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SUMS OF POWERS OF DERIVATIVES

Let R = (-»), D = {(F'; F is differentiable on R}, and let C [Cap]
be the system of all continuous [approximately continubus] functions on R.
For each system Z of functions let bZ = {f ¢ Z; f is bounded} and 2zt =
{f e Z; f2 0} Itis well known that the following implications hold:
(1) (fe DY «ae C) = of € D,
(2) (f € bD, « € bCqp) => «f € D.
The authors are working on a paper whose title will be the same as the title
of this talk. A special case of their investigation is the equation
(3) £2 + g2 = h?, f,gh ¢ D.
1f, e.g.,

(4) 9 edt, a,fecC, f=av, g= 8y, h=~/ot2+ﬁ’¢,

then, by (1), the relation (3) is fulfilled. To get an analogy involving
z;pproximate continuity we introduce the system S = {f €¢ D; «f ¢ D for each
o € bCap}. It follows from (2) that S 2 bD. It is not difficult to prove that
we have, for instance, also S 2 W,. where W = {f € D; f2 ¢ D}.’ (Hence S
contains some functions that are not locally bounded.) Now we see that (3)

holds as well, if

(5) €8S, «Ff ebCqp, f=ab, g=p9 h-= s/ot’+ﬂ’ 9.

It is natural to ask the following question: If f,g ¢ D are given, how

do we recognize whether the relation -

(6) Jf24g2 ¢ D

holds? It is easy to find sufficient conditions for (6). For example, it is not
difficult to prove that (6) holds, if f,g ¢ W. If we use the Darboux property

of derivatives and (1), we obtain at once:

(7) If f,g e D, h = ~/f3+g‘ > 0 and if f/h,g/h e C,

then h € D.
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The following analogy of (7) is almost obvious:

(8) If f,geS, h-= ~/f2+g2 > 0 and if f/h,g/h € Cqp,
then h € D.
(Since the functions f/h and g/h are bounded, (8) follows from the

identity h=f-L +g-&.)

Now let us try to get a theorem "going in the other direction" (if (3)
holds, then ...). Looking at (8) we are tempted to prove that f/h e Cgp, if
(3) holds and if h > 0. However, it is not difficult to construct derivatives
(even bounded derivatives) f, g, h fulfilling (3) such that h > 0 and that
neither of the functions f/h, g/h is approximately continuous. It turns out
that for our purpose the requirement h > 0 is too weak. We need, for

example,

(9) lim inf ap h(y) > 0 for each x € R.

yox
(It is easy to see that the relations h ¢ D and (9) imply that h > 0.) As a
special case of the main theorem of the mentioned paper we now obtain the

following:
(10) Let (3) and (9) hold. Then f/h,g/h € Cap-

Hence we get all (and some more) triples f,g,h ¢ S fulfilling (3) and (9)
applying the method (5); it suffices to take ¢ = h, « = f/h, # = g/h.

If (3) holds and if, e.g., & ® 1, then (9) is obvious and it follows from
(10) that also f/g € Cgp. If, moreover, g = 1, then f e Cgp. This
observation enables us to construct simple examples of pairs f,g ¢ D for
which there is no h fulfilling (3); we take an f € D \ Cqp and g = 1.
(It is easy to see that "simple" discontinuous derivatives, like the function f
defined by f(x) = sin 1/x (x # 0) and f(0) = 0, are not even approximately
continuous.)

As mentioned earlier, our paper deals with equations that are more general
than (3); e.g., the results for the equation f* + g* = h* (f,g,h € D) are

analogous. We investigate, however, also equations like
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(11) f* + g* = h?,  f,g,h € D.

In this case the results are even better; namely, the relations (11) and (9)

imply that all the functions f, g, and h are approximately continuous.
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