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MULTIPLIERS OF NONNEGATIVE DERIVATIVES

Introduction. Throughout this note the word function

means a finite real function, i.e. a mapping to R = (-=,=).
Let & Dbe a class of functions on a set J # ¢g. By M(3§)
we denote the system of all functions £ on J such that
fo € 3 for each o € 3. The elements of M(3) are called

multipliers of 4. The description of M(3) may be trivial;

if, e.g., & 1is closed under multiplication and if the

function g(x) =1 (x € J) belongs to &, then, obviously,
M(3) = 3. 1In particular, M(M(3)) = M(§) for any &. 1If,
however, 3 '"behaves badly" with respect to multiplication,

then the investigation of M(3) may lead to some interesting
results, Let J = [0,1], 1let D Dbe the class of all

finite derivatives on J and let SD be the class of all

summable (= Lebesgue integrable) functions in D. For each
class & of functions on J let §+ be the class of all
nonnegative functions in &. The systems M(D) and M(SD)

have been characterized in [1] and [2] (see also [3] and
[4]1). It is natural to investigate M(D+). Actually, we

shall investigate the system 7 of all functions £ on
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J such that f¢p € D for each ¢ ¢ D+; it is easy to see
that M(D+) = m+. Some properties of 7 have been stated

without proof in [4].

1. Basic properties of 7

Notation. Let Cap be the system of all functions
approxXimately continuous on the interval J = [0,1] and
let bCap be the system of all bounded functions in Cap'
Integrals are Lebesgue integrals.

1.1. Lemma. Let f be a function such that £fg € D

for each g ¢ D" for which g(0) = 0. Then

lim sup_,o. |£(x)| < =

Proof. Let, e.g., lim supxao+f(x) = =, There are
( (
sy € (0,1) such that 2an < a _1 and f£ an) > n
for n=1,2,... . It is easy to see that there is a function
F such that F' = f on (0,l]. It follows that there are
bn c (an,2an) such that F(bn)-F(an) > n(bn-an). Let

g be a nonnegative function ccntinuous on (0,1] such
that g = an/(n(bn-an)) on [an,bn] and

a

n-1 / -
fa g < 2an/n. Set g(0O) = 0. 1If a, < x¢ an—l' then
n
% a
%=1 [ g< a;l ¢ Rl g < 4/n so that g € D'. By assumption
‘o T e
there is a function Q such that Q' = £fg on J and
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Q(0) = 0. Obviously Q’+(O) = 0 so that (Q(bn)--Q(an))/an

(Q(bn)/bn) -(bn/'an)--Q(an)/an -+ 0. However, Q(bn)-Q(an)

(a /(n(b -2 ))) - (F(b ) -F(a)) >a (n=1,2,...) which

is a contradiction.

1.2. Lemma. Let g be a nonnegative measurable

‘ x
function on J such that x T [ g+ 0 (x 4 0+). Then
‘0

lim AP, Lo+ g(x) = O.
(The proof is left to the reader.)

1.3. Lemma. Let f be a function such that £ € D

2

and f~ € D. Then f ¢ C

ap’
Proof. Let a € J. Obviously (f-—f(a))2 € D. It
follows easily from 1.2 that f 1is approximately continuous

at a with respect to J. Hence £ ¢ Cap‘

1.4. Theorem. M < bC
ap

Procof. Let £ £ M. It 1s obviocus that £ € D and
it follows easily from 1.1 that £ 1is bounded. Thus, there

is a ¢ € R such that f-celf. Hence £ .(f£f-c¢c) € D,

th

€ D. Now we apply 1.3.

1.5. Theorem. Let E Dbe the vector space generated

by D'. Then M(E) = 7.

-

Proof. It is easy to see that E = {gl-gz;gl, g, € D+}.

5 =+ g
et £ &ém and g & D . By 1.4 there is a ¢ £ R such that
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| £] { ¢ on J. Then 2fg = (c+f)g-(c-£f)g € E. It

follows that M < M(E). Obviously M(E) c’m.

1.6. Lemma. Let g, fn €D, ¢_. € (0,0) (n=1,2,..

n
¢, * 0. Let f be a functionon J and let lfn-f\ < e
on J for each n. Then £ ¢ D.
Proof. Let G, Fn be functions such that Fn(O) =0
and that G’ = g, Fé = £ on J. It is easy to see that

there is a function F such that Fn -+ F on J. We have

H%y)—Fm)—(y-x%ﬂx)|g\Fﬁy)-FMx)-(y-xﬁnhd|+
enkﬂy)-de\+]y—xl-\ﬁ“x)-fbﬂ\ (n=1,2,...,X,y €
Hence F’' = f on J.

1.7. Theorem. 7 1is closed under uniform convergenc

(This follows easily from 1.6.)

Remark. Every function with a continuous derivative
on J belongs to M(D), all the more to 4. It follows
from 1.7 that each function continuous on J belongs to

M (which is easy to prove directly).

1.8. Theorem. Let ¢ be a function continuocus on

R and let £ € 7. Then the composite function e o f

belongs to N.

Proof. By 1.4 there is a compact interval K such
that £(J) <€ K. There are polynomials P1,P2,... such

that Pn % ¢ uniformly on XK. The system 7 is a vector
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space containing constant functions. It follows from 1.5
that 7 1is closed under multiplication. Hence Pn oL EM
for each n. Obviously Pn °of 2 gof uniformly. Now

we apply 1.7.

2. Characterization of N

Notation. Let N = (1,2,...}. For each set S — R
let ]Sl be its outer Lebesgue measure. If f 1is a
bounded nonnegative function on an interval I = [a,b]

and if r € N, we set

A(r,I,f) = A(r,a,b,f) = r—123i=l sup £([xy_;.%x.1),
where X = a+k(b-2a)/r,
and
B(r,I,£f) = B(r,a,b,f) =
(T

InEl D (e =y _p)sup Ellyy 1.7y ])i a =y, <y; < +-<y,. = Db].

2.1. Lemma. Let a,b,c € R, a<b<c. Let f

be a bounded nonnegative function on [a,b], let g be
a bounded nonnegative function on [a,c] and let r,s ¢ N.

Then

B(r,a,b,f) § (b_a)A(rla’blf) ?

B(r+1l,a2,b,f) ¢ B(r,a,b,£f), B(r,a,b,g) { B(r,a,c,q),

B(r+ s,a,c,g) g B(r:albag) + B(Slbiclg)

(The proof is left to the reader.)
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2.2, Lemma. Let r,s € N, M € R. Let I be a

compact interval and let £f be a function such that

(0] g T g M on I. Then

(1) Auny)gIIrle,Lf%+Ws—lUT

Proof. Let I = [a,b], a=y,<y) <---<y, = b.
Set X, = a+k|1l/r, K = {k;(xk_l,xk) n {yl....,ys_l} = g},

. = sup f([xk_l,xk]), Bj = sup f([yj_l,yj]). It is easy to
s
see that ZDkEK(Xk"Xk—l)ak < ZDj:l (yj-yj_l)Bj. Hence
|z|a(r,1,£) = ]I\r'l Ti i a £ 25 (y.-v. )B.+
+a k=1 Yk & “4=1'Y5 7 ¥5.1'F5

(s —].)MII\::—l from which (1) follows at once.

2.3. Lemma. Let £f be a bounded nonnegative function

on J. Then the following properties are equivalent:

-n ,-n+1

i) 27 B(r,2 7,2 ,£) = O

ii) x_l B(r,0,x,f) » O

iii) A(r,0,x,f) =» O
iv) A(r,0,1/n,f) » O

(n,r 2 N; n,r » =, x =» O+).

Proof. Suppose that i) holds. Let M = sup £(J) and

let ¢ ¢ (0,o). There are s, Ny € N such that

2k+2 B(s,2_k,2—k+l,f) < ¢ for each k e N N !no,m). Let

-n -n— -
O< x< 2 9. Choose n,q € N such that 2 =1 < X< 2 =

and 2972 ¢ > M. Obviocusly n > ngy. By 2.1 we have
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B(l+gs,0,x,£) < B(1,0,2777°9,5) + B(s,277" 9,270 o), ...

B(s,2 %127 ) w27 o2

e.z—n—2_+€‘2—n—2 £ ex. This proves ii). 1If ii) holds,

-n-g-2 -n-3,

+ e+ 2 <

then iii) holds by 2.2; iv) 1is an obvious consequence of

iii). From the inequalities 21 B(r,2_n,2_n+l,f) &

n-1 -n+1 -n+1

2.2 B(r,0,2 ,E) < 2A(r,0,2 ,£) we see that iv)

implies 1i).

2.4, Lemma. Let f Dbe a summable derivative on an

interval I = [a,b] and let T be a number less than

sup{|£f(x)|; x € I}. Then there is a function g piecewise

linear on I such that gfa) = g(b) = f g= o0, f lg] = 2|1
I I

and

T|I| < [ (£g+ |£])
I

Proof. We may suppose that sup{|f(x)|; x € I} = sup £(I).

Choose an ¢ ¢ (0,«) such that the number V = T+ 3¢ 1is

less than sup £(I). There is an n € (0,») such that
(2) 3n [ lE] < elzfr]z] - 3n)
1

Since £ 1is a Darboux function, there is a ¢ £ (a,b) such

that £f(c) > V. There is a d € (c,b) such that

d
j f >V(d-c) and that d-c < n. There is a & € (0,n)
c

such that a < c=-5, d+8 < b, V{(d=-¢c) > (V=-¢)(d=c+35)
c ﬂd+6

and that | | £] + | /(d-c+35).

/

|£] < efd=-c). Let a = |I|
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Let 9 be a function on I such that g, =0 on
[a,c=-8] U [d+5&,b], g, = a on [c,d] and that 9, is

linear on [c-58,c] and on [d,d+68]. Then

a+s

c
II g, = ald-c+5) = |I]. Since [fc_ fgl+-fd fgl| <

&

d d
ac(d-c) < ¢|I| and I fg, = « j f>av(d-c) =
c c

|I|v(d-c)/(d-c+8) > |I|(V-¢), we have | £, > |I](V-2¢).
I

Let P = I\(c-5,d+8), B = |I|/(|T|-3n). Since
|P| > |1] -3n, we have B|P| > |I|. It follows that there

is a piecewise linear function g, on I such that 9, =0

on [a,b} U [c-5,d+8], 0< g, < B on I and [ g,= |I].
I

Therefore (see (2)) fg, < B £ =

J_gsyg e[ el
(L+3n/(]2] =3n)) [ |£] < [ |£]+e¢|z]. Since

I I
" fe(gy-9,) > |T|(v-2e)-T |£|l-¢lI| = |T|T-" |£}],
[ £ (a-9) > |1 S lEl-elzl = fziz-]_ |

we may choose g = 9, -9y

2.5. Lemma. Let £ € m, £(0) = 0. Then

n ,-n+l

Alr,2” 7,2 J£]) 2 0 (r,n € N; r,n » o)

Procf. According to 1.4, £ 1is bounded. Let

r.,fy,... €N, r =+ . Set z_ =27, Fixan n 2 N and
1772 n n
- 1 = =
set Xy = zn(;4-k/rn) (k = O,...,rn), Ik [xk_l,xk],

Oy = sup{|£(x)|; x ¢ Ik} (k l,...,rn). It follows from

2.4 that there is a function = piecewise linear on J

N
9}
Ut




such that 9, = O on [O,zn] and on [qu,l], | g_. =

J n
Ty

- ~ - p - & p

gn(xk—l) = gn(xk) = 0, JI \gn\ = 22n/rn and (Ok--n)zn/rn <
k
J (g + |£]) for k=1,...,r . Then
L
k
1 -1 pzzn
(3) A(rn,zn,Zzn,\f1) <57+ 2z, Jz (fgn+-]f\) .
n

=<}

Set g = 23n=l g, Let G be a function on J such that

-]

G = 2

Zp=1 19yl on (0,11 and G(0) = 2. It is easy to see
that g, G € D; obviously G=zxg € p*. Since

2g = (G+g)~-(G-g), we have fg € D. Since felﬂqy
we have alsc |£f| € D. Hence

Lo P (gg+)2]) 20 (n = =)

This together with (3) easily implies our assertion.

2.6. Lemma. Let £ Dbe a bounded nonnegative measurable

function on J such that x 1 Blr,0,x,f) 2 O

(x + O+, r €N, r 2+ »). Let g ¢ D+. Then
-l o
b I fg 2 O (x = O+)
0
Proof. Let 8 = sup £(J) and let ¢ ¢ (0,»). There

isa § £ (0,1) and an r € N such that 2g(0)B(r,0,x,f) < ex

for each x € (0,8). Set a = ¢/(4(8+ 1)r). There is an
X

n € (0,5) such that |[ (g-g(0))] < ax for each
0

X € (0,n). Choose such an x. There are x. such that
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_— o r o
0=xy< % < ... <x_ =x and that 2g(O)Z‘k=l Gk\Ikl < ex,

where Ik = [xk_l,xk] and 0, = sup f(Ik). Obviously

lj’I (g-g(0))| < alx,_;+x.) < 2ax, [ g« 20 +g(0) |1, |,
I
k k
j fg < 2ch+—g(O)Ok|Ik] for each k. Therefore
i
X ¥
IO fg ¢ 2arsx+g(0) Ty, Gk‘Ik\ < ex. This completes the

proof.

2.7. Theorem. Let £ be a bounded measurable

function on J. Then the following properties a) - d)

are equivalent:

a) £ enm

n -n+1

b) 2" B(r,x+27",x+2 J£-£(x)|) » 0 for each

n+1

x ¢ [0,1) and 2" B(r,x-2" ,x-2-n,lf-f(x)])# 0 for

each x ¢ (0,1]

c) (y-—x)"l B(r,x,y,|f£-£(x)])» 0 for each x € [0,1)
and (x-2z) " B(r,z,x,|f-£(x)|) » O for each x ¢ (0,1]

d) A(r,x,x-+%ylf-f(x)l) 4+ O for each x € [0,1)
and A(r,x-2,x,[f-£(x)|) » 0 for each x € (0,1]

(n,r € N; n,r » », vy + X+, 2 = X=).

Procf. If £ € 7, then b) holds by 2.5 f(see also 2.1).
According to 2.3, conditions b) - d) are equivalent. Now

suppose that c¢) holds. Let g ¢ DT and let x € J. By

_ Y
2.6 we have (y-x) 1 y (£E-£f(x)) g =» O so that
bl4
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_ Y
(y - %) L [ £fg » £(x)g(x) (y » x, y € J). This shows that
X

fg € D and that f ¢ 7 which completes the proof.

3. Points of discontinuity of functions in N

3.1. Theorem. Let £ ¢ 7. Then £ is Riemann

integrable.

Proof. It follows from 1.4 that £ 1is bounded. For

each x € J let
w(x) = lim . sup{|£(t) - £(x)|; |t-x| < h, t € J}

Let a € (0,»), T = {x € J; w(x) > 2a}. It suffices to prove
that |T| = 0. For each x € J set o(x) = |T n (0,x)].
Choose an x € [0,1) and an ¢ € (O,»). By 2.7 there is
an r ¢ N and a § € (0,») such that B(r,x,y,|f-£(x)]|) <

a(y -x) for each y ¢ (x,x+38). Choose such a vy. There

Q]

are xX. such that x = X4 < Xq < e L X, =Y and that

ZS£=1 Gk(xk"xk-l) < ea(y -x), where Ty = sup{ |f(t) - £(x)|:

Let

K= (ki TN (x_1:%) 7 7]

Obviously o(y) -o(x) = |T N (x,¥)] < Deer (X —% 1)
If Gk < a and t € (xk_l,xk), then for each v € (Xk-l'xk)

we have |£(v) -£(t)]| < 2a so that g(t) ¢ 2a, k £ K.

-1

Hence o(y) -o(x) < zjkeK Ta (% =%y 1) < ely-x),

m’+(x) = 0. Similarly can be proved that ¢ ~(x) = O
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for each x € (0,1]. It follows that ¢ is constant which

completes the proof.

Notation. For each function £ on J let Af be
the set of all points of discontinuity of £. For each set

S R 1let ¢l S be its closure.

Remark. If £ ¢ 7, then, by 3.1, |Af\ = 0. Now we
shall construct a function £ < 7 such that the set Af
is perfect and a function g € 7 such that Ag NI is

uncountable for each interval I < J.

3.2. Construction of £f£. Let mo be the set
whose only element is the interval J. If mn is a system

of disjoint closed subintervals of J, let M be the

n+1
system of all intervals [a,(2a+Db)/3] and [(a+ 2b)/3,b],

where [a,b] ¢ mn. In this way we define, by induction,

o for n=20,1,... . Let %n be the system of all
intervals ((2a+Db)/3, (a+ 2b)/3), where [a,b] ¢ mh—l
(n=1,2,...). For each I = (a,b) € P define a function
A as follows: Set c¢c = (a+b)/2, 5§ = l/(2-9n), a=c-5,

B =c+5. Let XI =0 on (a,al] U [B,b), A_-(c) =1 and

I
let XI be linear on [&,c] and on [c,B8]. Since

B-a = (b-—a)/3n, we have XI =0 on (a,(2a+b)/3] U
[(a+ 2b)/3,b). Now define a function £ setting f = XI

I U 3 and f£ = O elsewhere on J.
n=1 *n

It is easy to see that g is the Cantor set.
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3.3. Lemma. Let I -n,

m

B,- Then B(3,clI,f) {9

(Obvious.)

3.4, Lemma. Let L € mq and let %k € N. Then

4

k
(4) B(22-3,1,5) ¢ ||dis &5

Proof. The number of elements of P contained in

n+ 3

L is 2 (3 =1,...,%x) and the number of elements of
mn+k contained in L is 2k. Since 3(l-+----+2k_l)-+2k =
4-2%_-3, we have (see 2.1 and 3.3) B(2""?_3,1,£) ¢

k .
DI N B(3,c1I,f)+ L_, B(1,I,f) <

=1 IE‘I-3n+j 1€k B
ijl gd=L gB*] § o ;s R . g=B s (2731588 which proves i4).

3.5. Lemma. Let C be the Cantor set., Let L be

a closed subinterval of J such that L N C # g and let

k be a natural number. Then

k+2

B(27 °,L,f) ¢ |L\(11|L;+3(2/3)k

)

Proof. We may suppose that |L| < 1/3. There is an

n € N such that 3771 < |1} < 37", set h = 3"". There is
an integer j such that L < ((j=-1)h, (j+ 1)h). Since
LNC#J, we have either [(j-1)h, jh] ¢ mn or
(3h,(J+1)h] € M . Let, e.g., [(J-1)h,jh] € M . Then
either (jh,(j+ 1)h) € Bn or £=0 on [jh,(j+1)h] so
that, by 3.3 and 3.4, B(2°"%,1,£) ¢ n(2+ (%)kuhz. Since



h ¢ 3|L|, we have B(2%2 1) g 1L\((72/7)|L\+-3(2/3)k)

which proves our assertion.

3.6. Theorem. f € 7.

Proof. Let x ¢ J. If x £C, then 2.7, d) follows
from the continuity of £ at x. If x € C, then 2.7, c)

follows from 3.5.

3.7. Theorem. Let f be as in 3.2. Extend f

setting f(x) = 0 for x < 0O and x > 1. Let X € (0,1)
and let the set {xl,xz,...} be dense in J. For each
X € J set g(x) = §3n:1 4" f(x-—xn). Then g € M and

Ag N I 1is uncountable for each interval I < J.

Proof. Let I Dbe an open interval, I < J. There is
an n such that X € I. Let m be the smallest natural
number such that x_-x_ € C. (Obviously m < n.) Since

C 1is closed, there is an open interval I, < I such that

c I k = -
x €I and that X = Xy ZC for x ¢ I and k 1,...,m=1.

Since X, =X € C and since C 1is perfect, the set

§ = {x e I;7 x-x_ € C} is uncountable. Set

alx) = 23k<m 47k f(x-x), B(x) = 4~" f(x-x_),

y(x) = 23k>m “*+ . Let s € S. It is easy to see that «
is continuous at s, lim sup__ _ B(x) = a~m,

lim inf_,_ B(x) = 0, |v(x)]| 1/r3-4™) for each x. This

easily implies that g = a+ B8+ vy is not continuocus at s.

It follows from 3.6 and 1.7 that g & 7.
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