lang, 2015). 

PD is markedly heterogeneous, with significant variability in its clinical presenta-

tion, rate of progression, response to treatment, and underlying neuropathology (Kalia & 

Lang, 2015). This is compounded by the fact that its clinical features and pathological 

mechanisms often overlap with other neurodegenerative diseases, movement disorders, 

and a growing continuum of “parkinsonisms” (Dickson, 2012; Espay et al., 2017), which 

has contributed to a diagnostic false positive rate of 10%-20% (Hughes et al., 2001, 2002). 

This is considered unacceptably high given the deleterious side effects of levodopa/car-

bidopa dopamine replacement therapy, the primary means of ameliorating PD’s motor 

symptoms (Kalia & Lang, 2015). As a result, the development of asymptomatic disease-

modifying treatments, the identification of valid biomarkers sensitive to disease progres-

sion, and the translation of these to clinical practice are considered the highest priorities in 

PD research (Espay et al., 2016, 2017; Goedert et al., 2013). 
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Neuropathological Progression and Evaluation 

Neurodegeneration and clinical progression in PD are closely associated with the appear-

ance and gradual spread of intraneuronal protein aggregates throughout the central, periph-

eral, and enteric nervous systems (Braak et al., 2003; Lana M. Chahine & Stern, 2017; 

Goedert et al., 2013). These are commonly referred to as Lewy bodies (aggregates, usually 

in cell body) and Lewy neurites (strands, usually in neurites) after Fritz Heinrich Lewy, the 

pathologist who first described them in PD in 1912 (Goedert et al., 2013). 

In 1997, the presynaptic protein alpha-synuclein (ASN) was identified as the bulk 

component of Lewy aggregates (Spillantini et al., 1997) and an ASN mutant was identified 

in familial PD (Polymeropoulos, 1997), findings that ultimately led to PD’s classification 

as a synucleinopathy (Goedert et al., 2013). While there has been substantial progress in 

uncovering the mechanisms underlying the formation of Lewy pathology, notably the 

prion-like spread of ASN between neurons (Visanji et al., 2013), the relationship between 

the pathological aggregation of ASN and neurodegeneration remains unknown (Goedert et 

al., 2013). Similar to amyloid beta in Alzheimer’s disease, a decrease in the concentration 

of ASN in cerebrospinal fluid is believed to reflect an uptake of ASN into Lewy aggregates, 

and therefore may be able to predict the onset of clinical features associated with Lewy 

pathology prior to motor symptom onset. This is supported by the lower concentration of 

cerebrospinal fluid ASN in PD patients compared to healthy controls (Lana M. Chahine & 

Stern, 2017), and is considered a promising potential biomarker of PD’s pathological pro-

gression (Visanji et al., 2017). 
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Potential biomarkers like ASN are validated against changes in clinical features 

assessed using semi-quantitative clinical scales. The most widely used scale, the Unified 

Parkinson’s Disease Rating Scale (UPDRS), is considered the gold standard for assessing 

PD’s clinical features. Originally published in the 1980’s, the scale was extensively revised 

by the Movement Disorder Society (MDS) in 2008 (Goetz et al., 2008). The updated 

“MDS-UPDRS” consists of a structured interview and motor examination, during which 

50 items are scored on a rating scale from 0 ("no symptoms") to 4 ("severe"). Due to its 

comprehensive nature, compatibility with clinical practice, and clinimetric validation, the 

MDS-UPDRS has seen widespread use as a measure of disease severity and progression in 

clinical research (Espay et al., 2017). However, attempts to validate ASN against the MDS-

UPDRS have produced inconsistent results, as have other biomarkers (Espay et al., 2017; 

Kalia & Lang, 2015). Methodological concerns, such as inconsistent assay methods, have 

been cited as possible explanations (Lana M. Chahine & Stern, 2017). In addition, there is 

a growing body of evidence implicating amyloid beta (AB) and phosphorylated-tau181 

(pTau) in PD’s neuropathology. For example, amyloid beta plaques and neurofibrillary 

tangles have been found in the brains of PD patients at levels similar to those seen in Alz-

heimer’s; moreover, their presence predicts a quicker onset of dementia (Irwin et al., 2012; 

Kalia & Lang, 2015). These neuropathological markers may have a synergistic effect with 

ASN as they are associated with increased Lewy pathology, and it is hypothesized that 

subtle differences in their relative concentrations may contribute to the heterogeneity of 

clinical features in PD (Goldman et al., 2018; Kalia & Lang, 2015; Kang et al., 2013).  
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Nearly two decades ago, Braak and colleagues (2003) proposed a six-stage neuro-

anatomical model for the stereotypical spread of Lewy pathology throughout the peripheral 

and central nervous systems. Although vigorous debate continues regarding the validity of 

Braak’s staging scheme, it has been found to be consistent with roughly 80% - 90% of 

neuropathological specimens (Goedert et al., 2013; Hawkes et al., 2010). Additionally, the 

spread of Lewy pathology predicted by Braak’s model correlates with the appearance and 

progression of PD’s symptoms (Peterson & Horak, 2016). Braak Stages I and II are defined 

by the initial appearance of Lewy pathology in autonomic and sensory systems – notably 

the olfactory bulb, enteric nervous system, reticular formation, and the nuclei of several 

Cranial Nerves (CN) including the glossopharyngeal (CN IX) and vagus (CN X) nerves – 

which comports with the early appearance of autonomic and sensory deficits (e.g. anosmia, 

sleep disorders, constipation, circadian disruption, etc.) in prodromal PD (Goedert et al., 

2013; Jankovic, 2008). The first clinical symptom - in the form of bradykinesia and often 

accompanied by tremor and rigidity – appear in Braak Stage III, which is defined by the 

appearance of Lewy pathology in the substantia nigra pars compacta (SNpc) and the basal 

forebrain. The appearance of bradykinetic motor symptoms is likely due to extensive do-

paminergic cell death in the SNpc and the subsequent degeneration of the nigrostriatal 

pathway (Goedert et al., 2013; Hawkes et al., 2010; Jankovic, 2008; Kalia & Lang, 2015). 

The resulting depletion of dopamine in the basal ganglia leads to systemic dysfunction in 

the form of increased inhibitory output to thalamocortical and brainstem motor networks, 

impairing their ability to recruit and scale descending motor output, and resulting in the 
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under-recruitment of muscles and decreased force generation and amplitude (Kalia & 

Lang, 2015; Obeso et al., 2008; Peterson & Horak, 2016). 

Postural instability and gait disturbances (PIGD) typically appear in more advanced 

PD, and have been linked with the appearance of Lewy pathology in the pedunculopontine 

nucleus (PPN) of the mesencephalic locomotor region in Braak Stages III and IV, and in 

premotor and then motor cortices in Stages V and VI (Hawkes et al., 2010; Kalia & Lang, 

2015). Extensive animal research has established the PPN’s role in the initiation and 

maintenance of gait through the integration of ascending sensory and proprioceptive feed-

back and top-down control over spinal central pattern generators (Takakusaki, 2013). This 

has been supported by evidence in humans using deep brain stimulation (DBS), a common 

surgical intervention that provides rhythmic stimulation to the basal ganglia, usually via 

the Subthalamic Nucleus (STN), using an implanted electrode, and which can ameliorate 

motor symptoms. In studies where the PPN in persons with PD was targeted with DBS - 

both directly (Stefani et al., 2007) and indirectly via the STN (Weiss et al., 2015) – PIGD 

decreased. The delayed progression of PIGD symptoms may be due to increased volitional 

control of locomotion as a compensatory mechanism to circumvent the impaired sub-cor-

tical motor networks (Bohnen & Jahn, 2013; Peterson & Horak, 2016). This hypothesis is 

supported by the vulnerability of gait to dual-task cost and cognitive loading (Kelly et al., 

2012), an abnormal increase in cortical activity when performing tasks that normally rely 

on sub-cortical motor programs (Wu & Hallett, 2005), the impaired ability to sequence 

motor tasks (such as turning while walking), and the general variability in gait metrics (e.g. 

step length) in PD compared to controls (Peterson & Horak, 2016). 
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Neuroanatomical Substrates underlying Clinical Heterogeneity 

The heterogeneity of PD’s presentation and progression complicates the assessment of the 

clinical features against which potential biomarkers are validated (Espay et al., 2017). Mo-

tor symptoms are evoked through the performance of motor tasks and the degree of im-

pairment is observed by the clinician, who then assigns an ordinal score as defined by the 

MDS-UPDRS’ criteria. However, these task ratings may not account for the differential 

effects individual clinical features have on task performance. Consider the Gait assessment 

(MDS-UPDRS, Item 3.10), which requires the patient to walk away from the clinician, 

turn, and walk back. The MDS-UPDRS instructs the clinician to assess multiple aspects of 

the patient’s gait – e.g. step length, arm swing amplitude, etc. – and to assign a single rating 

representing the overall severity of impairment. However, walking and turning are com-

plex behaviors that are dependent on multiple neural control systems which are not fully 

understood, and whose impairment may differentially affect performance on the Gait task 

(Curtze et al., 2015; S. Lord et al., 2013; Sue Lord et al., 2013; Peterson & Horak, 2016). 

For example, decreased step length may be caused by decreased force generation attribut-

able to bradykinesia, an increase in double stance time to compensate for general postural 

instability, cognitive effects such as fear of falling leading to shorter and quicker steps, or 

some combination of these factors.  

There is growing evidence to suggest that these differential impairments result from 

the dysfunction of distinct motor systems (Nonnekes et al., 2016; Peterson & Horak, 2016). 

As mentioned above, bradykinesia is likely produced by the depletion of striatal dopamine 
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resulting in over-inhibition of descending motor output, where-as disruption of the brain-

stem motor nuclei responsible for gait maintenance is the likely cause of PIGD (Peterson 

& Horak, 2016). While these systems are by no means isolated from each other – the PPN 

is extensively connected with both the basal ganglia and the SNpc, for example – their 

impairment is differentially affected by dopamine replacement therapy (Peterson & Horak, 

2016). Levodopa ameliorates bradykinetic symptoms and improves speed and amplitude, 

where-as PIGD has a variable response: gait speed and asymmetry are generally improved 

(Galna et al., 2015), while balance and fall risk are insensitive to dopaminergic replacement 

(Nonnekes et al., 2016; Smulders et al., 2016). Moreover, the integration of wearable sen-

sors and gait analysis systems into walking assessments have revealed that certain dis-

cretely measurable properties of gait (e.g. step length) are differentially sensitive to levo-

dopa therapy (Curtze et al., 2015; Nonnekes et al., 2016; Rochester et al., 2017; Smulders 

et al., 2016). For example, mean step length is significantly greater ON levodopa compared 

to OFF, where-as the variability of step length is unchanged (Peterson & Horak, 2016). In 

addition, a factor analysis (S. Lord et al., 2013) identified multiple “domains” of gait prop-

erties that closely correlate with each other and are thought to reflect similar aspects of gait 

performance (e.g. measures of variability). These domains were identified in healthy older 

adults, replicated in PD (Sue Lord et al., 2013), and were found to have differential re-

sponses to levodopa therapy over 18 months (Galna et al., 2015).  

These observations may be explained by considering the neuroanatomy of these 

networks. Levodopa increases the concentration of dopamine in the striatum, reducing in-

hibitory output from the basal ganglia and thus bradykinetic symptoms (Peterson & Horak, 
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2016). Unlike the dopaminergic nigrostriatal pathway, the projections of the PPN are pre-

dominantly cholinergic and GABA-ergic, which may explain the limited effect levodopa 

therapy has on postural instability (e.g. variability of step length) despite the PPN’s con-

nections to dopaminergic centers (Peterson & Horak, 2016). This is further supported by 

the therapeutic effect cholinergic agents and cholinesterase inhibitors have on postural in-

stability (Smulders et al., 2016). Together, these data suggest that multiple neural systems 

underlie the clinical features of PIGD (Peterson & Horak, 2016; Smulders et al., 2016; Zuo 

et al., 2017). 

These systems are differentially affected by PD’s neuropathological progression. 

For example, bradykinetic symptoms appear after the death of approximately 50% of the 

dopaminergic cells in SNpc (Fearnley & Lees, 1991; Hawkes et al., 2010) and post-mortem 

pathological studies have identified that approximately 40% of PPN cholinergic cells have 

died in Hoehn and Yahr stages (H&Y) IV and V (Hepp et al., 2013). This suggests that the 

SNpc degenerates quicker and may be able to tolerate more cell death than the PPN before 

bradykinesia and PIGD symptoms manifest. In addition, their impairment is likely miti-

gated by different compensatory mechanisms, e.g. increased reliance on volitional control 

of gait (Hawkes et al., 2010; Peterson & Horak, 2016). Together, this evidence suggests 

that clinical evaluations of PIGD (and possibly other clinical features) may be simultane-

ously assessing the dysfunction of multiple, differentially impaired motor systems, and 

thus may be insensitive to their individual impairment and contribution to overall clinical 

presentation (Espay et al., 2017). This may contribute to the inconsistent findings of bi-

omarker validation studies, which rely on clinical scales like the MDS-UPDRS to define 
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disease state and severity; small changes in ASN (indicative of Lewy pathology) or in am-

yloid beta or pTau (which have poorly understood interactions with Lewy pathology) may 

reflect a change in the severity of some symptoms more than others. In other words, studies 

attempting to validate a potential biomarker by its correlation with a clinical feature may 

instead be measuring its correlation with the sum of a wide range of impairments (Espay 

et al., 2017), each with an unknown severity and, due to their distinct neuropathological 

substrates, a different relationship to the biomarker. 

 

Objective Measures of Task Performance 

Certain properties of task performance may reflect discrete impairments that are sensitive 

to a single neural control system (Curtze et al., 2015; Horak & Mancini, 2013; Peterson & 

Horak, 2016; Smulders et al., 2016). As a result, objective measures of task performance 

are increasingly applied in conjunction with clinical evaluation to improve the precision 

and sensitivity with which we can monitor disease state in scientific research (Espay et al., 

2017; Horak & Mancini, 2013). Body-mounted accelerometers are well positioned to ob-

jectively measure these sub-components (Espay et al., 2016; Horak & Mancini, 2013). 

These “wearable sensors” are capable of continuously recording actigraphy throughout a 

patient’s daily life, often producing data with a temporal resolution < 10 milliseconds, and 

have been integrated into a wide variety of standard posture and gait tasks over the last 

decade, such as the instrumented Timed Up-and-Go (iTUG) (Podsiadlo & Richardson, 

1991; Salarian et al., 2010; Zampieri et al., 2010), instrumented Timed Walk (iTW) (Horak 

and Mancini, 2013), and instrumented Postural Sway (iPS) (Dewey et al., 2014). However, 



	

	

64 

the methodological challenges of wearable accelerometers remain a significant obstacle to 

their translation into routine clinical practice (Espay et al., 2016; Horak & Mancini, 2013). 

Specifically, their high resolution and sensitivity leaves them susceptible to noisy interfer-

ence, complicated and time-consuming analytical techniques are required to derive clini-

cally meaningful endpoints from the large amounts of data they produce, and the lack of 

standardized methods for their construction, application, and interpretation has created iso-

lated “islands of expertise” that struggle to integrate their different methods (Lana M. 

Chahine & Stern, 2017; Espay et al., 2016, 2017; Horak & Mancini, 2013; Rabuffetti et 

al., 2011). These challenges are amplified in the MDS-UPDRS, as the scale’s semi-stand-

ardized motor tasks (i.e. compared to the iTUG) introduce significant noise into the signal, 

and its loosely structured format (e.g. patient interview, passive assessments, etc.) further 

complicates interpretation and crosswalk between studies. 

If sensor-derived endpoints and potential biomarkers are indeed sensitive to dis-

crete impairments beyond the resolution of the MDS-UPDRS, and if the MDS-UPDRS is 

the gold standard means of determining the clinical validity of these impairments, then how 

should these promising endpoints be validated? This problem has been approached in three 

main ways. The first approach, a macroscopic “paradigm shift” where-by biomarkers are 

used as the new gold standard for defining clinical features, was proposed by Espay and 

colleagues (2017). A second approach is to “cut out the middleman” and relate sensor-

derived endpoints directly to the potential biomarkers; e.g. Rochester and colleagues 

(2017) directly compared changes in levodopa-resistant gait properties to changes in the 



	

	

65 

cerebrospinal fluid concentration of ASN, AB, and pTau over three years. The third ap-

proach argues that sensors integrated directly into the MDS-UPDRS itself may be able to 

provide objective measures of task performance in parallel with clinical ratings, but this 

approach has only seen scant exploratory work (Criss & McNames, 2011). 

 

Sleep and Circadian Disruption 

Although PD’s hallmark motor symptoms are its most conspicuous and studied feature, 

there are numerous non-motor symptoms (NMS) that manifest throughout the course of 

the disease (Fifel & Videnovic, 2019). In fact, NMS such as anosmia, autonomic dysfunc-

tion, and constipation appear up to 10 years before the onset of motor symptoms and pro-

gressively worsen over time (Jankovic, 2008). Two NMS - sleep disruption and circadian 

disruption - are closely interconnected and of particular interest to this manuscript. 

As a systemic disease that affects the entire nervous system, it is no surprise that 

the circadian rhythm is impacted in PD. Generally speaking, circadian rhythms in persons 

with PD are more fragmented, lower amplitude, and more resistant to entrainability, and 

often have altered phases relative to the light-dark cycle. This “dampening” is perhaps most 

visible in the diminished amplitude of daily rest-activity rhythms (RARs) caused by dis-

rupted sleep and restricted movement due to motor symptoms and fatigue. Similar damp-

ening has been observed in numerous circadian biomarkers (Videnovic, Lazar, et al., 2014), 

including melatonin secretion (Videnovic, Noble, et al., 2014), CLOCK gene expression 

(Breen et al., 2014; Cai et al., 2010), retinal dopamine (Wirz-Justice et al., 1984), cortisol 

secretion (Hartmann, 1997), visual acuity (Struck et al., 1990), and body temperature (K. 
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Suzuki et al., 2007). Other circadian biomarkers undergo pronounced phase shifts; e.g. a 

phase reversal of the diurnal blood pressure rhythm (Kallio et al., 2000; Senard et al., 1992). 

Circadian rhythms have also been observed in PD’s symptomology: motor symptoms are 

most responsive to dopaminergic medication early in the morning (Bonuccelli et al., 2000) 

and most severe late in the day (Piccini et al., 1991). Intriguingly, chronotherapeutic inter-

ventions using light exposure at specific times of day has reduced both motor and non-

motor symptoms, including sleep disruption (Videnovic, Lazar, et al., 2014). 
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CHAPTER TWO: METHODS 

Introduction 

This chapter will review the historical background, theoretical basis, scientific context, and 

practical application of the various methods used in subsequent chapters, which include 

subjective assessments, quantitative scales, qualitative questionnaires, and objective sen-

sors, among others. While each method was developed and optimized for a specific purpose 

(and are thus individually discussed herein), they are rarely used in isolation. As navigators 

use multiple reference points to triangulate a location, multiple methods can be synergisti-

cally integrated to better understand, characterize, and “triangulate” the true nature of a 

variable of interest. 

 

Actigraphy 

Wearable accelerometers17 allow for the continuous, longitudinal, and objective monitor-

ing of physical activity; i.e. actigraphy. The applications of actigraphy are diverse (Meyer-

Rochow & Brown, 1998), but in humans it is primarily used to quantify rest-activity 

rhythms (RARs), characterize sleep, assess motor impairment, and infer metabolic activity 

via physical movement (Ancoli-Israel et al., 2015). Actigraphy has been in use for over 

half a century (Ancoli-Israel et al., 2015; J. L. Martin & Hakim, 2011; Tryon, 2013) and 

the first battery-powered wrist-worn actigraphy device was developed nearly four decades 

	
17 Also referred to as Inertial Measurement Units (IMU), actigraphs, wearable sensors, and on-body 
accelerometers. “Accelerometer”, “actigraph”, and “sensor” are often used interchangeably, as are 
“on-body” and “wearable”. 



	

	

68 

ago (Aubert-Tulkens et al., 1987), though technological developments and sensor minia-

turization have greatly increased the quality of actigraphic data through higher accelerom-

eter resolution, greater memory capacity, reduced weight, and increased battery life. As 

with consumer health monitoring devices (e.g. the FitBit), this has fostered the proliferation 

of commercially available actigraphy devices and, likewise, research studies employing 

them. Most actigraphy devices are wrist-worn - most often intended for the non-dominant 

wrist - though others are designed to be worn around the ankle or strapped to the torso 

(Ancoli-Israel et al., 2015). 

Actigraphy has been applied to the clinical evaluation and monitoring of sleep and 

circadian disorders, such as shift work disorder and insomnia (Ancoli-Israel et al., 2015; 

Fekedulegn et al., 2020; Morgenthaler et al., 2007; M. T. Smith et al., 2018). It is consid-

ered a useful supplement to standard sleep assessment methods (e.g. sleep diaries and pol-

ysomnography [PSG]) and is included in the International Circadian and Sleep Disorder, 

Third Edition (ICSD-3) diagnostic criteria for several sleep disorders (Ibáñez et al., 2018; 

Sateia, 2014). In clinical trials of movement disorders such as Parkinson’s disease (PD), 

actigraphy improves the accuracy of clinical endpoints quantifying motor and non-motor 

symptoms and thus has the capacity to hasten the evaluation of critically needed symptom- 

and disease-modifying interventions (Merola et al., 2018). Despite growing support from 

medical directors in industry, actigraphy was included in less than 3% of clinical trials as 

of 2018 (Artusi et al., 2018). 

 Actigraphy is quantitative, applicable in a wide variety of populations and environ-

ments, produces large amounts of data, and minimizes human error and bias by directly 
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measuring a physical signal (i.e. movement/acceleration), but also has notable drawbacks: 

the large data-sets it produces can be logistically challenging to store and manage, the raw 

data itself requires significant processing to produce useful endpoints, actigraphy infers 

complex behaviors such as sleep through measures of movement, and there is no standard-

ized method for collecting, processing, or analyzing the data, creating “islands of expertise” 

(Espay et al., 2016) that hinder replicability and complicate meta-analysis (Ancoli-Israel 

et al., 2015; Chow et al., 2016; Goldstone et al., 2018; Ibáñez et al., 2018; M. T. Smith et 

al., 2018). These drawbacks can be mitigated through synergistic use of other methods; for 

example, sleep diaries provide subjective sleep information that can be cross-referenced 

with actigraphic estimates to detect sleep detection errors (Schwartz, 2012), and gyro-

scopes embedded in actigraphy devices allows the sensor’s orientation to be easily deter-

mined, greatly simplifying analysis (van Hees et al., 2013). Ultimately, actigraphy’s acces-

sibility, reduced cost, and ability to continuously monitor behavior in naturalistic environ-

ments (e.g. in-home) makes it easily scalable and an appealing option for studies with large 

sample sizes, long monitoring periods, and/or a desire in capturing ecologically valid data 

(Andrade, 2018; Fekedulegn et al., 2020). However, there is a strong need for methodo-

logical transparency and harmonization, and a growing acknowledgment that future scien-

tific reports should provide detailed technical, scoring, and analytical information to facil-

itate replication, iterative research, and meta-analysis (M. T. Smith et al., 2018). 
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Data Quality and Pre-Processing 

Before they can record data, actigraphy devices must be configured according to the sci-

entific and/or clinical specifications of their application. Generally, this entails defining a 

sampling rate for recording accelerometry, a duration of recording, which sensors to record 

from (e.g. gyroscope, accelerometer, light sensor), and a recording period18. The intended 

location for the device to be worn on the body should also carefully considered, both to 

maintain consistency with previous studies and to preserve data integrity; i.e. the location 

should not irritate the subject to avoid unintentionally encouraging noncompliance, and 

should minimize the effect of confounding movement (e.g. lateralized resting tremor in 

PD) (Maglione et al., 2013). The intended use of the actigraphy device (i.e. period to be 

worn, location, etc.) and instructions on how to care for it (e.g. charging, remove when 

swimming, etc.) should be clearly conveyed to the subject to maximize compliance (An-

coli-Israel et al., 2015). Last, but certainly not least, the processing and analysis of actigra-

phy should follow a consistent and predetermined protocol that includes criteria for data 

filtering, artifact identification, statistical analysis, and other study-specific requirements 

such as sleep detection algorithms and missing data tolerance for RAR modelling and phys-

ical activity computations (J. L. Martin & Hakim, 2011). 

Actigraphy produces large data-sets that must be exported, cleaned, filtered, con-

densed, and visualized using computer software. This processing is often handled by pro-

prietary software bundled with actigraphy devices (e.g. Philips ActiWare), though this can 

	
18 By default devices will begin recording as soon as configuration is finished, though some actig-
raphy devices, such as the GeneActiv, allow a predetermined recording time to be selected during 
configuration 
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also be done using publicly available scripts (e.g. GGIR). Processing begins when the rec-

orded data is exported off the used device; depending on the device used, the exported data 

may consist of raw accelerometry or endpoints derived using a proprietary algorithm (e.g. 

activity counts). Actigraphy devices with an onboard clock will usually provide timestamps 

for the data; otherwise, timestamps will have to be manually derived from the recording 

start time. If there are any other data-sets of interest that were collected in parallel (e.g. a 

second actigraphy device, concomitant PSG recording, etc.), these should be synchronized 

once all data is properly timestamped. Temporal drift is a ubiquitous temporal confound 

that must be accounted for during synchronization, especially in multimodal data19. Alt-

hough the rate of drift is often quite small, it can accumulate to a considerable magnitude 

in longitudinal studies with long recording periods. This drift can be accounted for in syn-

chronization using common references at the beginning and end of a recording; this can be 

as simple as noting the times when the recording(s) began and ended, or involve more 

complex strategies such as having the device(s) record a known acceleration signal (e.g. 

shaking for 10 seconds) at known times throughout the recording20. Regardless, once the 

	
19 It is possible to avoid drift by continually synchronizing the device’s clock to an absolute refer-
ence, such as Network Time Protocol (NTP) servers, though this consumes extra power and is not 
feasible in most monitoring studies 
20 As internal clocks can be affected by environmental conditions such as temperature and mechan-
ical stress, the rate of drift can also vary over time within the same device; i.e. inter-sample latency 
is not constant. Therefore adjusting all timestamps to match the true duration would correct for the 
cumulative net drift, but individual samples may still have incorrect timestamps due to acute vari-
ability in drift rate. By using multiple known signals scattered throughout the recording at known 
times, the drift rate can be more precisely resolved; however, this introduces obvious methodolog-
ical and logistical challenges, so researchers must weigh the increased temporal resolution of more 
frequent synchronizing signals with the burden of generating these signals 
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true duration of recording is known its internal timestamps can be corrected and allow the 

accelerometry to be aligned with other data. 

 Invalid data should be identified and judiciously removed (Ancoli-Israel et al., 

2015). This includes “off-body time” when the sensor was not being worn by the subject, 

abnormal data indicative of device malfunction or that contradicts parallel measures (e.g. 

persistently high night-time activity during the sleep period recorded on a sleep diary), and 

confounds and artifacts (Ancoli-Israel et al., 2015; Evenson & Terry, 2009; Fekedulegn et 

al., 2020). Times when the device can be confirmed to be off-body - such as the begin-

ning/ending of a recording before/after the subject has donned/removed the device - are 

easily removed, but inferring potential off-body times without a ground truth reference is 

considerably more difficult. Off-body time can be visually identified by plotting the data 

and looking for the absence of movement; i.e. a “flatlined” signal means the device is per-

fectly still and thus almost certainly not on the subject. Actigraphy logs, where-in subjects 

record when and why they removed actigraphy devices (among other contextual infor-

mation), can also help identify off-body times; some devices also have a binary “marker” 

button that can be pressed to indicate specific events, such as donning or removing a device. 

Although there are algorithms for automatically detecting off-body time, these should be 

considered in addition to - not in place of - manual review (Ancoli-Israel et al., 2015). 

Differentiating “abnormal” accelerometry from normal data is much more ambiguous; 

without a ground truth confirmation of the subject’s actual behavior, such as via a video 

recording, it can be difficult to determine whether the fault lies with the actigraphy device 

or elsewhere - and thus whether the data should be expunged or retained. For example, 
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high activity during a time the subject indicated they were asleep could be attributable to 

an erroneous sleep diary entry, restlessness during sleep the subject failed to notice or re-

port, or device failure. In such situations, it is useful to determine if the device is still mal-

functioning and if the error can be recreated, which might indicate the data should be ex-

punged. Artifacts and confounding signals can also be ambiguous, both in their identifica-

tion and in defining what signals should be considered artifacts. However, very consistent 

signals such as footsteps (Czech & Patel, 2019) can be identified using feature detection 

algorithms a la eyeblink artifact filtering in PSG, and detailed annotation of involuntary 

activity such as a parent recording when they were rocking their child to sleep in child 

actigraphy studies (Ancoli-Israel et al., 2015). Missing data is, nonetheless, common in 

actigraphy due to subject noncompliance and the aforementioned data quality issues (Fus-

ter-García et al., 2013). 

 

Epoching and Epoch-Level Endpoints 

Raw accelerometry is rarely directly used in analysis, but is instead condensed into epochs 

ranging from seconds to minutes in length (Ancoli-Israel et al., 2015), a process colloqui-

ally referred to as “data condensation”, “epoching”, or “binning”. This may be done auto-

matically by the device or its accompanying software, by using freeware scripts, or manu-

ally via spreadsheet software. Epoching greatly simplifies analysis by reducing the overall 

volume of data and condensing the raw high-frequency tri-axial accelerometry into epoch-

level summary statistics; e.g. a 1-minute 100 Hertz (Hz) recording would contain 60 sec-

onds * 100 samples/second * 3 axes = 18,000 individual data, and epoching reduces this 
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to a single variable representing the entire minute of recording. This aids statistical analysis 

by reducing the dimensions of the time-series data and binning key features (e.g. overall 

activity) into discrete spans of time; this latter aspect also facilitates categorical analysis, 

such as determining whether an epoch should be classified as asleep or awake. Epochs 

were borne of necessity due to technological limitations in data storage and epoch lengths 

of 1-hour were used in the 1990’s (van Someren et al., 1996); as the resolution and capacity 

of wearable accelerometers continues to improve, epoching lengths have become more 

flexible and capable of shorter durations. 

Currently, epoch lengths are usually measured in seconds and are cleanly divisible 

into a minute; e.g. 60-second, 30-second, 15-second, and 1-second epochs. As is often the 

case in science , selecting epoch length requires determining the optimal trade-off of ben-

efits and drawbacks . Longer epochs reduce data volume, ease processing, and emphasize 

long-duration trends in the data (e.g. diurnal RAR), but lose most information related to 

events shorter than itself (e.g. a 3-second sneezing fit may account for most of the recorded 

activity in a 60-second epoch). However, this coarse resolution “smooths out” and reduces 

the confounding effects that random noise and irrelevant transient signals have on gross 

actigraphy data. Shorter epochs have higher temporal resolution and so can more easily 

capture briefer signals, distinguish temporally proximal events, and more accurately detect 

sleep (Ancoli-Israel et al., 2015), but this comes at the cost of increased data volume and 

thus more processing, as well as greater sensitivity to noise. If the goal is to assess large-

scale trends (e.g. diurnal RAR) or if a dataset is particularly large, then the costs of using 

shorter epochs may outweigh the benefits. Likewise, studies interested in discrete, brief, 
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and/or high-frequency behaviors (e.g. postural transitions, tremor) would benefit from the 

increased resolution of shorter epochs. 

The activity content of a given epoch can be summarized using a variety of end-

points, both proprietary and public. An example of the former are Activity Counts (AC), 

which are automatically computed by Actiware software using a private algorithm when 

exporting accelerometry data from an Actiwatch. However, one can infer the principles of 

this algorithm by considering how other devices, such as the Motionlogger Sleep Watch 

(Ambulatory Monitoring, Incorporated, NY), collect and process their raw signals 

(Fekedulegn et al., 2020). Each axial accelerometer21 continually produces a voltage via an 

analog transducer that changes in response to movement and which is sampled at the de-

vice’s sampling frequency; these measured voltage data from the transducer are then pro-

cessed in one of three ways to produce epoch-level endpoints. Zero Crossing Mode (ZCM) 

defines some reference voltage (usually near 0) and outputs the number of times the meas-

ured voltage crosses the predetermined reference threshold; ZCM is often interpreted as 

measuring the frequency of movement. Time Above Threshold (TAT) is similar in that it 

also defines a reference threshold, but instead of yielding how many times it was crossed 

by the transducer’s measured voltage, it outputs the duration of time the measured voltage 

was higher than the reference; TAT is therefore interpreted as the duration of movement. 

Proportional Integration Mode (PIM) quantifies the area-under-the-curve of the measured 

voltage; because it integrates both duration and amplitude, PIM is interpreted as the inten-

	
21 Also referred to as an Inertial Measurement Unit (IMU) 
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sity of movement (Fekedulegn et al., 2020). Of these, ZCM is likely the basis for Acti-

watch’s AC algorithm because its high accuracy of sleep detection has made it the most 

commonly used method in sleep research (Fekedulegn et al., 2020); however, it is suscep-

tible to inflation from high-frequency artifacts (e.g. rapid vibration) and is the least sensi-

tive to movement amplitude (Ancoli-Israel et al., 2003). Moreover, the AC produced by 

ZCM, TAT, and PIM algorithms significantly diverge from each other even when applied 

to the same data; in combination with the tendency for studies to omit the algorithm they 

used and report actigraphy as just AC, this creates confusion and undermines the validity 

of between-study comparisons (Ancoli-Israel et al., 2003). Fortunately, there are publicly 

available methods that compute epoch-level endpoints directly from raw accelerometry 

using simple vector equations22. Vector Magnitude (VM) is the square root of the summed 

squares of the x-, y-, and z-axis voltages in a given sample: VM = sqrt(x2 + y2 + z2). VM 

thus represents the magnitude of acceleration. The VM is usually calculated sample-by-

sample, then either summed or averaged across an epoch. 

One significant drawback of all methods described so far is their inability to account 

for the constant acceleration of earth's gravity (Bakrania et al., 2016). Since the three axial 

accelerometers are at fixed, orthogonal orientations to each other, the directions of their 

vectors are known and their magnitudes easily integrated into VM using the above men-

tioned equation. However, the direction of the gravitational vector with respect to the ac-

celerometer can change without restraint by simply reorienting the device. Accelerometers 

	
22 Some devices, such as the Actiwatch, only allow for proprietary algorithms; the raw accelerom-
etry cannot be directly accessed, only the outputs of the proprietary algorithm 
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with built-in gyroscopes can easily monitor the device’s orientation; this information can 

be used to calculate the gravitational vector’s direction for each sample, and allowing it’s 

magnitude to be removed from the VM. without a gyroscope, the crudest method of ac-

counting for gravity is to uniformly subtract the standard acceleration due to gravity (g; i.e. 

9.8 meters/second2) from the VM; negative values are imputed as 0 since a vector cannot 

have a negative magnitude. This converts VM into an endpoint called Euclidean Norm 

Minus One (ENMO) which can similarly be summed or averaged across an epoch. Another 

derivation of VM is Mean Amplitude Deviation (MAD), which is calculated by subtracting 

each VM in a given epoch from the average of VMs for all i samples in that epoch, sum-

ming the differences, and multiplying the sum by the inverse of the number of samples (n) 

in the epoch (Bakrania et al., 2016): MAD = ( 1 / n ) * Σ( VMi + ( Σ( VMi ) / n ) ). 

 

Sleep Scoring Algorithms in Actigraphy 

Regardless of the epoch-level endpoint used, a time-series of actigraphy epochs can be 

algorithmically segmented into different behavioral periods via analysis of activity levels. 

At the most basic level, sleep scoring algorithms - also known as (AKA) sleep scoring 

functions - dichotomously categorize epochs as either asleep or awake (Fekedulegn et al., 

2020). Although existing sleep scoring algorithms are tailored to the specific actigraph 

used, activity endpoints generated (e.g. ZCM), the selected epoch length, and – to a lesser 

extent – the age and clinical status of the subject, most work off the same general principles 

with relatively minor variations (Ancoli-Israel et al., 2015; Fekedulegn et al., 2020). Gen-

erally, sleep scoring algorithms calculate a moving average (or sum) of activity levels, 



	

	

78 

which includes the current epoch and those immediately preceding and following it, by 

multiplying each epoch’s activity level by a unique constant or “weight”. These weighted 

activity levels are then either averaged or summed, depending on the specific algorithm, 

and are sometimes further scaled by some constant. Other descriptive statistics derived 

from epoch-level activity levels (e.g. variance) may be incorporated in some sleep scoring 

algorithms. Regardless, the final output of a sleep scoring algorithm for a given epoch - i.e. 

its sleep score - is then compared against some predetermined threshold - i.e. the wake 

threshold value - representing the theoretical upper limit of activity observable during 

sleep. If the sleep score exceeds the wake threshold value, then the activity level is consid-

ered too high for sleep and the epoch is scored as awake; otherwise it is scored as asleep 

(Fekedulegn et al., 2020). Note that “invalid” epochs determined to have missing data or 

some other issue preclusive to analysis are typically removed prior to application of a sleep 

scoring algorithm. 

While there are several sleep scoring algorithms currently in use, the most relevant 

to this manuscript is the Actiware sleep scoring algorithm for 1-minute epochs (Fekedulegn 

et al., 2020; Mini Mitter Company, Inc., 2006). As described above, the Actiware algorithm 

samples a moving average, weighting the activity levels of individual epochs based on their 

temporal position relative to the current epoch being scored. The specific formula is: 

 

T = ( w−2 * A−2 ) + ( w−1 * A−1 ) + ( w0 * A0 ) + ( w+1 * A+1 ) + ( w+2 * A+2 ) 
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...where T is the sleep score being calculated, w is the weight for a given epoch, and A is 

the AC for a given epoch, with the subscripts defining the epochs based on their position 

relative to the current epoch being scored (e.g. w-2 refers to the epoch that came two epochs 

before the current epoch being scored) (Fekedulegn et al., 2020). The wake threshold value 

for determining sleep has three default settings provided in Actiware - low = 20, medium 

= 40, and high = 80 - though the specific number can be set by the user. The Actiware 

algorithm has been found to have comparable sensitivity and specificity in comparison to 

other algorithms (Benson et al., 2004; Meltzer et al., 2012; Tonetti et al., 2008), such as 

the Cole-Kripke algorithm (Cole et al., 1992), though another study comparing these two 

algorithms concluded that the Cole-Kripke had “nominally better agreement with PSG” 

(Rupp & Balkin, 2011). Note that these studies were principally concerned with comparing 

the Actiwatch to other actigraphs; since the Actiwatch’s data can only be processed through 

the proprietary Actiware algorithm, this resulted in an indirect comparison of the Actiware 

algorithm to whichever publicly available sleep scoring algorithm was used to analyze data 

from the other actigraph. 

There are several publicly available algorithms in use today; amongst the most pop-

ular are the Cole-Kripke algorithm (Cole et al., 1992), the University of California San 

Diego (UCSD) algorithm (Jean-Louis et al., 2001), and the Sadeh algorithm (Fekedulegn 

et al., 2020; Sadeh et al., 1994). Briefly, the Cole-Kripke and UCSD algorithms23 use the 

	
23 Although developed and evaluated separately, the Cole-Kripke and UCSD algorithms are nearly 
identical except for the specific weights they use. 
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same basic “moving average” strategy as the Actiware algorithm, with three major differ-

ences. First, both algorithms are explicitly designed for ZCM epoch data - although Acti-

ware’s AC are likely calculated with ZCM, the specifics of their ZCM algorithm are pro-

prietary and thus cannot be generalized to other ZCM data as easily as the Cole-Kripke and 

UCSD algorithms can be. In addition, the UCSD algorithm is the only one of the four 

algorithms to be compatible with PIM and TAT epoch data. Second, both the Cole-Kripke 

and UCSD algorithms use a broader window than the Actiware algorithm, including the “-

3” and “-4” epochs when calculating sleep score. Third, both algorithms scale the sliding 

average/sum by the multiplicative constant P to derive the sleep score, where-as the Acti-

ware algorithm simply uses the raw sliding average/sum (Cole et al., 1992; Fekedulegn et 

al., 2020; Jean-Louis et al., 2001). The Sadeh algorithm is distinct in that it simplifies the 

sliding window calculation by using a uniform weight for all epochs, expands the sliding 

window to 11 epochs (compared to Actiware’s five epoch and UCSD and Cole-Kripke’s 

seven epoch windows), and integrates three additional measures: the standard deviation of 

the first six epochs (including the current epoch being scored), the number of epochs in the 

sliding window whose activity levels fall within a moderate activity range, and the natural 

log of the activity level of the current epoch being scored. All of these measures are sub-

tracted from a constant positive value, and a given epoch is scored as asleep if the differ-

ence is ≥ 0 (Fekedulegn et al., 2020; Sadeh et al., 1994). All three algorithms have been 

shown to have high sensitivity and moderate specificity for the correct identification of 

sleep epochs as determined by gold standard PSG (de Souza et al., 2003; Fekedulegn et al., 
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2020; Haghayegh et al., 2019; Quante et al., 2018)24. However, all three have reduced sen-

sitivity for correctly detecting wake epochs and thus tend to overestimate the amount of 

sleep, although this is not as severe in the Sadeh algorithm and can be reduced through 

structured post-hoc rescoring of the dichotomized asleep/awake epochs (Webster et al., 

1982). 

 

Algorithmic Derivation of Sleep Characteristics from Actigraphy 

Once a sleep period is segmented into asleep and wake epochs, a number of sleep charac-

teristics can be calculated that reflect distinct dimensions of sleep behavior (Berger et al., 

2005; Fekedulegn et al., 2020)25. This begins by defining the Sleep Period (SP); i.e. the 

difference in units of time between the Sleep Onset (SON) and Sleep Offset (SOFF) times. 

Actiware defines SON/SOFF as the first/last epoch of the first/last series of n consecutive 

epochs scored asleep, with n being a customizable number known as the immobile minutes 

value (by default, n = 10). Alternatively, Actiware can determine SON/SOFF using a mo-

bility threshold, which categorizes an epoch as mobile if its AC ≥ m or as immobile if its 

AC is < m, where m is the predetermined mobility threshold (by default, m = 4). These 

dichotomized epochs are then analyzed in the same way as the sleep scoring method: i.e. 

SON/SOFF is defined as the first/last epoch of the first/last series of n consecutive epochs 

scored immobile  (Fekedulegn et al., 2020; Mini Mitter Company, Inc., 2006). Sleep Onset 

	
24 The similarities between the Actiware algorithm principally used in this manuscript and the pub-
licly available Cole-Kripke and UCSD algorithms allow us to tentatively extrapolate these findings 
to our interpretation of the Actiware algorithm 
25 Unless otherwise stated, the definitions presented here are for the Actiwatch and Actiware sleep 
segmentation algorithm 
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Latency (SONL) and Sleep Offset Latency (SOFFL) represent the time it took for the indi-

vidual to fall asleep after going to bed and the time it took them to get out of bed after 

waking up, respectively. While it is technically defined as the time elapsed between when 

the individual reported going to bed (either through a sleep diary or by pressing their acti-

graph’s marker button) and the first epoch scored as sleep, Actiware can automatically 

calculate SONL via the number of immobile, awake epochs flanking the SP. By adding 

SONL and SOFFL to SP, the Time in Bed (TiB) can be calculated; i.e. TiB = SONL + SP 

+ SOFFL, where SP = SOFF - SON (Fekedulegn et al., 2020; Mini Mitter Company, Inc., 

2006). TiB can also be expressed as the sum of Total Sleep Time (TST) and Wake After 

Sleep Onset (WASO), themselves defined as the cumulative duration of all sleep epochs 

and all wake epochs, respectively. This allows Sleep Efficiency (SE), a general measure of 

sleep quality (Berger et al., 2005), to be calculated thusly: SE = TST / TiB or, written dif-

ferently, SE = TST / (SONL + (SOFF - SON) + SOFFL). Percent Sleep Time (PST) is a 

similar – and often conflated (Fekedulegn et al., 2020) – measure calculated thusly: PST = 

TST / SP. In other words, PST is SE without the inclusion of SOFFL and SONL (Mini 

Mitter Company, Inc., 2006). 

Numerous other sleep characteristics can be derived via simple arithmetic: the num-

ber of awake bouts and sleep bouts, their average duration, their variance in duration, and 

maximum/minimum durations observed in a night, activity levels, including peak activity 

and average activity throughout the night, during wake, and during sleep, as well as abso-

lute time, percent time, and number of epochs spent above and below the predetermined 
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mobility threshold (Fekedulegn et al., 2020; Mini Mitter Company, Inc., 2006). This ena-

bles the calculation of Fragmentation Index (FI), a measure of how likely a person is to 

transition between sleep and wake periods throughout the night (Fekedulegn et al., 2020; 

Natale et al., 2009), which can be derived thusly: FI = ([number of mobile bouts] + [num-

ber of immobile bouts ≤ 1 minute]) / [number of immobile bouts] (Mini Mitter Company, 

Inc., 2006). However, FI has been calculated differently; e.g. FI = [number of wake bouts] 

/ TST (Fekedulegn et al., 2020). This serves as a reminder that many of the sleep charac-

teristics reported in the literature – especially those reported without an accompanying 

equation – were produced using unknown or unverified equations due to insufficient meth-

odological reporting (M. T. Smith et al., 2018). 

 

Cosinor Models 

Three-Parameter “Basic” Cosinor Model 

When analyzing time-series data to identify and/or quantify a rhythmic feature, it is helpful 

to fit the data to an oscillating regression model from which the rhythm’s parameters and 

estimates of its statistical significance can be derived (Cornelissen, 2014). The three-pa-

rameter “basic” cosinor is amongst the simplest such models26. The term cosinor was 

coined by Halberg and colleagues (1965) as a derivation of the term sinor, which refers to 

the vectorial plots used to modelling rhythmicity in voltages and currents (LePage, 1949), 

	
26 This is often referred to as simply the “cosinor model” or just “cosinor”; the terms “basic cosinor” 
and “three-parameter cosinor” appear but are not extant in the literature. They are used in this man-
uscript for clarity to distinguish between the basic three-parameter cosinor and the extended five-
parameter cosinor models. 
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due to the similarities in applying rhythmic functions to model and visualize oscillations in 

time-series data. Since then, the basic cosinor has become a common tool employed by 

chronobiologists for the quantification of biological rhythms, especially the circadian 

rhythm (Cornelissen, 2014)27. Any rhythmic signal with a constant period can be modelled 

using the basic cosinor, but the most common signals are homeostatic (e.g. temperature), 

hormonal (e.g. cortisol), physiological (e.g. heart rate), and behavioral (e.g. physical activ-

ity) measures that exhibit a circadian rhythm. Cosinor models are usually fit to data with a 

duration ≥ 2 * period, providing an averaged model that “smooths out” the expected normal 

inter-daily variance; this is analogous to the application of signal averaging to produce 

evoked potentials in electroencephalography. Uniperiodic cosinors are also used. 

The basic cosinor is a parametric function that assumes a normal distribution of 

data, and is most often fit using linear least squares regression (Cornelissen, 2014; Neikrug 

et al., 2020). The core formula of the basic cosinor model is: 

 

Y(X) = MESOR + ( Amplitude * cosine( ( X * 2 * π ) + Acrophase ) ) + e(X) 

 

...where Y is the measured signal being modeled, X is the time associated with the time-

series data, cosine is the trigonometric cosine function, and e(X) is the error term. In addi-

tion, there are three fundamental parameters that are defined in a basic cosinor model: the 

Midline Estimating Statistic of Rhythm (MESOR) is the average value of Y across the time-

	
27 Interestingly, the basic cosinor was first applied to model circaseptan rhythms in 17-ketosteroid 
secretion (Franz Halberg et al., 1965). 
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series, the Amplitude (Amp) is the difference between the maximum value of Y and the 

MESOR, and Acrophase (Acro, AKA Phi or Φ) is the temporal offset (i.e. phase-shift) of 

the model relative to some constant arbitrary reference (e.g. midnight). As the parameter’s 

values are selected by fitting the model to data through regression (e.g. ordinary least 

squares), an R2 value28 representing model fit can be calculated. A higher MESOR indicates 

a higher average activity across the day and night, a higher Amp indicates a higher maxi-

mum activity and “more rhythmic changes”, a later Acro indicates a later period of “peak 

activity” in the model and can reflect a shift in the model’s temporal phase, and R2 is a 

conventional statistical endpoint where higher values indicate a better (more accurate) 

model fit. In the context of rhythmometric analysis, higher R2 values are often interpreted 

to reflect a more robust circadian rhythm - i.e. one that exhibits consistent high amplitude 

sinusoidal oscillations (Neikrug et al., 2020). Cosinors are usually reported by presenting 

it’s best-fit parameters, often accompanied by a graphical representation of the model over-

laid on a plot of Y by X. 

The basic cosinors simplicity is both its greatest strength and its greatest weakness. 

Requiring only three parameters (MESOR, Amp, and Acro), it is not computationally inten-

sive to fit and the details of its pre-processing and application can be easily reported and 

replicated. This also allows the basic cosinor to be run on a wide variety of scripting lan-

guages (e.g. R, Python), analysis programs (e.g. MATLAB, PRISM), dedicated circadian 

analysis toolkits, and other software. Cosinors also do not require equidistant data and can 

	
28 Occasionally referred to as the “Circadian Rhythmicity Index” (Grierson et al., 2016; Robillard 
et al., 2016) 
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tolerate missing data, giving it great flexibility especially in situations where the data can 

only be measured sporadically (e.g. salivary melatonin). However, the basic cosinors sim-

plicity entails several restrictive assumptions, most notably that the oscillating signal ex-

hibits a continuous, symmetrical, and sinusoidal “rise” and “fall” in amplitude with equi-

distant peaks/nadirs that remains constant over multiple periods. However, biological 

rhythms are rarely symmetrical and are frequently characterized by non-sinusoidal patterns 

(Marler et al., 2006; J. Martin et al., 2000; Refinetti et al., 2007; Smagula, Boudreau, et al., 

2015). For example, the basic cosinor is often applied to model human Rest-Activity 

Rhythms (RARs) using actigraphic data collected via wearable sensors. While human 

RARs are strongly rhythmic and possess readily distinguishable “high” and “low” activity 

periods, they are not sinusoidal: activity is low to nonexistent during sleep, then rapidly 

increases upon waking and “plateaus” for most of the waking day with intermittent periods 

of higher- and lower-than-average activity (e.g. exercising and napping, respectively), be-

fore rapidly decreasing with sleep onset (Dowling et al., 2005). Human RAR’s are also not 

symmetrical, as demonstrated by the fact that we only spend ~33% of the day in low-ac-

tivity torpor and sleep. Put simply, human RAR’s resemble “square waves” more-so than 

the inflexible symmetrical sinusoid assumed by the basic cosinor model; this causes it to 

over- or under-estimate activity levels for most of the day, especially during sleep/wake 

transitions when the most rapid changes in activity level occur. Many signals (e.g. actigra-

phy) are also not normally distributed; e.g. actigraphy is usually heavily skewed due to 
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infrequent and brief moments of very high activity29. Lastly, the basic cosinor has been 

criticized for its poor model fit; one exemplar study found that their basic cosinor model 

accounted for less than a quarter of the observed variance in actigraphy data (Neikrug et 

al., 2020; Satlin et al., 1995). This contributes to the difficulty in translating basic cosinor 

models into clinical applications.  

 

Five-Parameter “Extended” Cosinor Model 

The extended cosinor is an expansion of the basic cosinor model (Franz Halberg et al., 

1965) developed to more accurately model the waveform of human RARs in actigraphy 

data (Marler et al., 2006; J. Martin et al., 2000). The first use of the so-called “extended 

cosine function” was in 2000 (J. Martin et al., 2000), and the model was later expanded in 

2006 (Marler et al., 2006)30. As with the basic cosinor, the extended cosinor is used to 

model rhythmic signals in time-series data by fitting them to a cosine function; unlike the 

basic cosinor, the extended cosinor uses non-linear least squares regression and therefore 

requires initial starting values (Marler et al., 2006). Moreover, the extended cosinor in-

cludes two additional parameters (Alpha and Beta) that modulate the waveform to better 

fit the data, and which are incorporated into the model via a “sigmoidal transformation” of 

the data31. The original authors proposed three versions of the extended cosinor, each using 

	
29 This can be partially corrected for using log transformations and/or by reducing excessively high 
activity data to a uniform maximum threshold using a “high-pass filter” 
30 Except where stated otherwise, Marler et al.’s (2006) terminology is used to describe components 
of the extended cosinor in this manuscript. 
31 The original paper that introduced the extended cosinor referred to it as the “sigmoidally trans-
formed cosinor” for this reason (Marler et al., 2006) 



	

	

88 

a different sigmoidal transformation: the Hill function, the anti-logistic function, and the 

arctangent transform (Marler et al., 2006). The authors also noted that no function can 

perfectly recreate a model generated by a different function, but clarified that these inevi-

table qualitative differences between sigmoid functions may be negligible. While most ar-

ticles employing extended cosinors do not state which sigmoidal transformation they used 

(Grierson et al., 2016; Reimúndez et al., 2018; Robillard et al., 2014, 2016; Rodriguez-Zas 

et al., 2012; Spira et al., 2015; Walsh et al., 2014), the anti-logistic function is the most 

common amongst those that do provide this information (Davoudi et al., 2018; Paudel et 

al., 2010; Smagula, Ancoli-Israel, et al., 2015; Smagula, Boudreau, et al., 2015); the Hill 

function is also rarely used (Pagani et al., 2016). Although the additional parameters and 

flexibility of the modelled waveform improves the accuracy of the model and the richness 

of its information, it is still subject to the same assumption of normality in the data which 

most biological signals do not adhere to (Neikrug et al., 2020). 

MESOR, Amp, and Acro/Phi represent the same general rhythmometric properties 

in the extended cosinor as they did in the basic cosinor (i.e. average, range, and timing, 

respectively), but MESOR and Amp are calculated differently (Marler et al., 2006): MESOR 

is the average of Y’s maximum value and minimum value (rather than the average of all Y 

values), and Amp is the difference between the model’s maximum Y value and minimum 

Y value (rather than maximum Y value and MESOR). The two new parameters affect the 

waveform’s shape: Alpha is the width of the modelled sinusoid’s trough (higher Alpha 

indicates a longer in-bed/sleep/somnolescent period), and Beta is the steepness of the tran-

sitions between troughs and peaks (higher Beta indicates a quicker transition from low-
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magnitude nocturnal activity to high-magnitude diurnal activity, and vice versa). Since the 

extended cosinor allows “peaks” and “troughs” to have different durations, two additional 

endpoints can be derived by calculating when the modelled activity crosses the MESOR: 

the time when modelled activity exceeds MESOR is referred to as Up-MESOR, and it’s 

descending corollary is Down-MESOR. These are often interpreted to represent the approx-

imate onset and offset of waking activity, respectively (Marler et al., 2006; Neikrug et al., 

2020; Smagula et al., 2018)32; similarly, the slope of the modelled activity at the MESOR 

intercepts has been interpreted to represent the . Note that Up-MESOR and Down-MESOR 

can be derived from the basic cosinor as well; however, since the basic cosinor is symmet-

rical, Up-MESOR and Down-MESOR would be exactly 12 hours apart from each other, 

and fall exactly 6 hours before and after Acro/Phi (respectively), and thus offer no infor-

mation not already provided by Acro/Phi. An R2 value indicative of the accuracy of the 

fitted model can be calculated a la the basic cosinor. Lastly, a Pseudo-F Statistic can be 

derived from the residual sums of squares of a basic and extended cosinor modelled on the 

same data; this represents the extended cosinors improvement in model fit relative to the 

basic cosinor (Marler et al., 2006). 

 

Clinical Evaluation of Parkinson’s Disease 

In the absence of validated biomarkers of Parkinson’s disease (PD), clinimetric assessment 

remains the primary means of evaluating disease status and translating clinical presentation 

into analyzable data (Espay et al., 2016). Generally, this entails a trained and experienced 

	
32 These are also referred to as UP Slope Time and DOWN Slope Time per Neikrug et al. (2020) 
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clinician observing the subject’s clinical presentation and subjectively rating the severity 

of individual symptomatic domains using predetermined criteria, often accompanied by a 

patient/informant interview and discrete motor tasks. However, PD’s marked heterogene-

ity, broad array of motor and non-motor symptoms, and fluctuating symptomatic severity 

(whose variability is exacerbated by dopaminergic therapy, a common means of controlling 

PD motor symptoms) have complicated the clinimetric assessment of PD and the integra-

tion of these observations into standardized, sensitive, and clinically relevant summary 

scores (Opara et al., 2017). Both the clinical validation of potential neuropathological bi-

omarkers (e.g. alpha-synuclein) and the refinement of existing methods for quantifying 

disease severity are considered high-priority goals of the PD research community (Lana 

M. Chahine & Stern, 2017; Espay et al., 2016). Currently, PD is assessed through a com-

bination of gross staging (e.g. Hoehn and Yahr scale [HY]) (Hoehn & Yahr, 1967), disease-

specific detailed clinical scales (e.g. Unified Parkinson’s Disease Rating Scale [UPDRS]) 

(Goetz et al., 2008), patient- and informant-reported outcomes (e.g. Hauser diaries) 

(Hauser et al., 2000), and quantitative motor tasks that evoke parkinsonian symptoms (e.g. 

Timed Up-and-Go [TUG]) (S. L. Mitchell et al., 2000). 

 

Hoehn and Yahr Scale 

Although PD was first described in 1817 (Parkinson, 1817), the H&Y was the first attempt 

at using clinical symptoms to stage PD into a standardized disease severity scale. The orig-

inal H&Y was published almost exactly 150 years after Parkinson’s seminal work to ad-

dress the growing need to classify, quantify, and monitor clinical progression in PD (Hoehn 
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& Yahr, 1967); specifically, the lack of a common nomenclature and standard clinical cri-

teria created controversy regarding the efficacy of therapeutic interventions and descrip-

tions of PD’s natural history and progression. Initially the H&Y consisted of five stages - 

denoted as I, II, III, IV, and V - representing increasing levels of “clinical disability” 

(Hoehn & Yahr, 1967); these ranged from “unilateral involvement ... with minimal or no 

functional impairment” (Stage I), to “fully developed [symptoms]” where the patient is 

“markedly incapacitated” (Stage IV), and ultimately “confine[d] to bed or wheelchair” 

(Stage V). Hoehn and Yahr acknowledged that these did not necessarily reflect distinct 

pathophysiological stages, and that functional impairment and disability were chosen as 

staging criteria to support reproducibility, simplify assessment, and emphasize clinical rel-

evance (Goetz et al., 2004; Hoehn & Yahr, 1967). A modified H&Y that updated the cri-

terion language and added two intermediate stages - 1.5 and 2.5 - gained popularity in the 

1990’s after it was employed in several clinical trials (Jankovic et al., 1990). However, the 

Movement Disorder Society (MDS) recommends the original H&Y be used until the mod-

ified H&Y can be clinimetrically validated (Goetz et al., 2004; Poewe, 2012). 

While the H&Y has been largely eclipsed by the significantly larger and more de-

tailed Unified Parkinson’s Disease Rating Scale, both the original and the modified H&Y 

continue to see widespread use, especially as screening tools in research studies and clinical 

trials (Goetz et al., 2004; S. L. Mitchell et al., 2000). This is primarily due to its simplicity 

and brevity (Goetz et al., 2004), its pivotal role in PD research before the development of 

the UPDRS (e.g. most models of PD’s natural history and progression were generated us-
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ing the H&Y), its use as a gold standard for the development of subsequent clinical instru-

ments (Ramaker et al., 2002), and its correlation with other measures of disease progression 

such as the UPDRS (P. Martínez-Martín et al., 1994) and MDS-UPDRS (Skorvanek et al., 

2017), neuropathological markers such as fluorodopa positron emission tomography 

(Vingerhoets et al., 1994), motor impairment (Reynolds & Montgomery, 1987), and quality 

of life (M. Welsh et al., 2003). However, its basic structure limits its ability to capture all 

of PD’s diverse clinical presentations and precludes its use as a sensitive measure of ther-

apeutic efficacy. Moreover, it’s focus on posture and laterality to stage patients over-em-

phasizes PD’s motor symptoms at the cost of its historically undervalued non-motor symp-

toms. Nonetheless, the H&Y remains a valuable and accessible tool that will remain a 

mainstay in basic and clinical PD research for the foreseeable future (Goetz et al., 2004). 

 

Movement Disorders Society’s Unified Parkinson’s Disease Rating Scale 

The Unified Parkinson’s Disease Rating Scale (UPDRS), is considered the gold standard 

for assessing PD’s clinical features. Originally published in the 1980’s, the scale was ex-

tensively revised by the Movement Disorder Society (MDS) in 2008 (Goetz et al., 2008). 

The updated “MDS-UPDRS” consists of a structured interview and motor examination, 

during which 50 items are scored on a rating scale from 0 ("no symptoms") to 4 ("severe"). 

Due to its comprehensive nature, compatibility with clinical practice, and clinimetric vali-

dation, the MDS-UPDRS has seen widespread use as a measure of disease severity and 

progression in clinical research (Espay et al., 2017). However, attempts to validate poten-



	

	

93 

tial biomarkers (such as alpha-synuclein) against the MDS-UPDRS have produced incon-

sistent results (Espay et al., 2017; Kalia & Lang, 2015). Methodological concerns, such as 

inconsistent assay methods, have been cited as possible explanations (Lana M. Chahine & 

Stern, 2017). 

The MDS has recommended that each of the MDS-UPDRS’ sub-sections be re-

ported separately and not condensed into a single summary score due to their unstable fac-

tor structure (Goetz et al., 2008). Nonetheless, the MDS-UPDRS is usually reported as the 

sum of all of its item’s scores, meant to represent the overall disease burden of the subject. 

Several other summary scores have been developed that quantify the severity of specific 

symptoms and classify patients into different disease phenotypes. For example, the brady-

kinesia sub-score is the sum of the scores of items assessing bradykinesia (Zampieri et al., 

2010), and the normalized ratio of scores of items assessing postural instability to items 

assessing tremor is used to classify subjects into “Tremor Dominant”, “Postural Instabil-

ity/Gait Difficulty”, or “Indeterminate” phenotypes (Stebbins et al., 2013). In addition, to-

tal scores of the MDS-UPDRS’ individual sections are often reported and interpreted as 

representing some aspect of the patient’s clinical presentation; e.g. the total score for Sec-

tion III (the motor assessment) is frequently used to represent the severity of motor impair-

ment. Cut-off scores for each of the MDS-UPDRS’s sections have been proposed to grossly 

categorize disease severity into three tiers: mild, moderate, and severe33 (Pablo Martínez-

Martín et al., 2015). 

	
33 Section I: 10/11 and 21/22, Section II: 12/13 and 29/30, Section III: 32/33 and 58/59, Section IV: 
4/5 and 12/13 
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Sit-to-Stand Task 

Arising from a seated to a standing posture is one of the most common physical movements 

humans engage in. The Sit-to-Stand (SitS) postural transition requires expending a rela-

tively large amount of energy to facilitate rapid movement of the body, and recruits several 

major muscle groups to do so (Goulart & Valls-Solé, 1999; W. G. Janssen et al., 2002). 

This makes SitS mechanically demanding and thus easily impaired in those with restricted 

mobility, postural instability, and/or motor disorders (Kerr et al., 1997; Riley et al., 1991). 

Subsequently, SitS is frequently impaired in PD and is used as an indicator of motor disa-

bility (Parisi et al., 2015). Given its ubiquity in activities of daily living and integral role in 

human locomotion, impairment of the SitS likewise impairs functional independence, and 

thus is clinically relevant to many populations and a key factor in their reduced quality of 

life (van Lummel et al., 2016). As a result, SitS transitions are widely used in scientific 

research and clinical practice, either as a standalone assessment or as part of a larger battery 

(e.g. the MDS-UPDRS), and are increasingly instrumented with kinematic and actigraphic 

sensors (Parisi et al., 2015; van Lummel et al., 2016). The primary outcomes of SitS tasks 

are duration and success of the transition; some tasks require multiple consecutive SitS 

(e.g. the “5x SitS”) or provide a set window of time during which as many SitS transitions 

as possible should be executed (e.g. the “60 Second SitS”), and so have additional out-

comes related to frequency and success rate. 

Functionally, SitS is the ability to independently transition from a stable and sta-

tionary sitting posture to a stable and stationary standing posture, from which one can (and 
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often does) easily transition to walking. SitS is therefore an essential for functional inde-

pendence and an important activity of daily living, as it is the basic obstacle a person needs 

to overcome before they are able to begin walking, an energy-efficient and primary method 

of independent locomotion (Kerr et al., 1997; van Lummel et al., 2016). Kinematically, 

SitS is a dynamic state where the Center of Mass (CoM) is mobile and the body is unstable 

- if one were to stop halfway through a SitS, it would require significant energy to hold the 

CoM stable - and so it can be defined as the period between the first and last significant 

shift of the CoM. Unbalanced muscle contractions exert a net force on the CoM through 

their fibers and tendons, and this momentum is transformed (i.e. the direction of the CoM’s 

movement and movement speed is changed) by the agonistic and antagonistic forces of 

other stabilizing muscles. SitS can thus be described by the changes in momentum with 

respect to the CoM, allowing its kinematics to be simulated in rigid-body biomechanical 

models (Matthew et al., 2018). Neurologically, the SitS is a complex and physically de-

manding task that requires the coordinated actions of multiple muscle groups in parallel 

and in sequence, and is executed by a combination of different neuromotor systems involv-

ing both conscious and reflexive action (Goulart & Valls-Solé, 1999). Actions such as flex-

ion of the trunk, stabilization of the head, and flexion/dorsiflexion of the lower limb are 

executed in preparation of a SitS sequence to reduce the energy required and stabilize the 

body, and include both conscious actions and anticipatory postural adjustments. In order 

to provide the force needed to accelerate the body vertically, the SitS employs some of the 

largest muscle groups in the body, including hamstrings, quadriceps, and lumbar extensors, 

in a stereotyped and consistent pattern (Goulart & Valls-Solé, 1999; W. G. Janssen et al., 
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2002). Throughout the SitS, reflexive postural stabilizers activate as needed to maintain 

stability.  

The SitS has been divided into four main stages (W. G. Janssen et al., 2002; Kerr 

et al., 1997; Matthew et al., 2018). The “Flexion-Momentum” phase involves the genera-

tion of forward momentum via flexion of the torso, ending when the person’s weight is 

fully transferred to their feet (i.e. their CoM has shifted forward). The “Momentum Trans-

fer” phase continues the production of forward momentum, and additionally generates ver-

tical momentum through flexion of the thigh and extension of the knees; this vertical mo-

mentum is reinforced by antagonistic muscle action redirecting forward momentum verti-

cally. In the “Extension” forward momentum is no longer being generated, while the ex-

tension of the lower limbs and torso continues to generate vertical momentum. The “Sta-

bilization Phase” marks the transition from momentum generation to stabilization where 

the body, now fully upright, bleeds off any residual momentum by swaying until the CoM 

is fully within the individual’s base of support. These gross stages have also been further 

subdivided into discrete movements (Kerr et al., 1997).  

 

Self-Reported Questionnaires 

Parkinson’s Disease Questionnaire, 8-Item 

The Parkinson’s Disease (PD) Questionnaire (PDQ) is a self-administered disease-specific 

questionnaire designed to evaluate health domains impacted by PD in order to determine 

the respondent’s health status and Health-Related Quality of Life (HRQOL). The original 

PDQ was developed and validated in 1995 (C. Jenkinson et al., 1995; Peto et al., 1995) and 
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contained 39 questions scored on a five point ordinal scale; this version is referred to as the 

PDQ39. A factor analysis of the PDQ39 during its validation grouped questions into eight 

distinct “dimensions” of health: mobility, activities of daily living (ADL), emotional well-

being, stigma, social support, cognition, communication, and bodily discomfort (Peto et 

al., 1995). A short-form version of the PDQ39 was developed in 1997 by selecting, for 

each health dimension, the question whose score best correlated with that dimension’s total 

score (Crispin Jenkinson et al., 1997); this short-form version is referred to as the PDQ8. 

In both the PDQ8 and PDQ39, a summary index (SI) representing the respondent’s health 

status for each dimension can be calculated by averaging all scores in that dimension (Cris-

pin Jenkinson et al., 1997). An SI can also be calculated for the respondent’s overall health 

status by averaging the dimensional SI’s34 ; these are referred to as the PDQ8SI and 

PDQ39SI. While these scores are recommended for assessing HRQOL in PD, some anal-

yses have found that SI is multidimensional and thus influenced by confounding factors 

(Franchignoni et al., 2008; Hagell & Nilsson, 2009; Kuspinar et al., 2019); this has resulted 

in some authors advising caution when using the PDQ and interpreting its SI in clinical 

research. One early review criticized the PDQ’s lack of items addressing self-image, sleep 

problems, sexual activity, and postural transitions, yet nonetheless concluded that the PDQ 

would usually be the most appropriate instrument for assessing HRQOL in PD (Kuspinar 

et al., 2020; Marinus, 2002). 

 

	
34 The number of questions varies between dimensions in the PDQ39; by taking the average of the 
dimensional SI’s, the PDQ39 normalizes each dimension’s contribution to the respondent’s overall 
health status gives them equal weighting. 
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Morningness-Eveningness Questionnaire 

The Morningness-Eveningness Questionnaire (MEQ) is a self-administered questionnaire 

designed to evaluate the respondent’s psychological preference for when they engage in 

certain behaviors (Di Milia et al., 2013; Kantermann et al., 2015). Said another way, the 

MEQ assesses the respondent’s morningness-eveningness preference (J. A. Horne & 

Östberg, 1977) - also known as their diurnal preference, phase of entrainment, chronotype, 

circadian phenotype, circadian typology, and, in the original MEQ and other older litera-

ture, as simply “morningness” (Di Milia et al., 2013; Kantermann et al., 2015). The MEQ 

consists of 19 questions that ask the respondent to identify their preferred time for certain 

activities such as sleeping and exercising, their perceived “best” and “worst” times of day, 

the timing of certain subjective sensations like alertness and hunger, and how they would 

react to hypothetical scenarios such as going to bed at a different time or choosing their 

ideal exercise time. The questions have between four and six potential responses, and each 

response has a predetermined score between zero and six points. The respondent’s total 

score is calculated by summing the chosen scores for all questions, with a potential range 

of 16 to 86 points divided into five categories: Definite Evening (16 - 30), Moderate Even-

ing (31 - 41), Intermediate (42 - 58), Moderate Morning (59 - 69), and Definite Morning 

(70 - 86).  

The MEQ is considered the gold standard for self-reported morningness-evening-

ness (Di Milia et al., 2013). It has been validated against physiological and cognitive indi-

cators of circadian rhythm, including body temperature (S. L. Bailey & Heitkemper, 2001; 

Griefahn et al., 2001; J. A. Horne & Östberg, 1977; Ishihara et al., 1987; Neubauer, 1992), 
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secretion of cortisol (S. L. Bailey & Heitkemper, 2001) and melatonin (Griefahn et al., 

2001), sleep timing (Ishihara et al., 1987), and alertness (Adan, 1991; Natale & Cicogna, 

2002). Although it has seen widespread use, been translated into multiple languages, and 

is frequently used as a benchmark against which other instruments are validated, the MEQ 

has been criticized for the author’s ambiguous rationale for selecting the final questions 

and responses, the potential multidimensionality of its ostensibly unidimensional score, 

and it’s original cutoff scores, which were based off a relatively small (n = 150) and age-

restricted (18 - 32 years old) cohort (Di Milia et al., 2013)35. To address the multidimen-

sionality of the MEQ, a “reduced MEQ” (rMEQ) was produced that contains only those 

questions shown by a factor analysis to directly relate to morningness-eveningness (Adan 

& Almirall, 1991). Other instruments, notably the Composite Scale of Morningness (CSM) 

and the Munich ChronoType Questionnaire (MCTQ), were partially derived from the MEQ 

(Di Milia et al., 2013). Despite its drawbacks, the MEQ’s frequent use in the literature, its 

role as the “gold standard” for validating other instruments, and its simplicity and ubiquity 

continue to make it a popular and valuable means of assessing respondents’ morningness-

eveningness preference. 

 

Epworth Sleepiness Scale 

The Epworth Sleepiness Scale (ESS) is a self-administered questionnaire with eight items 

covering various daily activities (e.g. driving), each ranked by the respondent on a four-

	
35 Numerous other cutoff scores have been proposed based on larger samples, other age cohorts, 
different statistical segmentation techniques, and/or different numbers of categories. 
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point ordinal scale according to how likely they are to doze off. The main outcome of the 

ESS is the sum of scores for all items, and represents the respondent’s degree of daytime 

sleepiness, also referred to as their Average Sleep Propensity (ASP). The ESS was devel-

oped as a simple instrument for measuring the subject’s general level of daytime sleepiness 

(Murray W. Johns, 1991)36, and was initially validated in Obstructive Sleep Apnea (OSA): 

the ESS successfully distinguished subjects with OSA from those without OSA, and after 

treatment those with OSA scored similarly to the healthy controls (M. W. Johns, 1992). 

Due to its simplicity, brevity, and prior validation, the ESS has seen widespread use in 

clinical sleep research, especially OSA, (Hirshkowitz et al., 2011), has been adapted to 

various populations - most notably children and adolescents (K. C. Janssen et al., 2017; M. 

Johns, n.d., 2015) - and has been translated into dozens of languages beyond its original 

Australian English, including Arabic (Ahmed et al., 2014), Urdu (Surani et al., 2012), Ital-

ian (Vignatelli et al., 2003), and Brazilian Portuguese (Bertolazi et al., 2009). 

Although it has been validated and continues to see widespread use, the ESS has 

several notable drawbacks that have led to criticism of its liberal application in clinical 

research, especially in the context of OSA (Omobomi & Quan, 2018; Quan, 2013). Perhaps 

the most obvious drawback is the fact that the ESS is a self-evaluation along an ordinal 

scale with no objective delineation between low, moderate, and high chances of dozing, 

which introduces considerable subjectivity in the subject’s response (Omobomi & Quan, 

2018). One of the ESS’ main advantages - the fact it can be self-administered and thus does 

	
36 The ESS’s instructions were revised in 1997 to encourage the subject to complete all questions, 
which is required to calculate an accurate score 



	

	

101 

not require physician labor - also predisposes it to human error on the part of the subject 

(Omobomi & Quan, 2018), with one study examining self- vs physician-administration 

reporting that nearly a quarter of self-administered ESS’ contained an error that prevented 

full, accurate scoring (Marra et al., 2018)37. In addition to anthropogenic errors and biases 

associated with self-administered questionnaires, the ESS also exhibits a gender bias due 

to women being more likely to emphasize fatigue when reporting symptoms of OSA 

(Quan, 2013; Ye et al., 2009), an educational bias with less education being associated with 

a greater likelihood of making an error - thus preventing calculation of a score and subse-

quently under-representing less educated subjects (Marra et al., 2018; Omobomi & Quan, 

2018), and an observer bias respondents such as commercial drivers may underscore their 

sleepiness for fear of professional repercussions (Colvin & Collop, 2016; Omobomi & 

Quan, 2018). Moreover, one’s ESS score can vary across repeated administrations (Camp-

bell et al., 2018; Kendzerska et al., 2014; Omobomi & Quan, 2018), and studies examining 

its expected association with physiological measures of sleepiness (e.g. the multiple sleep 

latency test) and clinical endpoints of OSA (e.g. respiratory disturbance index) have pro-

duced inconsistent results (Fong et al., 2005; Quan, 2013). Despite these drawbacks, many 

insurance companies have made the ESS a requirement for covering clinical sleep studies, 

most of which are diagnostic screens for OSA; this requirement has been criticized due to 

the non-negligible risk of persons with (undiagnosed) OSA scoring too low on the ESS to 

qualify for a diagnostic sleep study (Quan, 2013). 

	
37 Errors included dichotomous Yes/No responses instead of an ordinal score, skipped questions, 
“cross[ed] against” questions, and inability to self-administer the survey due to illiteracy; no errors 
were found in the physician-administered ESS 
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While the ESS is still recognized as a useful, flexible, and low-burden means of 

quickly assessing daytime sleepiness, it is increasingly recommended that it be used in 

combination with (or supplanted by) other measures, especially in the context of OSA 

(Omobomi & Quan, 2018; Quan, 2013). 

 

Mini-Mental State Examination 

The Mini-Mental State Examination (MMSE) is a 30-point questionnaire principally used 

as a rapid assessment of cognitive ability, especially screening cognitive impairment and 

dementia (Carnero-Pardo, 2014; Folstein et al., 1975). The questionnaire is filled out by an 

administrator - usually a clinician or researcher, though minimal training is required to 

administer the MMSE - who prompts the subject with questions and scores their responses 

according to predefined criteria. The MMSE consists of eight items, each assessing a spe-

cific cognitive ability and with different scoring amounts: orientation to time (5 points), 

orientation to place (5 points), registration - AKA memory encoding (3 points), attention 

and calculation (5 points), recall (3 points), language (2 points), repetition (1 point), and 

complex commands (6 points). The MMSE was first developed in 1975 as a quicker alter-

native to existing cognitive assessments38, such as the Wechsler Adult Intelligence Scale 

(WAIS), which were difficult for subjects with dementia to complete due to their length 

(Folstein et al., 1975). This was accomplished by excluding other mental functions, such 

	
38 This is the reason it is referred to as the “Mini”-Mental 



	

	

103 

as mood, to solely focus on cognitive function (Folstein et al., 1975). This original MMSE 

contained 11 items, which were eventually pared down to the current eight items. 

The MMSE is arguably the most widely used cognitive screening instrument ever 

developed, and its seminal article is amongst the most frequently health science articles 

ever published (Carnero-Pardo, 2014; Folstein et al., 1975; Nilsson, 2007). It has been 

translated into over 50 languages and adapted to various populations, such as the blind 

(Carnero-Pardo, 2014). The MMSE has been included in the main clinical practice guide-

lines published by the American Academy of Neurology (Petersen et al., 2001), the British 

National Institute for Health and Care Excellence (National Collaborating Centre for Men-

tal Health (UK), 2007), and the Spanish Sistema Nacional de Salud (Ministerio de Sanidad, 

Política Social e Igualdad, 2018), among others (Carnero-Pardo, 2014). It’s simple design 

and brief administration time have made the MMSE an attractive choice for medical and 

research organizations, and it’s widespread use facilitates replication and inter-study com-

parisons in a broad variety of contexts. Despite its popularity, the MMSE was not initially 

developed as a screening tool for dementia. For example, a third of its points concern ori-

entation, but only 10% concern memory, which is usually the first cognitive ability to be 

noticeably impaired in common dementias such as Alzheimer’s disease. It’s reliability is 

impacted by the fact that the MMSE does not have standardized instructions (e.g. the orig-

inal MMSE did not specify which words to use in the recall task), and the requirement that 

the subject be literate in the administered language restricts its generalizability, causes an 

ascertainment bias, and contributes to the MMSE’s significant educational attainment bias 

(Carnero-Pardo, 2014; O’Bryant et al., 2008). The MMSE continues to see high usage, 
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although alternatives such as the Montreal Cognitive Assessment (MoCA) are continually 

being developed and evaluated. 

 

EuroQol 5-Dimension 

The EuroQol 5-Dimension (EQ-5D) is a self-administered questionnaire consisting of five 

items scored on a three point ordinal scale39, as well as a single 0-100 Visual Analogue 

Scale (VAS). Developed by the eponymous EuroQol, an international research group 

formed in 1987 (EuroQol, 1990), the EQ-5D was specifically designed as a quick, simple, 

scalable, standardized, and disease-agnostic assessment of Health-Related Quality of Life 

(HRQOL)40 to facilitate the generation of common data-sets that can be shared and ana-

lyzed across international, clinical, and disease boundaries. The EQ-5D’s primary outcome 

is a composite “health index” score representing the impact of a respondent’s health state 

on their Quality of Life (QOL) (EuroQol, 1990). The health index is the concatenation of 

the scores of the EQ-5D’s five items, with each item representing one of five dimensions 

of health: mobility, self-care, usual activities, pain/discomfort, and anxiety/depression 

(Rabin & Charro, 2001). For example, a health index of “13212” translates to a score of 1 

(no problems) in mobility, 3 (extreme problems) in self-care, 2 (some problems) in usual 

activities, 1 in pain/discomfort, and 2 in anxiety/depression (Rabin & Charro, 2001). 

	
39 A version with five point ordinal scales - referred to as the EQ-5D-5L - also exists 
40 HRQOL, also styled as HRQoL or HRQL, is defined as “the subjective assessment of the impact 
of disease and treatment across the physical, psychological, social and somatic domains of func-
tioning and well-being” (Revicki et al., 2000) 
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Health indices can be converted (“valuated”) into a one-dimensional index value 

representing the respondent’s overall health state, which can then be used as a summary 

endpoint. The index value represents the value of a given health state in some context; in 

the simplest sense better health is more valuable, though the respective contributions of 

each health domain varies by population and application (Kind, 2003; Weinstein et al., 

2009). For example, the contribution of mobility impairment to QOL is likely more severe 

in athletes than non-athletes, QOL in a culture that values independence and autonomy 

would be more impacted when self-care is impaired compared to a more interconnected 

and collectivist culture, and these weights can vary between sub-populations (e.g. people 

with PD may be more sensitive to mobility impairments than someone with clinical de-

pression). Similarly, a clinician monitoring a patient’s QOL would be more interested in 

valuations based on their patient’s clinical sub-population, a public health economist allo-

cating limited resources would prefer valuations based on the general population, and a 

hospital may use valuations based on the caregiver’s - rather than the patient’s - perspective 

when assessing the efficacy of new staff policies (Kind, 2003). Numerous value sets - i.e. 

algorithms for converting a health index into an index value - have been generated for 

different clinical populations and countries using a variety of techniques. The EQ-5D’s 

VAS (EQ-5D-VAS) was the original valuation metric, though more refined methods such 

as time-trade-off and the development of standardized protocols have eclipsed VAS valu-

ation in most contexts (Kind, 2003). 

In summary, the EQ-5D is a flexible instrument with diverse applications that has 

seen widespread use in clinical research, public health, and economics. It produces three 
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main outcomes: a categorical health index representing the respondent’s health profile, a 

standardized index value derived from the health index using valuation sets, and the VAS, 

which represents the respondent’s valuation of their overall health state (Hurst et al., 1997). 

The EQ-5D is primarily used for assessing HRQOL by health domain - with extensive 

valuation data for adapting outcomes to specific populations of interest - though its sim-

plicity and ease of use make it suitable as a coarse measure of HRQOL in a wide variety 

of contexts. 

 

Video Analysis and Annotation 

Video annotation, the systematic identification and quantification of signals in video re-

cordings, is a broad category of observational methods with diverse scientific and non-

scientific applications. Video data is generated passively through recording a scene - be it 

a social interaction, a natural phenomenon, or a clinical assessment - and can be analyzed 

qualitatively or quantitatively. As a video is nothing more than a series of still-images cap-

tured in rapid succession, it can capture subtle, small-amplitude, and/or brief events that 

might be missed by a contemporaneous observer. These images can be quantitatively ana-

lyzed in a number of ways - e.g. profile tracing, machine vision, image analysis, etc. - 

independently from the video they were derived from, or collectively played back as a 

continuous stream of visual data from which patterns and/or events may be qualitatively 

discerned by a human observer. Herein, video annotation is discussed in the context of 

qualitatively categorizing physical movements in humans - more specifically, clinical be-

haviors in Parkinson’s disease (PD) - using human raters. 
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Video recordings can be easily stored and shared, allowing them to be repeatedly 

used; e.g. by different research teams seeking to replicate findings, in the evaluation of 

newer and/or alternative methods, or to consistently document a specific item of interest. 

Unlike contemporaneous observation, multiple observers can annotate the same video in a 

controlled manner fully divested from the physical, social, and temporal circumstances the 

recording was made in. For example, the inter-rater agreement of a new clinical scale could 

be estimated by having clinicians individually score the same video recording of a patient, 

thus removing the myriad circumstantial factors that could unduly influence in-person scor-

ing (e.g. different patients, different times of day, different symptomatic severity, different 

viewing perspectives/durations, etc.) (Rodby-Bousquet et al., 2014). Although it’s been 

used throughout the sciences, video annotation is particularly common in psychology due 

to its ability to objectively capture behaviors used to measure psychological processes, 

such as social interactions or behavioral tics (Gilmore & Adolph, 2017). Having access to 

both the interpretation and the subject of interpretation allows for the direct replication of 

methodologies and the rigorous assessment of their validity by others; this is necessary 

because the inherent subjectivity of the observables, their interpretations, and the methods 

of generating them cannot be fully captured with written language. 

The study of how human movement and its impairments are clinically assessed 

faces a similar problem in that the interpretation of specific ‘behavioral biomarkers’ (e.g. 

“bradykinesia”) relies on qualitative assessment on the part of the clinician, who must in-

terpret their observations in the context of some external schema (e.g. MDS-UPDRS) in 

order to draw a conclusion. Even with strict and clearly defined criteria, the uncontrolled 
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nature of human movement and the innumerable ways it can be altered, disrupted, or im-

paired makes its evaluation a qualitative process that cannot be fully defined objectively 

with written language or mathematical formulae. Likewise, video annotation of movement 

requires a human observer to subjectively interpret the visual information in the video ac-

cording to predefined criteria. While this subjectivity introduces variance and uncertainty, 

video annotation is nonetheless well-suited to the categorization of complex behaviors - be 

they social interactions, psychological states, or physical movements - due to the remark-

able human ability to rapidly integrate contextual information. 

The process of video annotation can be grossly separated into three phases. First, 

the signal(s) of interest must be identified and rigorously defined to minimize ambiguities 

(Y. Yang et al., 2013). These definitions may incorporate subjective and objective elements 

(e.g. “walking starts with the first visible forward movement of the leading foot, or the first 

postural adjustment demonstrating the subject’s intent to begin walking”) and may be 

quantitative or qualitative in nature (e.g. “long walking is when the subject takes 10 or more 

steps while walking; if the step lengths appear uneven, annotate as long walking, uneven 

gait”). In the abstract sense, definitions bridge the gap between the objective reality of the 

video recording and the subjective perception of the human annotator, and thus should 

integrate discretely quantifiable visual criteria (e.g. “standing requires both feet to be flat 

on the ground”) into colloquial qualitative descriptions (e.g. “standing is when the subject 

is upright in a stationary vertical posture”). Ideally, definitions will also clarify ambiguous 

circumstances (e.g. “If the subject appears to be standing but you cannot verify their feet 

are flat on the ground because they’re out of frame, annotate as standing”). 
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Second, human raters review videos to identify any events/behaviors/etc. that meet 

these predefined criteria, determine when they meet these criteria, and segment the behav-

ior accordingly (Holle & Rein, 2015). Depending on the complexity of the annotations and 

the amount of expertise required, annotators may be trained on practice videos (previously 

annotated by an experienced rater) until they meet some predetermined level of accu-

racy.  Annotations can consist of continuous periods of time (e.g. “subject walking from 

frame 100 to frame 200”) or discrete instants (e.g. “subject transitioned from standing to 

walking at frame 100”), and may include additional qualitative information or sub-catego-

rization (e.g. “subject walking with shuffling gait”). 

Third, annotations made by different raters on the same video are compared for 

agreement in both their segmentation (i.e. start/end times) and qualification (i.e. “walking 

with shuffling”); the rate of agreement can be statistically quantified, and disagreements 

may be arbitrated by a senior rater so that a “final” annotation is chosen for future use. 

Alternatively, a “primary” annotator may be selected a priori based on their experience or 

post-hoc based on statistical inter-rater reliability; the primary’s annotations are then used 

as the final data-set, and the secondary annotators are used for determining inter-rater reli-

ability (Fokkenrood et al., 2014; Orfanos et al., 2017). In order to determine agreement, 

annotations from multiple raters must be “linked” together; i.e. determined that both were 

made based on the same segment of video. This is not an issue in case-by-case data (e.g. 

two clinicians independently score a video recording of a patient performing a motor task) 

as there is no ambiguity in what the annotations were based off of. In time-series data, 



	

	

110 

however, raters may disagree on when certain behaviors began or how they should be clas-

sified (Bakeman et al., 2009). For example, Rater A makes a single walking annotation, 

where-as Rater B believes the subject paused shortly after starting and so makes two walk-

ing annotations, one short and the other long. Rater A’s single annotation can be paired 

either with Rater B’s first annotation (due to their similar start times), Rater B’s second 

longer annotation (due to their significant overlap), or both (Holle & Rein, 2015). The 

choice is not trivial, as it limits what statistical metrics of agreement can be calculated and 

affects their interpretation. This “linking problem” remains unsolved; although there are 

algorithmic ways of automatically linking annotations in time-series data, none are always 

correct due to the sheer variety of contextual information that could influence pairing and 

the subjective manner in which the annotations were originally made. 

 

Statistical Tests and Other Analytical Considerations 

Where-as individual chapters describe the analytical procedures pertinent to their content, 

this subchapter will provide an overview of the general analytical methods, considerations, 

and practices used throughout the work described herein. Data processing and grooming 

will not be covered in this subchapter. Unless otherwise stated, all statistical analyses were 

conducted in Stata (versions 15 – 16, StataCorp, Inc., College Station, TX, USA) on a Mac 

operating system. Excel (Microsoft, Inc., Redmont, WA, USA) and MATLAB (Math-

Works Inc., Natick, MA, USA, R2018a) were used to array, groom, store, and visualize 

the data; MATLAB was also used to generate cosinor models (see Chapters 4-5).All anal-

yses involved an initial descriptive analysis to characterize the distribution of data through 
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measures of central tendency and variance; mean and standard deviation were used for 

continuous or near-continuous data41. This also involved the visualization of data, both raw 

and under different transforms (e.g. log-transform). Skewness and kurtosis were calculated 

for continuous data, including the use of skewness-kurtosis tests to dichotomize samples 

as either “normally distributed” or “abnormally distributed”. When necessary, the variance 

of different samples were compared using an equal variances test to determine the appro-

priate statistical test. Exact p-values were generated and reported where possible, and two 

thresholds were used for reporting significance: p = 0.05 was the default significance 

threshold, although p = 0.10 was used for data with poor signal-to-noise ratios and/or small 

sample sizes. For the purposes of interpretation and reporting, p ≤ 0.05 was considered 

“statistically significant” and 0.05 < p ≤ 0.10 was considered “approaching significance”. 

For the purposes of determining normality and equality of variances, a p-value of 0.05 was 

used. Significant digits were not constrained during analysis, but to improve readability the 

data were presented with two or three significant digits. 

Due to the nature of the data collected (i.e. from human subjects), outliers were 

usually identified based on participant feedback and/or researcher observations at the point 

of data collection. No outlier detection algorithms were consistently used, though some 

basic outlier criteria - such as being ≥ 3 standard deviations from the mean (for normally 

distributed data) or ≥ [ 1st/3rd quartile ] +/- [ 1.5 * interquartile range ] from the median (for 

	
41 “Near-continuous” refers to ordinal data with a large number of ranks that are conventionally 
treated as continuous for the purposes of statistical analysis; this includes, but is not limited to, 
variables such as the MDS-UPDRS total score and the MEQ total score. For the rest of this sub-
chapter, “continuous” includes both continuous and near-continuous data 
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abnormally distributed data) - were used in exploratory and descriptive analyses to quickly 

evaluate the variance in the data. Potential outliers identified during post-hoc descriptive 

and exploratory analyses were evaluated on a case-by-case basis through review of study 

documents and excluded if they were deemed to be artifacts, spurious, or otherwise altered 

by a factor outside of the analytical scope of the study. Missing data was quantified and 

reported whenever possible. No missing data was imputed; however, certain samples were 

omitted from analysis due to excessive missing data that precluded accurate analysis. 

Between-group comparisons were conducted for the purposes of quantifying the 

probability that two or more samples have the same mean and distribution. Two-sample 

comparisons of continuous variables were conducted using the Student’s t-distribution; i.e. 

t-tests. Paired and unpaired t-tests were used for paired and unpaired samples, respectively. 

Welch’s t-tests or Wilcoxon Rank Sum tests (AKA Mann-Whitney U tests) were used for 

samples with unequal variances as demonstrated via an equal-variance test. The Wilcoxon 

Signed-Rank test was used for paired samples with unequal variances. For comparisons 

involving three or more samples with continuous data, Analyses of Variance (ANOVAs) 

were conducted; one-way, two-way, n-way, and repeated measures ANOVAs were used 

as needed. ANOVAs were also employed to model the effects of certain categorical/ordinal 

factors on the variable of interest, and likewise used to model the influence of continuous 

covariates on categorical variables of interest. Chi-square tests were used to identify rela-

tionships between categorical-ordinal and categorical-categorical variables. 
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Associations and correlations were quantified using simple and multiple-variable 

linear and logistic regressions. Linear regressions were used to model the associations be-

tween continuous variables, and logistic regressions were used for associations between 

dichotomous (dependent) and continuous (independent) variables. For associations be-

tween ordinal (dependent) and continuous (independent) variables, simple and multiple-

variable ordered logistic regressions were used. All multiple-variable regressions were pre-

ceded by simple regressions to quantify the pairwise associations between the multiple 

variables to be used. In addition, simple linear, logistic, and ordered logistic regressions 

were used extensively for exploratory analyses to identify potentially meaningful associa-

tions. 

Linear mixed-models were used to model the relationships in complex multi-level 

nested and repeated measures data (see Chapter 5 Methods). Inter-rater reliability was ini-

tially monitored by calculating simple percent agreements using annotation endpoints (i.e. 

start time, end time, and annotation value) for annotations paired by trained arbitrators (see 

Chapter 3 Methods). Percent agreement for start and end times included tolerance windows 

due to the difficulty in reliably determining the exact frame a behavior began; i.e. if two 

paired times were within 5 frames (~0.167 seconds) of each other, they were considered in 

agreement. Inter-rater reliability was formally quantified via Cohen’s kappa using different 

agreement criteria (see Chapter 3 Methods). 
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Abstract 

Introduction 

The Movement Disorder Society’s Unified Parkinson’s Disease Rating Scale (MDS-

UPDRS) is the current gold standard means of assessing disease state in Parkinson’s dis-

ease (PD). Objective measures in the form of wearable sensors have the potential to im-

prove our ability to monitor symptomology in PD, but numerous methodological chal-

lenges remain, including integration into the MDS-UPDRS. We applied a structured video 

coding scheme to temporally quantify clinical, scripted, motor tasks in the MDS-UPDRS 

for the alignment and integration of objective measures collected in parallel. 

 

Methods 

25 PD subjects completed two video-recorded MDS-UPDRS administrations. Visual cues 

of task performance reliably identifiable in video recordings were used to construct a struc-

tured video coding scheme. Postural transitions were also defined and coded. Videos were 

independently coded by two trained non-expert coders and a third expert coder to derive 

indices of inter-rater agreement. 

 

Results 

50 videos of MDS-UPDRS performance were fully coded. Non-expert coders achieved a 

high level of agreement (Cohen’s κ > 0.8) on all postural transitions and scripted motor 
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tasks except for Postural Stability (κ = 0.617); this level of agreement was largely main-

tained even when more stringent thresholds for agreement were applied. Durations coded 

by non-expert coders and expert coders were significantly different (p < 0.05) for only 

Postural Stability and Rigidity, Left Upper Limb. 

 

Conclusions 

Non-expert coders consistently and accurately quantified discrete behavioral components 

of the MDS-UPDRS using a structured video coding scheme; this represents a novel, prom-

ising approach for integrating objective and clinical measures into unified, longitudinal 

datasets. 

 

Keywords 

Parkinson’s disease 

Video coding 

MDS-UPDRS 

Wearable Sensors 

 

Introduction 

Parkinson’s Disease (PD) is the second most common neurodegenerative disease, affecting 

1% of the Western population over 60 years of age (de Lau & Breteler, 2006). The gold 

standard for the evaluation of PD symptomology is the Movement Disorder Society’s Uni-

fied Parkinson’s Disease Rating Scale (MDS-UPDRS) (Goetz et al., 2008; Jankovic, 



	

	

117 

2008). A novel approach to PD symptom monitoring has emerged in Technology-based 

Objective Measures (TOMs) of movement obtained using accelerometers, gyroscopes, and 

other motion detectors housed in mobile platforms worn on the body (de Azevedo et al., 

2016; Dewey et al., 2014; Espay et al., 2016; Patel et al., 2009; Piro et al., 2016). As they 

are capable of continuously measuring movement, gait, and posture outside of the clinic, 

wearable sensors are well suited for monitoring the variable symptoms of PD.  However, 

the use of TOMs in the MDS-UPDRS is largely unexplored, and, in fact, the MDS-UPDRS 

is often used as an outcome measure for sensor validation (Johansson et al., 2018). In ad-

dition, the methodological challenges of wearable sensors remain a significant obstacle to 

their translation into routine clinical practice (Espay et al., 2016; Horak & Mancini, 2013). 

Specifically, their high resolution and sensitivity leaves them susceptible to noisy interfer-

ence. Complicated and time-consuming analytical techniques are required to derive clini-

cally meaningful endpoints from the large amounts of data they produce and the lack of 

standards has led to isolated “islands of expertise” (Lana M. Chahine & Stern, 2017; Espay 

et al., 2016, 2017; Horak & Mancini, 2013; Papapetropoulos et al., 2015; Rabuffetti et al., 

2011). These challenges are amplified in the MDS-UPDRS, as the scale’s semi-standard-

ized motor tasks introduce significant noise into the signal and its loosely structured format 

complicates interpretation. 

Human-directed behavior coding in video recordings of clinical assessments and 

functional tasks is often used to validate TOMs captured within a clinical setting (Aminian 

et al., 1999; Fokkenrood et al., 2014; Heldman et al., 2014; Lyons & Tickle-Degnen, 2005; 

S. T. Moore et al., 2011; Piro et al., 2016). Video coding enables the temporal alignment 
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of diverse datasets (e.g. TOMs and MDS-UPDRS task ratings) to a “ground-truth” time 

series of coded behaviors, which allows for greater accuracy and confidence in analyses 

between and across these data. Video coding therefore has the strong potential to enhance 

ongoing research on the use of wearable sensors for the continuous measurement of PD 

symptomatology (S. T. Moore et al., 2011; Piro et al., 2016), and, in fact, is often used to 

validate the output of prototype sensors. Nonetheless, the use of video coding to validate 

TOMs has been slowed by study-specific coding schemes, variance in the training and 

expertise of human coders, and the diversity of the definitions and methods to guide coding.  

Through a structured protocol, we have defined reliable visual cues for specific 

motor tasks in Section III of the MDS-UPDRS, and trained non-clinician coders to recog-

nize and code them in video recordings. Our objective was to construct and apply a de-

tailed, consistent and transparent video coding scheme capable of reliably generating pre-

cise timestamps of tasks and behaviors used in the MDS-UPDRS assessment for future 

alignment with TOM datasets. 

 

Methods 

Participants and Video Recordings 

25 persons with PD underwent a video-recorded administration of Section III (“Motor Ex-

amination”) of the MDS-UPDRS, as well as a five times sit-to-stand task. The tasks were 

administered by a trained medical physician who was an expert in movement disorders. 

The number of subjects, order of assessments, and the video recordings (with no audio) 

were transferred to the study group, who were blinded to the clinical details of the subjects. 
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All videos were de-identified prior to transfer to the study group and all subjects gave in-

formed consent as per institutional study requirements. 

Each video recording was constructed from raw footage recorded at 30 frames per 

second by two separate cameras: a mobile Microsoft KinectÔ camera (640 x 480-pixel 

resolution) mounted on a tripod, and a stationary Microsoft KinectÔ (640 x 480-pixel res-

olution) mounted at the end of the hallway used for walking tasks. Both cameras provided 

full-body views of the subject from a front facing angle. 

 

Development of the Coding Scheme 

To facilitate consistent frame-by-frame coding of behaviors of interest, a structured Coding 

Scheme (CS) was constructed before receipt of the video recordings (Figure A.1). The CS 

contained definitions for two categories of behavior: Scripted Motor Tasks adapted from 

Section III of the MDS-UPDRS, and the sit-to-stand and stand-to-sit Postural Transitions. 

Each definition consisted of a general definition of the task or transition, a descrip-

tion of prominent visual cues identifiable in a video recording, and the specific events, 

movements, and/or stimuli coders should use to determine the task’s onset and offset 

frames. Variations of the task (e.g. left hand, right hand) and any expected deviations and 

how they should be coded were also included in the CS. Anatomical landmarks were used 

to guide identification of the onset and offset frames where possible. The full list of defi-

nitions can be found in Figure A.1.  
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Coder Training Protocol 

All coding was performed using ELAN (v 5.0.0-beta for Mac iOS), a linguistic annotation 

software capable of frame-specific annotation of video. Coders were trained in the use of 

the CS (Figure A.1) and ELAN using a structured protocol and the guided coding of a 

series of training videos (Figure 3.1). Coders were required to use a predetermined config-

uration of ELAN settings to maintain consistency. The training videos ranged between 5 

and 45 minutes in duration and contained exemplars of motor behaviors in patients with 

PD, with each video focusing on a new category of behavior (Figure 3.1). Raters were 

required to achieve an accuracy of 80% before they were granted approval to independently 

code videos for use in data analysis. 

 

Figure 3.1: Flow Sheet Depicting Standardized Training Protocol Used for All Coders prior 
to participating in study 

 

Coding Process 

When coding a motor task, coders working in randomly assigned pairs individually deter-

mined its start time, its end time, and the name of the task performed. Frame-specific 

timestamps for individual behaviors within a task were generated at a resolution of ~ 

0.033 seconds, the approximate duration of a frame in the video’s 30 frames per second 

format.  
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Errors of commission were identified using the following criteria: 

- Start timestamp difference between coders was greater than 0.335 seconds. 

- End timestamp difference between coders was greater than 0.335 seconds. 

- Coders identified different motor tasks were being performed. 

Additionally, one-sided codes (i.e. errors of omission) were recorded whenever only one 

coder made a code that the other coder did not.  

All videos were also coded by an expert coder (defined as a neurologist with an 

expertise in movement disorders) per the CS definitions in order to provide a measure of 

the internal validity of the definitions generated in the CS. 

 

Statistical Methods 

Descriptive statistics were generated using the raw timestamps generated across the entire 

dataset by individual coders. These included the frequency that a given motor task was 

coded, it’s average duration (Table 3.1), the average difference in start and end times be-

tween paired coders, and the frequency of coding (Table 3.2). Paired samples t-tests were 

conducted to compare the mean durations of codes made by non-expert coders and the 

expert coder as a measure of the internal validity of the CS. These were calculated using 

all codes made by all non-expert coders across the dataset and therefore did not take into 

account errors of omission or commission. 

Inter-rater agreement was calculated using Cohen’s Kappa (κ) (J. Cohen, 1960). 

The study design allowed for production of a timed-event sequential dataset capable of 

detecting errors of omission and commission by coders (Bakeman et al., 2009).  In order 



	

	

122 

to account for errors of omission (i.e. only one coder in a pair coded a motor event) codes 

from both coders were manually linked by the expert rater with expertise in movement 

disorders. Linked codes were considered in agreement if they met two criteria: (1) both 

coders identified it as the same motor task, and (2) the segments generated by the coders 

met or surpassed the overlap threshold of 50% as calculated by the start and end time of 

the behavior codes (Holle & Rein, 2015). The frequencies of agreement for each type of 

behavior were collated into agreement matrices, from which proportions of agreement for 

each type of behavior were derived. Three matrices with overlap thresholds of 50%, 70%, 

and 90% percent overlap were constructed and used to calculate κ.  

 

Results 

25 subjects with PD each underwent two video-recorded assessments, producing a total of 

50 videos. Each video was independently coded by two trained coders using the CS, re-

sulting in a dataset of 100 coded videos. Table 3.1 summarizes the frequency of coded 

tasks within the 100 videos as well as the mean and median durations.  

 

Durations of Coded Behaviors 

Scripted Motor Tasks had a median timestamp of between 4-12 seconds while Postural 

Transitions were between 1-2 seconds in duration (Table 3.1).  
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Table 3.1: Descriptive Statistics for Coded Tasks for 100 Video Files 

Category Coded Tasks 
Frequency 
of Coded 
Task** 

Timestamp 
Mean (SD) 

Timestamp 
Median 
(IQR) 

Timestamp 
Mean Expert 

(SD) 

Timestamp 
Median Ex-
pert (IQR) 

Scripted Motor 
Task* Rigidity, Neck 97 4.900 (0.996) 4.853 (1.200) 4.972 (1.158) 4.900 (1.250) 

Scripted Motor 
Task Rigidity, Right Upper Limb 101 7.210 (1.754) 6.697 (1.750) 7.261 (1.862) 7.000 (1.584) 

Scripted Motor 
Task Rigidity, Left Upper Limb 98 7.470 (2.332) 7.067 (2.433) 7.459 (2.444) 6.900 (2.289) 

Scripted Motor 
Task Rigidity, Right Lower Limb 99 6.596 (1.745) 6.383 (1.909) 6.661 (1.764 6.433 (1.958) 

Scripted Motor 
Task Rigidity, Left Lower Limb 99 5.916 (1.526) 5.616 (1.683) 5.929 (1.541) 5.603 (1.742) 

Scripted Motor 
Task Finger Tapping, Right Hand 113 3.819 (2.301) 3.100 (1.934) 3.653 (2.025) 3.084 (1.717) 

Scripted Motor 
Task Finger Tapping, Left Hand 105 4.165 (2.636) 3.166 (2.633) 3.918 (1.998) 3.150 (2.558) 

Scripted Motor 
Task 

Fist Open and Close, Right 
Hand 103 5.172 (2.017) 5.067 (2.217) 5.182 (1.965) 5.000 (2.051) 

Scripted Motor 
Task Fist Open and Close, Left Hand 105 5.005 (2.180) 4.766 (2.033) 5.271 (2.966) 4.867 (1.934) 

Scripted Motor 
Task 

Pronation and Supination, Right 
Hand 106 5.695 (3.133) 4.967 (2.501) 5.859 (2.996) 4.971 (2.633) 

Scripted Motor 
Task 

Pronation and Supination, Left 
Hand 99 5.652 (2.640) 5.200 (2.232) 5.811 (2.556) 5.317 (2.225) 

Scripted Motor 
Task Toe Tapping, Right Foot 102 4.239 (1.594) 4.000 (1.642) 4.445 (1.816) 4.101 (2.117) 

Scripted Motor 
Task Toe Tapping, Left Foot 103 4.456 (1.556) 4.133 (1.667) 4.562 (1.544) 4.167 (1.699) 

Scripted Motor 
Task Stomping, Right Foot 101 4.332 (1.527) 4.067 (1.634) 4.536 (1.640) 4.433 (1.6) 
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* As defined in the MDS-UPDRS Section III 

** Total number of times motor behaviors were assessed in 100 coded files (50 videos independently annotated by two Coders each) 

*** Average κ values 

 

Scripted Motor 
Task Stomping, Left Foot 101 4.462 (1.906) 3.934 (1.800) 4.582 (2.063) 3.967 (1.866) 

Scripted Motor 
Task 

Postural Tremor, Right and Left 
Hands 123 11.89 (3.293) 12.412 

(1.406) 12.209 (3.148) 12.400 
(1.200) 

Scripted Motor 
Task Kinetic Tremor, Right Hand 94 5.231 (2.166) 4.769 (1.952) 5.501 (2.154) 4.934 (2.258) 

Scripted Motor 
Task Kinetic Tremor, Left Hand 96 5.034 (1.570) 4.649 (1.950) 5.201 (1.588) 4.900 (2.000) 

Scripted Motor 
Task Postural Stability* 177 2.373 (2.110) 1.633 (1.366) 1.870 (1.222) 1.466 (0.818) 

Postural Transi-
tion Sit-to-Stand 1201 1.834 (1.150) 1.600 (0.667) 1.915 (1.304) 1.633 (0.700) 

Postural Transi-
tion Stand-to-Sit 1012 1.114 (0.597) 1.000 (0.466) 1.117 (0.604) 0.967 (0.460) 
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A paired samples t-test was performed to compare mean duration between tasks 

coded by an expert coder to the raw values coded by independent, non-expert coders. Table 

3.2 reports the p values for each task; only the coded tasks Postural Stability (p=0.015) and 

Rigidity, Left Upper Limb (p=0.005) displayed a significant difference in the mean dura-

tion. 
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Table 3.2: Comparison of Mean Coder Duration (Timestamp ss.ms) to Expert Coder for 
Scripted Motor Tasks and Postural Transitions for all 50 videos 

Category Coded task 
Confidence 

Interval 
(95%) 

t-value 
Degrees of 
Freedom 

(df) 

Signifi-
cance (p<-

.05) 
Scripted motor task  Rigidity, Neck [-0.660, 0.185] -1.129 50 0.264 

Scripted motor task Rigidity, Right Up-
per Limb [-0.754, 0.579] -0.264 50 0.793 

Scripted motor task Rigidity, Left Up-
per Limb 

[-1.727, -
0.322] 

-2.927 50 0.005* 

Scripted motor task Rigidity, Right 
Lower Limb [-0.875, 0.353] -0.855 49 0.397 

Scripted motor task Rigidity, Left 
Lower Limb 

[-0.610, 0.569] 0.070 49 0.945 

Scripted motor task 
Finger Tapping, 

Right Hand [-0.676, 1.051] 0.434 57 0.666 

Scripted motor task Finger Tapping, 
Left Hand 

[-0.865, 0.715] -0.190 51 0.850 

Scripted motor task 
Fist Open and 

Close, Right Hand [-0.716, 0.932] 0.264 51 0.793 

Scripted motor task Fist Open and 
Close, Left Hand 

[-1.242, 0.684] -0.582 52 0.563 

Scripted motor task Pronation and Supi-
nation, Right Hand [-1.129, 1.714] 0.413 52 0.681 

Scripted motor task Pronation and Supi-
nation, Left Hand 

[-1.099, 0.658] -0.504 49 0.617 

Scripted motor task Toe Tapping, Right 
Foot 

[-0.449, 0.953] 0.721 51 0.474 

Scripted motor task Toe Tapping, Left 
Foot [-0.584, 0.566] -0.031 52 0.975 

Scripted motor task Stomping, Right 
Foot 

[-0.502, 0.581] 0.146 50 0.884 

Scripted motor task Stomping, Left Foot [-0.585, 0.841] 0.360 50 0.720 

Scripted motor task 
Postural Tremor, 
Right and Left 

Hands 
[-1.190, 1.156] -0.029 52 0.977 

Scripted motor task Kinetic Tremor, 
Right Hand [-0.844, 1.055] 0.223 47 0.825 

Scripted motor task Kinetic Tremor, 
Left Hand 

[-0.710, 0.736] 0.037 48 0.971 

Scripted motor task Postural Stability** [0.129, 1.148] 2.485 98 0.015* 

Postural Transitions Sit-to-Stand [-0.122, 0.182] 0.383 608 0.702 

Postural Transitions Stand-to-Sit [-0.702, 0.091] 0.256 510 0.798 
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Inter-Rater Reliability of Annotated Tasks 

We observed high levels of agreement for all Scripted Motor Tasks, with κ > 0.8, indicating 

strong agreement (Table 3.1), with the exception of Postural Stability (κ = 0.617). These 

high κ values were maintained at the more stringent 70% and 90% overlap thresholds for 

most Scripted Motor Tasks, while Postural Transitions demonstrated good agreement at 

the 50% and 70% overlap thresholds and poor agreement at the 90% overlap thresholds 

(Figure 3.2). 
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Figure 3.2: Cohen’s κ values of IRA for individual tasks over the 50-video dataset. Each 
row and column represent an individual coded task and individual video, respectively. Each 
cell is colored to reflect the κ between the two independent coders who coded that task in 
that video. Yellow cells indicate a strong IRA as indicated by a high κ approaching 1, green 
cells a moderate IRA with κ approaching 0.5, blue cells a low IRA with κ approaching 0, 
and white cells indicate that the task was not coded by either coder in that video. 

 

Errors of Omission and Commission 

Differences in the frequency of errors were dependent on the motor activity being coded 

(Figure A.2). The most frequent error observed was a difference in the identification of the 

start time of Kinetic Tremor, Right Hand and Kinetic Tremor, Left Hand. The motor task 

Postural Stability possessed the highest frequency of inter-rater disagreement on the end of 
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the behavior. Postural Tremor, Right and Left Hands possessed the highest frequency of 

errors of omission, meaning it was only identified by one coder in a pair.    

 

Discussion 

Here we provide an analysis of a novel, detailed, and precise video coding scheme capable 

of quantifying the duration of selected motor tasks of MDS-UPDRS Section III and related 

behaviors sensitive to impairment in PD. MDS-UPDRS Scripted Motor Tasks were coded 

with a high degree of agreement between coders, as indicated by kappa values of 0.80 and 

above, with the exception of Postural Stability, which showed a moderate level of agree-

ment.  

Video coding of discrete behaviors has been extensively used in the behavioral and 

social sciences, but has only been used sparingly in the study of PD behavior. Djikstra and 

colleagues used video coding to validate multiple sensor platforms, with a focus on gait 

parameters including gait speed and distance (Dijkstra et al., 2008, 2010). Other groups 

have used force plates to define postural transitions based on force generation (Zijlstra et 

al., 2012). 

This study used anatomical landmarks and visual cues extracted from the MDS-

UPDRS’ instructions to create a detailed coding scheme defining the onset and offset times 

of motor behaviors. Using this methodology we were able to show that anatomically based 

definitions for video coding can be recognized by trained non-expert raters to a high level 

of precision. The high agreement we achieved suggests that video coding, when given suf-

ficiently accurate definitions, can reliably quantify subcomponents of the MDS-UPDRS. 
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As objective measures of impairment aligned to large video datasets such as this may be 

easily synchronized with other neurobiological datasets – e.g. those derived from bioimag-

ing, genomics, histology, or biomarkers – video coding may allow for the functional im-

pairments observed in MDS-UPDRS subcomponents to be more accurately related to pri-

mary measures of neuropathology in PD. Such a unified systems approach would encour-

age reproducibility, facilitate the integration of multimodal data, and allow for more pow-

erful scientific hypotheses to be generated and tested, ultimately leading to the develop-

ment of more detailed models of how they arise from PD’s neuropathology.  

Video coding studies in PD typically rely on coders with varying degrees of exper-

tise in movement and movement disorders in order to code specific movements. Moore et 

al. (2011) used video annotation to detect gait abnormalities in a group of PD patients over 

24 hours and used graduate level students with moderate expertise in movement measure-

ment to code specific movements. Similar to our findings they were able to code specific 

tasks to a high level of precision using specific definitions. In our study, we have shown 

that, with minimal training, non-expert coders can generate these timestamps in video re-

cordings of PD patients to the level of accuracy of an expert rater.  These video segments 

may now able to be individually reviewed for specific clinical indicators, such as tremor, 

or range of motion, and their timestamps aligned to TOMs generated by sensors worn dur-

ing the assessment. An example of the use of video annotation can be seen in analysis of 

postural instability.  Analysis of video coding sets such as this can provide insights into 

both the cause and possible solutions to the variability observed in quantification of this 

cardinal PD symptom. Although postural instability was accurately identified as a motor 
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behavior by non-expert coders , the end time of the behavior was inconsistently recognized. 

The retropulsion test used to assess postural stability, which requires the examiner to de-

stabilize the patient with a forceful backwards pull and observe their ability to recover,  is 

difficult to consistently administer and as a result the true “end time” of this task demon-

strates subjectivity in its definition and measurement (Nonnekes et al., 2015). Like many 

UPDRS tasks, kinematics, wearable sensors, and other objective measures have been ap-

plied to quantify aspects of the retropulsion test, adding an objective measurement to en-

hance the subjective score obtained from the MDS-UPDRS. Due to its low cost, simple 

training, and reliance on objective definitions, video coding can also provide an accurate, 

consistent definition of postural instability as assessed using the retropulsion test in order 

to validate the sensor-based algorithms needed to objectively measure PD impairment. 

Quantification of task duration in this way can allow for the measurement of the variability 

of their performance, an essential clinical endpoint that can be aligned to and used to better 

understand objective physical measures of variability. 

Sub-components of task performance may reflect discrete impairments sensitive to 

a single neural control system (Curtze et al., 2015; Peterson & Horak, 2016). As a result, 

objective measures of task performance using “wearable sensors” are increasingly viewed 

as necessary to improving the precision and sensitivity with which we can monitor disease 

state (Horak & Mancini, 2013).  Body-mounted accelerometers or “wearable sensors” are 

well positioned to objectively measure these sub-components . However, the use of wear-

able accelerometers in the MDS-UPDRS is largely unexplored, and in fact the MDS-

UPDRS is often used as an outcome measure for sensor validation (Johansson et al., 2018). 
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Video annotation provides a compromise between the objective precision of wearable sen-

sors and the subjective flexibility of the MDS-UPDRS’s clinical ratings. The flexibility in 

video playback and reviewing allows for subtle characteristics of behaviors, such as sub-

components not reliably detectable during clinical assessments, to be precisely measured 

with little uncertainty in their interpretation (Bussmann et al., 1998). Although it cannot 

reliably measure amplitude or distance, video coding has granular resolution for temporal 

measurements (e.g. duration) and frequency (e.g. counting instantaneous events) far be-

yond what is available to an observer or clinician rater. While video coding falls short of 

wearable sensors in temporal precision, it avoids many of the challenges posed by wearable 

accelerometers, such as complicated analytical processes and expensive equipment, and in 

fact is frequently used to validate the outputs of prototype sensors (Heldman et al., 2014). 

Additionally, the flexibility in video playback and reviewing afforded to video coders al-

lows them to identify characteristics of behaviors, including subtle or transient movements 

not reliably detectable during clinical assessments. This  provides the opportunity for pre-

cise feature extraction necessary for machine learning algorithms. 

 

Limitations 

The technical limitations of this study are important to discuss. The assessments performed 

in this study were dependent on the equipment and personnel used for the clinical exami-

nations. For example, when assessing the reasons for the differences observed between the 

timestamps generated by the expert rater and the non-expert raters it was found that a fre-

quent, temporary obstruction of the camera was present when the clinician was assessing 
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rigidity on the left side, due to their blocking the camera’s view of the subject. Future 

studies using this methodology should take care to ensure clear and continuous lines of 

sight, and to accurately disclose the camera equipment and angles used in order to ensure 

reproducibility. The definitions used for coding in this article represent a pilot attempt to 

perform a deep classification of tasks and behaviors sensitive to PD. This remains a major 

limitation which deserves further study, with models for accurate identification of discrete 

behaviors necessary. However, they do provide insight into this methodology’s precision 

for quantifying motor behavior in PD. Lastly, the analysis methods used to evaluate relia-

bility for video coding remain important to discuss. The algorithms for linking codes be-

tween coders are not well suited to continuous coding, which will be encountered by all 

studies attempting to provide continuous measurements for discrete behaviors (Albinali et 

al., 2009; Aminian et al., 1999; Fokkenrood et al., 2014). Future work directed at advanced 

analytical methods such as Bayesian or forest plot methods may be more suitable for anal-

ysis of reliability in video coding.  

 

Future Directions 

Video coding allows for objective quantification of behaviors contained within the MDS-

UPDRS which has the potential for enhancement of clinical measurements of PD, align-

ment with sensor derived end-points and generation of improved neuropathological models 

for individual behaviors in PD. This provides multiple opportunities for clinical translation 

in PD allowing the capture of discrete behaviors in PD and objective measures of each of 

these behaviors. In combination with wearable sensors, detailed video coding provides a 
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common language by which potential biomarkers may be validated, providing powerful 

objective endpoints for accompanying the MDS-UPDRS clinical assessment.  
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Abstract 

The continuous, longitudinal nature of accelerometry monitoring is well-suited to captur-

ing the regular 24-hour oscillations in human activity across the day, the cumulative effect 

of our circadian rhythm and behavior. Disruption of the circadian rhythm in turn disrupts 

rest-activity rhythms. Although circadian disruption is a major feature of Parkinson’s dis-

ease (PD), rest-activity rhythms and their relationship with disease severity have not been 

well characterized in PD. 13 PD participants (Hoehn & Yahr Stage [H&Y] 1 – 3) wore a 

Philips Actiwatch Spectrum PRO continuously for two separate weeks. Rest-activity 

rhythms were quantified by fitting an oscillating 24-hour cosinor model to each participant-

day of activity data. One-way ANOVAs adjusted for demographics revealed significant 

variation in the amount (MESOR, F = 12.76, p < 0.01), range (Amplitude, F = 9.62, p < 

0.01), and timing (Acrophase, F = 2.7, p = 0.05) of activity across H&Y Stages. Those with 

higher H&Y Stages were significantly more likely to be active later in the day, where-as 

those who shifted between H&Y Stages during the study were significantly more active 
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than those who did not change H&Y Stage. Being active later in the day was also signifi-

cantly associated with higher scores on the Movement Disorder Society’s Unified Parkin-

son’s Disease Rating Scale (MDS-UPDRS) Section III (motor symptom severity, p = 0.02), 

Section II (self-reported impact of motor symptoms on daily living, p = 0.01), and Total 

Score (p = 0.01) in an adjusted linear regression model; significant associations between 

MDS-UPDRS scores and activity levels were observed only in the unadjusted model. 

These findings demonstrate that continuous actigraphy is capable of detecting rest-activity 

disruption in PD, and provides preliminary evidence that rest-activity rhythms are associ-

ated with motor symptom severity and H&Y Stage. 

 

Keywords 

Parkinson’s disease 
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rest-activity rhythm 
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Introduction 

The circadian rhythm is thought to be associated with underlying neurodegenerative pro-

cesses and is increasingly recognized as a major component of Parkinson’s disease (PD) 

(Videnovic & Golombek, 2013). Diurnal oscillations are present in PD’s characteristic mo-
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tor and non-motor symptoms, circadian biomarkers such as melatonin and body tempera-

ture exhibit a depressed diurnal amplitude, and the neurological processes underlying cir-

cadian rhythm are altered by the dopaminergic treatments used to mitigate parkinsonian 

symptoms (Baumann-Vogel et al., 2017; Gros & Videnovic, 2017; K. Suzuki et al., 2007; 

van Someren et al., 1996). Circadian disruption is associated with a myriad negative se-

quelae, including metabolic, cardiac, and endocrine syndromes, mental and neuropsychi-

atric disorders, and sleep disruption (Korshunov et al., 2017; Vetter, 2018). 

Actigraphy, the process of monitoring activity using body-worn sensors, has been 

used to study circadian disruption through altered sleep patterns in multiple populations, 

such as adolescents (Arora & Taheri, 2015) and shift workers (Hulsegge et al., 2019). Alt-

hough actigraphy has the disadvantage of inferring behavior through movement, it permits 

continuous and longitudinal measurement that would be infeasible with methods such as 

clinical scales and polysomnography. Actigraphy also provides an objective measure of 

behavior in place of self-report motor and sleep diaries, which are often considered subjec-

tive in nature (Horak & Mancini, 2013). Due to their small size and capacity to continu-

ously record activity for days to weeks at a time, actigraphy has seen increasingly extensive 

use in PD research (Espay et al., 2017; M. Suzuki et al., 2017) to objectively quantify motor 

symptoms (Johansson et al., 2018), measure sleep disruption (Baumann-Vogel et al., 

2017), and provide objective measures of gait and balance during motor tasks (Zampieri et 

al., 2010).  

Without exogenous zeitgebers (e.g. regular light-dark cycles), the human circadian 

rhythm has an endogenous period of approximately 24.2 hours (Burgess & Eastman, 2008; 
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Czeisler et al., 1999), which would gradually desynchronize it from the 24-hour day. A 

combination of exogenous cues – e.g. light and social interaction – and endogenous mech-

anisms – e.g. clock gene feedback loops – continuously entrain the circadian rhythm, ef-

fectively synchronizing it with the environment. However, artificial zeitgebers such as 

light-emitting technology and readily accessible social media, which are ubiquitous in 

modern societies, can desynchronize the circadian rhythm from the calendar day (Vetter, 

2018). In addition, the timetables and obligations of our modern industrial society often 

diverge from natural light-dark cycles and thus can disrupt biological rhythms. The contin-

uous, longitudinal nature of actigraphic monitoring is well-suited to capturing such dis-

turbances, both through sleep disruption and through assessment of Rest-Activity Rhythms 

(RAR), the regular 24-hour oscillation in human activity across the daily sleep-wake cycle. 

RAR can be parametrically modelled by fitting a sine-cosine function with a 24-hour pe-

riod to time-series accelerometry data, allowing the average, range, and phase-shift of ac-

tivity to be quantified. Actigraphic evaluation of RAR in neurodegenerative disease is not 

a new approach – actigraphy has been used to monitor changes in the stability of RAR in 

Alzheimer’s disease (van Someren et al., 1996) – and the continuing advancement and 

ubiquity of wearable sensors has enabled larger and more detailed datasets to be produced. 

Herein we continuously assessed RAR using wrist-worn actigraphy in persons with 

PD collected over two full weeks in a prospective study. Our objective was to further char-

acterize circadian disruption in PD and determine its associations with disease severity, 

with the broader aim of developing a methodological and statistical model to characterize 

circadian disruption in PD and its relationship to disease severity in future work. 
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Materials and Methods 

Participants 

This paper is a retrospective analysis of an observational study performed in 2016 whose 

primary objective was to evaluate the feasibility of an electronic application (app) for re-

porting quality of life and disease symptom outcomes. The participants, 5 older healthy 

controls (not included in this paper’s analysis) and 15 persons with a diagnosis of idiopathic 

PD (Hoehn & Yahr Stage 1 – 3), were enrolled on a “first come first serve” basis so long 

as they met criteria. All participants underwent in-home and in-lab activity monitoring with 

a Philips Actiwatch Spectrum PRO and a network of BioSensics PAMSys devices (only 

persons with PD were included in this analysis). Herein we present an analysis of the 

Philips Actiwatch data, specifically aimed at extracting rest-activity rhythms from the lon-

gitudinal and continuous actigraphic recordings. 

A single Philips Actiwatch recording accelerometry at 32 Hz was worn by partici-

pants on the wrist of their symptomatically least-affected side for two seven-day at-home 

periods. The recording weeks were separated by an average of 36.31 days (standard devi-

ation = 4.80, range = [28 - 49]). Participants were instructed to wear the devices as often 

as possible except when they would be submerged in water (e.g. showering, swimming). 

Participants were also instructed to maintain their normal routine and behavior, and asked 

to complete electronic quality of life and motor diaries, while wearing the sensors at-home. 

All participants gave their written informed consent before participating in the study 

(BUSM IRB H-34656), and all study activities were performed in accordance with the 
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Declaration of Helsinki (World Medical Association, 2013). Each at-home recording pe-

riod was followed by an in-lab visit where participants underwent clinical assessments. 

Perceived daytime sleepiness was assessed using the Epworth Sleepiness Scale 

(ESS), quality of life was assessed using the Euro-QoL 5-Dimension (EQ-5D) instrument 

and the Euro-QoL Visual Analogue Scale (EQ-5D-VAS), perceived severity of parkin-

sonian symptoms was evaluated with the Parkinson’s Disease Questionnaire, 8-Point 

(PDQ8), and disease state was assessed using the Movement Disorder Society’s Unified 

Parkinson’s Disease Rating Scale (MDS-UPDRS). The MDS-UPDRS was administered 

by one of three trained neurologists during the participant’s in-lab visit immediately before 

each week of recording; participants were assessed while ON medication. Demographics, 

including daily intake of levodopa medication (in milligrams), were obtained from the par-

ticipants through self-report. Overall cognitive function was assessed using the Mini-Men-

tal Status Examination (MMSE) on their first in-lab visit before the at-home recording 

period.  

 

Descriptive Rhythmometry 

Tri-axial accelerometry data from the Philips Actiwatch was downloaded using the Philips 

Actiware 5.0 and transformed into Activity Counts (AC) binned into 15-second epochs42. 

The AC time-series was segmented into days (n = 5760 epochs per day). In order to max-

imize available data, days were defined as starting with the 18:00:00 – 18:00:15 epoch and 

	
42 Actiware uses a proprietary algorithm to automatically extract AC from raw accelerometry data, 
which are not directly accessible. 
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ending with the 17:59:45 – 18:00:00 epoch (due to scheduling, participant recording began 

in the late morning to late afternoon). For clarity, models will be referred to by their starting 

day (e.g. Sunday cosinors start at 18:00:00 and end at 17:59:45 on Monday). Oscillating 

sin-cosine models with periods of 24-hours (a “cosinor model”) were fitted to the daily AC 

time-series using the least squares method (cheart, 2008; Nelson et al., 1979). The cosinor 

produces three parameters that characterize the participant’s rest-activity rhythms: the Mid-

line Estimating Statistic of Rhythm (MESOR) represents the midline of the fitted cosinor 

function, that is the average AC across the model’s sample (i.e. a day) and about which the 

cosinor function oscillates; Amplitude (Amp) is equal to difference in the average peak (or 

trough) of the cosinor function and it’s midline; Acrophase (Acro) is the relative phase-

shift of the peak amplitude from the reference time marking the start of the cosinor function 

(in this case, 18:00). Cosinor models were generated for all of those days with no more 

than 15% missing data (i.e. 864 epochs or 3.6 hours), which was usually caused by the 

participant removing the Actiwatch. 

 

Baseline and Clinical Characteristics 

Before the primary analysis, descriptive statistics were generated for the baseline variables 

collected at enrollment (Age, Sex, Handedness, BMI, MMSE Score, and Levodopa In-

take)43 and clinical endpoints collected after each week of in-home recording (ESS, PDQ8, 

	
43 Circadian rhythm undergoes a forward phase-shift with increasing age and has a slightly longer 
period in men; chronic circadian disruption is associated with increased BMI and impaired cogni-
tion; while there is little evidence implicating handedness as a modulator of circadian rhythm, it 
may affect data collected through wrist-worn actigraphy; levodopa therapy can alter circadian 
rhythm. 



	

	

143 

EQ-5D, MDS-UPDRS, and H&Y Stage). To determine if clinical characteristics signifi-

cantly varied between the two in-home recording weeks, paired sample t-tests were con-

ducted for continuous variables (ESS, EQ-5D-VAS, and MDS-UPDRS Section Scores) 

and Wilcoxon Mann-Whitney rank-sum tests were conducted for non-continuous variables 

(PDQ8, EQ-5D , and H&Y Stage).  

Participants were sorted into sub-groups by their H&Y Stage. Participants whose 

H&Y Stage changed between the two weeks were defined as their own groups: either H&Y 

Stage 1/2 (for those who were rated at Stage 1 and Stage 2) or H&Y Stage 2/3 (for those 

who were rated at Stage 2 and Stage 3). No participant’s H&Y Stage changed by more than 

one between the two weeks. While some participants were evaluated by multiple neurolo-

gists during the study due to scheduling and availability, all participants who changed H&Y 

Stage were evaluated by the same neurologist at both time points. To determine if baseline 

characteristics significantly varied by H&Y Stage, one-way Analyses of Variance (ANO-

VAs) were conducted for the analysis of continuous variables (Age, BMI, MMSE Score, 

and Levodopa Intake) and Pearson’s chi-square analyses were conducted for categorical 

variables (Sex and Handedness). 

 

Rest-Activity Rhythm 

Cosinor rhythmometry was performed in MATLAB v9.4 (MathWorks Inc., Natick, MA, 

R2018a). Data were arranged and visualized in Microsoft Excel v16.16.7 (Microsoft Inc., 

Redmond, WA) and analyzed using Stata/SE v15.1 (StataCorp LLC, Texas, USA). The 

threshold for statistical significance was set to p < 0.05. All summary statistics are reported 
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as Average (± Standard Deviation) for continuous data and Number (Percent) for categor-

ical, ordinal, and dichotomous data. 

Univariate analysis of cosinor parameters and their association with clinical varia-

bles was calculated using one way ANOVA and linear regression. Bivariate models were 

subsequently performed between cosinor parameters and baseline characteristics. Associ-

ations with continuous variables (age, BMI, MMSE score, ESS score, and daily levodopa 

intake) were quantified with simple linear regressions, and for dichotomous variables (sex 

and handedness) odds ratios were calculated using simple logistic regressions. 

The primary analytical question was whether the participant’s rest-activity rhythm 

significantly varied by disease severity, as measured by H&Y Stage sub-group and by 

MDS-UPDRS Sections. For the former, one-way ANOVAs were conducted for each of the 

cosinor parameters (MESOR, Amplitude, and Acrophase) with H&Y Stage as the inde-

pendent grouping variable. Simple linear regressions were used to measure the degree of 

association between each cosinor parameter and each MDS-UPDRS Section, including To-

tal Score.  

 ANOVAs and regressions except for bivariate associations with baseline and clin-

ical characteristics were performed twice: once in an unadjusted model with no predictors 

besides H&Y Stage or MDS-UPDRS score, and then repeated in a model adjusted by age, 

BMI, ESS score, daily levodopa intake, and sex. 
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Results 

Missing Data 

Two participants were excluded at the beginning of analysis due to excessive missing data, 

resulting in an analytical sample of 13 participants. Out of a total possible 182 participant-

days (14 in-home study days * 13 participants), 58 (31.87%) participant-days were ex-

cluded from the cosinor analysis due to greater than 15% missing data within a given day 

(Table A.1). Across all participants, the greatest proportion of excluded participant-days 

was on Monday (n = 24, 92.31%). This could be ascribed to being the day participants 

began and ended study activities with an in-lab visit, resulting in much of the day usually 

not being recorded. The next greatest proportion of excluded participant-days was on Sat-

urday (n = 10, 38.46%), with Thursday having the least excluded participant-days (n = 2, 

7.69%). Across all days, H&Y Stage 3 had the highest percent excluded (n = 17, 40.48%) 

and H&Y Stage 2 the lowest (n = 10, 23.81%). 

 

Baseline Characteristics 

The participant’s age, sex, hand dominance, BMI, cognitive status, and daily levodopa in-

take did not significantly vary by H&Y Stage (p = 0.22 – 0.94; Table 4.1).  
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Table 4.1: Demographic characteristics of the final analytical cohort and outcomes of statistical tests by H&Y Stage.  

 
H&Y Stage 1/2 H&Y Stage 2 H&Y Stage 2/3 H&Y Stage 3 All 

Comparison of Means Between H&Y 

Stages 

 
n = 1 n = 6 n = 3 n = 3 n = 13 One-Way ANOVA or Pearson χ

2
 test 

Age (Years) 

†
 62.00 (-) 61.5 (4.72) 59.33 (9.24) 59.67 (3.79) 60.62 (5.20) F(3, 9) = 0.14 p = 0.94 

Sex (Male) 

◊
 1 (100.00%) 4 (66.67%) 1 (33.33%) 1 (33.33%) 7 (53.85%) z = 2.27 p = 0.52 

Hand Dominance 

(Right) 

◊
 

1 (100.00%) 6 (100.00%) 2 (66.67%) 2 (66.67%) 11 (84.62%) z = 2.76 p = 0.43 

BMI (kg/m

2
) 

†
 21.11 (-) 27.22 (3.82) 28.88 (4.43) 25.47 (1.72) 26.73 (3.76) F(3, 9) = 1.31 p = 0.33 

MMSE (Total 

Score) 

†
 

29.00 (-) 29.83 (0.41) 28.00 (2.00) 28.00 (2.00) 28.92 (1.50) F(3, 9) = 1.80 p = 0.22 

Levodopa Intake 

(mg/day) 

†
 

800.00 (-) 501.04 (441.17) 683.33 (395.99) 400.00 (173.21) 542.79 (358.68) F(3, 9) = 0.44 p = 0.73 

Abbreviations: ANOVA (Analysis of Variance), BMI (Body Mass Index), H&Y (Hoehn and Yahr), kg (kilogram), mg (milligram), 

MMSE (Mini-Mental Status Examination), PD (Parkinson’s Disease). 

Age, BMI, MMSE, and Levodopa Intake provided in Mean (Standard Deviation); Sex and Hand Dominance provided in: Number (%). 

  

†
 Summary statistics are provided in Mean (Standard Deviation); between-group comparison made with a One-Way ANOVA 

◊
 Summary statistics are provided in Number (%); between-group comparison made with a Pearson χ

2
 test 
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Clinical Characteristics, Change Across Study Weeks 

The participants did not significantly vary in their MDS-UPDRS scores between the two 

weeks (p = 0.26 - 0.68; Table 4.2). Although some participants transitioned between H&Y 

Stages between the two weeks, this was not significant across the sample (p = 0.17). Pa-

tient-reported disease state, quality of life, and daytime sleepiness did not significantly vary 

between the two weeks (PDQ8: p = 0.84, EQ-5D: p = 0.90 – 0.97, ESS: p = 0.92). Six of 

the 13 participants presented with unilateral tremor (as identified by MDS-UPDRS Item 

3.17 “Resting Tremor”) – four on the left side, two on the right side (data not shown). The 

remaining seven participants presented with no resting tremor in their limbs. No partici-

pants presented with bilateral resting tremor during the study. 
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Table 4.2: Clinical and quality of life characteristics of the final analytical cohort and out-
comes of statistical tests between the two week-long recording periods.  

 Week 1 Week 2 All Weeks 

Comparison of Means Be-

tween Weeks 

 n = 13 n = 13 n = 26 

Paired t-test or Wilcoxon 

Mann-Whitney Rank-Sum 

Test 

Hoehn & Yahr Stage ◊ 2.46 (0.52) 2.15 (0.55) 2.31 (0.55) z = 1.38 p = 0.17 

MDS-UPDRS Section I † 9.69 (6.76) 10.15 (6.89) 9.92 (6.69) t = -1.07 p = 0.31 

MDS-UPDRS Section II † 10.08 (5.48) 11.15 (8.09) 10.62 (6.79) t = -0.94 p = 0.37 

MDS-UPDRS Section III † 22.23 (8.81) 23.23 (11.61) 22.73 (10.11) t = -0.43 p = 0.68 

MDS-UPDRS Section IV † 4.54 (2.40) 5.15 (3.46) 4.85 (2.94) t = -1.10 p = 0.29 

MDS-UPDRS Total Score † 46.54 (18.55) 49.69 (23.97) 48.12 (21.06) t = -1.17 p = 0.26 

PDQ8 (Total Score) ◊ 6.00 (4.20) 6.62 (4.89) 6.31 (4.48) z = -0.21 p = 0.84 

EQ-5D (Total Score) ◊ ‡ 6.25 (1.36) 6.42 (1.93) 6.33 (1.63) z = 0.12 p = 0.90 

EQ-5D-VAS † ‡ 79.58 (13.56) 79.42 (19.97) 79.50 (16.69) t = 0.03 p = 0.97 

ESS (Total Score) † ‡ 7.75 (3.31) 7.67 (3.92) 7.71 (3.54) t = 0.10 p = 0.92 

Abbreviations: CI (Confidence Interval), ESS (Epworth Sleepiness Scale), EQ5D (Euro-Quality 

of life, 5 Dimension), MDS-UPDRS (Movement Disorder Society’s Unified Parkinson’s Disease 

Rating Scale), PD (Parkinson’s Disease), PDQ8 (Parkinson’s Disease Questionnaire, 8-point), 
VAS (Visual Analogue Scale). 
† Summary statistics are provided in Mean (Standard Deviation); between-group comparison 

made with a paired t-test 
◊ Summary statistics are provided in Number (%); between-group comparison made with a Wil-

coxon Mann-Whitney Rank-Sum Test 
‡ Week 2 data for one participant was not included for these assessments due to data loss, and 

were excluded from the summary statistics and statistical tests for those assessments. 
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Rest Activity Rhythm, Association with Baseline Characteristics 

Bivariate linear regressions (Table A.2) demonstrated a significant association between 

higher MESOR and lower age (p < 0.01, Coef. = -1.83 AC/year), lower BMI (p < 0.01, 

Coef. = -1.88 AC/kg/m2), lower MMSE score (p < 0.01, Coef. = -3.41 AC/point), increased 

daily levodopa intake (p < 0.01, Coef. = 0.02 AC/mg levodopa/day), being female (p < 

0.01, Male Odds Ratio = 0.95), and being left-handed (p < 0.01, Right Hand Odds Ratio = 

0.95). A greater range of activity (Amplitude) was significantly associated with lower age 

(p < 0.01, Coef. = -1.71 AC/year), lower BMI (p < 0.01, Coef. = -1.67 AC/kg/m2), lower 

MMSE score (p < 0.01, Coef. = -4.11 AC/point), lower ESS score (p = 0.04, Coef. = -0.96 

AC/point), increased daily levodopa intake (p < 0.01, Coef. = 0.02 AC/mg levodopa/day), 

being female (p < 0.01, Male Odds Ratio = 0.95), and being left-handed (p < 0.01, Right 

Hand Odds Ratio = 0.95). A forward-shifted Acrophase was significantly associated with 

a lower MMSE score (p = 0.02, Coef. = -16.12 minutes/score) and a higher daily levodopa 

intake (p < 0.01, Coef. = 0.08 minutes/mg levodopa/day). 

 

Rest-Activity Rhythm, Association with MDS-UPDRS, Unadjusted 

Bivariate linear regressions demonstrated that an increased MESOR was significantly as-

sociated with a higher Section I score (p = 0.05, Coef. = 0.56 AC/score) and Section IV 

score (p < 0.01, Coef. = 3.16 AC/score) in Week 1, a higher Section IV score (p < 0.01, 

Coef. = 3.27 AC/score) in Week 2, and a lower Section III score (p = 0.03, Coef. = -0.35 

AC/score) and higher Section IV score (p < 0.01, Coef. = 3.27) in a sample containing both 
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weeks. A higher range of activity (Amplitude) was significantly associated with a higher 

Section I score (p < 0.01, Coef. = 0.75 AC/score), Section IV score (p < 0.01, Coef. = 2.84 

AC/score), and a higher Total Score (p = 0.04, Coef. = 0.21 AC/score) in Week 1, a higher 

Section IV score (p < 0.01, Coef. = 3.25 AC/score) in Week 2, and a higher Section I score 

(p = 0.04, Coef. = 0.49 AC/score) and a higher Section IV score (p < 0.01, Coef. = 3.02) 

in a sample containing both weeks. A forward-shifted Acrophase was significantly associ-

ated with a higher Section I score (p < 0.01, Coef. = 5.18 minutes/score) in Week 1, a 

higher Section I score (p < 0.01, 6.40 minutes/score), higher Section II score (p < 0.01, 

5.68 minutes/score), higher Section III score (p < 0.01, 3.45 minutes/score), and higher 

Total Score (p < 0.01, 2.13 minutes/score) in Week 2, and a higher Section I score (p < 

0.01, 5.78 minutes/score), higher Section II score (p < 0.01, 4.80 minutes/score), higher 

Section III score (p < 0.01, 2.45 minutes/score), and higher Total Score (p < 0.01, 1.75 

minutes/score) in a sample containing both weeks. 
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Table 4.3: Cosinor parameters** of the final analytical cohort***, tabulated by Study Week and by H&Y Stage, and the outcomes 
of one-way ANOVAs conducted by H&Y Stage, and linear regressions conducted by MDS-UPDRS score across all participants.  

Table 
4.3A 

MESOR 

H&Y 
Stage 
1/2 

H&Y 
Stage 

2 

H&Y 
Stage 
2/3 

H&Y 
Stage 

3 
All 

Comparison of 
Means Between 

H&Y Stages 

Association with 
MDS-UPDRS 

Section I 

Association with 
MDS-UPDRS 

Section II 

Association with 
MDS-UPDRS 

Section III 

Association with 
MDS-UPDRS 

Section IV 

Association 
with MDS-

UPDRS Total 

n = 1 n = 6 n = 3 n = 3 n = 
13 

One-Way 
ANOVA, Unad-

justed 

Linear Regres-
sion, Unadjusted 

Linear Regres-
sion, Unadjusted 

Linear Regression, 
Unadjusted 

Linear Regression, 
Unadjusted 

Linear Regres-
sion, Unad-

justed 

Week 1 36.52 
(7.37) 

22.03 
(7.28

) 

44.75 
(21.23

) 

34.15 
(9.33

) 

31.62 
(15.4

4) 

F(3, 57) = 
11.17 

p < 
0.01* 

Coef. = 
0.56 

p = 
0.05* 

Coef. = 
0.11 

p = 
0.77 

Coef. = -
0.25 

p = 
0.27 

Coef. = 
3.16 

p < 
0.01* 

Coef. = 
0.08 

p = 
0.44 

Week 2 
43.48 
(13.54

) 

19.98 
(5.67

) 

41.27 
(34.58

) 

24.87 
(12.5

5) 

28.90 
(21.6

1) 

F(3, 59) = 
5.47 

p < 
0.01* 

Coef. = 
0.26 

p = 
0.52 

Coef. = -
0.26 

p = 
0.44 

Coef. = 
0.09 

p = 
0.09 

Coef. = 
3.50 

p < 
0.01* 

Coef. = -
0.04 

p = 
0.71 

All 
Weeks 

40.00 
(11.01

) 

20.99 
(6.53

) 

42.90 
(28.71

) 

29.70 
(11.7

5) 

30.24 
(18.8

0) 

F(3, 120) = 
13.52 

p < 
0.01* 

Coef. = 
0.40 

p = 
0.10 

Coef. = -
0.17 

p = 
0.48 

Coef. = -
0.35 

p = 
0.03* 

Coef. = 
3.27 

p < 
0.01* 

Coef. = -
0.00 

p = 
0.95 

 

Table 
4.3B 

Ampli-
tude 

H&Y 
Stage 
1/2 

H&Y 
Stage 

2 

H&Y 
Stage 
2/3 

H&Y 
Stage 

3 
All 

Comparison of 
Means Between 

H&Y Stages 

Association with MDS-
UPDRS Section I 

Association with 
MDS-UPDRS 

Section II 

Association with 
MDS-UPDRS 

Section III 

Association with 
MDS-UPDRS 

Section IV 

Association 
with MDS-

UPDRS Total 

n = 1 n = 6 n = 3 n = 3 n = 
13 

One-Way 
ANOVA, Unad-

justed 

Linear Regression, Un-
adjusted 

Linear Regres-
sion, Unadjusted 

Linear Regres-
sion, Unadjusted 

Linear Regression, 
Unadjusted 

Linear Re-
gression, Un-

adjusted 

Week 1 32.26 
(9.86) 

22.21 
(9.66

) 

42.40 
(17.7

5) 

32.87 
(10.5

6) 

30.44 
(14.5

7) 

F(3, 57) = 
8.94 

p < 
0.01* Coef. = 0.75 p < 0.01* Coef. = 

0.26 
p = 
0.44 

Coef. = 
0.17 p = 0.43 Coef. = 

2.84 
p < 

0.01* 
Coef. 
= 0.21 

p = 
0.04* 

Week 2 
44.50 
(15.8

4) 

20.62 
(7.47

) 

39.42 
(31.9

6) 

25.39 
(15.1

1) 

28.87 
(20.8

8) 

F(3, 59) = 
4.92 

p < 
0.01* Coef. = 0.24 p = 0.53 Coef. = -

0.32 
p = 
0.33 

Coef. = -
0.36 p = 0.10 Coef. = 

3.25 
p < 

0.01* 
Coef. 

= -0.05 
p = 
0.65 

All 
Weeks 

38.38 
(14.1

1) 

21.40 
(8.57

) 

40.82 
(25.9

2) 

29.28 
(13.2

3) 

29.64 
(18.0

0) 

F(3, 120) = 
11.10 

p < 
0.01* Coef. = 0.49 p = 0.04* Coef. = -

0.15 
p = 
0.51 

Coef. = -
0.19 p = 0.22 Coef. = 

3.02 
p < 

0.01* 
Coef. 
= 0.04 

p = 
0.60 
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Table 
4.3C Ac-
rophase 

H&Y 
Stage 
1/2 

H&Y 
Stage 

2 

H&Y 
Stage 
2/3 

H&Y 
Stage 

3 
All 

Comparison of 
Means Between 

H&Y Stages 

Association with 
MDS-UPDRS 

Section I 

Association with 
MDS-UPDRS 

Section II 

Association with 
MDS-UPDRS 

Section III 

Association with 
MDS-UPDRS 

Section IV 

Association 
with MDS-

UPDRS Total 

n = 1 n = 6 n = 3 n = 3 n = 
13 

One-Way 
ANOVA, Unad-

justed 

Linear Regres-
sion, Unadjusted 

Linear Regres-
sion, Unadjusted 

Linear Regression, 
Unadjusted 

Linear Regression, 
Unadjusted 

Linear Regres-
sion, Unad-

justed 

Week 1 12:13 
(1:35) 

13:32 
(1:40

) 

14:20 
(1:44) 

13:36 
(1:55

) 

13:3
7 

(1:47
) 

F(3, 57) = 
2.19 p = 0.10 Coef. = 

5:11 
p < 

0.01* 
Coef. = 

3:05 p = 0.22 Coef. = 
0:29 p = 0.76 Coef. = 

4:52 p = 0.40 Coef. = 
1:09 p = 0.11 

Week 2 13:00 
(2:10) 

13:16 
(2:00

) 

14:00 
(1:32) 

14:22 
(2:27

) 

13:3
9 

(2:01
) 

F(3, 59) = 
1.25 p = 0.30 Coef. = 

6:24 
p < 

0.01* 
Coef. = 

5:41 
p < 

0.01* 
Coef. = 

3:27 
p < 

0.01* 
Coef. = 

7:20 p = 0.12 Coef. = 
2:08 

p < 
0.01* 

All 
Weeks 

12:36 
(1:51) 

13:24 
(1:50

) 

14:09 
(1:37) 

13:58 
(2:11

) 

13:3
8 

(1:54
) 

F(3, 120) 
= 2.62 p = 0.05 Coef. = 

5:47 
p < 

0.01* 
Coef. = 

4:48 
p < 

0.01* 
Coef. = 

2:27 
p = 

0.01* 
Coef. = 

6:25 p = 0.07 Coef. = 
1:45 

p < 
0.01* 

Summary statistics are provided in Mean (Standard Deviation) 
**MESOR and Amplitude are reported in AC for mean and standard deviation, and in AC per UPDRS score for regression coefficients. Note that Acro-
phase is reported in hour:minute for mean and standard deviation, and in minute:second per UPDRS score for regression coefficients. 
***The sample analyzed contained n = 61 cosinor participant-days and degrees of freedom of F(6, 54) for Week 1, n = 60 and degrees of freedom of 
F(6, 53) for Week 2, and n = 121 and degrees of freedom of F(6, 114) for both Weeks combined. 
Abbreviations: AC (Activity Count), ANOVA (Analysis of Variance), CI (Confidence Interval), Coef = [Regression] Coefficient, H&Y (Hoehn and 
Yahr), MDS-UPDRS (Movement Disorder Society’s Unified Parkinson’s Disease Rating Scale), MESOR (Midline Estimating Statistic Of Rhythm). * = 
p < 0.05 
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Rest-Activity Rhythm, Variation by H&Y Stage 

In the models unadjusted for baseline and demographic characteristics (Table 4.3; Figure 

4.1), significant variation in mean and range, but not timing, of activity was consistently 

observed across H&Y Stages for the first week (MESOR: F[3, 57], F = 11.17, p < 0.01; 

Amplitude: F[3, 57], F = 8.94, p < 0.01; Acrophase: F[3, 57], F = 2.19, p = 0.10), the second 

week (MESOR: F[3, 59], F = 5.47, p < 0.01; Amplitude: F[3, 59], F = 4.92, p < 0.01; 

Acrophase: F[3, 59], F = 1.25, p = 0.30), and across both weeks of recording (MESOR: 

F[3, 120], F = 13.52, p < 0.01; Amplitude: F[3, 120], F = 11.10, p < 0.01; Acrophase: F[3, 

120], F = 2.62, p = 0.05). MESOR and Amplitude remained significantly different between 

H&Y Stages after adjustment of the model for age, sex, ESS score, daily levodopa intake, 

and BMI (p < 0.01; Table 4.4; Figure 4.1). Acrophase was not significantly different be-

tween H&Y Stages during Week 1 (F[8, 53], F = 0.83, p = 0.48) in the adjusted model, 

although it achieved significance in Week 2 (F[8, 51], F = 3.92, p = 0.01) and across both 

weeks (F[8, 112], F = 2.70, p = 0.05). 
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Figure 4.1: Modelled values for MESOR (top), Amplitude (middle), and Acrophase (bot-
tom) for each Hoehn & Yahr Stage generated from one-way ANOVA models. The left col-
umn shows values from unadjusted models and the right column shows values from models 
adjusted for age, sex, ESS score, daily levodopa intake, and BMI. Significant differences be-
tween Hoehn & Yahr Stages (p < 0.05) are shown and were calculated using within-model 
pair-wise comparisons. 
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Rest-Activity Rhythm, Association with MDS-UPDRS, Adjusted 

Adjustment for baseline characteristics (age, sex, BMI, handedness, daily levodopa intake, 

MMSE score, and ESS score) eliminated all of the significant bivariate associations ob-

served between MDS-UPDRS Sections and MESOR/Amplitude, with the exception of 

MESOR remaining significantly and negatively associated with Section III scores across 

both weeks (p = 0.05, Coef. = -0.36 AC). The associations between Acrophase and Section 

I for Week 1 and both Weeks became non-significant after adjustment (Week 1: p = 0.88, 

Coef. = 0.30 minutes; Both Weeks: p = 0.16, Coef. = 2.55 minutes). Acrophase remained 

significantly and positively associated with Section II for Week 2 (p < 0.01, Coef. = 4.80 

minutes) and across both Weeks (p < 0.01, Coef. = 3.73 minutes), with Section III for Week 

2 (p < 0.01, Coef. = 5.40 minutes) and across both Weeks (p = 0.02, Coef. = 0.85 minutes), 

and with the Total Score for Week 2 (p < 0.01, Coef. = 1.93 minutes) and across both 

weeks (p = 0.01, Coef. = 1.28 minutes). 
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Table 4.4: Cosinor parameters** of the final analytical cohort***, tabulated by Study Week and by H&Y Stage, and the outcomes 
of one-way ANOVAs conducted by H&Y Stage, and linear regressions conducted by MDS-UPDRS score across all participants, 
adjusted by age, BMI, ESS score, daily levodopa intake, and sex.  

Table 
4.4A 

MESOR 

H&Y 
Stage 
1/2 

H&Y 
Stage 

2 

H&Y 
Stage 
2/3 

H&Y 
Stage 

3 
All 

Comparison of 
Means Between 

H&Y Stages 

Association with 
MDS-UPDRS 

Section I 

Association with 
MDS-UPDRS 

Section II 

Association with 
MDS-UPDRS 

Section III 

Association with 
MDS-UPDRS 

Section IV 

Association 
with MDS-

UPDRS Total 

n = 1 n = 6 n = 3 n = 3 n = 
13 

One-Way 
ANOVA, Adjusted 

Linear Regres-
sion, Adjusted 

Linear Regres-
sion, Adjusted 

Linear Regression, 
Adjusted 

Linear Regression, 
Adjusted 

Linear Regres-
sion, Adjusted 

Week 1 36.52 
(7.37) 

22.03 
(7.28

) 

44.75 
(21.23

) 

34.15 
(9.33

) 

31.62 
(15.4

4) 

F(8, 52) = 
21.97 

p < 
0.01* 

Coef. = 
0.22 

p = 
0.41 

Coef. = 
0.30 p = 

0.29 

Coef. = -
0.33 p = 

0.16 

Coef. = 
1.18 p = 

0.18 

Coef. = 
0.02 p = 

0.82 

Week 2 
43.48 
(13.54

) 

19.98 
(5.67

) 

41.27 
(34.58

) 

24.87 
(12.5

5) 

28.90 
(21.6

1) 

F(8, 51) = 
4.64 

p < 
0.01* 

Coef. = -
0.01 p = 

0.99 

Coef. = -
0.14 p = 

0.66 

Coef. = -
0.53 p = 

0.11 

Coef. = 
1.34 p = 

0.36 

Coef. = -
0.08 p = 

0.49 

All 
Weeks 

40.00 
(11.01

) 

20.99 
(6.53

) 

42.90 
(28.71

) 

29.70 
(11.7

5) 

30.24 
(18.8

0) 

F(8, 112) = 
12.76 

p < 
0.01* 

Coef. = 
0.10 p = 

0.70 

Coef. = -
0.02 p = 

0.94 

Coef. = -
0.36 p = 

0.05* 

Coef. = 
1.09 p = 

0.13 

Coef. = -
0.04 p = 

0.56 

 

Table 
4.4B 

Ampli-
tude 

H&Y 
Stage 
1/2 

H&Y 
Stage 

2 

H&Y 
Stage 
2/3 

H&Y 
Stage 

3 
All 

Comparison of 
Means Between 

H&Y Stages 

Association with 
MDS-UPDRS 

Section I 

Association with 
MDS-UPDRS 

Section II 

Association with 
MDS-UPDRS 

Section III 

Association with 
MDS-UPDRS 

Section IV 

Association 
with MDS-

UPDRS Total 

n = 1 n = 6 n = 3 n = 3 n = 
13 

One-Way 
ANOVA, Adjusted 

Linear Regres-
sion, Adjusted 

Linear Regres-
sion, Adjusted 

Linear Regres-
sion, Adjusted 

Linear Regression, 
Adjusted 

Linear Regres-
sion, Adjusted 

Week 1 32.26 
(9.86) 

22.21 
(9.66

) 

42.40 
(17.75

) 

32.87 
(10.5

6) 

30.44 
(14.5

7) 

F(8, 52) = 
11.61 

p < 
0.01* 

Coef. = 
0.35 p = 

0.19 

Coef. = 
0.31 p = 

0.29 

Coef. = 
0.06 p = 

0.80 

Coef. = 
0.97 p = 

0.28 

Coef. = 
0.11 p = 

0.29 

Week 2 
44.50 
(15.84

) 

20.62 
(7.47

) 

39.42 
(31.96

) 

25.39 
(15.1

1) 

28.87 
(20.8

8) 

F(8, 51) = 
4.38 

p < 
0.01* 

Coef. = -
0.08 p = 

0.87 

Coef. = -
0.21 p = 

0.49 

Coef. = -
0.45 p = 

0.15 

Coef. = 
0.29 p = 

0.84 

Coef. = -
0.10 p = 

0.41 

All 
Weeks 

38.38 
(14.11

) 

21.40 
(8.57

) 

40.82 
(25.92

) 

29.28 
(13.2

3) 

29.64 
(18.0

0) 

F(8, 112) = 
9.62 

p < 
0.01* 

Coef. = 
0.14 p = 

0.59 

Coef. = -
0.08 p = 

0.71 

Coef. = -
0.20 p = 

0.26 

Coef. = 
0.76 p = 

0.29 

Coef. = -
0.02 p = 

0.74 
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Table 
4.4C Ac-
rophase 

H&Y 
Stage 
1/2 

H&Y 
Stage 

2 

H&Y 
Stage 
2/3 

H&Y 
Stage 

3 
All 

Comparison of 
Means Between 

H&Y Stages 

Association with 
MDS-UPDRS 

Section I 

Association with 
MDS-UPDRS 

Section II 

Association with 
MDS-UPDRS 

Section III 

Association with 
MDS-UPDRS 

Section IV 

Association 
with MDS-

UPDRS Total 

n = 1 n = 6 n = 3 n = 3 n = 
13 

One-Way 
ANOVA, Adjusted 

Linear Regres-
sion, Adjusted 

Linear Regres-
sion, Adjusted 

Linear Regression, 
Adjusted 

Linear Regression, 
Adjusted 

Linear Regres-
sion, Adjusted 

Week 1 12:13 
(1:35) 

13:32 
(1:40

) 

14:20 
(1:44) 

13:36 
(1:55

) 

13:3
7 

(1:47
) 

F(8, 52) = 
0.83 

p = 
0.48 

Coef. = 
0:18 p = 

0.88 

Coef. = 
1:49 p = 

0.41 

Coef. = -
1:38 p = 

0.36 

Coef. = 
1:23 p = 

0.84 

Coef. = -
0:01 p = 

0.98 

Week 2 13:00 
(2:10) 

13:16 
(2:00

) 

14:00 
(1:32) 

14:22 
(2:27

) 

13:3
9 

(2:01
) 

F(8, 51) = 
3.92 

p = 
0.01* 

Coef. = 
7:21 p = 

0.01* 

Coef. = 
4:48 p < 

0.01* 

Coef. = 
5:24 p < 

0.01* 

Coef. = 
5:45 p = 

0.51 

Coef. = 
1:56 p < 

0.01* 

All 
Weeks 

12:36 
(1:51) 

13:24 
(1:50

) 

14:09 
(1:37) 

13:58 
(2:11

) 

13:3
8 

(1:54
) 

F(8, 112) = 
2.70 

p = 
0.05* 

Coef. = 
2:33 p = 

0.16 

Coef. = 
3:44 p < 

0.01* 

Coef. = 
0:51 p = 

0.02* 

Coef. = 
6:03 p = 

0.23 

Coef. = 
1:17 p = 

0.01* 

Summary statistics are provided in Mean (Standard Deviation) 
**MESOR and Amplitude are reported in AC for mean and standard deviation, and in AC per UPDRS score for regression coefficients. Note that Acro-
phase is reported in hour:minute for mean and standard deviation, and in minute:second per UPDRS score for regression coefficients. 
***The sample analyzed contained n = 61 cosinor participant-days and degrees of freedom of F(6, 54) for Week 1, n = 60 and degrees of freedom of 
F(6, 53) for Week 2, and n = 121 and degrees of freedom of F(6, 114) for both Weeks combined 
Abbreviations: AC (Activity Count), ANOVA (Analysis of Variance), CI (Confidence Interval), H&Y (Hoehn and Yahr), MDS-UPDRS (Movement 
Disorder Society’s Unified Parkinson’s Disease Rating Scale), MESOR (Midline Estimating Statistic Of Rhythm). * = p < 0.05 
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Discussion 

This study has found that rest-activity rhythms, quantified via rythmometric cosinor anal-

ysis of actigraphy data, vary with disease severity in PD and are associated with clinical 

ratings of disease state. MESOR and Amplitude, which measure the average and range of 

activity, did not increase linearly with H&Y Stage but were instead significantly higher in 

participants whose H&Y Stage changed over the study period. Participants with more se-

vere and burdensome symptoms (i.e. higher MDS-UPDRS Sections I, II, and III scores) 

were less active on average and had a smaller range of activity; however this association 

became non-significant once demographic covariates were accounted for. A consistent re-

lationship was observed between the timing of activity (Acrophase) and increased disease 

severity as assessed by both H&Y Stage and by MDS-UPDRS scores, which remained 

significant after including covariates in the model.  

 

Rest-Activity Rhythms are Associated with Disease Severity in PD 

Circadian disruption of molecular, neurological, and behavioral systems is increasingly 

recognized as a major component in PD with implications for symptom management and 

the development of therapeutic interventions (Fifel & Videnovic, 2019; Videnovic & 

Golombek, 2017). Although actigraphy has been widely used to characterize both the hall-

mark motor impairments and non-motor symptoms (i.e. sleep disruption) in PD (Artusi et 

al., 2018; Horak & Mancini, 2013; M. Suzuki et al., 2017), objective measures of rest-

activity rhythms in PD are scarce. Relative to healthy controls, persons with PD have lower 

daytime activity, increased inter-daily variability in activity, and increased activity during 
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sleep resulting in sleep disruption (Madrid-Navarro et al., 2018; Niwa et al., 2011; White-

head et al., 2008). Our results generally support these findings, as we observed a consistent 

negative association between MDS-UPDRS Sections I - III and average activity and range 

of activity. Although the depression of rest-activity rhythms may worsen with increasing 

disease severity (Fifel & Videnovic, 2019), reported associations between activity levels 

and MDS-UPDRS scores have been inconsistent (Madrid-Navarro et al., 2018; Niwa et al., 

2011). A significant positive association between Section IV (Motor Fluctuations) and am-

plitude of activity was reported by Whitehead et al. (2008), where-as we observed a nega-

tive non-significant association. Our use of the revised MDS-UPDRS versus Whitehead et 

al.’s use of the original UPDRS may explain this. Our results are consistent with Niwa et 

al.'s (2011) finding that activity amplitude is negatively associated with MDS-UPDRS Sec-

tion III (Motor Exam). However, Madrid-Navarro et al. (2018) found no significant asso-

ciations between range of activity and any MDS-UPDRS Section. 

Curiously, the association between disease severity and activity did not extend to 

H&Y Stages: rather, participants whose H&Y Stage changed over the course of the study 

had higher activity than those who remained in the same Stage (clinically, participants who 

received two separate H&Y Stages approximates a cohort with a variable disease state, or 

a cohort with disease severity straddling the division between the two stages). This may 

indicate that amplitude of activity is affected by fluctuations in disease state in addition to 

its overall severity. However, it is uncertain if this is a genuine trend, or the result of normal 

but unaccounted for inter-individual heterogeneity in rest-activity rhythms, which remain 

a poorly characterized aspect of actigraphic rhythmometry in PD (Fifel & Videnovic, 2019; 
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Madrid-Navarro et al., 2018). Small sample sizes may amplify the effects of such inter-

individual variances, which highlights the need for future studies including larger cohorts. 

 

Biological Implications of Rest-Activity Rhythms 

Dopamine is integral to the neuropathology of PD (Fahn, 2008; Hornykiewicz, 1966; Kalia 

& Lang, 2015; Videnovic & Golombek, 2013); it’s depletion due to dopaminergic cell 

death in the substantia nigra pars compacta is considered the primary cause of PD’s char-

acteristic motor symptoms, and the main therapeutic strategies focus on mitigating its se-

quelae (either directly through dopamine agonists or indirectly through deep brain stimu-

lation). Given that dopamine exhibits circadian rhythmicity with a diurnal morning peak in 

cerebrospinal fluid (Poceta et al., 2009) and is involved in multiple circadian regulatory 

systems – e.g. light adaptation in the retina (Witkovsky, 2004) and clock gene expression 

in the dorsal striatum (Hood et al., 2010) – it has been hypothesized that pathological do-

paminergic depletion would inevitably impair the neural regulation of the circadian rhythm 

(Videnovic & Golombek, 2017). Furthermore, hypocretin-positive cell loss – a neuropa-

thological characteristic of narcolepsy – occurs in the hypothalamus in PD proportional to 

disease progression (Thannickal et al., 2007), and the concentration of hypocretin in cere-

brospinal fluid has been associated with loss of muscle atonia in REM sleep (Bridoux et 

al., 2013) and excessive daytime sleepiness (Wienecke et al., 2012). 

Although actigraphy cannot directly measure these biological markers, it is capable 

of monitoring rest-activity rhythms as an estimate of circadian rhythm (Ancoli-Israel et al., 

2003). Human rest-activity rhythms are a systemic behavioral output produced by many 
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interacting biological (e.g. sleep drive, temperature, heart rate) and environmental (e.g. 

work schedule) influences (Vetter, 2018). Rest-activity rhythms therefore provide a gener-

alized measure of circadian integrity in an ecologically valid “real life” setting (J. A. Mitch-

ell et al., 2017), with the acknowledgement that they are the product, not a direct measure, 

of circadian rhythm (Vetter, 2018). By quantifying the gross output of a complex systems, 

one trades the biological specificity of biomarkers for the generalizability of a simple be-

havioral outcome: did their rest-activity rhythm change? Actigraphic rhythmometry has 

been applied in this way in healthy (J. A. Mitchell et al., 2017), geriatric (Hopkins et al., 

2017), and neurodegenerative populations (Musiek et al., 2018) using both parametric (i.e. 

cosinor) and non-parametric models to monitor gross behavioral change. Generally, older 

age and neurodegenerative diseases are associated with a reduced amplitude of activity and 

greater fragmentation of rest-activity rhythms within and across days. These trends are 

thought to reflect impairment of the neural control mechanisms that synchronize circadian 

and behavioral cycles to each other and to the environment, either due to normal aging, 

chronic misalignment (e.g. shift work), or neural insult secondary to injury or pathology 

(Vetter, 2018). 

 

Limitations 

This analysis has several limitations that should be considered when interpreting our find-

ings. First, our analytical model assumes that all of the participants follow a similar rest-

activity rhythm, therefore any observed differences may be attributed to covarying charac-

teristics (i.e. disease severity). This is a reasonable assumption given all recorded sleep 
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times, with the exception of one outlier, fell between 5:18 PM and 10:12 AM; however it’s 

possible that some of our observed results may be due, in part, to normal inter-individual 

variations in circadian and circaseptan rest-activity patterns. Second, our small sample size 

limits the power of our statistical tests and restricts our ability to interpret the results. For-

tunately, this analytical model can be easily applied to larger cohorts in order to replicate 

the observed effects. Third, the two weekly data-sets were merged for this analysis. This 

was done to compensate for the sporadic missing data (~32.14% of participant-days are 

missing) and requires the assumption that there is no true difference in participant rest-

activity rhythms between the two weeks. To ensure no bias was introduced into actigraph-

ically derived circadian rhythm data, imputation was not employed. Finally, we lack valu-

able lifestyle and health information about our participants, notably their employment and 

social obligations that could affect their rest-activity rhythms (e.g. Friday-night social 

events). Opportunities for future research may lie in the inclusion of other factors that could 

alter their rest-activity patterns, such as sleep disorders or use of substances known to affect 

sleep behavior (e.g. alcohol, marijuana, stimulants, prescribed medications, etc.), or in the 

application of algorithms to detect specific behaviors in actigraphy, such as rest tremor 

during sleep. While we observed no difference between men and women in their daytime 

sleepiness as assessed by the ESS (data not shown), it may be prudent to include this in 

other, larger studies. 
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Conclusion 

This study demonstrates that rest-activity rhythms are associated with disease severity and 

fluctuations in symptom intensity. RAR as measured by actigraphy was able to provide 

important insights into neurobiological behavior of participants with PD demonstrating as-

sociations with phase shifting to later in the day and overall decreases in activity by disease 

severity. Circadian disruption is a critical non-motor aspect of PD that requires the integra-

tion of molecular, neural, pathological, and behavioral research to effectively understand 

and treat (Fifel & Videnovic, 2019; Vetter, 2018). Actigraphically monitored rest-activity 

rhythms are an objective and easily scalable measure of circadian rhythmicity that lever-

ages the innate advantages and growing use of actigraphic monitoring in PD. In combina-

tion with gold-standard clinical assessments, diagnostic biomarker panels, and in vivo bi-

oimaging, actigraphically measured rest-activity rhythms may enhance our ability to inter-

rogate the neuropathology underlying PD and its relationship with sleep and circadian dis-

ruption. 
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Abstract 

In order to prepare for regular daily behaviors such as eating and sleeping, many animals 

rely on their circadian (“about day”) rhythm, a complex “system of systems” that continu-

ously entrains biological processes with each other and the environment. Although humans 

predominantly entrain to solar time, individual persons vary in the precise timing of circa-

dian-influenced events, such as sleep timing and physical activity, due to endogenous and 

exogenous factors. Innate differences in the timing of individual circadian rhythms relative 

to a common environmental cue are known as chronotypes, ranging from earlier than av-

erage (Morningness) to later than average (Eveningness). Furthermore, individual behavior 

is often constrained by social constructs such as the seven day week: the regular shift be-

tween different work and rest days gives rise to chronic circadian disruption such as social 

jet lag (SJL) and sleep debt, as one’s circadian rhythm lags behind abrupt “sociogenic” 

changes in behavioral rhythms. The impact our social calendar has on our circadian rhythm 

is modified by chronotype; e.g. Eveningness chronotypes generally wake up earlier than 
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preferred on work days. However, current gold-standard methods such as polysomnogra-

phy (PSG) are ill-suited to the type of long-term monitoring needed to collect behavioral 

rhythms across the week. Our aim in this study was to employ objective actigraphic mon-

itoring across multiple continuous weeks of out-of-clinic normal behavior in order to iden-

tify consistent “about weekly” – i.e. circaseptan – patterns in rest-activity rhythm and sleep 

characteristics, including evaluating the agreement between self-reported and objective 

measures of circadian timing. 24 young male volunteers (mean age 23.46 years) wore a 

Philips Actiwatch for four weeks while going about their normal lives. Chronotype was 

primarily assessed through self-report on the Morningness-Eveningness Questionnaire. 

Sleep characteristics were derived using Actiware; daily rest-activity rhythms were mod-

elled using a basic 3-parameter cosinor function. Linear mixed models were employed to 

account for the nested, repeated-measures design, and included random effects to account 

for the considerable variability expected from uncontrolled in situ recordings. We observed 

that both Eveningness and Morningness Chronotypes were more active and slept later on 

the weekends than on weekdays. Significant between-Chronotype differences in sleep tim-

ing and duration were observed within individual days of the week, especially during tran-

sitions between weekends and the work-week. Moreover, Chronotypes significantly varied 

in their circaseptan rest-activity and sleep rhythms: e.g. Morningness Chronotypes gener-

ally adapted their sleep duration, timing, and quality between weekends and weekdays 

quicker than Eveningness Chronotypes. Our results contribute to a growing body of evi-

dence that both day of the week and individual chronotype must be accounted for in situ 
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observational studies of human behavior, especially when chronotype, sleep behavior, 

and/or circadian rhythms are of interest. 
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Introduction 

The circadian rhythm is the regular periodic oscillation in behavior and physiological pro-

cesses synchronized with the geophysical 24 hour solar day (“circadian” = “about day”). 

Organized as a distributed yet coordinated “system of systems”, the circadian rhythm is an 

interconnected and hierarchical network of periodic molecular, genetic, neurological, and 

physiological processes embedded in cells, tissues, organs, and neural control networks 

that synchronize the body’s myriad biological and homeostatic functions to each other and 

to their environment (M. H. Hastings et al., 2014). Functionally, the circadian rhythm pre-

pares biological systems for expected behavioral states; for example, core body tempera-

ture in humans peaks during the afternoon and reaches its nadir during the early morning, 

anticipating daytime activity and nighttime torpor respectively. The human circadian 
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rhythm has a period of approximately 24.2 hours and, in isolation, would gradually drift 

out of synchrony with the solar day (Burgess & Eastman, 2008; Czeisler et al., 1999). 

However, a combination of exogenous cues – predominantly light – and endogenous bio-

logical mechanisms receptive to these cues – e.g. translational-transcriptional feedback 

loops – continuously entrain the circadian rhythm via the hypothalamic Suprachiasmatic 

Nucleus (SCN), effectively synchronizing our internal biological rhythms to each other and 

their environment.  

While the biology and period of the circadian rhythm are generally consistent be-

tween individuals, the phase (i.e. timing) of the circadian rhythm can vary greatly from 

person to person. This can be seen in the colloquialisms of “morning larks” and “night 

owls”, respectively referring to those who prefer to go to sleep and wake up earlier than 

normal or later than normal. In the chronobiology literature, these concepts are referred to 

as chronotypes, which may refer to a general phenotype (e.g. Morningness) or to a specific 

measurement of circadian timing  (e.g. sleep mid-time) relative to a sample or population 

(Vetter, 2018). Chronotypes are dependent on several intrinsic and environmental factors, 

most notably genetic predisposition, age, sex, and the amplitude, timing, and concentration 

of environmental light exposure (Roenneberg et al., 2015). Every person has an innate pre-

ferred chronotype, which predictably shifts earlier or later across the lifetime depending on 

their age and sex, and which can be acutely modulated by changes in their behavior and 

environmental zeitgebers (German: “time giver”, i.e. a stimulus capable of entraining the 

circadian rhythm).  
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Ideally, an individual’s innate circadian chronotype and rhythm are tightly coupled 

with both their expressed behavioral chronotype and the solar day; i.e. requires minimal 

day-to-day resynchronization and which doesn’t impinge upon behavioral rhythms (e.g. 

eating, sleeping). However, artificial zeitgebers such as light-emitting technology can shift 

the circadian rhythm independently of the solar day (Vetter, 2018). The timetables and 

obligations of our modern industrial society often diverge from natural light-dark cycles 

(e.g. shift work, jet lag), and our seven day work week imposes arbitrary changes in be-

havioral timing that can further decouple one’s circadian rhythm from their environment 

(e.g. waking up for work vs. sleeping in on the weekend). These disruptions vary in severity 

and frequency by chronotype. For example, both adults and schoolchildren tend to sleep 

longer, later, and poorer on weekend nights (“2005 Sleep in America Poll – Adult Sleep 

Habits and Styles,” 2015; Bei et al., 2014; Crowley & Carskadon, 2010; Taylor et al., 

2008). This effect becomes more pronounced in those with a later chronotype since their 

preference to go to sleep later conflicts with their social obligations (i.e. work). When this 

obligation is removed on rest days, they “sleep in” to make up the sleep deficit accumulated 

during the workweek (Vitale et al., 2015). The biological cost of these circadian disruptions 

may include increased risk of cardiovascular and metabolic disease, obesity, and depres-

sion (Korshunov et al., 2017).  

This habitual discrepancy in sleep timing between work and rest days is common 

form of circadian disruption known as Social Jet Lag (SJL) (Leypunskiy et al., 2018; 

McMahon et al., 2019; Vetter, 2018; Wittmann et al., 2006; Wong et al., 2015). SJL arises 

from differences in natural (i.e. biological, environmental) and artificial (i.e. social) timing 
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systems; while the distribution of chronotypes in the general population is broad, ranging 

from extreme eveningness to extreme morningness, the distribution of work schedules is 

far more compact and constrained by artificial factors such as economics, logistics, law, 

and culture (Roenneberg et al., 2015). The result is that most of the population is forced to 

adapt to a social/work schedule too early or too late for their natural chronotype, and then 

revert back to their natural preference once social constraints are removed on rest days. 

While all chronotypes can develop SJL, Eveningness chronotypes are significantly more 

likely to do so (Roenneberg et al., 2019; Takahashi et al., 2018; Wittmann et al., 2006; 

Zerbini et al., 2020). Looking across multiple weeks, this periodic transition between social 

and biological “time zones” and the SJL it entails may be described as a circaseptan 

(“circa” = about “septan” = seven) rhythm of circadian disruption. 

SJL and chronotypes are measured by proxy, usually via changes in the timing of 

sleep (itself a systemic behavioral output regulated in part by the circadian rhythm) across 

the week (Roenneberg et al., 2019; Vetter, 2018). While sleep disruption has been tradi-

tionally assessed using in-clinic polysomnography (PSG) as it offers the highest resolution 

and accuracy for sleep measurements, controlled laboratory settings cannot replicate in situ 

sleep behavior for several reasons: the unfamiliar setting, the myriad instruments, and the 

controlled environment each have poorly understood effects on sleep (Roenneberg et al., 

2015). Moreover, while controlled sleep studies have greatly advanced our knowledge of 

sleep’s structure and neurological substrates, they have given relatively little insight into 

the functional and longitudinal interactions between sleep, behavior, and the circadian 
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rhythm in situ (Roenneberg et al., 2015). In other words, well-controlled in-laboratory stud-

ies lack “ecological validity”; they offer unparalleled resolution and specificity, yet this 

narrow scope inherently limits their generalizability and therefore our ability to translate 

their findings into clinical and functional applications (Andrade, 2018; Roenneberg et al., 

2015; Vetter, 2018). 

Actigraphy, the use of wearable accelerometers to continuously measure physical 

behavior, is increasingly used to monitor sleep behavior in one’s normal environment as 

an alternative to in-clinic polysomnography (Ancoli-Israel et al., 2015). While actigraphy 

has the disadvantages of inferring sleep via decreased movement, increased risk of missing 

data due to subject non-compliance, and is a non-specific measure susceptible to back-

ground noise, it is capable of continuous longitudinal measurement that would be infeasible 

with polysomnography and thus has greater ecological validity (Espay et al., 2016; Ibáñez 

et al., 2018; Roenneberg et al., 2019). In addition to its metabolic, symptomatic, and kine-

matic applications, actigraphic data can also be used to model the diurnal fluctuations in 

physical activity known as rest-activity rhythms (RAR), providing an additional approach 

to objectively assess changes in circadian rhythm (Meyer-Rochow & Brown, 1998). 

Herein we present sleep and circadian data derived from actigraphy collected con-

tinuously from a cohort of young adult male volunteers across a full month in situ to gen-

erate a multi-week accelerometry data-set; this study included at-home self-report assess-

ments and in-clinic polysomnography, genetic testing, and cortisol/melatonin assays, 

which are discussed elsewhere (Marshall et al., 2020 (under review)). Our objectives were 

to quantify and describe associations between actigraphically assessed RAR and sleep 
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characteristics derived from the same data-set, their variation across days of the week and 

self-reported chronotype, and concordance between self-reported and actigraphically as-

sessed measures of circadian timing and chronotype. 

 

Materials and Methods 

Participants 

24 healthy volunteers underwent in-home actigraphic monitoring for two 14-day in-home 

periods separated by a 3-day sleep lab phase (Friday evening – Monday morning). Partic-

ipants wore five Philips Actiwatch Spectrum sensors recording at 32Hz during the in-home 

period – one on each wrist and ankle (secured by watch-bands) and one on the anterior 

torso (secured by Tegaderm [3M, Minnesota, USA]). While at-home, participants were 

instructed to wear the devices as often as possible except when they would be submerged 

in water and to maintain their normal routine and behavior while wearing the sensors. Only 

the actigraphic data collected from the Philips Actiwatch Spectrum worn on the non-dom-

inant wrist is analyzed and discussed in this paper; other results from this study are dis-

cussed in Marshall et al., 2020 (under review). 

Only volunteers who met the following criteria were offered enrollment into the 

study: Male; Between 18 and 40 years old (inclusive); English fluency; Non-smoker (in-

cluding both cigarettes and nicotine vaping); Body Mass Index (BMI) < 30 kg/m2; No self-

reported history of sleep, psychological, neurological, or addictive disorders; Not a shift-

worker; Does not change time zones frequently or have a highly irregular sleep schedule; 

No blood-draw contraindications (anemia, iron deficiency, fear of blood or needles); Not 
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claustrophobic; Does not have a pacemaker; No allergy to nickel or skin adhesive; and Not 

dependent on or abusing a substance within the previous six months. All participants gave 

their informed consent before participating in the study (BUSM IRB H-33035). 

 

Demographics and Clinical Endpoints 

Age, sex, BMI, and handedness were obtained through self-report during the first visit. 

Participants also completed several self-report instruments: the Epworth Sleepiness Scale 

(ESS) to evaluate daytime sleepiness, the Pittsburgh Sleep Quality Index (PSQI) to evalu-

ate sleep quality, and the Morningness-Eveningness Questionnaire (MEQ) to evaluate 

chronotype (J. A. Horne & Östberg, 1977). Participants were separated into two groups 

based on their MEQ scores: those with an MEQ score above 52 were assigned to the Morn-

ingness group, and the remainder were assigned to the Eveningness group. This division 

was based on the observation of a bimodal distribution in MEQ scores, with participants 

clustering around two peaks at MEQ scores of ~40 and ~60, and were was implemented in 

order to maximize the contrasts between Chronotypes. Since these peaks were close to the 

MEQ’s baseline cutoffs (41/42 and 58/59), the clusters of participants with similar chro-

notypes would’ve been split between multiple groups per the MEQ’s cutoffs, which would 

have reduced group homogeneity and potentially obfuscated between-group differences. 

 



	

	

175 

Actigraphy 

Accelerometry from the Philips Actiwatch was extracted as “Activity Counts” (AC) and 

binned (“epoched”) in 15-second epochs (Brooks et al., 2020); raw accelerometer data (i.e. 

voltage) from the Philips Actiwatch is inaccessible and can only be extracted by conversion 

to AC. The AC algorithm Actiware uses to do this is proprietary, though it may be based 

off of the Zero Crossing Method (ZCM) algorithm – which reports the number of times the 

accelerometer’s voltage crossed a predetermined threshold in a given epoch as that epoch’s 

AC – due to ZCM’s high sensitivity when classifying sleep and subsequent popularity in 

sleep scoring algorithms (Fekedulegn et al., 2020). Using Actiware 5.0’s built-in segmen-

tation algorithm, epoched AC data were then temporally segmented into different behav-

ioral “intervals”: either Active, Rest (from which one Sleep interval per Rest interval can 

be derived), or Excluded (i.e. for periods with no data, such as when the Actiwatch was not 

being worn). The segmentation algorithm for differentiating Active from Rest Intervals is 

based solely off activity levels, but further information about how the segmentation algo-

rithm works is unknown as it is also proprietary (Chow et al., 2016). Active and Excluded 

Intervals were omitted from further analysis, and the remaining Rest Intervals were filtered 

so that only those containing overnight Sleep Intervals would be analyzed. Specifically, 

sleep characteristics were derived only from Sleep Intervals that started between 1800 and 

0600 and which were determined to not be false positives (i.e. short, idle periods misiden-

tified by the algorithm as sleep) by manual review. 

While we cannot access the AC algorithm, segmentation algorithm, or the raw ac-

celerometry data directly, Actiware has published its sleep scoring algorithm (Mini Mitter 
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Company, Inc., 2006). Briefly, it calculates a “Total AC” – more generally referred to as a 

“sleep score”  (Fekedulegn et al., 2020) – for each epoch by summing the weighted ACs 

of that epoch and those of adjacent epochs using this formula:  

Total AC for Epochn (En) = (En-8 * 0.04) + (En-7 * 0.04) + (En-6 * 0.04) + (En-5 * 0.04) + (En-4 * 0.2) 

+ (En-3 * 0.2) + (En-2 * 0.2) + (En-1 * 0.2) + (En * 4) + (En+1 * 0.2) + (En+2 * 0.2) + (En+3 * 0.2) + (En+4 

* 0.2) + (En+5 * 0.04) + (En+6 * 0.04) + (En+7 * 0.04) + (En+8 * 0.04) 

Note: the number of epochs summed and their respective AC weights is different for each 

epoch length; this formula is for the 15-second epochs used in this analysis. 

If an epoch’s Total AC is less than or equal to a predetermined “Wake Threshold 

Value”, it is classified as Asleep; otherwise, it’s classified as Awake. Actiware then applies 

one of two Sleep Interval detection algorithms, using either continuous periods classified 

as Asleep or sustained periods of immobility to define the Sleep Interval. Which algorithm 

is used and some of its parameters are manually customizable. We used the sustained im-

mobility algorithm with the following parameters: Wake Threshold Value = 20 (epochs 

with Total AC greater than this value are classified as Awake); Immobile Minutes Onset = 

10 (the beginning of a given Rest Interval’s Sleep Interval is defined as the first epoch of 

the first continuous series of epochs this many minutes long where no more than one epoch 

has ≥ 1 AC); Immobile Minutes Offset = 10 (the end of a given Rest Interval’s Sleep In-

terval is defined as the last epoch of the last continuous series of epochs this many minutes 

long where no more than one epoch has ≥ 1 AC); Enhanced Sleep Statistics = Off (if On, 

this modifies several sleep characteristics using correction factors derived from PSG and 

other Rest intervals in the recording; we chose not to use this because what corrections are 

used and how they’re specifically applied is unknown); 1 Major Rest Interval/Day = Off 
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(If On, this only allows only one Rest Interval ≥ 3 hours – specifically the longest – to be 

defined in a single 24-hour period); Minor Rest Interval Sensitivity = Medium (a lower 

sensitivity will detect fewer Rest Intervals); Minor Rest Interval Minimum = 40 (Rest In-

tervals must be at least this many minutes long).  

 

Sleep Characteristics 

Sleep characteristics quantifying the timing, duration, and quality of sleep were generated 

for each Rest Interval with a valid overnight Sleep Interval: measures of sleep timing in-

cluded Sleep Onset time (SON), Sleep Mid-time (SMID), and Sleep Offset time (SOFF); 

measures of duration included Sleep Onset Latency (SONL), Sleep Offset Latency 

(SOFFL), Sleep Period (SP), Time in Bed (TiB), Total Sleep Time (TST), and Wake After 

Sleep Onset (WASO); and measures of sleep quality included Sleep Efficiency (SE), Per-

cent Sleep Time (PST), Fragmentation Index (FI), Average AC per minute during sleep 

(ACm), and Maximum AC per minute during TiB (AC Max). 

SON and SOFF approximate the start and end of sleep, and are defined by the Im-

mobile Minutes Onset/Offset options, respectively, as described above; SMID is simply 

the mean of SON and SOFF. SONL is the time difference between the start of the Rest 

Interval and the start of the Sleep Interval (i.e. how long it took to fall asleep); SOFFL is 

likewise the difference between the end of the Sleep Interval and the end of the Rest Inter-

val (i.e. how long it took to wake up). SP is equal to the duration of the Sleep Interval (i.e. 

SP = SOFF - SON), and TiB is equal to the duration of the Rest Interval (i.e. TiB = SP + 

SONL + SOFFL). SP can be subdivided into TST/WASO, which are equal to the summed 
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durations of all Asleep/Awake epochs in the SP, respectively (i.e. SP = TST + WASO). SE 

is a percentage measure of general sleep quality where SE = TST / TiB, and PST is a similar 

characteristic calculated by dividing TST by SP; i.e. PST does not include SOFFL or 

SONL. Due to their similarities in calculation and interpretation, SE and PST are often 

conflated with each other in the literature (Berger et al., 2005; Fekedulegn et al., 2020). FI 

is a percentage measure of how likely a person is to transition between Asleep and Awake 

during their SP, and is calculated (Mini Mitter Company, Inc., 2006) as: 

Fragmentation Index = ([number of mobile bouts] + [number of immobile bouts ≤ 1 minute]) / 

[number of immobile bouts]  

…where a “bout” is a continuous series of epochs of the same type, and where epochs with 

≥ 1 AC are considered “mobile”. Higher FI is indicative of frequent night-time arousals 

and/or increased somnolescent movement. ACm is equal to the total number of AC de-

tected during the Sleep Interval (i.e. SP) divided by its duration, and AC Max is equal to 

the greatest number of AC observed in a 15-second epoch during the Rest Interval (i.e. 

TiB).  

 

Rest-Activity Rhythm (RAR) Characteristics 

The raw epoch-by-epoch AC time-series for each participant-day was fit to a basic 3-pa-

rameters cosinor model (Cornelissen, 2014) – a modified sine-cosine function with a period 

of 24 hours frequently used to model human RARs – and three parameters that characterize 

the participant’s RAR were produced. The Midline Estimating Statistic of Rhythm 

(MESOR) represents the midline of the fitted cosinor function; i.e. the average AC across 
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the entire day and about which the cosinor function oscillates. The Amplitude (Amp) is 

equal to difference between the average peak of the cosinor function and its MESOR. The 

Acrophase (Acro) represents how phase-shifted the individual’s RAR is relative to the 

other participants. Cosinors were only generated for at-home days with at least 20 hours 

and 24 minutes (4896, or 85%, of the 5760 15-second epochs in a day) of successful actig-

raphy data capture; participant-days that contained any time spent in the mid-study week-

end sleep clinic were excluded. The time periods cosinors were applied to were selected to 

provide sufficient data coverage for modelling; since participants typically began the study 

in the mid-to-late afternoon, we modelled cosinors on 24-hour periods running from the 

epoch starting at 18:00:00 through the epoch starting at 17:59:45 the next day, for a total 

of 5760 epochs (or 24 full hours) per cosinor model. This allowed us to ensure that each 

overnight sleep period was fully encapsulated within a single cosinor model and that each 

participant’s sleep and RAR characteristics were paired within each of their study days for 

analysis; specifically, sleep characteristics were paired to the cosinor parameters they oc-

curred within. Since sleep periods and our cosinor intervals straddle midnight and therefore 

overlap two calendar days, we refer to individual days by the name of the following calen-

dar day in this article for simplicity: e.g. results presented under “Saturday” consist of Fri-

day night’s sleep period and the cosinor model running from 18:00:00 Friday to 17:59:45 

Saturday. 
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Circaseptan Characteristics 

Two endpoints were calculated to estimate sociogenic circaseptan disruption – chronic dif-

ferences in sleep behavior, timing, and quality resultant from social obligations and the 

work week: (1) Social Jetlag (SJL) is the absolute difference between one’s average SMID 

on before-work nights (i.e. Sunday through Thursday nights) and on before-rest nights (i.e. 

Friday and Saturday nights), and (2) Sleep Debt is the absolute difference in average SP 

between before-work and before-rest nights (Wong et al., 2015). Where-as SJL quantifies 

the difference in sleep timing between weekends and workdays, Sleep Debt quantifies the 

difference in sleep duration.  

 

Statistical Analysis 

Descriptive statistics were generated for all variables; unless otherwise stated, all descrip-

tive values reported herein are “mean (standard deviation)” for continuous variables and 

“number (%)” for dichotomous, ordinal, and categorical variables. Measures of central ten-

dency consisted of means and medians for normally and non-normally distributed varia-

bles, respectively. Processed data were organized and arrayed using Excel 16.16.13 for 

Mac (Microsoft, Inc., Redmont, WA, USA). All statistical analyses were performed in 

Stata 16.0 for Mac (StataCorp, Inc., College Station, TX, USA). Normality of distributions 

was evaluated using skewness-kurtosis tests, and equality of variances between groups was 

evaluated using equal-variances test. Two-sample comparisons were conducted using two-

sample t-tests for normally distributed samples with equal variances, Welch’s t-tests for 
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normally distributed samples with unequal variances, and Wilcoxon rank-sum tests for 

non-normally distributed samples with a significance threshold of p = 0.05.  

 In order to account for nesting, repeated measures, and the random effects of be-

tween-participant and between-day variability, Linear Mixed Models (LMM) were em-

ployed to evaluate the variance of sleep and RAR Characteristics between the primary fac-

tors of interest (i.e. Chronotype and Day of the Week). Three LMMs were used: two one-

way models containing only either the Chronotype factor or the Day of the week factor, 

and a two-way model containing both factors. LMMs were fit using maximum likelihood 

and an independent covariance structure in a nested design, with Day nested within Study 

Week nested within Participant. Continuous variables for Age, BMI, and Date (specifically 

“days since the first participant’s first day”) were included as covariates. Holidays observed 

in Boston, MA, USA, including school vacations and final exam dates (Boston University 

Medical Campus Academic Calendar, 2015)44, were flagged with a dummy variable (“Spe-

cial Day”) that was included in the model. Although these days likely change the schedule 

and therefor the RAR and sleep of individuals relative to “normal days”, their effects are 

also likely not uniform; therefore an interaction between Date and the Special Day dummy 

variable was included in the model to account for the unique fixed effects of individual 

Special Days.  

The significance of between-group differences in the LMMs was assessed with 

Wald tests using linear combinations of marginal linear predictions via the Stata contrasts 

	
44 Halloween, Thanksgiving, Thanksgiving Break, Last Day of Classes, Fall Final Exam Study Pe-
riod, Fall Final Exams, Winter Break, Valentine’s Day, President’s Day, Spring Break 
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command (Stata 16.0, StataCorp). The amount of variance attributable to each level of 

nesting in the LMM, as well as the residual variance, was also quantified in the two-way 

LMM. 

 

Results 

Participant Demographics and Self-Report 

Descriptive statistics for demographics and self-reported measures, including between-

Chronotype comparisons, are presented in Table 5.1. 24 healthy male participants com-

pleted the study; based on their MEQ scores, 15 participants were assigned to the Evening-

ness group (MEQ: 59.44 [2.96]) and 9 participants to the Morningness group (MEQ: 39.8 

[7.23]). All demographic and self-report measures were normally distributed (p > 0.05), 

with the exception of Age in the Eveningness Chronotype (p = 0.03). Although the MEQ 

scores across the entire sample were normally distributed (p = 0.15), dividing the sample 

into Chronotypes appeared to improve the normality within each group (p > 0.81). Further-

more, MEQ scores and self-reported normal sleep timings on weekends and weekdays were 

significantly different between the two Chronotypes (p < 0.01). BMI and self-reported 

sleep quality (via the PSQI and ESS) were not significantly different between Chronotypes 

(p > 0.43). The difference in age appeared to approach significance (p = 0.09), with Morn-

ingness being older on average; this is expected since Chronotype generally shifts toward 

Morningness as one ages (Foster & Roenneberg, 2008; Roenneberg, 2004). Together, these 

observations of improved normality, differences in sleep timing, and lack of differences in 

demographics and sleep quality support the division of the sample by Chronotype; the 
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greatest differences were observed in measures expected to be sensitive to Chronotype (i.e. 

sleep timing and Age), with other measures (i.e. BMI and sleep quality) not achieving sig-

nificance (Table 5.1). 

 

Missing Data 

In order to be considered “valid” and eligible for analysis, a participant-day required both 

a cosinor model and an overnight sleep period. With perfect compliance, the study design 

allowed for a maximum of 672 participant-days (24 participants * 28 days) of recorded 

data. In total, 505 (75.15%) valid participant-days were collected (Table A.3). The 

Eveningness Chronotype had more valid participant-days overall, with 308 (73.33%), alt-

hough the Morningness cohort had a higher rate with 197 (78.17%) valid participant-days. 

Valid participant-days were generally more frequent during the work-week, especially in 

the week immediately following the sleep clinic stay. Lastly, 111 (21.98%) of all valid 

participant-days were flagged as “Special Days” due to occurring on a holiday, vacation, 

or academic event.
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Table 5.1 – Participant demographics and self-reported sleep timing and quality, presented by Chronotype and including the p-
value of between-Chronotype tests. 

Demographic Characteristics 
by MEQ Chronotype 

All Participants 
(n = 24) 

Evening Chronotype 
(n = 15) 

Morning Chronotype 
(n = 9) 

Between-Group 
Comparisons 

Measure Average (Standard Deviation) Two-Sample Test  
p-value 

Age (Years) RS 23.46 (4.77) 22.20 (4.55) ‡ 25.56 (4.61) 0.0853 * 
Body Mass Index (Kilogram/Meter2) TT 24.33 (3.00) 24.72 (2.60) 23.68 (3.65) 0.4250 

Epworth Sleepiness Scale (Score) TT 5.46 (2.43) 5.47 (2.72) 5.44 (2.01) 0.9833 
Pittsburgh Sleep Quality Index (Score) TT 3.71 (2.01) 3.93 (1.94) 3.33 (2.18) 0.4913 

Usual Sleep Time, Weekday (Time) TT 23:44 (0:55) 00:13 (0:46) 22:57 (0:28) 0.0002 ** 
Usual Sleep Time, Weekends (Time) TT 01:03 (1:02) 01:34 (0:52) 00:12 (0:38) 0.0004 ** 

Usual Wake Time, Weekdays (Time) WTT 07:49 (1:09) 08:20 (1:08) 06:57 (0:29) 0.0005 ** 
Usual Wake Time, Weekends (Time) TT 09:11 (1:21) 09:54 (1:07) 08:00 (0:45) 0.0002 ** 
Social Jet Lag, Self-Reported (Hours) TT 1.40 (1.01) 1.69 (1.11) 0.94 (0.58) 0.0929 * 

Sleep Debt, Self-Reported (Hours) TT 0.52 (0.49) 0.58 (0.57) 0.41 (0.32) 0.4091 
Morningness-Eveningness Questionnaire 

(Score) WTT 47.17 (11.37) 39.80 (7.23) 59.44 (2.96) < 0.0001 ** 

* p-value 0.05 < 0.10 
** p-value < 0.05 
‡ Significantly abnormal distribution (skewness-kurtosis test, p-value < 0.05) 
TT T-Test: Both Chronotypes were normally distributed (skewness-kurtosis test, p-value > 0.05) and had equal variances (equal variances 
test, p-value > 0.05); the between Chronotype comparison was conducted with an independent samples t-test. 
WTT Welch’s T-Test: Both Chronotypes were normally distributed (skewness-kurtosis test, p-value > 0.05) and had significantly different 
variances (equal variances test, p-value < 0.05); the between Chronotype comparison was conducted with a Welch’s independent samples 
t-test. 
RS Rank Sum: At least one Chronotype was non-normally distributed (skewness-kurtosis Test, p-value < 0.05); the between Chronotype 
comparison was conducted with a non-parametric Wilcoxon rank-sum test. 
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Variance in Linear Mixed Models (LMM) 

The variance components of each variable at each nested level (i.e. Day of the Week nested 

in Study Week nested in Participant) were estimated in the univariate LMM (Table A.4). 

When averaged across all variables within a nested level, the highest average variance 

component of 56% was observed at the Day of the Week level, and the lowest average 

variance component of 8% was observed at the Study Week level; i.e. the highest predicted 

variance was observed between-Day within-Participant and -Week, and the lowest variance 

was observed between-Week within-Participant and -Day. The greatest variance compo-

nents of individual variables were observed in MESOR at the Participant level (55%), 

SOFF at the Study Week level (24%), and SOFFL at the Day level (86%). SE had the 

highest residual (i.e. unaccounted for in the model and not attributable to any specific 

nested tier) variance component of 39%. 

 

Rest-Activity Rhythm (RAR) and Sleep Characteristics (SC) 

Significant one-way (i.e. between-Chronotype, across-Day) differences were observed in 

individual RAR and SC variables in the unmodeled raw data (Table A.5): MESOR (p = 

0.0090), Amp (p = 0.0040), Acro (p < 0.0001), SON (p < 0.0001), SMID (p < 0.0001), 

SOFF (p < 0.0001), and FI (p = 0.0070); both TiB and TST approached significance (p = 

0.0867 and p = 0.0878, respectively). 

One-way comparisons were conducted for individual variables via Wald tests be-

tween predicted marginal means generated in one-way LMMs: either between-Chronotype, 
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or between-Day. Significant between-Chronotype across-Day differences were observed 

in the “time of day” variables: Acro (p = 0.0329), SON (p = 0.0062), SMID (p = 0.0084), 

and SOFF (p = 0.0370), with Eveningness having later values (Figure A.4; Table A.6A). 

Additional significant differences were observed in a larger number of RAR and 

SC variables in the between-Day across-Chronotype one-way LMM (Figure A.5; Table 

A.6B)45: MESOR (p = 0.0356), Amp (p = 0.0007), Acro (p = 0.0003), SON (p < 0.0001), 

SMID (p < 0.0001), SOFF (p < 0.0001), TST (p = 0.0140), and PST (p = 0.0348). To 

summarize, weekends (Friday 18:00 – Sunday 18:00) had higher activity, later timing of 

activity, later sleep times, and longer sleep periods with less time spent awake. TiB (p = 

0.0979), SOFFL (p = 0.0578), and SE (p = 0.0957) appeared to approach significance. 

Significant within-day between-Chronotype differences (Figure 5.1, Table 5.2) 

were observed in the two-way LMM: SMID (p = 0.0243) and SOFF (p = 0.0095) on Sun-

days; Acro (p = 0.0162), SON (p = 0.0022), SMID (p = 0.0142), TiB (p = 0.0367), and 

TST (p = 0.0291) on Mondays; SMID (p = 0.0405) on Tuesdays; SON (p = 0.0210) and 

SMID (p = 0.0210) on Thursdays; and Acro (p = 0.0101), SON (p = 0.0003), SMID (p = 

0.0028), TiB (p = 0.0275), and TST (p = 0.0304) on Fridays. Lastly, SON (p = 0.0116), 

TiB (p = 0.0263), and TST (p = 0.0180) were jointly significant for Chronotype and Day 

of the Week (Table 5.2).

	
45 All between-Day across-Chronotype p-values reported in-text are joint p-values derived from 
joint Wald tests conducted across all seven Days. Two-sample Wald tests were used to compare 
individual Days to Sunday; their p-values are reported in Table A.6B. 
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Table 5.2 – Predicted marginal means (standard error) for each Chronotype-Day, the p-values of the between-Chronotype within-
Day Wald tests, and the p-values of the joint Wald tests. 

 Monday Tuesday Wednesday Thursday Friday Saturday Sunday Joint p-
value 

MESOR 
(AC) 

Evening-
ness 46.39 (3.81) 46.16 (3.67) 45.47 (3.65) 44.23 (3.65) 49.06 (3.69) 47.86 

(3.68) 
46.35 
(3.75) 

0.3808 Morning-
ness 38.78 (4.95) 44.68 (4.79) 40.79 (4.76) 40.30 (4.77) 43.10 (4.78) 46.39 

(4.83) 
47.17 
(4.85) 

p-value 0.2432 0.8136 0.4546 0.5304 0.3444 0.8171 0.8989 

Ampli-
tude 
(AC) 

Evening-
ness 39.01 (3.5) 38.45 (3.29) 35.14 (3.24) 32.51 (3.25) 37.54 (3.31) 39.15 

(3.29) 
40.73 
(3.41) 

0.6031 Morning-
ness 32.66 (4.54) 35.17 (4.27) 32.31 (4.21) 32.45 (4.22) 34.36 (4.23) 42.44 

(4.33) 
41.02 
(4.35) 

p-value 0.2847 0.5567 0.6075 0.9920 0.5687 0.5602 0.9604 

Acro-
phase 
(Time) 

Evening-
ness 16:19 (0:21) 16:12 (0:18) 16:14 (0:18) 16:16 (0:18) 16:43 (0:19) 17:05 

(0:18) 
17:20 
(0:20) 

0.1895 Morning-
ness 14:57 (0:26) 15:50 (0:23) 15:43 (0:23) 15:57 (0:23) 15:32 (0:23) 16:18 

(0:24) 
16:29 
(0:24) 

p-value 0.0160 ** 0.4657 0.2895 0.5281 0.0174 ** 0.1369 0.1071 

Sleep 
Onset 
(Time) 

Evening-
ness 00:59 (0:17) 00:51 (0:16) 00:38 (0:15) 00:58 (0:15) 01:38 (0:16) 01:38 

(0:16) 
01:30 
(0:16) 

0.0116 
** Morning-

ness 23:31 (0:22) 00:02 (0:20) 23:58 (0:20) 23:58 (0:20) 23:57 (0:20) 00:48 
(0:21) 

00:53 
(0:21) 

p-value 0.0022 ** 0.0610 * 0.1225 0.0210 ** 0.0003 ** 0.0630 * 0.1798 

Sleep 
Mid  

(Time) 

Evening-
ness 04:32 (0:15) 04:26 (0:13) 04:20 (0:13) 04:29 (0:13) 04:53 (0:14) 05:22 

(0:13) 
05:29 
(0:14) 

0.1597 Morning-
ness 03:32 (0:19) 03:39 (0:17) 03:41 (0:17) 03:50 (0:17) 03:45 (0:17) 04:37 

(0:18) 
04:36 
(0:18) 

p-value 0.0142 ** 0.0405 ** 0.0776 * 0.0888 * 0.0028 ** 0.0557 * 0.0243 
** 



	

	

188 
	

Sleep 
Offset 
(Time) 

Evening-
ness 08:06 (0:17) 08:01 (0:15) 08:03 (0:15) 08:00 (0:15) 08:14 (0:15) 09:04 

(0:15) 
09:28 
(0:16) 

0.3057 Morning-
ness 07:33 (0:21) 07:17 (0:19) 07:24 (0:19) 07:42 (0:19) 07:32 (0:19) 08:27 

(0:20) 
08:20 
(0:20) 

p-value 0.2392 0.0780 * 0.1045 0.4663 0.0938 * 0.1518 0.0095 
** 

Time in 
Bed 

(Hours) 

Evening-
ness 7.11 (0.27) 7.20 (0.24) 7.46 (0.23) 7.07 (0.23) 6.71 (0.24) 7.40 

(0.24) 
7.94 

(0.26) 
0.0263 

** Morning-
ness 8.05 (0.35) 7.23 (0.31) 7.41 (0.30) 7.73 (0.30) 7.58 (0.30) 7.66 

(0.32) 
7.44 

(0.32) 
p-value 0.0367 ** 0.9337 0.8953 0.0886 * 0.0275 ** 0.5304 0.2352 

Average 
Activity 
during 
Sleep 

(AC per 
Minute) 

Evening-
ness 15.13 (1.87) 14.27 (1.73) 12.54 (1.70) 14.13 (1.71) 14.20 (1.75) 11.13 

(1.73) 
14.25 
(1.81) 

0.4846 

Morning-
ness 10.99 (2.41) 9.25 (2.24) 10.25 (2.21) 13.30 (2.22) 11.84 (2.22) 10.95 

(2.28) 
11.55 
(2.30) 

p-value 0.1894 0.0875 * 0.4290 0.7767 0.4197 0.9523 0.3727 
Morning-

ness 11.51 (1.30) 9.51 (1.21) 11.16 (1.19) 12.63 (1.20) 11.74 (1.20) 10.50 
(1.23) 

11.45 
(1.24) 

p-value 0.5866 0.5932 0.5059 0.1480 0.2167 0.8636 0.6516 
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 Monday Tuesday Wednesday Thursday Friday Saturday Sunday Joint p-
value 

Peak 
Activity 
during 
Rest 

(AC per 
15 

Minutes) 

Evening-
ness 

313.02 
(30.95) 

298.53 
(29.17) 

286.12 
(28.77) 

301.29 
(28.89) 

279.67 
(29.38) 

264.41 
(29.18) 

301.75 
(30.17) 

0.5657 
Morning-

ness 
265.92 
(40.16) 

241.73 
(37.93) 

283.06 
(37.47) 

277.30 
(37.58) 

287.76 
(37.67) 

266.69 
(38.46) 

266.69 
(38.65) 

p-value 0.3706 0.2539 0.9502 0.6261 0.8705 0.9638 0.4913 

Sleep 
Onset 

Latency 
(Minutes

) 

Evening-
ness 38.71 (11.28) 37.14 (10.20) 45.15 (9.95) 44.94 (10.03) 42.52 (10.34) 26.31 

(10.21) 
39.72 

(10.81) 
0.4880 Morning-

ness 44.31 (14.52) 28.50 (13.11) 53.27 (12.78) 25.34 (12.85) 34.71 (12.88) 28.95 
(13.44) 

60.19 
(13.56) 

p-value 0.7667 0.6133 0.6255 0.2421 0.6461 0.8795 0.2506 
Sleep 
Offset 

Latency 
(Minutes

) 

Evening-
ness 24.35 (7.20) 29.45 (6.34) 27.78 (6.14) 28.52 (6.20) 28.99 (6.46) 30.42 

(6.35) 
43.15 
(6.83) 

0.7468 Morning-
ness 21.34 (9.23) 34.66 (8.08) 23.17 (7.80) 45.44 (7.86) 36.41 (7.88) 33.57 

(8.35) 
46.14 
(8.45) 

p-value 0.8011 0.6187 0.6481 0.0974 * 0.4755 0.7693 0.7873 

Sleep 
Effi-

ciency 
(%) 

Evening-
ness 76.34 (1.95) 76.74 (1.77) 76.21 (1.73) 75.95 (1.75) 75.62 (1.80) 79.99 

(1.77) 
76.32 
(1.87) 

0.7396 Morning-
ness 78.46 (2.51) 78.85 (2.28) 77.98 (2.23) 77.17 (2.24) 77.40 (2.25) 79.22 

(2.34) 
73.63 
(2.36) 

p-value 0.5182 0.4791 0.5447 0.6774 0.5467 0.7985 0.3859 
Wake 
After 
Sleep 
Onset 

(Minutes
) 

Evening-
ness 0.94 (0.09) 0.93 (0.09) 0.90 (0.09) 0.88 (0.09) 0.84 (0.09) 0.77 

(0.09) 
0.96 

(0.09) 

0.4515 Morning-
ness 0.98 (0.12) 0.75 (0.11) 0.84 (0.11) 0.99 (0.11) 0.90 (0.11) 0.80 

(0.11) 
0.84 

(0.12) 

p-value 0.8188 0.2399 0.6745 0.4652 0.6589 0.8411 0.4543 

Total 
Sleep 

Evening-
ness 6.17 (0.25) 6.27 (0.23) 6.55 (0.22) 6.19 (0.22) 5.87 (0.23) 6.62 

(0.23) 
6.99 

(0.24) 
0.0180 

** 
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Time 
(Hours) 

Morning-
ness 7.08 (0.32) 6.48 (0.29) 6.58 (0.28) 6.75 (0.28) 6.69 (0.29) 6.88 

(0.30) 
6.61 

(0.30) 
p-value 0.0291 ** 0.5695 0.9367 0.1303 0.0304 ** 0.5091 0.3410 

Percent 
Sleep 
Time 
(%) 

Evening-
ness 86.94 (1.17) 87.62 (1.12) 88.11 (1.11) 87.89 (1.11) 87.95 (1.13) 89.57 

(1.12) 
87.74 
(1.15) 

0.6113 Morning-
ness 88.24 (1.53) 89.43 (1.46) 88.54 (1.45) 87.20 (1.45) 88.21 (1.45) 89.46 

(1.48) 
88.49 
(1.48) 

p-value 0.5177 0.3459 0.8198 0.7185 0.8914 0.9570 0.7013 

Frag-
menta-
tion In-
dex (%) 

Evening-
ness 10.59 (1.01) 10.36 (0.94) 10.12 (0.92) 10.37 (0.93) 9.78 (0.95) 10.22 

(0.94) 
10.72 
(0.98) 

0.3669 Morning-
ness 11.51 (1.30) 9.51 (1.21) 11.16 (1.19) 12.63 (1.20) 11.74 (1.20) 10.50 

(1.23) 
11.45 
(1.24) 

p-value 0.5866 0.5932 0.5059 0.1480 0.2167 0.8636 0.6516 
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Figure 5.1: Predicted marginal means (standard error) of cosinor parameters (MESOR, Amplitude, and Acrophase) and sleep 
timings (Sleep Onset, Sleep Mid, Sleep Offset) by-Chronotype and by-Day of the Week derived from the by-Day by-Chronotype 
two-way linear mixed model. Between-Chronotype Wald tests were conducted within each Day for all variables; ** indicates p-
value < 0.05, * indicates p-value ≥ 0.05 and < 0.10. 
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Discussion 

In this study, we used data from a single wrist-worn actigraphy device to identify signifi-

cant differences in Rest-Activity Rhythm (RAR) and Sleep Characteristics (SC) across the 

seven-day week and between Morningness and Eveningness Chronotypes. We found that 

certain RAR and sleep characteristics varied significantly between Chronotypes, and that 

these differences were often dependent on day of the week. 

 

Sleep and Activity Timing Significantly Varies across the Week 

We observed substantial changes in SC across the week in both Chronotypes, especially 

during the “transitions” that separate work from rest days (i.e. Friday/Monday). As might 

be expected, the strongest between-day differences were observed in the timing of activity 

and sleep; both Chronotypes woke up and were active later during the weekend (Friday 

and Saturday nights) than during the work-week (Sunday – Thursday nights), suggesting 

that “sleeping in” was not limited to a specific Chronotype in our sample (Figure 5.1, Table 

5.2, Table A.6). Significant day-to-day changes in SMID and SOFF were observed at the 

transitions between work and rest days for both Chronotypes. Although both Chronotypes 

went to bed earlier during the work week, Morningness participants adjusted to the work 

week more quickly, achieving significantly earlier bedtimes within one day. In contrast, 

Eveningness participants took on average an extra day before their SON were significantly 

earlier than on the weekend. Interestingly, Eveningness transitioned to their later weekend 

SON on Thursday night, where-as Morningness began going to bed later on Friday night. 

Qualitatively, Morningness appears to have a more consistent SON during the work week. 
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Where-as Morningness shifted within one day, Eveningness gradually went to bed earlier 

each day from Sunday through Tuesday, then later with each day through the weekend. 

In summary, both Chronotypes conform to a similar circaseptan rhythm across the 

week – i.e. sleep timing advances on weekends – and that this pattern is most consistent in 

their SOFF. When transitioning between weekends and weekdays, Morningness adjust 

their SON quicker than Eveningness, who shift incrementally throughout the week. These 

results may be due to the fact that SOFF are the most directly constrained by the work-

week, where-as individual preference plays a larger role SON; i.e. SON is more sensitive 

to Chronotype than SOFF. 

Morningness had significantly greater TiB and TST than Eveningness on Sunday 

and Thursday nights (Figure 5.1; Table 5.2). These differences are attributable to Chrono-

type-specific variations in SON and SOFF: Thursday night’s due to the later Eveningness 

SON without a comparable advance in SOFF, and Sunday night is likewise explained by 

the significantly earlier Morningness SON. Both Chronotypes experienced a significant 

and comparable decrease in SOFFL from Sunday morning to Monday morning, perhaps 

attributable to work constraints as with SOFF (i.e. less freedom to “sleep in”).  

Eveningness had significantly higher SE on Friday night relative to Thursday night, 

potentially due to their resumption of their preferred sleep schedule. In contrast, Morning-

ness had significantly lower SE on Saturday night relative to Friday night. The unexpect-

edly similar advances in sleep timing on the weekend for both Chronotypes may be at-

tributable to the fact that the social schedule during the work week is more closely aligned 

with Morningness preferences. Different social pressures during the weekend (e.g. late-
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night social events) resulted in phase-advance of sleep timing in Morningness participants 

beyond their preferred sleep schedule, resulting in decreased sleep quality. Eveningness 

participants, however, may experience improved SE on the weekend for the same reason. 

However, note that other measures of sleep quality – WASO, PST, and FI – did not signif-

icantly decrease during the weekend for Morningness, although Eveningness WASO and 

PST significantly decreased on Saturday nights relative to Friday nights. 

 

Measuring and Interpreting Circaseptan Rhythms 

Technological advances have enabled continuous monitoring of authentic, uncontrolled, 

and out-of-lab behavior. Wearable devices such as the Actiwatch used in this study allow 

chronobiologists to collect ecologically valid data, better interrogate the complex interac-

tions between circadian cycles and environmental factors, and potentially identify targets 

for interventional therapy. However, this introduces new problems: which methods are the 

most reliable and functional, which measures are the most relevant and informative, iden-

tifying unknown systemic biases or false assumptions, and ensuring methodological and 

analytical consistency to allow for replicability and meta-analysis. Our study highlights 

some of the more pragmatic obstacles to this approach, specifically the large amount of 

variance observed, the need to account for as many environmental factors as possible, and 

participant compliance. 

Due to the unconstrained nature of continuous monitoring, our main analytical goal 

was to account for as much variance as possible and isolate the desired signal: RAR and 

sleep behavior across the week. Our nested design – Day nested within Study Week nested 
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within Participant – was specifically chosen to detect circaseptan rhythms. Analogous to 

an electroencephalographic technician deriving an event-related potential from the average 

of hundreds of trials synchronized to a reference time, we derived circaseptan rhythms from 

the average of many Participant-Weeks “synchronized” to the standard seven-day week. 

This allows random variability to “average out”, where-as effects that are constant across 

all weeks (e.g. sleeping in on the weekend) remain. While the results in this article are 

primarily discussed in reference to individual days, these outcomes collectively represent 

the average pattern across the average week; i.e. circaseptan rhythms. 

We derived variance components for each of the three nested levels in our design. 

The largest variance components were observed at the Day level for all variables, with the 

exception of MESOR and SON whose largest variance component was at the Participant 

level (Table A.4). This means that RAR and sleep characteristics varied more between 

Days within a Participant than they did between Participants, and implies that the largest 

contributors of variance were at the Day level; in addition to normal between-Day varia-

bility, this variance may be attributable to weather, illness, personal events such as birth-

days or travelling, and so on. Likewise, Participant-level variance may be explained by 

normal individual variability and unaccounted for between-Participant factors, such as liv-

ing situation, employment, or commute. Although we cannot definitively attribute variance 

to individual factors, variance components allow us to infer the what factors different meas-

urements may or may not have in common. For example, the large Participant-level vari-

ance component seen in SON suggests that individual preference is more influential on the 

time when one goes to bed, where-as the large Day-level variance component observed in 
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SOFF implies that external day-specific factors (e.g. work) may be more important for 

predicting when one wakes up.  

Our results support the concept that Day of the Week is a significant factor that 

alters timing of sleep and activity, and therefore should be accounted for when assessing 

them across multiple days. More generally, study designs must properly account for the 

social calendar their participants will exist in, whether it’s office employees at a 9-to-5 job, 

nurses on 12-hour shifts, or oil-rig workers on a four week rotation, especially when the 

observation period includes both rest and work days (Roenneberg et al., 2019; Vetter, 

2018). This extends to the natural calendar, i.e. season and daylight hours. Given the wide-

spread control the circadian rhythm has on our physiology and behavior, we argue that 

most studies of human biology should account for these calendar factors as well, especially 

observational studies with long data collection periods. 

 

Circadian Disruption in Modern Societies 

Circadian disruption is the sustained desynchronization of the circadian rhythm from its 

environment (Vetter, 2018), and is a significant and widespread burden upon modern in-

dustrialized societies (Colten & Altevogt, 2006). Epidemiological studies quantifying its 

full extent are scarce (D. R. Hillman & Lack, 2013) due its multifaceted and vaguely de-

fined nature (Vetter, 2018); however, epidemiological studies of sleep disruption (which is 

closely linked to circadian disruption) estimated that over a third of Americans suffer from 

insufficient sleep (Liu et al., 2016), a similar proportion of Australians suffer from sleep 

disorders (D. R. Hillman & Lack, 2013), and young and middle aged French adults sleep 
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~1.5 hours less than recommended (Léger et al., 2011). Moreover, retrospective analyses 

of Swedish and Finnish cohort studies suggest that sleep duration has declined by as much 

as 18 minutes/night over a period of ~30 years (Kronholm et al., 2008; Rowshan Ravan et 

al., 2010), and the prevalence of sleep disruption is expected to continue rising in propor-

tion to at-risk populations (Ferrie et al., 2011). Numerous health issues have been linked to 

circadian disruption, including metabolic disease (Potter et al., 2016), cardiovascular dis-

ease (Portaluppi et al., 2012), neuropsychiatric disorders (Musiek & Holtzman, 2016), neu-

rodegenerative diseases (Colten & Altevogt, 2006; Videnovic, Lazar, et al., 2014), and 

disruption of the endocrine system (Bedrosian et al., 2016; Vetter, 2018). Generalized 

symptoms of acute circadian disruption (e.g. fatigue and impaired attention) have contrib-

uted to the occurrence of fatal accidents (Gottlieb et al., 2018) - the rate of which has in-

creased in the United States of America (USA) over the past decade (Murphy et al., 2018) 

– and has been implicated in numerous high profile accidents and catastrophes such as the 

Three Mile Island disaster, the Chernobyl disaster, the Exxon Valdez oil tanker spill, the 

Space Shuttle Challenger disaster, and the Union Carbide disaster in Bhopal, India (Colten 

& Altevogt, 2006; RAND Corporation, 2016). Insufficient sleep has also been linked with 

seven of the fifteen most common causes of death in the USA (RAND Corporation, 2016) 

and is associated with worse academic performance in schoolchildren and undergraduates 

(Okano et al., 2019). The broad extent of sleep and circadian disruption is believed to have 

a significant economic impact. In 2002, the total economic cost (in terms of lost produc-

tivity due to fatigue, absences, accidents, and medical treatment of sleep disorders) was 
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estimated at $226 billion in the USA alone (Stewart et al., 2003). 14 years later, one inter-

national model (RAND Corporation, 2016) estimated that cost had increased to ~$350 bil-

lion.  

Clearly, there is a need for a better understanding of the causes and consequences 

of circadian disruption in order to inform the development of new therapies and policies 

for curtailing it and its deleterious impacts on human society. However, there is a lack of 

consensus regarding the spectrum of changes to the circadian rhythm, which range from 

normal intra- and inter-individual variability (e.g. behavior and chronotype, respectively), 

to adaptive changes in response to the environment (e.g. seasonal changes in sunlight), to 

short-term disturbances caused by acute challenges (e.g. jet lag), to chronic disruption cre-

ated by sustained desynchrony between the circadian rhythm and environmental cues (e.g. 

SJL) (Vetter, 2018). Any discussion of circadian disruption must account for the fact that 

the circadian rhythm is innately adaptive; i.e. it constantly receives and integrates internal 

and external zeitgebers to optimize the timing and coordination of biological processes. 

For example, the gradual day-to-day change in sunrise time is a constant challenge that the 

circadian rhythm easily adapts to with minimal systemic effects (i.e. we are not jet lagged 

every morning). However, a significant change in sunrise time (e.g. due to normal jet lag) 

can overwhelm the circadian rhythm’s adaptability and result in a period of disruption be-

fore the organism is fully resynchronized to their new environment. Therefore any discus-

sion of circadian disruption must distinguish between healthy adaptation, normal varia-

tion, and abnormal disruption in the circadian system/endpoint of interest (Vetter, 2018). 
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This extends to the impact on the biological mechanisms of circadian rhythm: which mol-

ecules, cells, tissues, organs, and/or systems are affected by adaptation and disruption, by 

how much, how consistently, how are disruptions borne and distributed by each level of 

organization and its sub-components, etc. In other words, the circadian rhythm is a system 

of systems; inferring its integrity by studying its overall function is analogous to determin-

ing the health of an individual by their height alone. 

Our data contribute to the considerable evidence indicating our circadian rhythm 

adapts to the socially-defined seven-day week. Although our sample was small and demo-

graphically constrained, we incorporated relevant factors (e.g. chronotype, holidays) and 

triangulated the circadian rhythm using multiple approaches (i.e. objective monitoring and 

subjective self-report) and endpoints (i.e. RAR, sleep, and biomarkers (see Marshall et al., 

2020 [under review]) to produce a more comprehensive model of sociogenic disruption. 

This model enabled us to estimate the variance attributable to between-Day, between-

Week, and between-Individual effects, which can be used to generate hypotheses targeting 

specific factors for future work; residual variance components likewise provide an estimate 

of how much “background noise” can be expected in certain endpoints, which can aid in 

the informing power analyses. 

Moreover, our work emphasizes the highly integrated nature of our biology and our 

society. Sleep and RAR are systemic outputs that represent the cumulative effects of our 

conscious decisions, circadian rhythm, social environment, and natural zeitgebers like sun-

light and eating (Vetter, 2018). In the same way, certain epidemiological and social trends 
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may be the cumulative product of the intersection between our social calendar and biolog-

ical rhythms; e.g. there is a well-documented circaseptan rhythm in suicides and heart at-

tacks associated with the transitions between work- and rest-days (F. Halberg et al., 2005; 

Refinetti et al., 2007; Rogot et al., 1976). Given that blood pressure exhibits a circaseptan 

rhythm with a peak on Mondays (Murakami et al., 2004), and that transitions between 

“social time zones” (i.e. stress of returning to work after the weekend) increases psychoso-

cial – and subsequently physiological – stress, the weekly rhythm in heart attack fatalities 

may be attributable to the compounded risks borne from biogenic and sociogenic factors 

(Ayers et al., 2014; Wallert et al., 2017). The presence of a circaseptan rhythm in urinary 

17-ketosteroid secretion (Franz Halberg et al., 1965), the approximately circatrigintan 

rhythm of menstruation, and circannual rhythms in cortisol secretion (Morgan et al., 2017) 

and the duration of nocturnal melatonin secretion (Stothard et al., 2017) suggest the pres-

ence of endogenous infradian rhythms that exist independently of, and thus may become 

misaligned with, our social calendars. For example, human birth-rates exhibit a profound 

circannual rhythm, but the amplitude has dramatically decreased since the industrial revo-

lution (Foster & Roenneberg, 2008). This change was undeniably driven by sociocultural 

factors (e.g. artificial lighting, insulation from seasons, transition to industrialized mass 

production, implementation of standardized time tables, etc.), but it is unknown if this was 

because the circannual rhythm in birth-rate is purely an emergent property of human culture 

with no biological basis, or because the effect of its biological drive has since been eclipsed 

by societal change and new technology; much like how alarm clocks and year-round stand-
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ard work schedules have rendered moot our need to wake with the rising sun, or how arti-

ficial lighting has largely abolished our circannual rhythm in nocturnal melatonin secretion 

(Stothard et al., 2017). In summary, circadian disruption associated with the seven-day 

week is only one of the myriad ways in which our behavior is shaped by a combination of 

intrinsic biological and extrinsic social factors, and serves as a microcosm for studying the 

nature, breadth, and extent of these factors. 

 

Limitations 

The study discussed in this article had several limitations. The high level of variability 

observed between Participants and Days was a natural consequence of the uncontrolled 

nature of continuous monitoring. We were able to mitigate this by accounting for random 

effects at the Participant and Day level in our linear mixed model, but this nonetheless 

limits interpretability of results. This study employed a “basic” 3-parameter cosinor to 

model RARs; while computationally accessible, the basic cosinor assumes symmetrical 

rhythms with an idealized cosine waveform. Human RARs are more “block-like” than si-

nusoidal, with prolonged periods of activity and torpor of different length during the day 

and night, separated by relatively rapid transitions in activity level. We plan to use the 

“extended” 5-parameter cosinor model (Marler et al., 2006) in future work, which includes 

additional parameters to model the rise/fall time and the ratio of sustained activity versus 

torpor. Sleep characteristics were generated with Actiware, which has many customizable 

parameters that can hinder generalizability; these should be considered when comparing 
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our results to other sleep data. The study population was recruited from a limited demo-

graphic, consisting mainly of medical and graduate students from the Boston area. While 

this minimized variance from factors such as age or sex, this is not a representative sample 

of the population and further limits generalizability. This study required participants to 

wear additional devices and complete daily diaries at-home, as well as a one-weekend stay 

in a sleep lab halfway through the study period; although the sleep lab visit was excluded 

from all analysis in this article, participant behavior may have been altered by the additional 

devices, in-home diary, or on days adjacent to their stay in the sleep lab. Lastly, we did not 

collect detailed information on their work schedule during the study, their observation of 

holidays (official, personal, or otherwise), or other changes in their day-to-day schedule; 

this required us to assume the cohort had a uniform and consistent weekly schedule 

throughout the study period, and deviations from this assumption likely contributed to 

some of the residual variance in our models. 

 

Conclusion 

Our observations support the growing literature describing chronic circadian disruption in 

modern societies. Phenomena such as SJL, sleep debt, and “sleeping in on the weekend” 

emerge from the mismatch between social and circadian rhythms, whereby individuals os-

cillate between their preferred chronotype on rest days and a socially enforced chronotype 

on work days analogously to crossing time zones (Vetter, 2018). The behavioral shift is 

immediate, where-as the circadian rhythm “lags behind” and requires time to resynchro-

nize.  As with normal jet lag, this discrepancy between behavioral and circadian rhythm is 
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associated with acute cognitive, homeostatic, and metabolic deficits (Roenneberg et al., 

2012; Vetter, 2018); unlike jet lag, SJL and similar phenomena presents a challenge at 

consistent, periodic intervals (i.e. weekly). As a result, sociogenic circadian disruption is a 

unique challenge to our modern societies that will require widespread data collection, care-

ful identification of relevant factors, improved methodological consistency and replicabil-

ity, and ultimately fundamental changes to our society informed by biological evidence. 
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CHAPTER SIX: DISCUSSION 

Summary of Main Outcomes 

Circadian disruption in humans is widespread in modern industrialized societies due to a 

combination of sociogenic and pathological factors. In order to translate scientific studies 

into clinical applications, researchers must be able to accurately quantify and classify cir-

cadian disruption, distinguish between disruption and normal variance, and identify poten-

tial therapeutic targets. This requires the use of observational approaches that emphasize 

ecological validity, employ synergistic methodologies, to challenge our assumptions, and 

to strive to detect and account for the myriad environmental factors that shape our circadian 

rhythm. Most importantly, researchers must reach a consensus on how to standardize the 

scientific evaluation of circadian disruption: its definition, its assessment, its reporting, and 

its interpretation. This harmonization is not only for the benefit of chronobiology, but also 

for the study and treatment of pathologies such as Parkinson’s disease (PD) for whom cir-

cadian disruption is a major feature. This is not unique to circadian disruption; as technol-

ogy continues to improve, methodological diversity increases, and powerful new tech-

niques emerge, scientific work must be consolidated, standardized, and clearly reported 

lest the field miss the forest for the trees. 

A key element in this approach is the integration of diametric methods, such as 

qualitative self-report with quantitative measurement, subjective evaluation with objective 

mensuration, cross-sectional evaluation with longitudinal monitoring, and controlled ex-

periments with naturalistic observation. In Chapter 3, this philosophy was applied by inte-

grating qualitative and quantitative approaches in the context of PD and, more specifically, 
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its assessment via the Movement Disorders Society’s Unified PD Rating Scale (MDS-

UPDRS). This work showed that behaviors used in the standard evaluation of PD can be 

systematically defined using key anatomical, visual, and behavioral references to enable 

their identification and precise temporal quantification in video recordings to a level of 

detail so that naive raters without prior clinical experience can achieve high inter-rater re-

liability. 

Amongst the challenges of studying circadian disruption is attributing its etiology 

to discrete factors and causes. While circadian disruption is increasingly recognized as a 

major feature of PD, relatively little work has been done to characterize its relationship 

with PD’s clinical severity, or to what degree PD’s circadian disruption is attributable to 

pathology or unrelated factors. In Chapter 4, depression and fragmentation of rest-activity 

rhythms (RAR) in PD were detected via continuous actigraphic monitoring, which further 

revealed an association between RAR disruption and motor severity and Hoehn and Yahr 

stage (H&Y). 

Misalignment between our biological rhythms and our artificial timetables gives 

rise to phenomena such as Social Jet Lag (SJL), sleep debt, “sleeping in on the weekend”, 

and “a case of the Mondays”. As these occur on a weekly period - potentially due to our 

use of a seven-day week and/or an endogenous seven-day biological rhythm - they can be 

described as circaseptan rhythms of circadian disruption. An interim analysis found that 

persons with PD experienced more sleep fragmentation across the week, but retained the 

“half-week” or “semicircaseptan” rhythm observed in controls. This implies a common 

factor; given the circaseptan period, it was hypothesized that the effect was sociogenic and 
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a product of the seven-day week. To test this, the same general methodology used in Chap-

ter 4 was applied to a population of young, healthy adults with the intent of characterizing 

the potentially sociogenic circadian disruption observed in the PD cohort. This worked 

revealed strong circaseptan effects in RAR and sleep related to transitions between week-

days and weekends (i.e. when people’s behavioral timing shifts due to a change in sched-

ule), which were further influenced by their self-reported chronotype. These sociogenic 

and endogenous factors must be quantified and accounted for in order to advance our un-

derstanding of, and capacity to minimize, circadian disruption in humans. 

 

Methodological Considerations 

Much of our knowledge of chronobiology derives from controlled experiments designed 

to manipulate the circadian rhythm and measure it in isolation. Technological advance-

ments have led to the development of wearable devices capable of measuring circadian 

indicators, such as body temperature, sleep, and movement. By measuring authentic (i.e. 

uncontrolled) human behavior longitudinally, researchers can observe how rhythmic pro-

cesses - well understood in isolation - are impacted by the myriad intricacies of life. This 

approach inherently produces highly variable data, and is dependent on well-structured 

analytical models, integration of secondary lifestyle information to account for individual 

differences, and the application of sociological theories on human behavior to minimize 

variance and aid in interpretation.  
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This subchapter will discuss methodological considerations relevant to the studies 

and topics covered in earlier chapters. In particular, the importance of methodological har-

monization and clarity, the beneficial integration of synergistic measures, the necessity of 

mitigating unconventional biases, and notable methodological obstacles will be explored 

in the context of this manuscript’s contents and applied more generally to human observa-

tional research (especially chronobiological) writ large. 

 

Methodological Diversity: Objective, Subjective, Quantitative, and Qualitative Ap-

proaches 

As scientists, we strive to measure natural phenomena as objectively and quantitatively as 

possible. Much of the effort in scientific research is expended in pursuit of developing, 

assessing, refining, validating, and disseminating novel methods for measuring observables 

of interest to generate and test hypotheses. Observation is fundamentally the acquisition of 

information from some system, and since every measurement will always have some 

amount of uncertainty, the methods employed by scientists are incredibly specialized and 

rely on strategies tailored to the signal of interest and its context. However, as a method 

becomes more context-dependent and constrained by a conceptual framework, the number 

of prerequisite assumptions needed for the valid interpretation of its outputs increases. Put 

simply, the cost of specialization is a loss of generalizability. A natural application of this 

knowledge is to incorporate both powerful, specialized methods and more non-specific, 

generalizable methods in parallel, so that their respective strengths can compensate for 

their counterpart’s weaknesses. For example, the Parkinson Associated Risk Study (PARS) 
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was able to more accurately predict future risk of Parkinson’s disease (PD) using a combi-

nation of two potential biomarkers - hyposmia46 and reduction in dopamine (DA) trans-

porter (DAT) binding - than either individually (Lana M. Chahine & Stern, 2017; Danna 

Jennings et al., 2017). Both hyposmia and a reduction in DAT binding can be detected with 

high sensitivity, but have poor specificity for PD due to their myriad potential causes. How-

ever, since there is little overlap in their potential causes, their integration into a single 

model can greatly improve their combined specificity by filtering out false positives (e.g. 

hyposmia secondary to respiratory illness) and “triangulating” the common factor of inter-

est; i.e. PD. Predictive accuracy can be further increased through the inclusion of additional 

biomarkers such as constipation and cognitive dysfunction (Lama M. Chahine et al., 2016; 

D. Jennings et al., 2014), which also allows for individual biomarkers to be weighted as 

risk factors relative to their predictive power (Berg et al., 2015; Lana M. Chahine & Stern, 

2017). It has been acknowledged that an effective approach to detecting prodromal PD will 

likely require a diverse array of biomarkers sensitive to specific symptomatic (both motor 

and non-motor) and pathological components, requiring a combination of quantitative, 

qualitative, subjective, and objective methods (Artusi et al., 2018; Espay et al., 2017). 

Chapter 3 similarly employed a constellation of complementary methods to trian-

gulate specific endpoints. Instead of integrating prodromal biomarkers to improve speci-

ficity, video annotation was applied to quantify the duration of clinical behaviors in com-

bination with subjective clinical evaluations, with the goal of establishing a unified clinical 

	
46 Hyposmia is the reduction in or loss of the ability to smell, a common prodromal symptom in PD 
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dataset that could be aligned with objective actigraphic monitoring. By integrating subjec-

tive, objective, and quantitative measures, this “multimodal” dataset can characterize these 

behaviors in detail and allow for equitable comparisons between normally incompatible 

methods: e.g. the duration of a sit-to-stand can be precisely quantified through annotation, 

which can then be related to a clinical rating via the MDS-UPDRS, and used to segment 

objective actigraphic accelerometry for use in algorithm development or machine learning. 

This unified approach provides essential information that contextualizes and bounds the 

often difficult-to-discern key features of interest in actigraphy data, facilitating analysis 

and informing interpretation more efficiently than actigraphy alone. 

Chapter 4 employed multimodal measures to assess sleep and rest-activity rhythm 

(RAR) disruption in persons with PD, whose multifaceted symptoms and multi-system 

pathological insults require a similarly diverse methodology to comprehensively assess. 

Consider sleep disruption, a major non-motor symptom in PD that can be quantified with 

polysomnography (PSG) through objective markers such as sleep stage progression and 

number of awakenings. Daytime sleepiness is another common non-motor symptom in PD 

caused, in part, by previous sleep disruption. Although there are objective, quantifiable 

events that cause daytime sleepiness (e.g. midsleep awakenings, i.e. sleep disruption), it 

manifests as a qualia, an experiential perception (Lou et al., 2009) that can only be subjec-

tively assessed, usually through self-report on a questionnaire. In this context, subjectivity 

means that the signal of interest is dependent on some contextual perspective, such as the 

beliefs, biases, opinions, memories, and mood of an individual; a subject who has long 
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experienced disrupted sleep may be so accommodated to daytime sleepiness that they con-

sistently rate themselves as having less daytime sleepiness than another person who re-

cently developed the same level of sleep disruption. While there is no biological difference 

between these hypothetical subjects, the impact on quality of life would be greater in the 

latter subject since their subjective perception is more severe. 

This highlights the critical and fundamental importance of selecting the appropriate 

methods to balance accuracy, relevance, burden, validity, and translatability. Consider the 

myriad ways a researcher could measure the sleep quality of PD patient: they could record 

how well they slept every morning in a diary, infer sleep quality through the number of 

conscious awakenings by instructing the patient to press a button on their phone whenever 

they wake up, have an experienced sleep clinician observer assign a score based on stand-

ardized criteria, monitor them with wearable sensors to quantify some behavioral or phys-

iological correlate of sleep like physical activity or respiration rate (respectively), or have 

them spend the night in a sleep lab with polysomnography (PSG) to directly monitor 

sleep/wake status via brain activity, the neurological primogenitor of sleep, alongside myr-

iad physiological correlates. 

These methods vary along different axes: subjective (e.g. clinical evaluation) to 

objective (e.g. actigraphy), qualitative (e.g. sleep quality diary) to quantitative (e.g. number 

of awakenings), low burden (e.g. passive monitoring in-home with actigraphy) to high bur-

den (e.g. PSG), coarse (e.g. self-report) to precise (e.g. clinical scale), and systemic (e.g. 

brain activity) to system-specific (e.g. respirations). Sleep diaries are subjective because 

they rely on the subject’s recollection, and qualitative because the subject is reporting their 
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perceived quality of sleep. Marking midsleep awakenings is quantitative because it’s meas-

uring the quantity of awakenings, and objective because the subject always presses the 

button when they wake up. An expert rating based on standardized criteria is subjective 

because the expert must interpret their observations to determine which criteria are met, 

qualitative because they have to assign a score, and also quantitative because the score is - 

in part - based on quantitative metrics like “number of awakenings”. Measuring respiration 

rate with a wearable respiration belt is objective (because it’s observed via an artificial 

sensor) and quantitative (as it’s derived from the number of respirations), but it may not be 

as precise as other methods since it reflects a single biological system that can be influenced 

by many different factors beyond sleep. It is also less burdensome as it does not require the 

subject or researcher to actively measure breathing, and is thus less susceptible to issues of 

compliance and human error. PSG is also objective and quantitative, but instead of meas-

uring one biomarker of sleep, it assesses many (e.g. movement, respiration, heart rate, cor-

tical activity, etc.); this allows one to triangulate the data (a la the previous PD prodromal 

biomarker example) (Lana M. Chahine & Stern, 2017; Espay et al., 2017) and arrive at a 

more accurate outcome than just measuring respirations alone, albeit at the cost of high 

subject burden due to the myriad instruments and monitors placed on them and the need to 

stay in an unfamiliar environment (i.e. sleep lab). 

In theory, one might consider always using PSG due to its systemic scope, objective 

nature, and quantitative measures - and in fact PSG is considered the “gold standard” (i.e. 

most accurate and reliable) method for assessing sleep. In reality, the burden, cost, logis-

tics, and complexity of PSG restricts its utility enough so that other, less reliable, methods 
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are used in some situations. If a scientist is, for example, conducting a quick exploratory 

study to determine if a certain population has enough sleep disruption to merit a large-scale 

project, then a sleep diary will probably suffice: it can be easily distributed, is cheap, does 

not require extensive analysis or post-processing to interpret, and - while it is less accurate 

and susceptible to more confounds than PSG - a high level of accuracy isn’t essential in a 

prospective exploratory study. 

Do not mistake this as an argument against the validity of subjectively evaluated 

data or an indictment of qualitative scales; rather, this highlights the importance of choos-

ing “the right tool for the job”. In other words, seemingly inferior methods - on account of 

their subjectivity, coarseness, etc. - still have valid applications to which they are well-

suited. For example, a questionnaire can capture qualitative data on mood and a thermom-

eter can capture quantitative data on body temperature. While one could theoretically be 

inferred from the other - given sufficient knowledge of mood-related changes in thermoreg-

ulation - this is not feasible in practice because one is a subjective report of perception, and 

the other an objective measurement of a physical property. While mood can theoretically 

be reduced to a series of neurochemical processes, their specific nature, the ability to pre-

cisely quantify them, and the knowledge to translate these biomarkers into a mood that can 

be subjectively verified is currently beyond our ability. Pragmatically, it is much easier to 

simply have the subject complete a structured questionnaire. Philosophically, the episte-

mological incompatibility of physical biology and intangible consciousness precludes their 

integration into a cohesive system; i.e. the means by which qualitative experiential con-
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sciousness (from which subjective evaluation originates) arises from quantifiable biochem-

ical processes (which can be objectively measured) is unknown and can’t be artificially 

recreated. Put simply, subjective evaluations are the product of an inscrutable “black box” 

of consciousness, whose internal mechanisms cannot be accurately replicated or objec-

tively measured. Until we can do so (and perhaps not even then), subjective evaluation and 

qualitative self-report will continue to be powerful and ubiquitous methods. 

 

Mixed Methods Research and Data Triangulation – Actigraphy and Polysomnography 

We applied the above-mentioned principles to create a multimodal battery of methods to 

triangulate sleep and circadian disruption in PD (see Chapter 4) and in young healthy men 

(see Chapter 5). Specifically, objective and quantitative measures (e.g. actigraphy, PSG) 

were integrated with subjective and qualitative approaches (e.g. sleep questionnaires) to 

capture as much data and contextual information as possible. 

Although PSG is currently the most direct and reliable means of assessing sleep, it 

entails significant costs and burden on both the clinicians and patients (M. Mitchell & 

Werkhaven, 2020). Patients are required to sleep in an unfamiliar environment outside of 

their homes and are often responsible for arranging travel to the clinic, which can be a 

significant logistical barrier to some. Trained technicians are needed to set up, monitor, 

and score the PSG, and the necessary specialized equipment and facilities are both expen-

sive to maintain and outstripped by patient demand (CAREOperative, 2020; Gozal et al., 

2015). 
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Actigraphy has been found to have a sleep-detection accuracy of ~80-90% in com-

parison to in-laboratory PSG, though this varies slightly by population (Ancoli-Israel et al., 

2003; Fekedulegn et al., 2020; Marino et al., 2013; M. T. Smith et al., 2018). However, 

actigraphy’s ability to effectively detect sleep - and whether its efficacy is sufficient to 

yield valid data - is still debated (Goldstone et al., 2018). Epoch-by-epoch sensitivity is 

considered very good relative to PSG (i.e. ≥ 90%), yet the specificity of epoch-by-epoch 

sleep detection over the last 20 years has remained constant at approximately 50% (Gold-

stone et al., 2018). Although derived metrics (e.g. sleep characteristics) usually have better 

agreement between actigraphy and PSG than epoch-by-epoch sleep detection, the specific-

ity of derived metrics is lower in sleep periods with more wake time. Furthermore, there is 

scant literature describing the intricacies of sleep algorithms and how certain sleep charac-

teristics are calculated, leading to confusion and inconsistent reporting in the literature 

(Berger et al., 2005; Fekedulegn et al., 2020; M. T. Smith et al., 2018). Increased method-

ological transparency may contribute to a better understanding of how sleep characteristics 

are generated. improve the validity and consistency of their interpretation and application 

in future studies, facilitate their iterative refinement with improved algorithms, call atten-

tion to underused sleep characteristics, and provide the information needed to develop (and 

disseminate) novel sleep characteristics tailored to specific applications (Fekedulegn et al., 

2020). 

Ultimately, actigraphy is a compromise between biological assessment and subjec-

tive self-report. It is an objective measurement that is still significantly cheaper and less 

burdensome than biological assays (i.e. PSG for sleep monitoring), and so can be used 
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longitudinally in ecologically valid environments. Moreover, it eschews the inherent im-

precision of subjectively self-reporting sleep, the inaccuracy of which is further com-

pounded by the fact that sleep is an unconscious behavior, and the tendency for subjects to 

fill out diaries after significant time has passed. However, it is limited by the lack of a direct 

biological measure, instead inferring sleep through reduced physical activity, and cannot 

sample qualitative data such as sleep quality or perceived tiredness. Nonetheless, these 

drawbacks can be greatly mitigated by the inclusion of complementary measures - namely 

PSG and self-report sleep diaries - allowing internal validation of their common measures 

(e.g. sleep timing) and data triangulation to inform more accurate interpretations (Madrid-

Navarro et al., 2018). 

For example, the work presented in Chapter 5 used a combination of demographic 

and objective data to inform the division of the sample into Morningness and Eveningness 

cohorts. Since chronotype represents one’s default phase-alignment with external zeit-

gebers, only measures of circadian timing (e.g. acrophase of RAR, sleep timing) would be 

expected to vary significantly between the cohorts in an unbiased sample. Thus after com-

paring and finding no difference in non-timing endpoints (e.g. age, BMI) between the co-

horts, it was concluded that there were no significant demographic confounds related to 

chronotype that would need to be accounted for in statistical analysis and interpretation. In 

addition, the use of the Morningness-Eveningness Questionnaire (MEQ) to determine 

chronotype was further supported by deriving chronotype from other sources (specifically 

self-reported and actigraphically-determined bedtimes on weekends and weekdays) and 
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verifying that these outcomes were also significantly different between MEQ-defined 

Morningness and Eveningness cohorts. 

Triangulation can also be accomplished by characterizing certain aspects or sub-

components within a single measure (e.g. actigraphy). For example, Chapter 5 character-

ized general “sleep quality” using several different measures algorithmically derived from 

actigraphy: Sleep Efficiency (SE), Wake After Sleep Onset (WASO), Percent Sleep Time 

(PST), and Fragmentation Index (Frag). After observing a weekend decrease in SE in the 

Morningness cohort, its potential causes were considered. SE is the ratio of Total Sleep 

Time (TST) to total Time in Bed (TiB), therefore a lower SE could be caused by additional 

time spent awake and/or a greater Sleep Onset/Offset Latency (SONL/SOFFL, respec-

tively). PST is a similar metric that omits SONL/SOFFL and only considers the time spent 

awake between the time of Sleep Onset (SON) and the time of Sleep Offset (SOFF). A 

significant decrease in PST on weekends in the Morningness cohort was not observed, 

which led to the conclusion that the additional time spent awake that contributed to the 

lower SE occurred within the sleep period. However, a significant increase in WASO – 

which would be expected if a person spent more time awake at night – was not observed. 

Since WASO is an absolute sum and SE is a ratio, a change in the latter but not the former 

suggests that the cohort had similar WASO throughout the week, and thus a decrease in 

TST is the likely cause of the observed decrease in SE. 

Despite these applications, the value of multimodal data triangulation was unfortu-

nately only recognized in hindsight. The analyses throughout Chapter 4 and 5 were com-

plicated by the lack of valuable demographic and lifestyle information related to RAR and 
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sleep. While it is practically infeasible to measure all of the possible factors that could 

influence RAR and sleep, due to their being systemic behavioral outputs of the interactions 

between the individual’s natural and social environments and their biological circadian 

rhythms, many of the most influential factors can be readily assessed through self-report. 

For example, subjects were assumed to work a uniform Monday - Friday daytime schedule 

due to a lack of information on their vocation and work schedule. Subjects were not in-

structed to record deviations from their normal routine or asked to report on noteworthy 

events that could have potentially affected their sleep and activity (e.g. “woke up early to 

catch flight”), requiring the assumption that such instances never occurred. National holi-

days and other “special” days that usually elicit a change in behavior (e.g. day off from 

work) were accounted for in Chapter 5, though this entailed the assumption that all subjects 

uniformly observed and reacted to these special days because these data were not col-

lected47. Other influential factors that were not collected include timing and amount of 

substance use (especially caffeine, alcohol, and other stimulants/depressants), long-dis-

tance travel (especially across time zones), living conditions (e.g. shared bed), meal content 

and time of consumption, exposure to artificial light48, and changes in daily routine be-

tween work and rest days (e.g. using an alarm clock only on work days).  

The inclusion of even a few of these factors may dramatically alter the outcomes of 

statistical analyses; for example, most of the bivariate associations between MDS-UPDRS 

	
47 This was somewhat mitigated by treating each special day as a random effect (see Chapter 5, 
Methods) 
48 This includes the use of specialized screens to filter out blue light, which has the most influence 
on entraining our circadian rhythm 
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scores and RAR cosinor metrics reported in Chapter 4 were accounted for by the inclusion 

of demographic (age, sex, BMI, handedness) and clinical (daily levodopa intake, MMSE 

score, and ESS score) covariates. It is possible that the remaining significant associations 

could be attributable to some of the aforementioned factors, especially those related to en-

vironmental conditions and work and rest schedules. Longitudinal and multi-site studies 

(who sample across long duration or distances, respectively) would especially benefit from 

the inclusion of local day/night cycles, which vary by time of year and geographic location, 

and which could be represented by those variables, sunrise/sunset times, and/or day:night 

ratio. A subtle yet significant confound can occur if the sample is distributed across a time 

zone: while everyone shares the same social time, individuals at different longitudes and 

(to a lesser extent) latitudes will have different local sunrise and sunset times. Since humans 

entrain primarily to solar time, the phase-of-entrainment relative to social time will steadily 

advance as one travels from west to east across a time zone (Roenneberg et al., 2007). The 

effect is proportional to differences in local sunrise/sunset times, which can vary by up to 

an hour in most time zones; e.g. on June 21, 2020 the sun rose 51 minutes later (~3.5% of 

a day) in Indianapolis, Indiana than it did in New York City, New York, despite both being 

located in the Eastern Standard Time (EST) time zone. Therefore samples taken across 

large geographic distances should avoid unnecessary variance by accounting for differ-

ences in local solar time, as well as other changes in social time (most notably daylight 

savings time, but also including leap days and other calendar abnormalities). 
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Ultimately, observational circadian studies greatly benefit from the relatively 

straightforward collection of ancillary data about the subject and their environment. In ad-

dition to allowing researchers to better characterize their dataset, identify novel factors, and 

draw more nuanced conclusions, it contributes to the methodological harmonization of the 

field by advancing toward a standardized array of influential covariates and high-value 

endpoints, which can be expanded to include relevant population-specific factors (e.g. 

levodopa use in PD, which can cause sleep disruption via night-time dyskinesias).  

 

Mixed Methods Research and Data Triangulation – Actigraphy and Video Annotation 

While automation is clearly more efficient and reliable in known systems that can be algo-

rithmically defined, video annotation’s value lies in its ability to classify ambiguous and/or 

context-dependent visual information (Bussmann et al., 1998). This is possible because 

humans possess the remarkable ability to rapidly evaluate and accurately classify many 

kinds of visual information that remain algorithmically challenging to contemporary com-

putational approaches (e.g. facial recognition software). More specifically, humans can 

flexibly integrate contextual information and use it to inform their judgments; for example, 

a person can correctly recognize that a fold-out lawn-chair and an antique handcrafted 

wooden chair are both in fact chairs despite their distinct appearances, but would likely not 

identify a toilet or a throne as a “chair” based on their contextual knowledge of their func-

tional uses. These properties make human raters much more adaptable, accurate, and flex-

ible than contemporary computer algorithms for the purposes of identifying complex, 
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open-ended, and contextually dependent behaviors, such as social interactions and natural 

physical movements. 

Video annotation is a valuable hybrid approach that implements both subjective 

and objective techniques to qualitatively classify and temporally quantify behavior; i.e. it 

implements data triangulation to accurately characterize ambiguous and/or context-de-

pendent behaviors. Furthermore, the fine control of video playback and granularity of 

“frame-by-frame” review allows for subtle characteristics not reliably detectable in real-

time to be precisely visualized with maximal clarity in their presentation (Bussmann et al., 

1998; W. G. Janssen et al., 2002). This level of control gives video annotation a temporal 

resolution far beyond what is available to a contemporaneous observer and allows brief 

and instantaneous events to be fully reviewed; however, spatial features (e.g. amplitude or 

distance) cannot be easily quantified by annotators without objective techniques (e.g. kin-

ematics). Although the temporal resolution of video annotation falls short of quantitative 

measures of movement (e.g. 125 Hz actigraphy has ~8 millisecond resolution, where-as a 

60 frames per second (FPS) video has ~17 millisecond resolution), it avoids many of the 

challenges posed by wearable accelerometers and similar methods - such as expensive 

equipment, visualization software, and post-processing/filtering. Moreover, raw video data 

provides an unaltered visual representation unobtainable with accelerometry, allowing for 

the easy verification of the data: e.g. one could easily verify that a given subject is in a 

video by watching the video, but one cannot do the same by looking at just an accelerom-

etry waveform. Because of its rich visual content and minimal abstraction, video recordings 

are frequently used as a “ground truth” to validate sensor-based behavioral classification 
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algorithms (Heldman et al., 2014). It’s important to note that, in these scenarios, the algo-

rithms are being validated against the definitions and criteria used by the annotators to 

classify behavior; i.e. in the absence of an objective ground truth, the accuracy of the quan-

titative algorithm is validated against the accuracy of qualitative video annotation. 

While the work presented in Chapter 3 was specifically aimed at assessing the fea-

sibility and reliability of video annotation, it was implemented in the first place to bridge 

the gap between the subjective clinical gold standard - the MDS-UPDRS - and an objective 

measure of the physical behaviors it assesses. By using video annotation, the MDS-

UPDRS’ clinical behaviors were accurately and reliably temporally delimited in such a 

way that they could be readily aligned to objective accelerometry collected in parallel. This 

effectively created an internally consistent dataset composed of discrete instances of clini-

cal behaviors and postural states. Each instance has an associated duration, demographic 

information (e.g. sex), clinical scores from the MDS-UPDRS, objective actigraphy and its 

associated endpoints (i.e. derivatives like sleep characteristics, and other sensors like tem-

perature) and general study metadata associated with the behavior or subject (e.g. date of 

observation, self-reported quality of life), all manually reviewed and temporally aligned. 

Such datasets are powerful tools that allow for equitable and valid comparisons between 

normally incompatible approaches, leveraging data triangulation to contextualize the sub-

ject of interest with multiple modalities. For example, a machine learning algorithm could 

be trained to predict the clinician’s score on the Finger Tapping task using accelerometry 

from the wrist-mounted actigraph (Criss & McNames, 2011). 
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Although video annotation is not required to create aligned multimodal datasets, it 

is well-suited to validating sensor-derived postural segmentation and behavioral detection 

algorithms (Czech & Patel, 2019; W. G. Janssen et al., 2002): postures and most behaviors 

are gross movements readily identifiable in video, subjective bias can be minimized 

through clear predefined criteria as demonstrated in Chapter 3, and disagreements can be 

thoroughly arbitrated as the video is a permanent, immutable record. While the MDS-

UPDRS remains a common feature in validation studies due to its ubiquity and recognition 

as the gold standard assessment of disease severity, it is not well-suited for validating sen-

sor-derived symptomatic scores (e.g. bradykinesia): the scoring - while guided by clear 

criteria - often relies on the clinician’s subjective interpretation of transient symptoms, the 

scores are assigned in real time with no opportunity to “rewind” and review an ambiguous 

clinical presentation, and the most commonly used endpoints (i.e. section scores and total 

score) are meant to reflect overall disease severity and integrate a broad array of symptoms 

beyond what’s being evaluated. Ultimately, no MDS-UPDRS data is lost through the in-

clusion of wearable sensors and video recording, but their quantitative nature can help con-

textualize and validate subsequent analyses of scores from the MDS-UPDRS and other 

clinical assessments (Criss & McNames, 2011; Goetz et al., 1997; Lyons & Tickle-Degnen, 

2005; S. T. Moore et al., 2011). 

 

Maximizing Data Integrity and Value to the Scientific Community 

Both PD’s pathology and the circadian rhythm are complex, dynamic systems that benefit 

from data triangulation and multimodal data-sets; however, these systems and the methods 
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used to assess them are sensitive to myriad extraneous factors that must be considered, 

controlled, and accounted for throughout the scientific process. In addition to ensuring 

sound experimental design, drawing reasonable conclusions from the results, and objec-

tively considering previous data, the scientific method demands methodological rigor and 

replicability. 

Of paramount importance is the need to reach a scientific consensus on what 

measures should be employed to assess circadian disruption, it’s associated factors, and 

it’s short- and long-term effects on health and wellbeing (Vetter, 2018). Currently, the 

study of circadian disruption is plagued by inconsistent terminology and insufficient meth-

odological detail, resulting in discrepancies between peer-reviewed articles in how they 

generate, present, and interpret their findings (Fekedulegn et al., 2020; Vetter, 2018). Be-

yond the complications this introduces to scientific communication, such heterogeneity 

limits the power of systematic reviews and meta-analyses by forcing them to reconcile 

methodological inconsistencies and account for them in their interpretation. 

In order to achieve consensus, different models and methodological paradigms 

must be replicated, evaluated, and compared; to do so requires abundantly detailed and 

transparent methodological reporting. For example, there are several algorithms that are 

commonly used to derive sleep characteristics from actigraphy. These are described in de-

tail in Chapter 2; briefly, raw accelerometry must be condensed into epochs through con-

version into some intermediate metric (e.g. AC, ENMO), then these epochs are behavior-

ally classified (i.e. sleep, rest, active, etc.) using a sleep scoring algorithm to identify and 

bound the sleep period, from which numerous sleep characteristics (e.g. WASO, SE) can 
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be derived. Designing the method of data collection and implementing the first two steps - 

epoching and sleep scoring - entails myriad technical decisions (Ancoli-Israel et al., 2015; 

Fekedulegn et al., 2020): 

- What sampling frequency should be used? 

- Where will the device be placed on the subject? 

- Will the data be transformed to minimize the effect of non-normal distribution 

and variability (e.g. log transform) 

- Which epoch-level endpoint should be used? 

- What epoch duration should be used? 

- Will gravity be accounted for? How (e.g. gyroscope, ENMO)? 

- Will off-body non-wear periods be identified? How (e.g. manual review, sub-

ject self-report)? 

- How much missing data will be tolerated before the actigraphy is considered 

invalid for analysis? 

- What is the threshold for distinguishing rest from active states? 

- Which sleep-scoring algorithm should be used? 

- Should the algorithms parameters be tailored to the specific population being 

assessed? For example, should the sleep threshold be higher in PD to account 

for their nighttime tremor increasing their baseline activity? 

- Regardless of tailoring, which parameters were actually used? 



	

	

228 

Acknowledging that there is a lack of consensus on the optimal answers to these 

questions, this disagreement can be attributed to, in part, the lack of methodological trans-

parency in peer-reviewed articles assessing sleep through actigraphy. Although many such 

articles provide answers to some of these questions, few provide sufficient detail to accu-

rately replicate their algorithmic pipeline (Fekedulegn et al., 2020). This lack of detailed 

reporting leads to “islands of expertise” (Espay et al., 2016), the relatively independent and 

often redundant iterative development of techniques that grow increasingly incompatible 

with other “islands” due to the lack of communication and collaboration. Espay and col-

leagues (2016) applied this term specifically to the producers of “technology-based objec-

tive measures” (which includes actigraphy) as part of a larger acknowledgement (Johans-

son et al., 2018) of the need to improve reporting and standardization of actigraphy derived 

measures in PD research (including motor, clinical, and physical activity in addition to 

sleep characteristics); however, this concept is just as applicable to the iterative process of 

methodological refinement in research. For example, the FI is a common sleep character-

istic that is often interpreted to represent the frequency of sleep/wake transitions throughout 

the night; i.e. it is a measure of how likely a person is to transition between sleep and wake 

epochs throughout the night (Fekedulegn et al., 2020; Natale et al., 2014). While it is widely 

reported, there exist multiple variations purporting to be “fragmentation index” or analo-

gous metrics that are derived using different formulas (Fekedulegn et al., 2020; Mini Mitter 

Company, Inc., 2006). Further confusion is introduced by “spin-off” metrics derived from 

FI, such as the rest fragmentation (kRA) and activity fragmentation (kAR) indices (Lim et al., 

2011), and the historical use of standard PSG metrics, such as the arousal index and SE 
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(Moser et al., 2009), to infer sleep fragmentation. Without context, “sleep fragmentation 

index” could potentially refer to any one of these metrics. 

The need to promote abundantly detailed and transparent methodological reporting 

is by no means limited to actigraphy, but is vital for all aspects of study design. While 

frequently acknowledged as a limitation (including for the work presented herein), sam-

pling and recruitment biases are nonetheless a significant and widespread confound in ob-

servational circadian research that must be accounted for and, whenever possible, mitigated 

(Di Milia et al., 2013). Unfortunately, the practical constraints of deadlines and budgets 

often leads to “convenience sampling” in modern human subjects research, where subjects 

are enrolled as quickly as possible from easily accessible populations (e.g. a study on 

“healthy adults” recruiting undergraduate students from the laboratory’s university). Alt-

hough the judicious use of appropriate inclusion/exclusion criteria can mitigate the effect 

of convenience sampling by homogenizing the sample (albeit at the cost of generalizabil-

ity), and post-hoc analysis can potentially account for demographic differences between 

the cohort and the general population, a convenience sample may differ from the general 

population in ways not accounted for by the researchers. For example, alcoholics were 

screened out in Chapter 5, but a cohort of young males is nonetheless significantly more 

likely to drink to excess than the general population and this must be considered when 

generalizing Chapter 5’s results. 

The work presented herein was not immune to this bias, as the data presented in 

Chapter 5 was obtained from a sample consisting largely of graduate students enrolled at 

Boston University School of Medicine. Although this helped create a homogenous sample 
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and thus increased the confidence of conclusions drawn from it, the lack of a representative 

sample worked to negate the primary strength of observational research by limiting the 

generalizability of its conclusions. This is not to say that observational circadian research 

should not be conducted on specific sub-populations - in truth circadian function and dis-

ruption varies widely across demographic factors such as age, chronotype, and vocation 

(Roenneberg et al., 2019; Vetter, 2018) - but that a convenient sample should not be as-

sumed to be a representative sample. Especially now, in this period of methodological con-

solidation and theoretical harmonization, large representative samples are needed in both 

the general population and specific subpopulations to provide accurate baseline data to 

inform future research in observational circadian research. Beyond making informed study 

design decisions, this also requires clear reporting of the process by which subjects were 

selected and recruited, the inclusion/exclusion criteria used to screen them, and the ra-

tionale for these choices in the context of the study’s primary research questions. 

Missing data is another serious hindrance to observational circadian research, pri-

marily due to the reliance on methods such as actigraphic monitoring that are susceptible 

to subject non-compliance (Fuster-García et al., 2013). Considerable missing data was en-

countered in Chapters 4 and 5, the large majority of which was attributable to subject non-

compliance. Although data imputation was considered, it was ultimately decided that it 

was too unreliable and that the relatively small size of the dataset would introduce unnec-

essary stochastic bias. Data imputation is common in actigraphy, though conventional im-

putation methods entail assumptions regarding the distribution of missing data that actig-

raphy rarely meets, and data imputation in actigraphy is neither standardized nor universal 
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(Brooks et al., 2020; Herrmann et al., 2014; Jang et al., 2020). There is also no consensus 

on the amount of missing data that can be tolerated before a given period of actigraphy 

should be discarded entirely. Chapters 4 and 5 implemented 15% threshold (i.e. 3.6 

hours/day) for the purposes of identifying eligible days for cosinor analysis. After failing 

to identify a consistent reference threshold in the scientific literature, 15% was chosen as 

it could flexibly accommodate the amount of missing data and participant non-compliance 

expected to occur due to study protocols (e.g. removal for bathing). 

Although there is scant information regarding the treatment of missing data in co-

sinor analysis49, there has been some exploratory work in other applications of actigraphy. 

For example, the minimum amount of “wear time” needed to assess daily physical activity 

ranges from 2 - 16 hours (Herrmann et al., 2013); a wear time of 12+ hours, based on a 

2014 meta-analysis (Herrmann et al., 2014), has recently become more common (Amagasa 

et al., 2019; Kaufman et al., 2019; Mazzoni et al., 2017). Missing data must be character-

ized in detail in scientific reporting50: it’s amount, distribution across the sample, potential 

causes, and treatment (i.e. imputed or omitted). Not only is this valuable information that 

can inform future work and meta-analyses (Johansson et al., 2018), it can be applied to 

better understand the causes of missing data and mitigate its frequency and severity 

(Herrmann et al., 2014; Morgenthaler et al., 2007). 

 

	
49 Cosinor analysis has been described as “robust” to missing data because it does not require equi-
distant samples (Cespedes Feliciano et al., 2017) 
50 Roberts et al. (2020) is an excellent example of this 
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Sociogenic Circadian Disruption 

Our behavioral rhythms - and therefore our physiology and health - are subtly influenced 

by factors conventionally taken for granted. Our circadian rhythm is, in many ways, anal-

ogous to the social calendar in form and function. According to the French sociologist, 

Émile Durkheim: “A calendar expresses the rhythm of the collective activities, while at the 

same time its function is to assure their regularity.” In the same way, our circadian rhythm 

is the product of the “collective activities” of our myriad biological processes, and simul-

taneously serves to “assure their regularity” with respect to each other and the geophysical 

day. Both provide a common, regular temporal reference that can be used to minimize 

waste and optimize efficiency; both were derived from the astronomical properties of our 

planet and sun; and both are a constant pressure that shapes our daily lives and subtly af-

fects our minute-to-minute behavior. 

Circadian disruption is the sustained desynchronization of the circadian rhythm 

from its environment, although it has also been referred to as circadian misalignment, cir-

cadian desynchrony, and chronodisruption, among other terms, in the literature (Vetter, 

2018). The widespread circadian disruption extant in modern industrialized societies can 

be partially attributed to interference caused by social calendars, mores, and expectations 

that shape our behavioral schedules independently of the biological circadian rhythm and 

the geophysical day. Chapter 4 reported variations in sleep and RAR metrics that appeared 

to be associated with distinct times of the week, which were characterized as “sociogenic” 

based on the socially defined nature of the calendar week. Sociogenic circadian disruption 

specifically refers to desynchronization caused primarily by social and sociological factors, 
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especially the calendar and the “rhythm of collective activities” it regulates. The work in 

Chapter 5 explicitly aimed to detect these sociogenic effects in a larger, more uniform sam-

ple and found distinct, regular changes in sleep and RAR associated with transitions be-

tween weekends and the work-week. Analysis of variance components in each nested tier 

of Chapter 5’s linear mixed models - Participant, Week, and Day - identified consistently 

large variances at the Day level across RAR and sleep characteristics, suggesting that the 

most influential factors on sleep and RAR patterns may be at the Day level: e.g. weather, 

exercise opportunities, inconsistent weekly schedules, etc. 

There is abundant evidence of the deleterious effects associated with rhythmic so-

ciogenic factors. For example, there is a well-documented weekly rhythm in heart attack 

with its peak on Mondays (Rogot et al., 1976), and cardiovascular mortality has been ob-

served to increase on regularly occurring socially significant occasions, such as holidays 

(Wallert et al., 2017) and major sporting events (Wilbert-Lampen et al., 2008), although 

similar increases in mortality have been observed in singular periods of social disturbance, 

such as in the weeks following earthquakes (Takegami et al., 2015). Other socially influ-

enced infradian rhythms have been found in the timing of human activity vis-à-vis the nor-

mal morning increase in power grid burden occurring ~1 hour later on weekends (Stowie 

et al., 2015) and a similar delay in peak social media usage (Leypunskiy et al., 2018). Other 

notable infradian rhythms potentially influenced by social factors include an increase in 

the mortality rate of acute subarachnoid hemorrhages increasing during the work-week 

(Turin et al., 2010), a circaseptan rhythm in blood pressure with its peak on Monday (Mu-

rakami et al., 2004), and a semicircaseptan (i.e. twice weekly) peak in suicides (F. Halberg 
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et al., 2005; Refinetti et al., 2007). Myocardial Infarction (MI) with Non-Obstructive Cor-

onary Arteries (MINOCA) events were observed to be more common on Mondays and 

early mornings (Nordenskjöld et al., 2019); curiously, unlike normal MI’s, the frequency 

of MINOCA’s was not associated with holidays. Collectively, these may be caused by 

sudden increases in psychosocial stress associated with significant social events (e.g. holi-

days), behavioral transitions (e.g. weekend to work week), and their subsequent physiolog-

ical stress (Ayers et al., 2014; Wallert et al., 2017). 

Circadian disruption is not a new phenomenon, but modern technology has vastly 

increased the number of ways it may occur. Before the development of steam engines, for 

example, no human had the means to travel far enough in one day to experience jet lag; 

now it is a common occurrence for much of the population (Roenneberg et al., 2015). Ca-

lendrical abnormalities and social customs such as daylight savings time and holidays, re-

spectively, present challenges to our circadian rhythm that risk acute disruption (Fritz et 

al., 2020; Kitamura et al., 2016; Wallert et al., 2017). Artificial lighting has a clear con-

founding effect that interferes with the circadian rhythm’s ability to synchronize to photic 

zeitgebers, and has made it dramatically easier to extend daytime behaviors into the night 

and further decoupled social and biological time. For example, there are many “time-ag-

nostic” professions whose schedules are almost entirely determined by social factors, in-

cluding first responders, military personnel, medical specialists, and shift-workers at 24/7 

jobs. Competitive fields, such as professional sports and post-graduate education, may en-

courage personal schedules that prioritize professional advancement over a regular sleep 
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schedule. At a macro scale, human birth-rates have historically exhibited a strong circan-

nual trend that has all but evaporated: birth-rates fluctuated by ~60% across the year in pre-

industrial human societies, where-as modern industrialized nations experience an ampli-

tude of ~0%-5% (Foster & Roenneberg, 2008). 

Modern human societies are more secluded from natural zeitgebers than ever be-

fore. Through the development of shelter, artificial lighting, social calendars, industriali-

zation, electronics, globalization, rapid long-distance transportation, and near-instantane-

ous communication, human society has increasingly sequestered itself from the natural cy-

cles present on Earth that shaped the biological rhythms of our global ecosystem and there-

fore our own species. While our behavior is still dominated by the rising and setting of the 

sun, our technological advancement has led to our societies becoming more insulated from 

natural zeitgebers. The rhythm of human society is increasingly determined by logistical 

(e.g. international shipping), economic, sociopolitical (e.g. work-week), geographic, pro-

fessional (e.g. shift-work), and other artificial pressures. The increasing independence of 

our society from natural cycles (e.g. tidal, solar, and seasonal) results in a discrepancy be-

tween our social, behavioral, and circadian rhythms from which circadian disruption can 

arise. 

 

Circaseptan Rhythms and Disruption 

Socially motivated changes in the phase of behavioral rhythms across the seven-day week 

give rise to circaseptan rhythms of circadian disruption. Social Jet Lag (SJL), the difference 

in average sleep timing between rest and work days (Wong et al., 2015), is perhaps the 
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most obvious example of sociogenic circaseptan disruption. Most adults in industrialized 

countries experience at least one hour of Social Jet Lag (SJL) (“2005 Sleep in America Poll 

– Adult Sleep Habits and Styles,” 2015; Roenneberg et al., 2003, 2015). This delay in sleep 

times on rest versus work days is commonly observed (Monk et al., 2000; Roenneberg et 

al., 2003) and can cause circadian phase delays of up to 1 hour (Crowley & Carskadon, 

2010; C.-M. Yang et al., 2001) that may take several work days to overcome (Crowley et 

al., 2015; Taylor et al., 2008). This mild forward phase-shift leads to increased daytime 

sleepiness and fatigue (Taylor et al., 2008), consequently impairing attention, mood 

(Dinges et al., 1997), memory consolidation (Karni & Sagi, 1993), vigilance, and poten-

tially contributing to an increased risk for accidents (Bonnet & Arand, 1995) and cardio-

vascular disease (Gallerani et al., 2017) following rest-work transitions. While these out-

comes are caused by disruptions associated with discrete parts of the week (specifically the 

transition between different “social time zones”, i.e. work and rest days), it is unclear 

whether it is purely a product of abrupt changes in behavioral rhythms (e.g. sleep timing) 

and significant events (e.g. work-related stress) caused by the week, or if they can be par-

tially attributed to the misalignment of an innately circaseptan biological rhythm with the 

social week exacerbates the sociogenic disruption (Reinberg et al., 2017). In the same way 

the circadian rhythm predisposes us to be active during sunlight hours in the 24-hour day, 

an innately circaseptan biological rhythm may predispose us to being more active on cer-

tain days of the week. 

Humans likely adopted the seven-day week based primarily on cultural and social 

factors - i.e. not based on a systematic evaluation of scientific evidence of negative health 
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outcomes associated with weeks of different lengths. Ancient Bayblon implemented a lunar 

calendar divided into four seven-day weeks - the oldest historical evidence of a calendar 

week - and the first non-lunar calendar week appeared in Judea; both included a specific 

“sabbath” or “rest day” dedicated to spiritual and ceremonial activities (Zerubavel, 1989). 

Perhaps the most famous antecedent of the seven-day week in American society is the story 

of God’s creation of the earth as told in the Book of Genesis: 

 

“And on the seventh day God ended His work which He had done, and He rested on the seventh day 

from all His work which He had done.” (Genesis 2:2, New King James Bible) 

 

Although it is implicit that the modern week was derived from these historical prec-

edents, it is nonetheless possible that the adoption of the seven-day week was encouraged 

by an innate biological circaseptan rhythm through its influence on infradian rhythms in 

human behavior (i.e. work/rest days). Humanity’s inquisitive, greedy, and self-preserving 

nature ensures that our societies are continually adapting to external pressures by explor-

ing, testing, and revising strategies to protect themselves and improve their fitness. For 

example, prehistoric humans spontaneously formed cities in response to new farming tech-

nology and the food surplus they created, as this gave them an immense benefit by allowing 

specialization and non-agricultural pursuits, and these cities spontaneously formed self-

governing coalitions (i.e. states) to protect their shared interests. During World War II, the 

adoption of “total war” policies and the societal cost it entailed led to dramatic changes in 

American society, such as a large influx of women into the workforce and the proliferation 
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of “victory gardens” to supplement rationed food supplies. At the time of writing this man-

uscript in 2020, ingrained social touch customs such as the handshake are rapidly being 

replaced with contactless gestures due to the increased risk of viral transmission associated 

with the global Coronavirus Disease 2019 (COVID-19) pandemic. Human sociocultural 

mores are enduring yet adaptable, and this extends to our calendars as well.  

For most of human history, societal time structures and their subsequent rhythms 

have been dictated by biological (e.g. circadian rhythm) and natural (e.g. day/night cycle) 

factors. While artificial considerations such as simplicity, economic efficiency, compati-

bility with other societies, and the cost of revising an existing system undoubtedly influ-

enced calendar development throughout history, the increased energy made available by 

the industrial revolution greatly expanded our productive capacity and thus the influence 

of these artificial factors. In the interest of efficiency, industrialization efforts built upon 

and standardized pre-existing systems: since the week was the cultural standard in much 

of the world in the 19th century, it became the basis for the standard modern calendar. As-

suming it exists, an innate biological circaseptan rhythm likely influenced the adoption of 

the seven-day week in human societies, but has since been supplanted by an artificial cal-

endar dependent on non-biological factor: why check the sun’s position in the sky when 

you can look at your watch? While a circaseptan rhythm and the seven-day week are equiv-

alent in duration, the day-to-day activities and normal behaviors across the week are now 

primarily informed by wholly artificial considerations: i.e. work schedules. In other words, 

there’s no guarantee that the “shape” of our circaseptan rhythm is the same as it was before 
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the industrial revolution, nor that it possesses the same properties such as adapting to sea-

sonal differences in the day/night cycle. 

 

Origin of Circaseptan Rhythms 

It has been proposed that circaseptan rhythms observed in tidal zone organisms, such as 

the beach beetle (Chaerodes trachyscelides), derive from the lunar-driven tidal cycle, and 

that this may be the origin of circaseptan rhythms in non-tidal animals (Meyer-Rochow & 

Brown, 1998). Tides are regular oscillations in local water level along coastlines driven 

primarily by the gravitational force exerted by the moon. Individual tidal cycles (i.e. high 

tide to the next high tide) occur every ~12.4 hours due to the combined rotation of the earth 

and the revolution of the moon about the earth - for a given location, high tides generally 

occur when the moon is directly overhead and directly underfoot, and low tides occur when 

the moon is perpendicular to the location’s ground plane. Tidal dynamics are complex, 

being affected not only by local conditions (e.g. atmospheric pressure, temperature) and 

geography (i.e. coastline shape), but also by the sun. Despite its distance, the sun’s im-

mense mass allows its gravity to exert a force roughly half as influential as the moon’s 

gravity. This is most noticeable during spring and neap tides. Twice during the lunar cycle, 

the earth, moon, and sun align in syzygy, once with the moon between the earth and sun 

(i.e. a new moon), and ~14.5 days later when the earth is between the moon and sun (i.e. a 

full moon). During these syzygies, the gravitational pulls of the moon and sun both work 

along the same axis, exaggerating the amplitude of high and low tides; these are known as 

spring tides. Likewise, a neap tide occurs during the 1st quarter moon and 3rd quarter moon 
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when the moon is at quadrature (i.e. orthogonal to the sun relative to the earth) and the 

lunar-solar gravitational reinforcement is at its weakest, resulting in reduced tidal ampli-

tude. 

The authors of the aforementioned C. trachyscelides study observed a circaseptan 

rhythm in their physical activity (Meyer-Rochow & Brown, 1998). They further noted that, 

since C. trachyscelides forages in the debris zone left by the ebb tide, and since the debris 

zone would gradually shift up and down a beach between each neap and spring tide, they 

would be subject to a natural evolutionary pressure to anticipate and follow these shifts. As 

previously explained, a single cycle of spring tide --> neap tide --> spring tide takes ap-

proximately 14 days to complete; this makes it a circadiseptan rhythm, with the accelera-

tion, deceleration, and eventual reversal of the tidal cycle’s maximum extent occurring 

every 7 days - i.e. a circaseptan rhythm. Therefore, the weekly increase in C. trachyscelides 

activity may be a byproduct of their natural chronobiological adaption to the circaseptan 

harmonic of the naturally occurring circadiseptan rhythm of neap and spring tides. Thus, 

while natural circaseptan rhythms do not have an obvious astronomical correlate capable 

of entraining them, they may have ultimately originated from the lunar cycle via the regular 

circadiseptan oscillation in tidal amplitude caused by the moon’s rotation around the earth 

relative to the sun. While this may indicate a potential biological origin of the circaseptan 

rhythms, it does not account for how such a rhythm could be biologically preserved and 

transferred to humans (via evolution, symbiosis, or otherwise). Given that the majority of 

humans have historically lived on the coast and thus been exposed to this circadiseptan 
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rhythm, it is possible that this played a role in the sociocultural development of a seven-

day calendar unit regardless of the presence of a biological correlate. 

 

Scientific and Clinical Considerations 

In order to improve resiliency to the negative effects of sociogenic circadian disruption, we 

must be able to reliably detect it, precisely measure its magnitude, thoroughly characterize 

its nature, and quantify its risks and their associations with its negative outcomes, both 

acute (e.g. fatigue) and chronic (e.g. risk factors for diseases). While it is clear that systemic 

changes in the ordering of our social calendars is needed to prevent sociogenic circadian 

disruption (), the nature and extent of these changes are unknown. Until then, more con-

ventional therapeutic interventions are needed to mitigate the deleterious effects of circa-

dian disruption. 

Much like “lifestyle diseases” such as obesity and metabolic disorders, circadian 

disruption can be minimized through practical changes to one’s lifestyle. SJL is a wide-

spread form of chronic sociogenic circadian disruption caused by the seven-day week and 

associated with numerous negative health outcomes. Much like obesity, it is a product of 

one’s behavior (acknowledging also the genetic, metabolic, and neurological systems pro-

moting that behavior) and is best remedied through behavioral modification. In addition to 

maintaining a constant sleep schedule, daytime exercise and consistent day-to-day RAR’s 

provides a stabilizing effect that strengthens the amplitude of the SCN’s latent rhythms and 

improve mood and performance in Alzheimer’s disease (Pévet, 2016); note that circadian 

disruption (e.g. “sundowning”) is a common symptom in Alzheimer’s disease. 
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Amongst the numerous topics of debate in this emerging field is the degree to which 

sociogenic factors can directly influence the biological circadian rhythm, as opposed to 

indirectly (e.g. via sleep). Although social calendars and behaviors may influence a per-

son’s chronotype, these “social zeitgebers” do not appear capable of independently entrain-

ing human circadian rhythms (Roenneberg et al., 2007, 2015), and evidence suggests that 

the human circadian rhythm is entrained primarily by the solar calendar (i.e. sunrise/set) 

rather than the social calendar. For example, humans have created arbitrary “time zones” 

that unify relatively broad ranges of longitude with a common clock, yet local sunrise time 

is a continuous function of longitude irrespective of time zones; e.g. the sun may have risen 

in New York City but not in Columbus, a city in the same time zone but ~9° farther west. 

A study examining self-reported sleep times and chronotypes in Germany found that indi-

viduals who lived farther west woke up later than more easterly individuals in the same 

time zone; i.e. their clocks showed the same time. This effect was inversely proportional 

to population density, as. people in cities were less entrained to solar time, which the au-

thors theorized was due to light pollution (Roenneberg et al., 2007). The greater importance 

of solar time versus social time for circadian entrainment is further supported by case stud-

ies of blind workers, who have free-running circadian rhythms (due to their insensitivity to 

light) despite functioning within a social calendar (i.e. work) (Arendt et al., 1988). In other 

words, social time can influence the phase of the circadian rhythm (and thus disrupt it), but 

it is not enough to entrain the circadian rhythm by itself (Roenneberg et al., 2007). 

Methodologically, the study of circadian disruption benefits from data triangulation 

and the integration of observational and experimental datasets. In general, animal models 
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are well-suited to basic biological research, where-as human subjects lend themselves well 

to translational research. This holds especially true for chronobiology given the presence 

of numerous artificial zeitgebers (e.g. artificial lighting), widespread use of circadian-mod-

ifying substances (e.g. caffeine and alcohol), and other anthropogenic confounds extant in 

modern human populations (e.g. social media). Moreover, the sheer number of potential 

confounds limits the generalizability of basic research to functional applications. Observa-

tional studies attempt to maximize ecological validity - i.e. minimize observational and 

experimental biases - to more accurately measure authentic circadian disruption as it exists 

in the modern milieu, replete with artificial zeitgebers and innumerable potentially con-

founding variables. Thus observational studies are often epidemiological or translational 

in nature, relying on gross systemic outputs of the circadian rhythm (e.g. sleep timing) in 

combination with environmental factors (e.g. presence of artificial zeitgebers) and/or in-

terventions (e.g. sleep medication) to characterize a given population’s circadian rhythm, 

its disruption in a given context, and potential correlates amongst the behavioral (e.g. sleep 

timing), biological (e.g. body temperature), cognitive (e.g. reaction time), and/or psycho-

logical (e.g. perceived sleepiness) outcomes of interest (Vetter, 2018). 

In addition to factors and covariates mentioned earlier in this Chapter (see Method-

ological Considerations), the work presented in Chapter 5 reinforces the importance of 

accounting for chronotype in observational circadian research and contributes to its utility 

as a circadian endpoint in clinical and epidemiological studies. DLMO is generally consid-

ered to be the gold standard marker of one’s biological chronotype (Arendt & Skene, 2005; 

Benloucif et al., 2005). In practice, melatonin concentration is derived from saliva or blood 
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plasma samples collected in frequent intervals to prevent short-term changes (from, e.g., 

exposure to artificial light) from “masking” the underlying circadian rhythm. As the pro-

cess of sampling and processing of samples for DLMO is burdensome, time-consuming, 

and expensive, self-reported chronotype (e.g. via questionnaires like the MEQ) has become 

more common. Alternatively, sleep timing on rest days has been used as low-cost low-

burden behavioral proxy for inferring chronotype (Vetter, 2018). This approach benefits 

from its cost-effectiveness, ease of implementation, and applicability to remote in-home 

monitoring for capturing ecologically valid sleep behavior, with the significant caveat that 

sleep is a complex systemic behavior only partially mediated by the circadian rhythm. In 

other words, sleep timing represents a behavioral output influenced by the circadian 

rhythm, where-as DLMO is a physiological signal directly regulated by the central oscilla-

tor and so can be expected to more accurately reflect the circadian phase (Vetter, 2018). 

When assessing chronotype in humans, chronobiologists must weigh the accuracy and bi-

ological validity of DLMO sampling against the utility and ecological validity of question-

naires and sleep timing. The MEQ was employed in Chapter 5 due to the logistical diffi-

culties of sampling DLMO while monitoring subjects during their “normal life”. Regard-

less of whether sleep timing is assessed either subjectively through self-report (e.g. MEQ) 

or quantified through objective measures (e.g. DLMO, actigraphy), it is essential that chro-

notypes are derived from sleep timing on rest nights. This is because external factors, such 

as waking up early to go to work, will change when a person sleeps, where-as one can 

adhere to their preferred, “chronotypical” sleep timing when there are no restrictions on 

when they have to wake up. 
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Lastly, it should be noted that there is a profound historical sex bias in chronobi-

ological research: for example, only 1 in 5 peer-reviewed articles employing mouse models 

of circadian rhythm included female mice (Kuljis et al., 2013). This systemic bias is exac-

erbated by the mounting evidence of significant sexual dimorphism in circadian biology; 

e.g. sex-specific modification of circadian rhythm in the embryo, differences in SCN vol-

ume, physiology, and cytoarchitecture between the sexes, and the presence of androgener-

gic and estrogenergic receptors on neurons in central circadian regulators, including the 

SCN (M. Bailey & Silver, 2014; Kuljis et al., 2013). Between-sex differences have also 

been observed in humans; e.g. women have larger and longer SCN’s relative to total brain 

volume. 

 

Circadian Disruption in Parkinson’s Disease 

Circadian disruption and sleep dysregulation are critical non-motor symptoms of PD that 

require the integration of molecular, neurological, and behavioral research to effectively 

understand and treat (Fifel & Videnovic, 2019; Vetter, 2018). Much like PD’s other symp-

toms, the breadth and severity of circadian disruptions are heterogenous. Although sleep 

and circadian disruption (amongst other non-motor symptoms) have received considerably 

less attention than PD’s hallmark motor symptoms until recently, they were described in a 

patient with advanced PD by James Parkinson in his seminal work, “An Essay on the Shak-

ing Palsy” (1817): 
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“In this stage, the sleep becomes much disturbed. The tremulous motion of the limbs occur during 

sleep, and augment until they awaken the patient, and frequently with much agitation and alarm. ... 

It now seldom leaves [a patient] for a moment; but even when exhausted nature seizes a small por-

tion of sleep, the motion becomes so violent as not only to shake the bed-hangings, but even the 

floor and sashes of the room. ... [The patient’s] attendants observed, that of late the trembling would 

sometimes begin in his sleep, and increase until it awakened him: when he always was in a state of 

agitation and alarm.” 

 

Parkinson described sleep disruption as a consequence of the motor symptoms in 

particular, though there now exists a burgeoning appreciation that the breadth and diversity 

of sleep disruptions in PD is considerable and is caused by non-motor factors (i.e. the 

pathological disturbance of the circadian rhythm). Etiologically, sleep disruptions have 

been separated into three broad categories: sleep disruption as a consequence of PD’s neu-

ropathology and symptoms, sleep disruption as a consequence of dopaminergic medication 

and its side effects, and sleep disorders that frequently co-occur with PD (Claassen & 

Kutscher, 2011). The first category includes Excessive Daytime Sleepiness (EDS; de-

scribed by Parkinson as “constant sleepiness” and “extreme exhaustion”), which may orig-

inate from intrinsic the degeneration of central sleep regulators such as the raphe nucleus 

and locus coeruleus, and/or secondarily by sleep fragmentation caused by urinary inconti-

nence, motor symptoms, etc. (Videnovic, Lazar, et al., 2014). Parkinson’s observations 

(1817) fall in this category. Next, dopaminergic medications (e.g. levodopa) can induce 

insomnia and reduce time spent in NREM when incorrectly dosed (Brunner et al., 2002; 

Vetter, 2018), their side effects (e.g. dyskinesia) can interrupt sleep in the same manner as 
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tremor, and medications for other symptoms and comorbidities (e.g. depression) can fur-

ther interfere with sleep regulation (Huete & Varona, 1997; Jindal, 2009). Lastly, REM 

Behavioral Disorder (RBD), Restless Leg Syndrome (RLS), and Obstructive Sleep Apnea 

(OSA) are more prevalent in persons with PD than those without PD (Claassen & Kutscher, 

2011); determining the causal relationship between these disorders and PD - i.e. whether 

one causes the other - is a major objective of current clinical research. 

Dopamine has been identified as a promising research target for exploring the rela-

tionship between the pathology and circadian disruption of PD (Videnovic, Lazar, et al., 

2014; Videnovic, Noble, et al., 2014). The depletion of dopamine throughout the CNS and 

particularly in the basal ganglia is a hallmark symptom of PD and thought to be the primary 

cause of PD’s motor symptoms; moreover, dopamine is a major neurotransmitter in the 

circadian rhythm, and several symptoms have been linked to dopamine loss and dysregu-

lation in PD (see Chapter 4; Discussion). 

 

Limitations 

The work presented in this manuscript should be considered in the context of several lim-

itations and assumptions. While these have been described in greater detail throughout the 

Chapter, they will be briefly summarized here. The use of small sample sizes recruited 

through “convenience sampling” contributed to the high variance in the data and limited 

their generalizability, especially in Chapter 4. The Actiwatch used throughout Chapters 4 

and 5 is a “black box” actigraph that restricts access to the raw accelerometry data and uses 
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a proprietary algorithm to epoch and behaviorally segment the data, which greatly re-

stricted analytical options for deriving RAR and sleep characteristics. A significant amount 

of missing data primarily attributable to subject non-compliance was also encountered; in 

combination with limited sampling periods of two to four weeks (in Chapters 4 and 5, 

respectively), this weakened statistical power and increased variance. The basic cosinor 

model, while common in the literature, is overly simplistic and can only approximate hu-

man RAR, which are more “block-wave” than sinusoidal. Due to methodological con-

straints, several contextual factors known to influence circadian and circaseptan rhythms 

were not accounted for, most notably employment, weekly work schedule, use of depres-

sants and stimulants, exercise and mealtimes, and “one-off” events that deviated from the 

subject’s normal rhythm. 

 

Future Directions 

The work described in this manuscript has highlighted several promising avenues for future 

research. First, the significant methodological challenges encountered due to inconsistent 

and opaque reporting in the literature is a significant hindrance to the field – progress de-

mands methodological consolidation, theoretical harmonization, abundantly transparent 

reporting, and the generation of publicly available datasets to facilitate collaboration and 

data triangulation – and future work will strive to promote these principles alongside the 

rest of the field. Second, future work will focus on the refinement of the methodological 

toolkit, including the use of more accurate models of human RAR (e.g. extended cosinors), 
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reducing missing data through improving subject compliance, and the integration of syn-

ergistic methods to create more robust and comprehensive statistical models. Third, the 

search for potential biological correlates of infradian rhythms will be aided through iden-

tification of infradian trends in unconventional data, including social (e.g. social media 

usage), demographic (e.g. birth rates), epidemiological (e.g. causes of death), commercial 

(e.g. media engagement), and civil (e.g. power consumption) data. This also entails the 

detailed characterization of RAR and sleep characteristics in distinct populations and en-

vironments, such as those with different levels of light pollution (e.g. urban v. rural), to 

identify significant factors that contribute to circadian disruption, and the integration of the 

sociological perspective to aid in contextualizing and interpreting chronobiological out-

comes. 

Our future work will be guided by the knowledge that our lives, our behavior, our 

society, and our health are shaped by factors we all-too-often take for granted - most nota-

bly the seven-day week - and fueled by the remarkable abundance of data available to 

humanity in the information era. 

 

Conclusion 

The circadian rhythm is a distributed yet interconnected system of systems that coordinates 

the timing of biological processes by integrating exogenous and endogenous signals via a 

self-regulating, adaptive network present at every level of biological organization, from 

cells to cities. Although we have greatly improved our knowledge of the circadian rhythm’s 

molecular and anatomical components, the mechanisms and consequences of its disruption 
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in modern societies are less well understood. Moreover, the ubiquity of circadian rhythms 

in our biology creates innumerable avenues through which it can be pathologically dis-

rupted (e.g. dopaminergic depletion in PD), or through which it can create pathology (e.g. 

SJL and risk factors). Clinical study of circadian disruption therefore requires a holistic, 

integrative approach that strives to measure both the circadian rhythm itself and the sus-

pected factors implicated in its disruption. As the circadian rhythm is inseparable from our 

behavior and environment, its disruption can only be crudely replicated in controlled la-

boratory settings, and this loss of ecological validity hinders the translation of scientific 

findings into clinical interventions (Andrade, 2018). Over the last several decades, techno-

logical progress has enabled the practical use of wearable devices capable of continuously 

monitoring circadian signals, such as RARs. While this nascent approach has significant 

obstacles still to overcome, it has nonetheless encouraged more ecologically valid studies 

focused on objectively measuring circadian rhythms in the authentic context of day-to-day 

life and human behavior. 

Furthering the scientific community’s understanding of sociogenic circadian dis-

ruption will be accomplished through the integration of complementary designs, synergis-

tic methods, and multimodal datasets to triangulate findings; motivated by its ubiquity in 

modern industrialized societies, it’s contribution to negative health outcomes, and its dis-

proportionate impact on critical infrastructure; facilitated by methodological consolidation, 

theoretical harmonization, and integration of sociological and other novel perspectives; and 

guided by an appreciation of the fundamentally important role the circadian rhythm plays 

in shaping in our behavior, our society, and our health. This is not a novel approach; the 
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growing acknowledgement that a diverse and broad battery of clinical biomarkers will be 

needed to accurately diagnose, characterize, and monitor disease progression shows that 

data triangulation efforts are already being prioritized in PD research, among other fields.  
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APPENDIX 

Chapter 3 Supplementary Information 

 

Figure A.1: Video Coding Scheme 

 
“Clinician” refers to the person directly administering and guiding the Subject through the as-
sessments. The Clinician is not face masked. 
 
“Subject” refers to the person undergoing the assessments and wearing the wearable sensors. The 
Subject’s face is masked. 

 
Scripted Motor Tasks 

 
Rigidity, Neck – The Clinician manually articulates Subject’s neck. 

- Initiation Frame: First visible movement of the neck or head clearly caused by the Clini-
cian through physical contact, including when the point of contact is out of view. 

- Termination Frame: Last visible movement of the neck or head clearly caused by the Cli-
nician, or when the Clinician is no longer touching Subject’s head and neck, whichever 
comes first. 

- MDS-UPDRS Instruction Criteria: Subject in relaxed position, Clinician slowly manipu-
lates major Neck joints, Subject allows passive movement of neck. 

- MDS-UPDRS Rating Criteria: Rigidity (w/o Activation Maneuver), Rigidity (w/ Activa-
tion Maneuver), Range of Motion, Difficulty of Achieving Range of Motion 

 
Rigidity, Right Upper Limb – The Clinician manually articulates Subject's joints on their right 
upper limb. 

- Initiation Frame: First visible movement of the right upper limb clearly caused by the Cli-
nician through physical contact, including when the point of contact is out of view. 

- Termination Frame: Last visible movement of the right upper limb clearly caused by the 
Clinician, or when the Clinician is no longer touching Subject’s right upper limb, which-
ever comes first. 

- MDS-UPDRS Instruction Criteria: Subject in relaxed position, Clinician slowly manipu-
lates Right Wrist and Elbow joints, Clinician does not manipulate other limbs or neck, 
Subject allows passive movement of RUE, [Subject performs Activation Maneuver] 

- MDS-UPDRS Rating Criteria: Rigidity (w/o Activation Maneuver), Rigidity (w/ Activa-
tion Maneuver), Range of Motion, Difficulty of Achieving Range of Motion 

 
Rigidity, Left Upper Limb – The Clinician manually articulates Subject's joints on their left up-
per limb. 

- Initiation Frame: First visible movement of the left upper limb clearly caused by the Cli-
nician through physical contact, including when the point of contact is out of view. 

- Termination Frame: Last visible movement of the left upper limb clearly caused by the 
Clinician, or when the Clinician is no longer touching Subject’s left upper limb, which-
ever comes first. 
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- MDS-UPDRS Instruction Criteria: Subject in relaxed position, Clinician slowly manipu-
lates Left Wrist and Elbow joints, Clinician does not manipulate other limbs or neck Sub-
ject allows passive movement of LUE, [Subject performs Activation Maneuver] 

- MDS-UPDRS Rating Criteria: Rigidity (w/o Activation Maneuver), Rigidity (w/ Activa-
tion Maneuver), Range of Motion, Difficulty of Achieving Range of Motion 

 
Rigidity, Right Lower Limb – The Clinician manually articulates Subject’s joints on their right 
lower limb. 

- Initiation Frame: First visible movement of the right lower limb clearly caused by the Cli-
nician through physical contact, including when the point of contact is out of view. 

- Termination Frame: Last visible movement of the right lower limb clearly caused by the 
Clinician, or when the Clinician is no longer touching Subject’s right lower limb, which-
ever comes first. 

- MDS-UPDRS Instruction Criteria: Subject in relaxed position, Clinician slowly manipu-
lates Right Hip and Knee joints, Clinician does not manipulate other limbs or neck, Sub-
ject allows passive movement of RLE, [Subject performs Activation Maneuver] 

- MDS-UPDRS Rating Criteria: Rigidity (w/o Activation Maneuver), Rigidity (w/ Activa-
tion Maneuver), Range of Motion, Difficulty of Achieving Range of Motion 

 
Rigidity, Left Lower Limb – The Clinician manually articulates Subject’s joints on their left 
lower limb. 

- Initiation Frame: First visible movement of the left lower limb clearly caused by the Cli-
nician through physical contact, including when the point of contact is out of view. 

- Termination Frame: Last visible movement of the left lower limb clearly caused by the 
Clinician, or when the Clinician is no longer touching Subject’s left lower limb, which-
ever comes first. 

- MDS-UPDRS Instruction Criteria: Subject in relaxed position, Clinician slowly manipu-
lates Left Hip and Knee joints, Clinician does not manipulate other limbs or neck, Subject 
allows passive movement of LLE, [Subject performs Activation Maneuver] 

- MDS-UPDRS Rating Criteria: Rigidity (w/o Activation Maneuver), Rigidity (w/ Activa-
tion Maneuver), Range of Motion, Difficulty of Achieving Range of Motion 

 
Finger Tapping, Right Hand – Subject taps tips of their right index finger and right thumb to-
gether in rapid succession. 

- Initiation Frame: First visible movement of the right index finger or right thumb of the 
first tap of the series. 

- Termination Frame: Last visible movement of the right index finger or right thumb of the 
last tap in the series. 

- MDS-UPDRS Instruction Criteria: Subject taps right index finger against right thumb, 
Subject performs 10 taps, Subject taps as quickly as possible, Subject taps as big as possi-
ble, Subject does not tap fingers on left hand 

- MDS-UPDRS Rating Criteria: Speed, Slowing, Amplitude, Decrementing Amplitude, 
Number/timing of Hesitations, Number/timing of Halts, Freezes 

 
Finger Tapping, Left Hand – Subject taps tips of their left index finger and left thumb together 
in rapid succession. 

- Initiation Frame: First visible movement of the left index finger or left thumb of the first 
tap of the series. 
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- Termination Frame: Last visible movement of the left index finger or left thumb of the 
last tap in the series. 

- MDS-UPDRS Instruction Criteria: Subject taps left index finger against left thumb, Sub-
ject performs 10 taps, Subject taps as quickly as possible, Subject taps as big as possible, 
Subject does not tap fingers on right hand 

- MDS-UPDRS Rating Criteria: Speed, Slowing, Amplitude, Decrementing Amplitude, 
Number/timing of Hesitations, Number/timing of Halts, Freezes 

 
Fist Open and Close, Right Hand – Subject flexes their right fingers as fully as possible to form 
a fist, then extends (“fist-open”) and flexes (“fist-close”) their right fingers as fully as possible in 
rapid succession.    

- Initiation Frame: First visible extension or flexion of any of the right fingers as part of the 
first fist-open or fist-close of the series. 

- Termination Frame: Last visible extension or flexion of any of the right fingers as part of 
the last fist-open or fist-close of the series. 

- MDS-UPDRS Instruction Criteria: Subject has right forearm flexed, Subject's right palm 
is facing the Clinician, Subject makes a fist with right hand, Subject opens and closes 
right hand, Subject opens right hand as quickly as possible, Subject opens right hand as 
fully as possible, Subject performs 10 open/closes, Subject does not open/close left hand 
[If Subject does not open fist quickly/fully, Clinician reminds Subject to do so] 

- MDS-UPDRS Rating Criteria: Speed, Slowing, Amplitude, Decrementing Amplitude, 
Number/timing of Hesitations, Number/timing of Halts, Freezes 

 
Fist Open and Close, Left Hand – Subject flexes their left fingers as fully as possible to form a 
fist, then extends (“fist-open”) and flexes (“fist-close”) their left fingers as fully as possible in 
rapid succession.    

- Initiation Frame: First visible extension or flexion of any of the left fingers as part of the 
first fist-open or fist-close of the series. 

- Termination Frame: Last visible extension or flexion of any of the left fingers as part of 
the last fist-open or fist-close of the series. 

- MDS-UPDRS Instruction Criteria: Subject has left forearm flexed, Subject's left palm is 
facing the Clinician, Subject makes a fist with left hand, Subject opens and closes left 
hand, Subject opens left hand as quickly as possible, Subject opens left hand as fully as 
possible, Subject performs 10 open/closes, Subject does not open/close right hand [If 
Subject does not open fist quickly/fully, Clinician reminds Subject to do so] 

- MDS-UPDRS Rating Criteria: Speed, Slowing, Amplitude, Decrementing Amplitude, 
Number/timing of Hesitations, Number/timing of Halts, Freezes 

 
Pronation and Supination, Right Hand – Subject flexes their right arm with fingers extended 
and with forearm extended and pronated; Subject then alternates between laterally rotating their 
right forearm until the palm is facing up (“supination”) and medially rotating their right forearm 
until the palm is facing down (“pronation”) in rapid succession.  

- Initiation Frame: First visible rotation of the right forearm as part of the first pronation or 
supination of the series. 

- Termination Frame: Last visible rotation of the right forearm as part of the last pronation 
or supination of the series. 

- MDS-UPDRS Instruction Criteria: Subject has right arm (and right forearm) extended in 
front of themselves, Subject begins with right palm facing downward, Subject turns their 
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right palm up, Subject turns right palm down, Subject turns right palm up/down as fast as 
possible, Subject turns right palm up/down as fully as possible, Subject performs 10 
up/down palm turns, Subject does not turn left palm up/down 

- MDS-UPDRS Rating Criteria: Speed, Slowing, Amplitude, Decrementing Amplitude, 
Number/timing of Hesitations, Number/timing of Halts, Freezes 

 
Pronation and Supination, Left Hand – Subject flexes their left arm with fingers extended and 
with forearm extended and pronated; Subject then alternates between laterally rotating their left 
forearm until the palm is facing up (“supination”) and medially rotating their left forearm until 
the palm is facing down (“pronation”) in rapid succession.  

- Initiation Frame: First visible rotation of the left forearm as part of the first pronation or 
supination of the series. 

- Termination Frame: Last visible rotation of the left forearm as part of the last pronation 
or supination of the series. 

- MDS-UPDRS Instruction Criteria: Subject has left arm (and left forearm) extended in 
front of themselves, Subject begins with left palm facing downward, Subject turns their 
left palm up, Subject turns left palm down, Subject turns left palm up/down as fast as 
possible, Subject turns left palm up/down as fully as possible, Subject performs 10 
up/down palm turns, Subject does not turn right palm up/down 

- MDS-UPDRS Rating Criteria: Speed, Slowing, Amplitude, Decrementing Amplitude, 
Number/timing of Hesitations, Number/timing of Halts, Freezes 

 
Toe Tapping, Right Foot – Subject is Sitting with their right foot on the ground; Subject then 
lifts their right toes (dorsiflexion) and taps them back onto the ground (plantarflexion) in rapid 
succession. 

- Initiation Frame: First visible dorsiflexion of the right foot as part of the first toe tap of 
the series. 

- Termination Frame: Last visible plantar- or dorsiflexion of the right foot as part of the 
last toe tap of the series. 

- MDS-UPDRS Instruction Criteria: Subject is sitting, Subject is in a straight-backed chair 
with arms, Subject has both feet on the floor, Subject places right heel on the ground in a 
comfortable position, (Subject raises right toes off the ground), Subject taps right toes on 
the ground, Subject taps right toes as fast as possible, Subject taps right toes as big as 
possible, Subject taps right toes 10 times, Subject does not tap left toes 

- MDS-UPDRS Rating Criteria: Speed, Slowing, Amplitude, Decrementing Amplitude, 
Number/timing of Hesitations, Number/timing of Halts, Freezes 

 
Toe Tapping, Left Foot – Subject is Sitting with their left foot on the ground; Subject then lifts 
their left toes (dorsiflexion) and taps them back onto the ground (plantarflexion) in rapid succes-
sion. 

- Initiation Frame: First visible dorsiflexion of the left foot as part of the first toe tap of the 
series. 

- Termination Frame: Last visible plantar- or dorsiflexion of the left foot as part of the last 
toe tap of the series. 

- MDS-UPDRS Instruction Criteria: Subject is sitting, Subject is in a straight-backed chair 
with arms, Subject has both feet on the floor, Subject places left heel on the ground in a 
comfortable position, (Subject raises left toes off the ground), Subject taps left toes on the 
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ground, Subject taps left toes as fast as possible, Subject taps left toes as big as possible, 
Subject taps left toes 10 times, Subject does not tap right toes 

- MDS-UPDRS Rating Criteria: Speed, Slowing, Amplitude, Decrementing Amplitude, 
Number/timing of Hesitations, Number/timing of Halts, Freezes 

 
Stomping, Right Foot – Subject is Sitting with their right foot on the ground; Subject then lifts 
their right foot off the ground and stomps it back onto the ground in rapid succession. 

- Initiation Frame: First visible movement directly related to lifting the right foot, including 
flexion of the right thigh, flexion of the right leg, movement of the right foot, or any other 
movement clearly connected to the preparation and/or execution of the first foot stomp of 
the series. 

- Termination Frame: Last visible movement of the right lower limb as part of the last foot 
stomp of the series. 

- MDS-UPDRS Instruction Criteria: Subject is sitting, Subject is in a straight-backed chair 
with arms, Subject has both feet comfortably on the floor, Subject places right foot on the 
ground in a comfortable position, Subject raises right foot off the ground, Subject stomps 
right foot on the ground, Subject stomps (raises) right foot as high as possible, Subject 
stomps right foot as fast as possible, Subject stomps right foot 10 times, Subject does not 
stomp left foot 

- MDS-UPDRS Rating Criteria: Speed, Slowing, Amplitude, Decrementing Amplitude, 
Number/timing of Hesitations, Number/timing of Halts, Freezes 

 
Stomping, Left Foot – Subject is Sitting with their left foot on the ground; Subject then lifts their 
left foot off the ground and stomps it back onto the ground in rapid succession. 

- Initiation Frame: First visible movement directly related to lifting the left foot, including 
flexion of the left thigh, flexion of the left leg, movement of the left foot, or any other 
movement clearly connected to the preparation and/or execution of the first foot stomp of 
the series. 

- Termination Frame: Last visible movement of the left lower limb as part of the last foot 
stomp of the series. 

- MDS-UPDRS Instruction Criteria: Subject is sitting, Subject is in a straight-backed chair 
with arms, Subject has both feet comfortably on the floor, Subject places left foot on the 
ground in a comfortable position, Subject raises left foot off the ground, Subject stomps 
left foot on the ground, Subject stomps (raises) left foot as high as possible, Subject 
stomps left foot as fast as possible, Subject stomps left foot 10 times, Subject does not 
stomp right foot 

- MDS-UPDRS Rating Criteria: Speed, Slowing, Amplitude, Decrementing Amplitude, 
Number/timing of Hesitations, Number/timing of Halts, Freezes 

 
Postural Tremor, Right and Left Hands – Subject flexes their arm with fingers extended and 
abducted and with forearm extended and pronated, then maintains this position. 

- Initiation Frame: First frame where Subject meets all criteria and is not intentionally 
moving their upper limb; this does not include unintentional motion (e.g. tremor, sway, 
shaking, etc.) or minor intentional movements performed to maintain this position (e.g. 
flexing the arm to compensate for drop, etc.). 

- Termination Frame: Last frame Subject meets all criteria, or the last frame before Subject 
makes an intentional movement of the upper limb not related to maintaining its position. 
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- MDS-UPDRS Instruction Criteria: Subject has arm stretched in front of their body, Sub-
ject's arm is palm down, Subject's wrist is straight, Subject's fingers are comfortably sep-
arated without touching, Subject maintains behavior for 10 seconds 

- MDS-UPDRS Rating Criteria: Presence of Tremor (including Re-Emergent Rest 
Tremor), Amplitude of Tremor 

 
Kinetic Tremor, Right Hand – The Clinician stands in front of Subject with a single raised fin-
ger within Subject’s reaching distance; Subject then alternates between touching the Clinician’s 
finger and their own nose using a finger from their right hand. The Clinician may use an object 
instead of their finger. 

- Initiation Frame: First frame with visible movement of Subject’s right upper limb directly 
related to and continuous with the action of reaching to touch their nose or the Clinician’s 
finger. 

- Termination Frame: Last frame where Subject is touching their nose or the Clinician’s 
finger during the last nose-touch or finger-touch of the series. 

- MDS-UPDRS Instruction Criteria: Subject has right arm outstretched, Subject performs 
the finger-to-nose maneuver, [Subject touches Clinician's finger with their right finger], 
[Subject touches their nose with their right finger], Subject's right arm is as outstretched 
as possible when touching Clinician's finger, Subject performs finger-to-nose maneuver 
slowly enough to not hide tremor, Subject repeats finger-to-nose maneuver at least three 
times, Subject does not perform finger-to-nose maneuver with their left arm 

- MDS-UPDRS Rating Criteria: Presence of Tremor, Amplitude of Tremor 
 
Kinetic Tremor, Left Hand – The Clinician stands in front of Subject with a single raised finger 
within Subject’s reaching distance; Subject then alternates between touching the Clinician’s fin-
ger and their own nose using a finger from their left hand. The Clinician may use an object in-
stead of their finger. 

- Initiation Frame: First frame with visible movement of Subject’s left upper limb directly 
related to and continuous with the action of reaching to touch their nose or the Clinician’s 
finger. 

- Termination Frame: Last frame where Subject is touching their nose or the Clinician’s 
finger during the last nose-touch or finger-touch of the series. 

- MDS-UPDRS Instruction Criteria: Subject has left arm outstretched, Subject performs 
the finger-to-nose maneuver, [Subject touches Clinician's finger with their left finger], 
[Subject touches their nose with their left finger], Subject's left arm is as outstretched as 
possible when touching Clinician's finger, Subject performs finger-to-nose maneuver 
slowly enough to not hide tremor, Subject repeats finger-to-nose maneuver at least three 
times, Subject does not perform finger-to-nose maneuver with their right arm 

- MDS-UPDRS Rating Criteria: Presence of Tremor, Amplitude of Tremor 
 

 
Postural Transitions 

 
Sit-to-Stand – Subject starts Sitting and attempts to Stand in one continuous action. 

- Initiation Frame: Subject makes an intentional movement related to the Transition, in-
cluding extension of the legs, repositioning of the hands and/or feet, flexion or extension 
of the torso, extension of the hip, or any other movement clearly connected to the prepa-
ration and/or execution of the Transition. 
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- Termination Frame: Last frame before Subject meets criteria for a PGT behavior, or last 
visible movement continuous with the Transition, whichever occurs first. 

 
Stand-to-Sit – Subject starts Standing and attempts to Sit in one continuous action. 

- Initiation Frame: Subject makes an intentional movement related to the Transition, in-
cluding flexion of the legs, repositioning of the hands and/or feet, flexion of the torso, 
flexion of the hip, or any other movement clearly connected to the preparation and/or ex-
ecution of the Transition. 

- Termination Frame: Last frame before Subject meets criteria for a PGT behavior, or last 
visible movement continuous with the Transition, whichever occurs first. 
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Figure A.2: Frequency of errors of commission and errors of omission made by pairs of 
coders for each task across all videos. 
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Chapter 4 Supplementary Information 

Table A.1: Number (%) of valid participant-days with less than 15% missing data* by H&Y Stage and by day of the week.**  

  Sunday Monday Tuesday Wednesday Thursday Friday Saturday All 

H&Y Stage 1/2 2 (100%) 0 (0%) 2 (100%) 2 (100%) 2 (100%) 2 (100%) 2 (100%) 12 (85.71%) 

H&Y Stage 2 6 (50%) 2 (16.67%) 10 (83.33%) 10 (83.33%) 11 (91.67%) 9 (75%) 7 (58.33%) 55 (65.48%) 

H&Y Stage 2/3 5 (83.33%) 0 (0%) 6 (100%) 6 (100%) 6 (100%) 5 (83.33%) 4 (66.67%) 32 (76.19%) 

H&Y Stage 3 4 (66.67%) 0 (0%) 4 (66.67%) 5 (83.33%) 5 (83.33%) 4 (66.67%) 3 (50%) 25 (59.52%) 

All 17 (65.38%) 2 (7.69%) 22 (84.62%) 23 (88.46%) 24 (92.31%) 20 (76.92%) 16 (61.54%) 124 (68.13%) 

*Participant-days with greater than 15% of the activity data missing were not modelled with cosinors. 
**Note that the day of the week specifies the start day of the model (e.g. Sunday tabulates the cosinor models for Sunday 18:00:00 – Mon-
day 17:59:45). 
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Table A.2: Cosinor parameters** of the final analytical cohort and their associations*** with baseline characteristics.  

    Age † BMI † MMSE † ESS † Levodopa † Sex ◊ Handedness ◊ 

MESOR 

95% CI [-2.43, -1.24] [-2.71, -1.05] [-5.52, -1.30] [-1.70, 0.26] [0.01, 0.03] [0.93, 098] [0.91, 0.97] 

Coefficient/Odds Ratio -1.83 -1.88 -3.41 -0.72 0.02 0.95 0.94 

p-value < 0.01* < 0.01* < 0.01* 0.15 < 0.01* < 0.01* < 0.01* 

Amplitude 

95% CI [-2.28, -1.14] [-2.48, -0.86] [-6.08, -2.15] [-1.89, -0.03] [0.01, 0.03] [0.92, 0.98] [0.91, 0.97] 

Coefficient/Odds Ratio -1.71 -1.67 -4.11 -0.96 0.02 0.95 0.94 

p-value < 0.01* < 0.01* < 0.01* 0.04* < 0.01* < 0.01* < 0.01* 

Acrophase 

95% CI [-1:48, 6:22] [-2:48, 8:03] [-29:04, -3:09] [-8:43, 2:59] [0:02, 0:09] -- -- 

Coefficient/Odds Ratio 2:17 2:37 -16:07 2:52 00:05   

p-value 0.27 0.34 0.02* 0.33 < 0.01*   

**Note that MESOR and Amplitude are reported in AC, and Acrophase in time (minute:second). 
***For all regressions, the sample analyzed contained both weeks had a total n = 124, and degrees of freedom of F(1, 122). Coefficients 
are reported as change in Cosinor Parameter per 1 MDS-UPDRS score.  
Abbreviations: AC (Activity Count), CI (Confidence Interval), MESOR (Midline Estimating Statistic Of Rhythm), MDS-UPDRS (Move-
ment Disorder Society’s Unified Parkinson’s Disease Rating Scale). * = p < 0.05 
† Simple Linear Regression, reporting coefficient 
◊ Simple Logistic Regression, reporting odds ratio 
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Figure A.3: Flow chart of participant inclusion and assignment to sub-groups based on 
Hoehn and Yahr (H&Y) Stage. Participants were rated by clinicians during an in-lab visit 
following each week of in-home recording. The two in-lab visits were an average of 36.31 
(standard deviation: 4.80, range: [28 – 49]) days apart for the final analytical cohort (n = 
13). 
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Chapter 5 Supplementary Information 

Figure A.4: Predicted marginal means for rest-activity rhythm parameters (MESOR, Amplitude, and Acrophase) and sleep tim-
ings (Sleep Onset, Sleep Mid, and Sleep Offset) derived from the by-Chronotype across-Day one-way linear mixed model. 

[A.4A] Rest-activity rhythms visualized by-Chronotype across-Days using cosinor models. Shaded areas represents the range of the 
standard error for that model’s base parameters. Black squares denote the hour of peak activity (i.e. Acrophase). 
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[A.4B] Sleep timings by-Chronotype, across-Days. Error bars represent +/- standard error. ** indicates between-Chronotype Wald 
tests with p-value < 0.05 

	  

**

**

**



	

	

267 
	

Figure A.5: Predicted marginal means for rest-activity rhythm parameters (MESOR, Amplitude, and Acrophase) and sleep tim-
ings (Sleep Onset, Sleep Mid, and Sleep Offset) derived from the by-Day across-Chronotype one-way linear mixed model. 

[A.5A] Rest-activity rhythms visualized by-Day across-Chronotypes using cosinor models, both for individual days and for week-
ends/weekdays. Black squares denote the hour of peak activity (i.e. Acrophase). Monday, Tuesday, Wednesday, Thursday, and 
Friday were considered weekdays; Saturday and Sunday were considered weekends. Note that Tuesday/Thursday were included 
in weekday average, but were excluded from the individual days figure to aid interpretation. 
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[A.5B] Sleep timings by-Day, across-Chronotype. Error bars represent +/- standard error. Wald tests were conducted between 
individual Days and Sunday (reference day) for all sleep timings; ** indicates p-value < 0.05, * indicates p-value ≥ 0.05 and < 0.10. 

  

** ** ** **

** ** ** ** **

** ** ** ** **
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Table A.3: Number (%) of valid participant-days analyzed in this paper by day of the week, across weeks of the study, divided by 
Chronotype. Only participant-days with both a cosinor model and an overnight sleep period were considered valid. 

Evening Chrono-
type 

Saturday Sunday Monday Tuesday Wednesday Thursday Friday All Days 

Week 1 8 (53.33%) 8 (53.33%) 8 (53.33%) 8 (53.33%) 8 (53.33%) 7 (46.67%) 9 (60.00%) 56 (53.33%) 

Week 2 11 (73.33%) 8 (53.33%) 11 
(73.33%) 

10 (66.67%) 12 (80.00%) 13 (86.67%) 10 
(66.67%) 

75 (71.43%) 

Week 3 Sleep Clinic Sleep Clinic 
Sleep 
Clinic 

15 
(100.00%) 

15 
(100.00%) 

15 
(100.00%) 

13 
(86.67%) 58 (96.67%) 

Week 4 15 
(100.00%) 

15 
(100.00%) 

13 
(86.67%) 14 (93.33%) 15 

(100.00%) 13 (86.67%) 12 
(80.00%) 97 (92.38%) 

Week 5 12 (80.00%) 8 (53.33%) 2 (13.33%) -- -- -- -- 22 (48.89%) 

All Weeks 46 (76.67%) 39 (65.00%) 34 
(56.67%) 

47 (78.33%) 50 (83.33%) 48 (80.00%) 44 
(73.33%) 

308 
(73.33%) 

 
Morning Chrono-

type Saturday Sunday Monday Tuesday Wednesday Thursday Friday All Days 

Week 1 6 (66.67%) 6 (66.67%) 6 (66.67%) 6 (66.67%) 6 (66.67%) 6 (66.67%) 6 (66.67%) 42 (66.67%) 

Week 2 6 (66.67%) 6 (66.67%) 5 (55.56%) 6 (66.67%) 8 (88.89%) 8 (88.89%) 8 (88.89%) 47 (74.60%) 

Week 3 Sleep 
Clinic 

Sleep 
Clinic 

Sleep 
Clinic 

9 
(100.00%) 

9 
(100.00%) 

9 
(100.00%) 

9 
(100.00%) 

36 
(100.00%) 

Week 4 7 (77.78%) 7 (77.78%) 
9 

(100.00%) 8 (88.89%) 
9 

(100.00%) 8 (88.89%) 8 (88.89%) 56 (88.89%) 

Week 5 8 (88.89%) 7 (77.78%) 1 (11.11%) -- -- -- -- 16 (59.26%) 

All Weeks 
27 

(75.00%) 
26 

(72.22%) 
21 

(58.33%) 
29 

(80.56%) 
32 

(88.89%) 
31 

(86.11%) 
31 

(86.11%) 
197 

(78.17%) 
Sleep Clinic: Participant-day includes time spent in the scheduled mid-study sleep clinic visit; these participant-days were excluded from 
all analyses due to the controlled nature of the sleep clinic’s environment. 
--: Day occurs after the scheduled last visit of the study; no data collected.
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Table A.4: : Estimated variance components for each variable at each nested level in a two-
way (Chronotype x Day of the Week) Linear Mixed Model (LMM); components are pre-
sented as % of Total Variance for their respective variables. 

Variable Participant Study 
Week 

Day of the 
Week Residual Total 

MESOR 55% 4% 35% 6% 100% 
Amplitude 32% 3% 58% 6% 100% 
Acrophase 7% 0% 86% 7% 100% 

Sleep Onset 44% 6% 41% 8% 100% 
Sleep Mid 20% 15% 57% 8% 100% 

Sleep Offset 18% 23% 51% 9% 100% 
Time in Bed 26% 11% 54% 9% 100% 

Average Activity during 
Sleep 10% 24% 58% 9% 100% 

Peak Activity during Rest 36% 8% 47% 10% 100% 
Sleep Onset Latency 16% 10% 64% 10% 100% 
Sleep Offset Latency 8% 10% 70% 11% 100% 

Sleep Efficiency 16% 3% 69% 13% 100% 
Wake After Sleep Onset 29% 0% 54% 17% 100% 

Total Sleep Time 7% 8% 62% 23% 100% 
Percent Sleep Time 22% 5% 48% 24% 100% 

Fragmentation Index 19% 5% 37% 39% 100% 
Average Across all Variables 23% 8% 56% 13% 100% 
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Table A.5: Descriptive statistics of raw cosinor and sleep data for each Chronotype across Days of the Week, and the p-value of 
between-Chronotype t-tests. 

Variable 

Evening Chronotype Morning Chronotype All Participants Between-Group Compari-
son 

Average 
(Standard 
Deviation) 

Skewness-
Kurtosis Test 

p-value 

Average 
(Standard 
Deviation) 

Skewness-
Kurtosis Test 

p-value 

Average 
(Standard 
Deviation) 

Skewness-
Kurtosis Test 

p-value 

Equal Vari-
ances Test 

p-value 

Two-Sam-
ple Test p-

value 

MESOR (AC) 46.50 
(17.22) 0.0001 ** 41.90 

(13.96) < 0.0001 ** 44.72 
(16.18) < 0.0001 ** 0.0015 ** 0.0090 ** 

Amplitude (AC) 38.51 
(18.20) < 0.0001 ** 33.20 

(14.47) < 0.0001 ** 36.46 
(17.04) < 0.0001 ** 0.0005 ** 0.0040 ** 

Acrophase (Time) 16:46 (2:03) 0.8230 15:41 (2:02) 0.0082 ** 16:21 (2:06) 0.0915 * 0.8774 < 0.0001 
** 

Sleep Onset (Time) 01:22 (1:39) 0.0001 ** 00:03 (1:31) 0.4431 00:48 (1:43) 0.1682 0.1821 < 0.0001 
** 

Sleep Mid (Time) 04:59 (1:38) 0.8102 03:46 (1:17) 0.1354 04:27 (1:36) 0.0150 ** 0.0001 ** < 0.0001 
** 

Sleep Offset (Time) 08:37 (1:58) 0.1251 07:28 (1:26) 0.0306 ** 08:07 (1:51) 0.0001 ** < 0.0001 ** < 0.0001 
** 

Time in Bed (Hours) 7.25 (1.61) < 0.0001 ** 7.42 (1.50) 0.0128 ** 7.32 (1.56) < 0.0001 ** 0.2420 0.0867 * 
Average Activity 
during Sleep (AC 

per Minute) 

12.51 
(11.05) < 0.0001 ** 12.07 (7.39) < 0.0001 ** 12.31 (9.62) < 0.0001 ** < 0.0001 ** 0.1230 

Peak Activity during 
Rest (AC per 15 sec-

onds) 

277.31 
(150.84) < 0.0001 ** 269.43 

(116.33) < 0.0001 ** 273.87 
(136.81) < 0.0001 ** < 0.0001 ** 0.9420 

Sleep Onset Latency 
(Minutes) 

41.83 
(59.86) < 0.0001 ** 36.25 

(57.25) < 0.0001 ** 39.40 
(58.75) < 0.0001 ** 0.4710 0.2545 

Sleep Offset Latency 
(Minutes) 

30.59 
(36.91) < 0.0001 ** 32.68 

(44.41) < 0.0001 ** 31.50 
(40.33) < 0.0001 ** 0.0023 ** 0.7160 

Sleep Efficiency (%) 76.77 
(10.79) 0.0001 ** 77.16 

(10.80) < 0.0001 ** 76.94 
(10.78) < 0.0001 ** 0.9802 0.3747 

Wake After Sleep 
Onset (Hours) 0.84 (0.52) < 0.0001 ** 0.89 (0.48) < 0.0001 ** 0.86 (0.50) < 0.0001 ** 0.3024 0.1196 

Total Sleep Time 
(Hours) 6.41 (1.45) 0.0024 ** 6.53 (1.33) 0.7675 6.46 (1.40) 0.0165 ** 0.1764 0.0878 * 
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Percent Sleep Time 
(%) 88.55 (6.15) < 0.0001 ** 88.13 (5.53) < 0.0001 ** 88.37 (5.89) < 0.0001 ** 0.0869 * 0.2440 

Fragmentation Index 
(%) 10.35 (5.51) 0.0001 ** 11.14 (4.62) < 0.0001 ** 10.70 (5.15) < 0.0001 ** 0.0044 ** 0.0070 ** 

* p-value 0.05 < 0.10 
** p-value < 0.05  
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Table A.6: Predicted marginal means and Wald test p-values derived from one-way LMMs. 

[A.6A] Predicted marginal means (standard error) for each Chronotype across all Days of the Week derived from the by-Chrono-
type across-Day one-way linear mixed model, and the p-values of between-Chronotype Wald tests. 
 

Variable 
Eveningness Morningness 

p-value 
Marginal Mean (Standard Error) 

MESOR (AC) 46.47 (3.38) 43.05 (4.45) 0.5609 
Amplitude (AC) 37.30 (2.76) 35.69 (3.63) 0.7368 

Acrophase (Time) 16:35 (0:12) 15:50 (0:16) 0.0329 ** 
Sleep Onset (Time) 01:09 (0:12) 00:10 (0:16) 0.0062 ** 
Sleep Mid (Time) 04:46 (0:11) 03:57 (0:14) 0.0084 ** 

Sleep Offset (Time) 08:24 (0:11) 07:44 (0:14) 0.0370 ** 
Time in Bed (Hours) 7.26 (0.15) 7.57 (0.20) 0.2455 

Average Activity during Sleep (AC per Minute) 13.59 (1.42) 11.16 (1.86) 0.3250 
Peak Activity during Rest (AC per 15 seconds) 291.21 (25.07) 270.30 (33.00) 0.6323 

Sleep Onset Latency (Minutes) 39.40 (7.26) 38.82 (9.53) 0.9635 
Sleep Offset Latency (Minutes) 30.31 (3.67) 34.61 (4.79) 0.5032 

Sleep Efficiency (%) 76.74 (1.32) 77.57 (1.74) 0.7186 
Wake After Sleep Onset (Hours) 0.88 (0.07) 0.87 (0.09) 0.8916 

Total Sleep Time (Hours) 6.38 (0.17) 6.71 (0.22) 0.2502 
Percent Sleep Time (%) 88.01 (1.00) 88.51 (1.31) 0.7750 

Fragmentation Index (%) 10.29 (0.76) 11.21 (0.99) 0.4843 
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[A.6B] Predicted marginal means (standard error) for each Day of the Week across all Chronotypes derived from the by-Day 
across-Chronotype one-way linear mixed model, the p-values of between-Day across-Chronotype Wald tests (each individual Day 
was compared to Sunday, the designated reference Day), and the p-values of the joint Wald tests. 
	

Variable Monday Tuesday 
Wednes-

day 
Thursday Friday Saturday Sunday Joint 

MESOR (AC) 
43.42 
(2.88) 

45.58 
(2.78) 

43.64 
(2.76) 

42.70 
(2.77) 

46.73 
(2.79) 

47.28 
(2.79) 

46.67 
(2.83) 

0.0356 
** 

0.0917 * 0.5481 0.0913 * 0.0260 ** 0.9727 0.7322 Base 

Amplitude (AC) 
36.53 
(2.67) 

37.17 
(2.50) 

34.04 
(2.47) 

32.48 
(2.48) 

36.30 
(2.51) 

40.43 
(2.51) 

40.85 
(2.58) 

0.0007 
** 

0.0742 * 0.1039 0.0023 ** 0.0002 ** 0.0432 ** 0.8534 Base 

Acrophase (Time) 
15:47 
(0:16) 

16:03 
(0:14) 

16:02 
(0:14) 

16:08 
(0:14) 

16:15 
(0:14) 

16:47 
(0:14) 

17:00 
(0:15) 

0.0003 
** 

0.0001 ** 0.0013 ** 0.0008 ** 0.0029 ** 0.0110 ** 0.4405 Base 

Sleep Onset (Time) 

00:25 
(0:13) 

00:32 
(0:12) 

00:22 
(0:12) 

00:34 
(0:12) 

00:55 
(0:12) 

01:19 
(0:12) 

01:16 
(0:12) 

< 
0.0001 

** 0.0001 ** 0.0003 ** 
< 0.0001 

** 
0.0006 ** 0.0848 * 0.8117 Base 

Sleep Mid (Time) 

04:09 
(0:11) 

04:08 
(0:10) 

04:05 
(0:10) 

04:14 
(0:10) 

04:26 
(0:10) 

05:04 
(0:10) 

05:08 
(0:11) 

< 
0.0001 

** 
< 0.0001 

** 
< 0.0001 

** 
< 0.0001 

** 
< 0.0001 

** 
0.0001 ** 0.6775 Base 

Sleep Offset (Time) 

07:53 
(0:13) 

07:44 
(0:11) 

07:48 
(0:11) 

07:53 
(0:11) 

07:57 
(0:11) 

08:50 
(0:11) 

09:01 
(0:12) 

< 
0.0001 

** 
< 0.0001 

** 
< 0.0001 

** 
< 0.0001 

** 
< 0.0001 

** 
< 0.0001 

** 
0.3655 Base 

Time in Bed (Hours) 
7.48 

(0.21) 
7.21 

(0.18) 
7.44 

(0.18) 
7.33 

(0.18) 
7.05 

(0.18) 
7.50 

(0.19) 
7.74 

(0.20) 
0.0979 

* 
0.2860 0.0240 ** 0.1899 0.0766 * 0.0033 ** 0.2991 Base 
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Variable Monday Tuesday 
Wednes-

day 
Thursday Friday Saturday Sunday Joint 

Average Activity during Sleep (AC 
per Minute) 

13.52 
(1.42) 

12.31 
(1.32) 

11.65 
(1.30) 

13.81 
(1.30) 

13.28 
(1.32) 

11.06 
(1.32) 

13.20 
(1.37) 0.1869 

0.8151 0.4832 0.2163 0.6286 0.9518 0.0852 * Base 

Peak Activity during Rest (AC per 
15 seconds) 

294.65 
(23.55) 

276.37 
(22.15) 

284.92 
(21.91) 

291.93 
(21.97) 

282.83 
(22.22) 

265.30 
(22.23) 

288.08 
(22.81) 0.7424 

0.7437 0.5365 0.8666 0.8363 0.7814 0.2214 Base 

Sleep Onset Latency (Minutes) 
40.89 
(8.67) 

33.77 
(7.81) 

48.32 
(7.63) 

37.30 
(7.67) 

39.47 
(7.82) 

27.34 
(7.87) 

47.70 
(8.21) 0.1793 

0.4807 0.1232 0.9448 0.2419 0.3603 0.0234 ** Base 

Sleep Offset Latency (Minutes) 
23.18 
(5.58) 

31.48 
(4.89) 

25.98 
(4.74) 

35.12 
(4.77) 

31.88 
(4.89) 

31.65 
(4.93) 

44.32 
(5.21) 0.0578 

* 
0.0025 ** 0.0486 ** 0.0043 ** 0.1508 0.0548 * 0.0514 * Base 

Sleep Efficiency (%) 
77.17 
(1.49) 

77.56 
(1.35) 

76.90 
(1.33) 

76.42 
(1.33) 

76.31 
(1.36) 

79.69 
(1.36) 

75.27 
(1.42) 0.0957 

* 
0.2341 0.1251 0.2706 0.4351 0.4849 0.0028 ** Base 

Wake After Sleep Onset (Hours) 
0.95 

(0.07) 
0.86 

(0.07) 
0.87 

(0.07) 
0.92 

(0.07) 
0.86 

(0.07) 
0.78 

(0.07) 
0.91 

(0.07) 0.2471 
0.5923 0.4315 0.5577 0.8876 0.4464 0.0553 * Base 

Total Sleep Time (Hours) 
6.53 

(0.19) 
6.35 

(0.17) 
6.57 

(0.17) 
6.41 

(0.17) 
6.19 

(0.17) 
6.72 

(0.17) 
6.84 

(0.18) 0.0140 
** 

0.1247 0.0111 ** 0.1459 0.0225 ** 0.0007 ** 0.5253 Base 

Percent Sleep Time (%) 
87.45 
(0.89) 

88.33 
(0.85) 

88.28 
(0.84) 

87.62 
(0.84) 

88.05 
(0.85) 

89.52 
(0.85) 

88.03 
(0.87) 0.0348 

** 
0.3981 0.6476 0.7011 0.5193 0.9721 0.0189 ** Base 

Fragmentation Index (%) 
10.95 
(0.77) 

10.03 
(0.71) 

10.53 
(0.70) 

11.25 
(0.71) 

10.54 
(0.72) 

10.33 
(0.72) 

11.01 
(0.74) 0.5703 

0.9381 0.1611 0.4873 0.7184 0.5056 0.3337 Base 
* p-value 0.05 < 0.10 
** p-value < 0.05 
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