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Obesity is a risk factor for poor iron status due to the chronic, low-grade 

inflammation of adipose tissue hypertrophy.  Among other positive acute phase proteins, 

the hepatic peptide hormone hepcidin is secreted during inflammation, inhibiting 

systemic iron efflux from enterocytes and downregulating systemic iron recycling by 

suppressing iron release from the mononuclear phagocyte system.  Conversely, 

production and secretion of the iron transport protein transferrin by the liver is reduced 

during inflammation.  In addition to increasing adiposity, certain foods are also known to 

promote inflammatory states and may contribute to these same effects in concert with, or 

independent of obesity.  In this study, we evaluated how inflammatory diets are related to 

inflammatory and iron status biomarkers among 98 young adults with normal weight, 

overweight and obesity.  Three-day dietary records and biomarker data for iron status and 

inflammation from two cross-sectional studies of similar design (Diet and Inflammation 

Study, n= 39 and the Selenium and Inflammation Study, n= 59) were used in this study.  

Dietary Inflammatory Index (DII) scores were calculated for each subject using nutrients 

and other dietary components from the dietary records, and subjects were further 

classified into two DII categories using cluster analysis.  Using ANOVA we compared 

iron status and inflammatory markers among subjects with normal weight, overweight 

and obesity.  We determined the association between DII scores or DII category and C-

reactive protein (CRP), hepcidin, serum iron and total iron binding capacity (TIBC).  

Statistical significance was set at P< 0.05.  Mean + SEM were reported for continuous 
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variables except for skewed variables in which case geometric means (geometric mean 

+1SEM interval) were reported.  CRP concentration differed significantly by BMI 

category (p < 0.05 for all comparisons) and serum iron (SI) was lower in the obese 

category compared to normal weight (p=0.014). Results from the regression analysis 

showed that high DII scores were associated with increased CRP concentration and 

decreasing TIBC.  Similarly, subjects in the anti-inflammatory diet group showed higher 

TIBC compared to those in the inflammatory diet group.  In conclusion, our study 

showed that inflammatory diets may impair iron status by reducing the capacity of the 

iron transport protein transferrin to transport iron in the blood.  
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I dedicate this thesis to the spirit of Pro Humanitate so that the health, well-being and 

vitality of others may be improved, and the risk for diet driven chronic diseases will be 

reduced. 
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CHAPTER I 

 

INTRODUCTION 

 

 

Beyond providing nutrients, certain foods offer other health benefits through 

unique properties such as their antioxidant and their anti-inflammatory properties. The 

effects of foods and their components on inflammation have been investigated in both 

observational and experimental studies (1–4).  In conjunction with epigenetic research, an 

understanding of how exposure to certain foods influences genetic expression and post 

translational modification of proteins is becoming well established (5–10).  The 

upregulation of inflammatory cytokines by food components is an important concept that 

continues to be widely studied as the mechanism by which phenotypic changes toward a 

chronic disease phenotype are born. 

Inflammatory cytokines are small proteins that play a primary role in local and 

systemic signaling that initiate the immune response to infection and injury.  Namely, an 

increase in interleukin 6 (IL-6), interleukin one beta (IL-1β), and tumor necrosis factor 

alpha (TNFα) are associated with an increase in the hepatic protein, C-Reactive protein 

(CRP) which binds to the surface of the affected cells to augment various immunological 

processes of the innate immune system (11,12). In addition to stimulating release of CRP, 

the hepatic peptide hormone, hepcidin is also released and its job is to keep a tight 

homeostatic regulation of iron.  Circulating hepcidin causes sequestration of circulating 
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iron into the liver and macrophages, reduces iron absorption in the intestines and 

decreases iron efflux from enterocytes into the bloodstream.  

During the acute phase response, the immune system resolves pathophysiological 

threats and normal iron physiology can be restored.  However, individuals who are 

overweight or obese have been found to have chronically elevated levels of hepcidin and 

other markers of inflammation even in the absence of infection or injury resulting in poor 

iron status (13–19).  It is suspected that the increases in hepcidin and other inflammatory 

markers in the overweight and obese may be attributed to an accumulation of activated 

macrophages in adipose tissue that secrete adipocytokines including IL-6, and TNFα 

which activates transcription of the iron storage protein ferritin (20,21).  Atypical 

adaptations to iron metabolism during obesity related chronic inflammatory states are 

thus being observed and current studies suggest that obesity may be a risk factor for poor 

iron status (13–15,22,23). 

Coupled with activated macrophage initiation of IL-6, dietary sources can also 

stimulate IL-6 production and begin the inflammatory cascade (24–26).   Food related 

mechanisms that have been implicated in the promotion of the inflammatory phenotype 

center around increased expression of the protein complex, nuclear factor kappa-light-

chain-enhancer of activated B cells (ΝFκB) which is responsible for producing IL-6 

(27,28). For example, certain free fatty acids in the diet that act as non-immune ligands to 

activate toll-like receptor 4 (TLR4) have been shown to decrease the expression of 

peroxisome proliferator-activated receptor-gamma coactivator 1 (PGC1) which will 
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upregulate the expression of NFκB (29).  Other dietary sources of inflammation are the 

advanced glycation end products of highly processed foods which have been found to 

increase oxidative stress and overexpression of the Receptor for Advanced Glycation End 

Products (RAGE) in enterocytes (30,31). These may all contribute to sustaining chronic 

inflammation and impairing iron status.    

However, individuals who regularly consume dietary antioxidants and anti-

inflammatory dietary components such as omega 3 fatty acids and certain flavonoids may 

demonstrate improved biomarkers of inflammation, reducing their future risk of chronic 

disease (32–34). Proposed mechanisms of action for anti-inflammatory effects of 

bioactive food components include improved composition of cell membranes, support 

during oxidative stress and through cell signaling pathways that can alter gene expression 

(35–37).  Although the exact mechanisms are still being actively investigated, qualitative 

studies and data from experiments in cell and animal models offer convincing evidence 

on the health benefits of including anti-inflammatory foods regularly in the diet (38–44).  

In order to most effectively evaluate the contribution of diet to inflammation, 

various dietary patterns and indexes have been developed. Among them is the Dietary 

Inflammatory Index (DII) which was designed to consider both proinflammatory and 

anti-inflammatory foods (45).  The DII is a validated predictive model for inflammatory 

markers and can be used with a variety of dietary assessment tools including 24h recalls, 

food frequency questionnaires, and dietary records.  In observational studies, higher DII 
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scores have been associated with higher IL-6 and higher CRP concentrations. However, 

no study has investigated its relationship with hepcidin and iron status.  

 

Main objective: The aim of this study was to determine the association between 

dietary intake and inflammation and how that influences circulating iron biomarkers in 

young adults. Circulating iron was assessed using serum iron and total iron binding 

capacity (TIBC). 

Specific Objectives 

1.  To compare circulating iron (serum iron and TIBC) and inflammatory 

biomarkers among study participants with normal weight, overweight and 

obesity. 

Hypothesis:  Subjects with higher BMI will have poorer circulating iron status 

biomarkers and higher CRP concentration 

2. To determine the association between the DII score and inflammation among 

study participants.  

Hypothesis: DII scores will be positively associated with CRP concentration 

among study participants. 

3.  To determine the association between the DII score and circulating iron 

biomarkers among study participants 

Hypothesis: Higher DII scores will be associated with poorer circulating iron 

biomarkers (serum iron and TIBC).
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CHAPTER II 

LITERATURE REVIEW 

 

 

The prevailing obesity epidemic in developed countries and that which is 

emerging in developing countries due to nutrition transition is alarming. While obesity is 

a well-known risk factor for various chronic diseases, recent studies have implicated 

obesity as a risk factor for poor micronutrient status (46). Particularly for iron, low-grade, 

chronic inflammation associated with obesity may increase concentrations of the iron 

regulatory protein hepcidin which may negatively influence levels of circulating and 

functional iron (47). Considering that diet may play a role in reducing inflammation, 

there is a need to investigate how dietary changes may indirectly influence iron status 

through its effect on inflammation among individuals with overweight and obesity. This 

review focuses on the importance of iron to human health, factors that influence iron 

status and the relationships between diet and inflammation, and methods for assessing the 

inflammatory effects of foods.  

Iron and Human Health 

Iron is required for sustaining human life and in maintaining healthful 

physiological functions.  Iron participates as a catalyst and promoter in enzymes and is a 

component of several globular proteins such as hemoglobin and myoglobin.  Primarily 

the human body uses iron for the transport of oxygen by red blood cells and thus, a 
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majority of body iron is contained in the heme protein, hemoglobin.   After hemoglobin 

ferritin, which stores iron as Fe2, accounts for the next largest supply of the body’s iron 

and is followed by myoglobin, with transferrin containing the least amount of iron, as 

ferric iron, (Fe3) (48).  In addition to the globin proteins, heme is a part of peroxidases 

and redox cytochrome enzymes.  Iron functions in ribonucleotide reductase and is a part 

of several iron sulfur proteins including aconitase of the TCA cycle and nucleotide 

binding protein (49).  In general, proper iron homeostasis is required for cognition, 

immunity and physical performance. 

Cognitive Development and Functioning 

Progress in iron research continues to support and further clarify how iron is a key 

factor for proper cognitive development and functioning, effective immunological 

responses, and sustaining physical competencies.   A novel study comparing the effects 

of iron deficiency (ID) on both white and gray matter in developing rats supports that 

even mild iron deficiencies may affect hypomyelination in hippocampal and cortical 

tissues.  Greminger et al. observed proximal shifts in apical dendrite branching and 

significant decreases in basal dendrite length and branching with 50% fewer interactions 

in the Fe deplete diet group compared to the Fe diet group (50).  In a prospective cohort 

study using cord blood, Amin et al. compared the auditory brainstem evoked response of 

infants born full term.  Results of the study showed significantly prolonged interpeak 

latencies in the infants whose cord blood serum ferritin levels were between 11-75 ng/ml 

compared to infants with cord blood serum ferritin over 75μg/ml (51).  There is an 
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increasing pace of studies on the associations of iron status and attention deficit disorders, 

pointing to the effects of iron deficiency (ID) on frontal lobe functioning(52).  A study of 

women of reproductive age adds support to previous findings that even marginal declines 

in iron status of non-anemic women are correlated with reduced proficiency in 

completing executive functioning tasks such as sustained attention, learning and shifting, 

inhibitory control, working memory and problem solving (53).  Results of this study are 

the first to suggest that even marginal increments in ferritin and total body iron are 

related to improvements in problem solving and planning tasks among non-anemic iron 

deficient women of reproductive age. 

Immunity 

Current research on the relationship between iron status and immunological 

response includes studies on asthma and lung function, improved immune function 

studies, and how iron deficiency may be protective against malaria (54–58).  Using data 

from the 2007-2010 survey cycles of the National Health and Nutrition Examination 

Survey (NHANES), Brigham et al. found that among women 20-49 years of age, those 

with the highest ferritin values experienced an average reduced risk of lifetime asthma, 

and current asthma by 31% and 53% respectively (55).  In addition to ferritin, the iron 

binding glycoprotein lactoferrin (LF) which is very similar in structure to transferrin, is 

another important iron-bound molecule that supports immunity (56).  LF is expressed by 

epithelial tissue and can be taken in exogenously from human breast milk and other 

unpasteurized, raw mammalian milk sources.  Its positive effect on immunity has been 
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shown in a number of in vivo and in vitro studies (54).  The ability of LF to effect 

improvements in immune functioning in older adults was observed in an RCT of people 

ages 66-87 receiving lactoferrin supplementation.  The experimental group in the study 

experienced significant increases in neutrophil phagocytic capacity, natural killer cell 

cytotoxicity and limited improvement in lymphocyte subset ratios (57).    

 Interventions with iron supplementation have also shown improvements in 

immune functioning. In a case control study on the effects of iron deficiency on the 

humoral and cell mediated immunity of children, lower CD4 lymphocyte levels as well as 

impaired CD4:CD8 ratios were improved following 3 months of iron supplementation 

(6mg/kg/day elemental iron) preceded by treatment for parasitic infections 

(59).  However, supplementing with iron in cases of unresolved parasitic infections has 

been shown to negatively affect outcomes (58,60).  

Optimizing Physical Performance and Aerobic Capacity 

Optimal physical functioning and aerobic capacity are also known to rely on 

adequate functional iron supplies.  While this is a well-established principle, current areas 

of research are expanding the breadth of the literature to include non-anemic iron 

deficiencies, effects of intense physical training on individuals with iron deficiencies, and 

the benefits of iron supplementation on aerobic and strength training performance among 

women, including athletes, women in the military and recreationally active women (61–

65).  Together these studies offer good evidence for monitoring and for iron 
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supplementation in men and women who may have non-anemic iron deficiencies or who 

engage in moderate to high intensity activities on a regular basis. 

Factors Affecting Iron Status 

Iron Intake and Absorption 

Although the majority of body iron supplies are maintained by recycling during 

erythropoiesis, enough iron must be taken in by the diet to replenish the 1-2 mg lost daily 

(49).   Recommended daily intakes for iron are 8 mg for adult men, 18 mg for adult 

women and 27 mg for pregnant and lactating women (66), however Armah et al. have 

suggested that these values may need to be adjusted upwards to be able to meet 

physiological iron requirements (67).  Humans acquire iron through consumption of 

heme from myoglobin or hemoglobin in meats and inorganic iron of plant foods, 

synthetically fortified foods or of animal tissues.  While a higher percentage of iron is 

absorbed from heme sources (68), most of the dietary iron consumed is from iron 

fortified cereals and breads due to the widespread consumption of both food products 

(69).    

It is well known that iron from heme sources is taken up and utilized more 

efficiently than non-heme sources.  This is based primarily on the consensus that heme 

moves into the enterocytes of the brush border membrane (BBM) intact, unencumbered 

by competition for transporters or through loss due to “anti-nutrient” activity of oxalates 

and phytates.  Evidence continues to support this assertion and points to endocytosis or 

movement through the transmembrane protein heme carrier protein (HCP1) as probable 
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modes of absorption at the BBM (70,71).  A study of piglets with iron deficiency anemia 

(IDA) showed a four-fold increased expression of Slc46a1, the gene coding for HCP1 in 

piglets given oral supplementation of bovine hemoglobin compared to both control 

piglets given parenteral Fe and to piglets receiving intramuscular injections of the 

conventional treatment of iron dextran.  Results also showed that piglets receiving oral 

heme supplementation had more than a three-fold increase in Fpn mRNA expression on 

the basolateral membrane (BLM) of duodenal enterocytes compared to both control and 

to iron dextran injected piglets.  Furthermore, hepcidin mRNA expression in the livers 

and plasma of the heme and control piglets remained consistently low throughout the 

study compared to increased hepcidin levels in iron dextran injected pigs, which began to 

increase significantly at day fourteen of the study and continued to do so until the study’s 

conclusion (72).   

Following digestion, iron from vegetable sources is transferred into the cellular 

environment from the intestinal lumen by a divalent metal transporter (DMT1).  Control 

of iron absorption by enterocytes depends both on systemic factors, local transcription of 

HIF-2a, and by posttranscriptional mechanisms of the iron regulatory protein and iron 

response element systems (71).  Since ferric iron (Fe3) must be reduced prior to transport 

by DMT1, its absorption can be increased by the presence of ascorbic acid which reduces 

it to ferrous iron (Fe2), allowing it to bypass the ferric reductase enzyme, duodenal 

cytochrome b (Dcytb) present in the lumen.   Other dietary components that enhance non-

heme iron absorption are amino acids, animal proteins and fermented products.  
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Alternatively, other digested compounds such as phytates and oxalates may bind with 

iron in the lumen causing it to pass unabsorbed and unutilized by the body.  Similarly, 

other metals, like calcium, cadmium, cobalt, magnesium and zinc in excess, may compete 

with iron for DMT1, reducing the amount of iron absorbed and cause it to pass unutilized 

by the body (73,74).  Recent ex vivo experiments have demonstrated that hepcidin too 

can reduce absorption of dietary iron by downregulating mRNA levels of DMT1 and 

Dcytb (75). 

Because vegetarians do not include heme or animal protein in the diet, it is 

estimated that only between 5% and 12% of iron in their diet is absorbed (76).  For this 

reason, the United States Institute of Medicine recommends that vegetarians consume 1.8 

times more iron compared to those consuming a mixed Western diet (66). Proper meal 

planning that accommodates optimal iron absorption via nutrient to nutrient interactions 

are essential for maintaining proper iron status.  Researchers Ghatpande et al. (77) 

studied the relationship between iron status, inflammation and the dietary data of 85 

adolescent girls in India, a nation whose population relies heavily on non-heme iron from 

plant-based diets. Among the subjects, 28% were anemic and 66% were ID. Their 

primary goal was to examine the relationship between ferritin, serum iron, hepcidin, 

TNFα and B12.  Overall the study reported that regular consumption of vitamin C rich 

fruits had significant effects on iron status and that B12 was negatively associated with 

TNFα.  Amla, a fruit very rich in vitamin C, was regularly included in the diets of girls 

with higher serum iron, and a significant positive correlation between hepcidin and 



 
 

12 
 

ferritin was observed.  Among the girls who ate guava regularly, B12 and ferritin 

associations were significant.  An interesting finding involved consumption of fetid 

cassia, (fruits from a tree that grows in ruined buildings) which is a traditional treatment 

for ringworm.  Subjects who did not eat fetid cassia were at a 3.9 times increased risk of 

low serum iron.     

Additionally, sufficient intake of B12 either from supplements or fish sources 

must also be made available for effective erythropoiesis to protect against anemia.   The 

benefits of a combined folic acid (FA), B12 and iron supplementation were shown in a 

supervised RCT among 446 IDA adolescent girls living in a very low socioeconomic 

section of New Delhi.  In the study, Bensal et al. (78) showed that while both the FA and 

B12 +FA iron supplements reduced the prevalence of iron deficiency anemia (IDA) 

among the group, the B12 + FA iron supplement reduced IDA among the subjects more 

significantly as well as improved ferritin status compared to the FA+iron supplement.   

Physiological Needs 

The higher incidences of ID and IDA among pregnant women, premenopausal 

women, and children reflect the increased physiological demands for iron in these 

demographics (79–81).  Pregnant women require more dietary iron for increases in blood 

volume and supplies to the fetus, premenopausal women with menorrhagia need more 

iron for replacing excessive blood losses and children require more iron for the changes 

in blood volume and hemoglobin concentrations (66).  Also, hypoxia is a physiological 

state that cause changes to iron status. Subsequently, in these individuals, upregulation of 
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erythropoietin will enhance intestinal iron absorption and dietary iron intake will 

subsequently have a greater impact on iron status than in individuals without higher 

physiological needs (82).   

  High altitudes, severe blood loss, low erythrocyte production and adipose tissue 

hypoxia will limit oxygen supplies for red blood cell production.  When these changes 

are sensed by baroreceptors in nephrons, EPO transcription is upregulated in the in 

peritubular fibroblasts in the renal cortex via binding of hypoxia inducible factor (HIF) 

heterodimers to hypoxia responsive element (HRE) of the EPO gene (83).  The increases 

in EPO suppresses hepcidin via upregulation of the erythroid, erythroferrone (ERFE) and 

ultimately causes increases in dietary absorption to correct the deficiency (84,85).  

Infection 

Intestinal parasites are another gastrointestinal disorder that can impair iron 

status.  While most common in developing nations and among children, intestinal 

parasites continue to be a major cause of anemia globally.  Parasitic infestations on their 

own, or in combination with an already poor diet quality can worsen iron status.  An 

increased prevalence of the intestinal parasite Giardia, a major cause of diarrhea (86), is 

suspected of increasing IDA, especially among school children in both developed and 

developing countries (87).  Hussein et al. (87) conducted an analysis of 650 stool samples 

from pre-school Egyptian children presenting with IDA to determine the association of 

Giardia infection types with IDA.  While several intestinal parasites were discovered, 88 

of the children were shown as having only giardiasis. Their results showed that Giardia 
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assemblages A were associated with 90.9% of the IDA cases and Giardia assemblage B 

with only 9.1% of the cases.  Helicobacter pylori (H. pylori) which is also found in 

populations around the world is more prevalent in older people with recent studies 

showing that H.pylori may be impacting vitamin B12 status in addition to reduced blood 

iron (88,89).  A case control study of younger hospitalized patients hospitalized with 

H.pylori showed that the decreases in B12 and iron levels were improved to near normal 

levels upon treatment for the infection (90).  Lastly, studies on the effects of colonic 

microbiota are demonstrating a viable link between an organism’s microbiome and 

expression of hepcidin (91).  

Inflammation 

Hepcidin, an antimicrobial peptide produced mainly by the liver, helps to 

maintain safe supplies of functional iron by facilitating the sequestration of circulating 

iron into storage as ferritin if liver iron stores are high or whenever inflammation is 

triggered by the innate immune system.  This inflammation cascade is initiated at the site 

of infection or injury by neutrophils which secrete interleukin-1 (IL-1) to recruit 

macrophages that in turn secrete interleukin-6 (IL-6) that signals the liver to produce and 

release hepcidin (92,93). As hepcidin circulates in the body, it prevents iron from 

entering the bloodstream by binding to and disabling the transmembrane iron exporter 

protein, ferroportin (Fpn) which is found primarily on hepatocytes, macrophages and 

enterocytes.  While this effectively limits the efflux of iron from these cells and into 

circulation, hepcidin’s role in decreasing absorption in the duodenum is not as well 
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established.  However, in a recent ex vivo study, it is reported that hepcidin exposure 

elicited changes in human duodenal mucosa that modulate several steps of the iron 

absorption process, including a reduction of dietary iron by Dcytb, its uptake by 

enterocytes through DMT1, the mucosal uptake of heme iron by HCP1, and enterocyte 

iron release to plasma by Fpn1 in conjunction with hephaestin through transcriptional 

change (89).   Conversely, when iron is required for the formation of red blood cells, 

erythroferrone (ERFE) is produced and hepcidin is suppressed (94). The impact of 

inflammation on iron status is seen in conditions such as autoimmune disorders, and 

inflammatory bowel disease in which high hepcidin concentration may predispose 

patients to anemia of inflammation (12).  

Foods and Inflammation 

It is well recognized that foods can significantly impact inflammatory status 

through a variety of mechanisms.  Some examples of foods and food components that 

have been linked to inflammation are discussed below.  

 Fatty Acids 

Certain fatty acids have been shown to directly influence proinflammatory 

cytokines via the arachidonic pathway and polyphenols have been shown to indirectly 

affect inflammation by reducing conversion of arachidonic acid to eicosanoids, 

modulating nitric oxide production (NOS) and downregulating the expression of genes 

associated with inflammatory signaling pathways, scavenging of reactive oxygen species 

(ROS) and other free radicals of metabolic reactions, and chelating metal ions (26,95–
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98).  Both monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA)s 

are known to be healthful fats and are recommended over saturated fats which have been 

shown to have acute inflammatory effects (95–98).  

The potential health benefits of MUFAs and PUFAs were highlighted in the large-

scale intervention study, PREDIMED, which studied how three diets containing different 

fat profiles affected the risk for CVD among high risk patients.  An extra virgin olive oil 

(EVOO; MUFA diet) diet, a PUFA rich diet with nuts (walnuts, almonds and hazelnuts), 

and a low-fat diet fashioned by the American Heart Association recommendations, were 

studied.  All three diets included recommendations for high consumption of fruits and 

vegetables.  A number of sub studies have emerged comparing these three different diets 

with plasma concentrations of inflammatory cytokines in the blood samples.   

Casas et al. (38) investigated the anti-inflammatory effects of MUFA and PUFA 

diets in a subcohort of 164 PREDIMED participants with atherosclerosis over the course 

of 12 months.   C-reactive protein and IL-6 were reduced by 45% and 35% and 95% and 

90% in the MUFA and PUFA diet respectively (P<0.05).  In a long-term study of an 

elderly cohort, the same researchers found that at 3 and 5-year test points, both the 

MUFA and PUFA rich diet showed a significant reduction of IL-6, IL-8, MCP-1, and 

MIP-1β (P<0.05) compared to subjects following the low-fat diet recommendations.  The 

MUFA rich diet stood out further in that it demonstrated improvements in TNF-α, as well 

as the other markers of CVD disease risk studied (P<0.05).     
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The Canola Oil Multisite Intervention Trial (COMIT) compared the effects of 

three different Canola oils and two safflower blended oils on the biomarkers of CVD risk 

which included CRP and IL-6.  The Canola oils were designed to have higher 

percentages of omega-3 fatty acids while containing the same amount of protein, 

carbohydrate, lipid, saturated fat, fiber and cholesterol percentages whereas the safflower 

blended oil diets contained higher omega 6 fatty acids than the Canola oils.  A primary 

objective of the study was to better identify the effects of oils containing various amounts 

of alpha linolenic acid (ALA). Linoleic acid (LA) Oleic acid (OA) and docosahexaenoic 

acid DHA outside of the Mediterranean diet context (99).  Since only endpoint 

differences were reported it is unknown how CRP levels changed from baseline among 

the subjects.  However, endpoint data showed that CRP was significantly lower in the 

Canola oil diet compared to the corn/safflower blend control diet which had a 

disproportionately higher omega 6 to omega 3 ratio.  

Another interventional study that included a comparison of the anti-inflammatory 

effects of an unprocessed oil with a processed oil demonstrated the anti-inflammatory 

benefits of EVOO compared to refined olive oil (ROO).  In the study, HIV patients who 

consumed an EVOO diet had significantly lower average CRP levels compared to those 

patients consuming ROO diet, which contained no polyphenols (100).  These 

observations were attributed to the presence of polyphenols in reducing the effects of 

lipid oxidation, thereby protecting the tissues (epithelia) from oxidative stress and injury 

which elicits and inflammatory response. 
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Polyphenols 

Polyphenols are a group of plant-based chemicals that have at least one phenol 

group. They are divided into two main groups, phenolic acids of red fruits, black 

radishes, onions, coffees, cereals and spices and the spectrum of flavonoids, which are 

found in soy (isoflavones),  in berries (anthocyanidins), in herbs (flavones), in broccoli, 

kale and tea (flavonols), flavanones found in citrus fruits and juices (flavanones).  Cell 

studies, mouse studies and human studies all demonstrate the anti-inflammatory effect of 

a polyphenol rich diet (PPD) (101,102). 

Examples of commonly consumed polyphenol rich foods include coffee and tea. 

Both beverages contain an array of polyphenols.  Chlorogenic acid, 5-caffeoylquinic acid 

(5-CQA), which is contained in the coffee bean, is consequently one of the most 

commonly consumed phenolic acids in the world.   Green tea is high in flavon-3-ols and 

black tea which is fermented, also contains oligimeric flavonoids.  Both coffee and tea 

contain the flavonol, quercitin (103).  A number of cell culture, animal and human studies 

have been performed and demonstrate the anti-inflammatory effects of their bioactive 

components (103–114). Studies have also shown anti-inflammatory benefits of 

isoflavones which are primarily consumed in beans (115–122) (116–123).  

Influences of Western Style Diets 

In contrast to the anti-inflammatory effects of monounsaturated fatty acids and 

polyphenols found in more traditional diets, injurious metabolic and bioactive byproducts 

of modern and western style diets are being shown to contribute to the inflammatory 
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response both acutely and in chronic fashion.  These diets are characterized by being 

highly caloric, highly processed and high in manufactured, refined oils (123).  Recently, 

Christ et al. (124) demonstrated how exposure to a Western diet both induces the 

systemic inflammatory response and evokes long term phenotypic changes of an 

enhanced immune response in myeloid cells regardless of dietary change.  This research 

has revealed the nucleotide-binding oligomerization domain receptor protein 3 (NLRP3) 

inflammasome as the central mediator of diet induced systemic inflammation and how 

myeloid precursor reprogramming are involved in the long-term immunomodulatory 

effects of inflammatory diets.  Both are important additions to the established body of 

research that describes more acute inflammatory responses (125–129) to components of 

food and may lead to a broader understanding of how food borne “sterile” inflammation 

may impose a persisting, heightened trained-immune response of metabolic pathways.   

Added Sugars 

The added sugars in Western diets include fructose, sucrose, and high fructose 

corn syrup.  Ample evidence supports a role for added sugars in the promotion of chronic 

disease. (130–134) including a number of studies showing associations between 

biomarkers of inflammation and increased consumption of sugar sweetened beverages 

(SSB) (135–138). 

In a cross-sectional observational study of 9678 participants in the population-

based Fenland Study, O’Connor et al. (135) studied how free sugars from beverages, fruit 

juices and processed foods were associated with metabolic risk factors compared to 
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sugars from solids with naturally occurring sugars.   The results of the analyses revealed 

that intakes of free sugars from liquids and from sugars added to liquids like coffee and 

tea but not sugars from foods, were significantly associated with increased CRP among 

subjects in the highest quintile compared to the lowest quintile of consumption (124). 

In a mouse study, seven months of either 15% glucose or 15% fructose showed 

higher accumulations of triglycerides in gastrocnemius muscle of both groups compared 

to standard chow controls but higher intramyocellular lipids and associated IL-6 in 

fructose group compared to glucose group (139). More recently, Kovacevic et al. (140), 

studied female Wistar rats fed either standard chow with water (n=9) or standard chow 

with 10% fructose solution for 9w.  Results showed NFK-β to be higher in the cytosols 

and nucleosols of VAT of fructose treated rats compared to water with chow treated rats 

and increased mRNA levels of both NFK-β and Il-1B by 25% and 40% respectively 

among fructose treated rats.  Together these findings reveal how added sugars induce 

inflammatory signaling and cytokine production by way of increased oxidative stress in 

female rats. 

A two-week crossover RCT by Raatz et al. (141), examined the metabolic effects 

of chronic intakes of three sources of sugars (honey, sucrose and high fructose corn 

syrup) in both glucose tolerant (GT) and glucose intolerant (IGT) subjects 

(n=60).   While triglyceride concentrations were significantly increased in all subjects 

from baseline, only IGT subjects had significant associations of CRP and glycemic 

response with the added sugars.  Since all three sweeteners had undergone thermal 
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processing similar results found in exposures to the different sweeteners may indicate that 

the heat treatment of the sugars may have caused these effects.  Also, the treatment 

period of only two weeks, along with the relatively low amount (50g) of sweetener may 

not have been enough added sugar to evoke a metabolic inflammatory effect in 

normoglycemic individuals.  Concentrations of CRP observed in the GT group were 

within the normal range (<3.0 mg/L).  Higher body weight among the IGT group may 

have been the factor behind the status × treatment interaction found in the study results 

(P= 0.03). 

The inflammatory effects of low to moderate intakes of SSB were first 

demonstrated by Aeberli et al.(142), in a clinical trial evaluating the effects of beverages 

containing different sweeteners on metabolic factors in healthy young men. In the study, 

six different SSB interventions of varying concentrations of fructose, glucose or sucrose 

were given to normal weight males (n=29) aged 19-25y that did not take regular 

medications or consume more than 60g SSB daily.   Although differences were observed 

among the sugars on LDL size, all the sugars had a similar effect of increased fasting 

glucose and more than twice the CRP concentrations compared to baseline.  However, a 

similar RCT in Hispanic adolescents with NAFLD that were exposed to either glucose or 

fructose beverages, reported that CRP was reduced by nearly half in glucose beverage 

group compared to fructose after 4 weeks of exposure (143).   
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Dietary Advanced Glycation End Products 

In addition to being high in added sugars, western style diets are also high in 

advanced glycation end products that result from the non-enzymatic Maillard reaction, a 

common food preparation and processing technique that is widely used in the 

manufacturing of ultra-processed convenience foods that accommodate modern 

lifestyles.  Dietary advanced glycation end products (dAGEs) are produced when 

carbonyl groups of non-reducing sugars interact with free amino acid groups of 

proteins.  Intermediate aldehydes and dicarbonyls are first produced and then react with 

other biomolecules, to form a group of heterogeneous, “end product” compounds (144). 

Even as much as the cooking process enhances the flavor, aroma, and appearance of 

foods, these end products which are found to a great degree in French fries, potato chips, 

baked goods and pasteurized dairy are now believed to contribute to the inflammation 

associated with chronic and autoimmune diseases (89,145–147) .  The most commonly 

studied dAGEs include carboxylethyl-L-lysine (CEL), carboxymethyl-L-lysine (CML), 

and hydro-methyl-imidazolon (MG-H1).  Several observational studies have reported 

associations between dAGES with increased inflammation and human interventions have 

demonstrated that reduced inflammatory markers are associated with dAGEs restricted 

diets (27,148–151). 

Researchers Di Pino et al., have conducted both observational and interventional 

studies investigating the health risks of dAGE exposures in subjects with type 2 diabetes 

mellitus (T2DM).  In their 24w, RCT study, subjects on low dAGE diets had significant 
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reductions in CRP compared to standard dAGE diets (150).  In their cross-sectional study 

(n=85), the researchers reported that subjects consuming diets containing more than 

15,000 kU/dAGEs/day had significantly higher CRP than subjects whose diets were 

below 15,000 kU (149).  Similar associations between dAGE consumption and serum 

AGEs (sAGEs) were found by Uribarri et al., (27) in an earlier prospective cohort study 

of subjects with obesity and risk for metabolic syndrome (MS).   

While human studies are still limited, numerous animal models offer insights into 

dAGEs role in inflammation.  The pro-inflammatory effects of CML, and associated 

renal damage were reported in a study of intrauterine growth retardation piglets 

(IUGR)(n=8) that were fed either low heated (LHF) or high heated infant formulas 

(HHF).  In the study, Elmhiri et al. (152), observed that piglets receiving HHF had higher 

mRNA expression and protein activation of NF-𝛋B by 33% and 120% respectively.   

Recently, a mouse model expressing firefly luciferase under control of NF𝛋-B regulation 

was used to investigate systemic activation of the secondary messenger pathway, NF-𝛋B 

from AGE modified foods.  In their experiments, NF𝛋-B luciferase activity was 

significantly higher in animals fed AGE treated bovine serum albumin (BSA) compared 

to both BSA fed animals and to positive controls with the highest luciferase activity 

found in the gut at 6-8h post feedings (153).  

Increased intakes of dAGEs add to the pool of endogenous AGEs which are 

produced when proteins such as albumin or globulins react non-enzymatically with 

plasma glucose. Both dAGEs and endogenous AGEs contribute to an accumulation in 
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systemic AGEs which is commonly observed in diabetes, during aging and from diets 

high in added sugars (148).   Circulating AGEs from either source (endogenous or diet 

derived) can be bound by the advanced glycation end receptor 1 (AGER1) or by the 

receptor for advanced glycation end products (RAGE).  AGER1 binding of AGEs 

reduces their intracellular and extracellular presence and therefore reduces oxidative 

stress both intracellularly and among the tissues.  RAGE binding of AGEs however, 

activates several signaling pathways including NF-κB, resulting in a proinflammatory 

effect which mediates increases in both transmembrane and soluble RAGE which is 

found in the sera (14).  Most importantly the link between RAGE and the NLRP3 

inflammasome was established by Yeh et al., (154) in BALBc mice experiments, who 

demonstrated that dAGEs mediate activation of NLRP3 secretion of Ilβ-1 via conversion 

of pro-caspase to caspase. 

Inflammatory Diet Indexes 

Approaches that reflect the overall health potential of the diet are currently being 

used to describe population and individual diet patterns.  Mediterranean Diet Patterns, 

Anti-Inflammatory Patterns and the USDA promoted, Healthy US Dietary Pattern are 

considered more useful in promoting healthful eating, capturing multiple dietary factors, 

and offering more comprehensive assessments of diet quality while accounting for the 

complex interactions of foods and nutrients.  Researchers have also developed indexes 

that can be used to assess the inflammatory/anti-inflammatory potential of diets.  The 

Empirical Dietary Inflammatory Index Pattern (EDIP) and a Dietary Inflammatory Index 
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(DII) are two examples of such indexes.  Both tools were created to quantify the overall 

effects of the inflammatory foods in an individual’s diet in mediating inflammation 

related diseases and can be used by researchers, public policy makers and clinicians 

helping patients reduce risk of inflammation related diseases.   

Empirical Dietary Inflammatory Pattern Index 

The development of the EDIP was driven by the hypothesis that reduced rank 

regression analysis (RRR) of dietary data from the Nurses’ Health Study (NHS) would be 

predictive of inflammatory markers (155). The developers believed that an “a posteriori” 

statistical method would better portray the inflammatory effect of foods by using the 

response variables to derive the dietary patterns than would an indexed or an “a priori” 

pattern in which scores are derived from current scientific knowledge. Additionally, the 

EDII was construct validated in two independent samples of women and men in the NHS. 

Instead of including single nutrients in inflammatory scoring methodology, the 

EDII score is based on 39 food groups previously defined in the 1986 and 1990 FFQs of 

the NHS.  First, a mean daily intake of the food groups was calculated and then RRR was 

applied to derive a dietary pattern associated with CRP, IL-6 and TNFαR2.  The 

researchers found 18 food groups as significantly contributing to the inflammatory 

markers.  Intakes of white meat fish, tomatoes, processed meats, high and low energy 

beverages, vegetables (other than green leafy or yellow), red meat, refined grains and 

organ meats were positively associated with inflammatory markers.  Curiously, pizza, 

and snacks which contain refined grains, processed meats and non-leafy vegetables as 
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well as fruit juices which are high energy beverages, were inversely associated with 

inflammatory markers.  The relative validity of the EDIP score was evaluated in 2 

independent cohorts of health professionals: the Nurses’ Health Study (NHS)-II and 

Health Professionals Follow-up Study (HPFS) (156).  Using data from the Women's 

Health Initiative (WHI) baseline FFQ, researchers confirmed the association of the EDIP 

score with markers of inflammation in a more racially diverse population of older 

women.  While this tool may be useful in studies that rely on these same food groups and 

that do not have access to nutrient data analysis, it seems limited in its scope to accurately 

portray the inflammatory load in diets other than US diets. 

The Dietary Inflammatory Index 

 The DII also quantifies the overall effects of the inflammatory foods in the 

diet.  Originally, the index was developed from 929 research studies and validated in 

2009 with subjects’ data from the Seasonal Variation of Blood Cholesterol Study 

(SEASONS) (45).  The DII was developed further by the Cancer Prevention and Control 

Program at the University of South Carolina in 2011-2012.  The researchers enhanced the 

scoring algorithm of the original DII with the data of more recent and a much larger 

number (1,943) of articles.  In addition to increasing the robustness of the data collected, 

the scoring system was improved to include differential inflammatory effects reported 

among various foods and is standardized based on human consumption.  Data from 

eleven regional populations are also factored into the scoring to provide comparison 

consumption within the food parameters. Thus, the tool is more global and inter-
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regionally reliable.  Lastly, the DII can be used with a variety of dietary data.  Scoring is 

reported as a percentile of maximum inflammatory effects of the data from each of the 45 

food parameters which include macronutrients, micronutrients, flavonoids, and some 

herbs. 

Since its redesign in 2012 the DII has been used to assess the inflammatory effect 

of foods in several studies, especially among populations afflicted with colon cancer 

(125). It has proven to be predictive of gastric and breast cancers, cardiovascular disease 

CVD, and poor diets (157–162). Its methodology was construct validated with data from 

NHANES, the SEASONS study and the WHI (163–166).  It has also been validated 

among African Americans (167), post-menopausal women(166), and police 

officers(168).  Recently the same researchers developed a children’s DII (C-DII).  Up 

until now, no study has investigated the interrelationships among DII scores 

inflammation and iron status. 

 



 
 

28 
 

CHAPTER III 

RESEARCH ARTICLE 

 

   

Introduction 

  

Poor iron status in obesity is reflected by an iron profile of which hypoferremia is 

often, but not always paired with hyperferritinemia (22,169–172).  These effects, which 

have been observed in iron studies among subjects with obesity are believed to be the 

result of increased hepcidin signaling.  The hepatocyte response in obesity mirrors that 

which is seen during the acute phase response in which IL-6 signaling from tissues causes 

increased hepcidin release from the liver (93,160,173–176). However, in obesity and 

other chronic inflammatory diseases, the factors fueling the hepatic response remain 

uncorrected, obstructing hepcidin’s original purpose, and subsequently healthy iron 

metabolism becomes impaired. 

It is well established that the relationship between inflammation and obesity is 

rooted in a mechanism of persisting adipose plasticity that promotes an inflammatory 

cascade via increased IL-6 signaling. Several studies have described parallel cytokine 

messaging from both hypertrophic adipocytes and neighboring hypoxic tissues 

supporting adipocytokine and cytokine release and increased macrophage infiltration into 

omental fat depots (174,177,178).  Overproduction of TNF-α, IL-1, IL-6, and MCP-1 

results from upregulated hypoxia inducible factor (HIF-1a) in nearby tissues and from toll
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like receptor-4 (TLR-4) due to the lipotoxic effects of chronically elevated free fatty 

acids (FFAs) in obesity.  Together these create a positive feedback paracrine loop of 

deregulated TNF-α synthesis that promotes and supports persistent systemic 

inflammation. 

Similarly, dietary sources can also stimulate IL-6 production via the immune 

system and therefore may also contribute to poor iron status by supporting increased 

release of hepcidin via the inflammatory cascade (124,125,179,180).  Food components, 

such as free fatty acids, added sugars and advanced glycation end products act as non-

immunity mediated ligands for TLR-4, NLRP-3 and other cell surface receptors that 

mediate induction of nuclear factor kappa B (ΝFκB).  Conversely, diets high in foods 

with antioxidant and anti-inflammatory properties including polyphenols, vitamin C and 

Omega 3 fatty acids for example have been associated with reduced risk of chronic 

inflammation (42,44,77).  Thus, studying associations between diet mediated 

inflammation and iron status may offer insight into modifying the inflammatory cascade 

via food intake strategies. 

In order to optimally assess the overall effect of dietary inflammation, the dietary 

inflammatory index (DII) was designed to consider both proinflammatory and anti-

inflammatory foods.  As a validated predictor of IL-6, and the well-known biomarker of 

systemic inflammation, CRP among a number of populations, the DII may be calculated 

using a variety of dietary assessment tools including 24h recalls, food frequency 

questionnaires and dietary records.  In this study, we sought to investigate if 
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inflammatory diets impair iron status independent of BMI.   We hypothesized that DII 

scores will be positively associated with CRP concentration, and that higher DII scores 

will be associated with poorer circulating iron biomarkers. 

Methods 

Study Population 

Data from two cross-sectional studies of the same design namely the Diet and 

Inflammation Study (DI study) and the Selenium and Inflammation Study (SI study) were 

used for this analysis(181,182). The DI study was conducted in Spring 2017 to 

investigate the relationships among diet, hepcidin and iron status. Subjects recruited for 

this study were those within the age range of 18 to 49 years who were non-pregnant, non-

lactating, and non-smoking. Additionally, they were not to have donated blood in the past 

two months, must not be taking vitamin and mineral supplements, and must have a BMI 

within the range of 25.0 to 40 kg/m2.   A total of 147 subjects responded to the mass e-

mail and 67 subjects were came for screening.  Twenty-two participants were ineligible 

due to BMI, two were excluded due to supplements or medications, and two did not 

complete blood draw.  In total, 39 participants completed the DI study. Dietary intake, 

and anthropometric (height and weight) measurements were conducted on each subject. 

Fasting venous blood samples were collected to measure concentrations of iron status and 

inflammatory markers. The SI study on the other hand was conducted in Spring 2018 to 

investigate the associations among selenium status, hepcidin concentration and iron status 

biomarkers in individuals with overweight or obesity compared to normal weight 
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controls.  Similar to the DI study, subjects were included if they were non-pregnant, non-

lactating, non-smoking, not using vitamin and mineral supplements and had not donated 

blood in the past two months. However, the BMI criteria for inclusion in the SI study was 

≥18.5 kg/m2.  In addition to collecting dietary, anthropometric and biochemical markers, 

the SI study also collected additional anthropometric variables such as body fat, visceral 

fat, and muscle mass, and also measured plasma selenium concentration, and other 

biomarkers of selenium status among subjects.  A total of 129 subjects responded to mass 

e-mail and 66 came for screening in the SI study of which two opted out for personal 

reasons, one did not meet BMI criteria, and one subject did not complete the blood draw.  

In total, 59 subjects were included in that study.  Both studies were conducted at the 

Cemala Foundation Human Nutrition Research Laboratories at the Nutrition Department 

of The University of North Carolina at Greensboro (UNCG). The study protocols were 

approved by the Institutional Review Board of UNCG.  Summary of subject recruitment 

and inclusion in the two studies is shown in Figure 1.  In each of the studies, informed 

written consent was obtained at screening from every subject before recruitment.  After 

signing the consent form, each participant was requested to complete a screening form 

requiring information such as demography, vitamin and mineral supplement use, medical 

history and pregnancy status. Height and weight measurements were also done at 

screening to assess BMI for inclusion. 
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Figure 1. Subject Recruitment 

Diet and Inflammation study    Selenium and Inflammation study 
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Data Collection 

 

For each of the two studies, qualified participants were provided with a dietary 

record form, food frequency questionnaire, and a weighing scale and were required to 

record all foods consumed on three non-consecutive days of which two were weekdays 

and one was a weekend day. At the follow-up study visit, anthropometric measurements 

were repeated, a 10h fasted venous blood (approximately 30 ml) was collected and 

participants submitted their completed three-day dietary records. The dietary records and 

food frequency questionnaires were reviewed with each participant by trained research 

assistants.  

         Dietary data from the three-day dietary records were analyzed into nutrients using 

the Nutrition Data System for Research (University of Minnesota, MN, USA) and used in 

calculating the DII scores. Up to 45 food components can be used for calculating DII 

scores.  Thirty of these were available from the NDSR data and were used in the analyses 

of this study (Table 1).  These included: fiber, vitamin B6, folic Acid, niacin, riboflavin, 

thiamin, beta carotene, vitamin A, vitamin D, vitamin E, vitamin C, caffeine, alcohol, 

selenium, magnesium, zinc, isoflavones, MUFA, Omega 3, Omega 6, PUFA, total fat, 

trans fat, saturated fat, iron, carbohydrate, protein, cholesterol, Energy, vitamin B12. The 

first twenty-one components were considered anti-inflammatory and the remaining 

considered inflammatory. The DII calculations were done at the Cancer Prevention and 

Control Program Center at the University of South Carolina as previously described (45). 
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For each participant, some of the fasted blood samples were sent to LabCorp 

(Burlington, NC) after processing for the measurement of hemoglobin, iron saturation, 

serum iron, total iron binding capacity (TIBC), serum ferritin and C-reactive protein 

concentration (CRP). The remaining were stored at -80 oC at UNCG for the measurement 

of hepcidin concentration at the end of each study.  Hepcidin was analyzed using ELISA 

assay kit from Peninsula Laboratories International (San Carlos, CA, USA).  

 

Table 1.  Food Components of DII Scoring Algorithm 

 

Anti-inflammatory Pro inflammatory 

Alcohol 

n-3-fatty acids 

Vitamin E 

Vitamin B6 

n-6 fatty acids 

Zinc 

Β-Carotene 

Onion 

Green/black tea 

Caffeine 

 PUFA 

Flavan-3-ol 

Eugenol 

Riboflavin 

Flavones 

Fiber 

Saffron 

Flavonols 

 

Folic acid 

Selenium 

Flavonones 

Garlic 

Thiamin 

Anthocyanidins 

Ginger 

Turmeric 

Isoflavones 

Magnesium 

Vitamin A 

Pepper 

MUFA 

Vitamin C 

Thyme/oregano 

Niacin 

Vitamin D 

Rosemary 

Total fat 

Vitamin B12 

Carbohydrate 

Cholesterol 

Energy 

Iron 

Protein 

Saturated fat 

Trans Fat 

 

 

Subjects were categorized has having normal weight (18.5-24.9 kg/m2), overweight (25-

29.9kg/m2) or obesity ( above 30kg/m2 ) according to established BMI criteria.  To 
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categorize the DII scores into either pro inflammatory or anti-inflammatory diet group, 

we used cluster analysis. 

Statistical Methods 

Statistical analyses were done using the R statistical software (183).. DII scores 

were treated both as a continuous variable and as a categorical variable for the purpose of 

investigating all possible relationships between the DII and the primary outcome 

variables which were serum iron, TIBC, hepcidin concentration and CRP concentration.  

To categorize the DII score into either a pro inflammatory or anti-inflammatory diet 

group, we chose cluster analysis with only two groups to ensure adequate sample size for 

each group.  Percentages were reported for categorical variables such as sex, ethnicity 

and BMI categories. Hepcidin, ferritin, and transferrin saturation values were used for 

post hoc analyses.    The means and standard error of mean (SEM) were reported for the 

continuous variables such as age, BMI, serum iron, hemoglobin, TIBC, transferrin 

saturation and for the concentrations of ferritin, hepcidin, and CRP.   Skewed variables 

were log transformed and the geometric means were reported. Fisher’s exact test and 

ANOVA were used to compare background characteristics.  Where ANOVS showed 

statistical significance, Tukey’s HSD was used for multiple comparison.  Linear 

regression analysis was used to determine the association among the DII as an 

independent variable with CRP, hepcidin concentration, serum iron and TIBC.  All 

regression models were adjusted for age, gender, and ethnicity. We also adjusted for 
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meat, fish and poultry intake where necessary since iron intake was considered pro-

inflammatory in the DII calculations. Statistical significance was set at P ≤ 0.05. 

Results 

Background Characteristics of Subjects  

Participant background characteristics grouped by BMI category are displayed in 

(Table 2).  The overall mean age was 21.0 ± 0.4y and the majority of the subjects (72 of 

the 98) were female.  Despite higher female representation, the distribution of both sexes 

among BMI categories was not significantly different. (p=0.6).  Similarly, there was no 

significant association between BMI category and ethnicity (p = 0.7). BMI categories 

were also well represented with 29% of subjects having normal weight, 40% having 

overweight and 32% having obesity status (total percentage not equal to 100 due to 

rounding).   

 

Table 2. Background Characteristics According to BMI 

   

 
BMI (kg/m2) category P-Value 

Normal 

18.5-24.9 

N= 28 

Overweight 

25-29.9 

N= 39 

Obese 

≥ 30 

N= 31 

Total 

N=98 

Age (y) 21.2±0.4 21.4±0.7 21.8±0.6 21±0.4 0.8 

Sex1     
0.6 

Male 8 (8.16%) 9 (9.18%) 10 (10.20%) 27 (27.55%) 

Female 20 (20.41%) 30 (30.61%) 21 (21.43%) 71 (72.44%) 
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Ethnicity1     0.7 

Hispanic 3 (3.06%) 4 (4.08%) 4 (4.08%) 11 (11.22%) 

NH White 14 (14.29%) 11 (11.22%) 13 (13.27%) 38 (38.78%) 

NH Black 6 (6.12%) 13 (12.27%) 16 (16.33%) 35 (35.71%) 

Other 5 (5.10%) 3 (3.06%) 6 (6.12%) 14 (14.29%) 

BMI1, 

kg/m2 

22.5±0.3a 27.0±0.24b 34.9±0.50c 28.±0.5 

<0.0001 

Values are 1means ± SEM , 2 are n (%) or 3geometric means (geometric mean – SEM, 

geometric mean + SEM)           

 

 Nutrient Intakes and DII Scores among Subjects   

DII scores and the median intakes of selected nutrients including iron, MFP 

(meat, fish, poultry), protein, fiber and fat by BMI category are reported in (Table 

3).  There were no significant differences among BMI categories for the nutrients 

reported.  Among all participants, the DII scores ranged from a maximally anti-

inflammatory score of -4.2 to a maximally proinflammatory score of 3.7.  Cluster 

analysis of the scores grouped them into distinctly anti (-4.2 to 0.7) or pro inflammatory 

(0.8 to 3.7) groups for bivariate comparisons.  

 

 

 

 

 

 

 



 
 

38 
 

Table 3.  Selected Nutrient Intakes and DII Scores According to BMI 

 

Factor/Nutrient Normal Weight Overweight Obese P-value 

Iron, mg 16.87 (9.37, 

19.43) 

12.25 (9.72, 

14.79) 

15.68 (9.70, 

20.20) 

0.166 

MFP (ounces) 3.56 (2.20, 

6.25) 

5.92 (3.57, 

7.99) 

4.59 (3.02, 

7.05) 

0.06 

Calories, kcals 1779 (1426, 

2527) 

1875 (1433, 

2209) 

2229 (1591, 

2628) 

0.43 

Protein, g 74.45 (50.26, 

96.49) 

74.09 (51.91, 

98.30) 

74.87 (71.30, 

97.42) 

0.48 

Fiber, g 17.28 (11.70, 

21.73) 

14.41 (11.76, 

17.18) 

16.68 (12.20, 

22.16) 

0.24 

Fat, g 67.89 (56.50, 

106.32) 

74.75 (52.97, 

97.27) 

95.05 (63.93, 

113.71) 

0.31 

DII Score 1.02 (1.19, 

1.97) 

0.97 (0.18, 

2.04) 

1.01  (0.47, 

1.96) 

0.8 

 

 

Inflammatory and Iron Status Biomarkers  

 

CRP concentration was highest among the subjects with obesity [3.63 (2.98, 4.43) 

mg/L], and lowest among subjects with normal weight [0.40 (0.32, 0.48) mg/L] (P< 0.05 

for all comparisons) (Table 4).  A trend toward poor iron status as BMI category 

increased was reflected in most iron status biomarkers (serum iron, Tsat and TIBC), 

however, only serum iron was significantly higher in normal weight (103+10µg/d) 

compared to obesity (72.6 +6µg/d) category (p=0.01).   Hepcidin concentrations were 

nearly twice as high in subjects with obesity compared to those with normal weight but 

this was not significant (p =0.06).  
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Table 4.  Inflammatory and Iron Status Biomarkers According to BMI 

 

 BMI (kg/m2) category P-value 

18.5-24.9 

N= 29 

25-29.9 

N= 39 

≥ 30 

N= 31 

Total 

N=98 

CRP1 (mg/L) 0.4(0.3, 

0.5)a 

0.8(0.7, 

1.0)b 

3.6(3.0, 

4.4)c 

1.1(0.9, 

1.2) 

<0.0001 

Ferritin1  (ng/ml) 37(31, 45) 33 (28,39) 51 (43,61) 39 (35,49) 0.2 

Serum iron 

(µg/dL) 

103+10a 83+6a,b 72+6b 85+4 0.014 

Transferrin 

saturation (%) 

31.3+3.4 26.1+1.9 23.0+2.0 26.6+1.4 0.07 

Hemoglobin 

(g/dL) 

13.6+0.3 13.1+0.4 13.5+0.3 13.4+0.2 0.6 

TIBC (µg/dL) 355+15 346+8 344+12 348+6 0.8 

Hepcidin1 

(ng/ml) 

10.7 (8.7, 

13.2) 

12.2 (10.1, 

14.8) 

20.8 (16.9, 

25.6) 

13.9 (12.4, 

15.7) 

0.06 

1Data were log transformed.  Values are geometric means (geometric mean -1SE, 

geometric mean +1SE) 

 

 

Associations of DII with CRP and Hepcidin Concentrations    

 

Using linear regression, we investigated the association between the DII scoring 

as a continuous variable and inflammation as assessed using CRP concentration (Table 

5).  We found that CRP concentration increased with increasing DII score (β+SE = 

0.23+0.07, p=0.002) and that caloric intake also predicted CRP concentration (β+SE = 
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0.54+0.17, p=0.002).  In this model, having overweight (β+SE= 0.63+0.26, p=0.020) or 

obesity ((β+SE= 2.17+0.28, p < 0.001) was associated with higher CRP compared to 

subjects having normal weight. 

We also determined the association between DII as a categorical variable and 

CRP concentration (Table 6). In this model, the relationship between DII category and 

CRP was not statistically significant (β+SE = -0.45+0.25, p=0.076).  Also, although the 

anti-inflammatory diet category was associated with lower hepcidin concentration, this 

was not statistically significant (β+SE = -0.29+0.17; p = 0.095). 

 

Table 5.  Associations of DII Scores with CRP and Hepcidin  

 

 CRP, mg/L (n=98) Hepcidin, ng/mL (n=98) 

Predictors β SE p β SE p 

DII ® 0.23 0.07 0.002 0.03 0.06 0.546 

Energy, cal 0.54 0.17 0.002 0.06 0.1 0.63 

BMI Category       

 Obese 2.17 0.28 <0.001 0.30 0.27 0.269 

 Overweight 0.63 0.26 0.02 0.21 0.20 0.286 

CRP1 (mg/L)   0.07 0.08 0.378 

Ferritin1 (ng/mL)   0.85 0.09** <0.001 

Regression models were adjusted for age, sex and ethnicity. 

DII = Dietary Inflammatory Index 
1Data were log transformed. 
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Table 6.  Associations of DII Category with CRP and Hepcidin 

 

 CRP (mg/L) Hepcidin (ng/mL) 

Predictors β SE p β SE p 

DII category       

Anti-

inflammatory 

-0.45 0.25 0.076 -0.29 0.17 0.095 

Energy, cals 0.4 0.1 0.018 0.1 0.1 0.383 

BMI 

category 

      

Obese 2.25 0.29 <0.001 0.33 0.26 0.214 

Overweight 0.72 0.27 0.010 0.24 0.19 0.225 

CRP1 (mg/L)    0.06 0.07 0.411 

Ferritin1 

(ng/dL) 

   0.85 0.09 <0.001 

Regression models were adjusted for age, sex and ethnicity 

DII = Dietary Inflammatory Index 
1Data were log transformed.  Values are geometric means (geometric mean -1SE, 

geometric mean + 1SE) 

 

 

Associations of Inflammatory Diets with Iron Status Biomarkers   

 

DII score was an independent predictor of TIBC when analyzed as a continuous 

variable ((β+SE= -8.46+3.44, p=0.016) (Table 7).  DII scores were not however related 

to serum iron.  Only the obese category was predictive of lower serum iron while ferritin 

concentration predicted higher serum iron and lower TIBC.   Anti-inflammatory diets 
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were associated with high TIBC (β+SE= 29.87+10.75, p=0.007) (Table 8). This 

relationship was independent of other iron status biomarkers. 

 

Table 7.  Associations of DII Scores with Iron Status Biomarkers 

  Serum iron, µg/dL (n=97) TIBC, µg/dL (n=98) 

Predictors β SE p β SE p 

DII ® 1.98 2.63 0.454 -8.46 3.44 0.016 

Energy, Cal 0.00 0.01 0.720 0.00 0.01 0.809 

BMI Category       

 Obese -27.11 12.31 0.030 -4.16 16.36 0.80 

 Overweight -14.24 9.18 0.125 -12.43 12.05 0.305 

CRP1 mg/L -4.99 3.61 0.171 5.14 4.79 0.287 

Ferritin1 ng/mL 14.55 4.30 0.001 -43.33 5.71 <0.001 

 Regression models were adjusted for age, sex, ethnicity and MFP. 
1CRP = C-Reactive Protein 

DII= Dietary Inflammatory index 
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Table 8.  Associations of DII Category with Iron Status Biomarkers 

 

 Serum iron, µg/dL (n=97) TIBC, µg/dL (n=98) 

 β SE p β SE p 

DII Category  

Anti-inflammatory 2.03 8.20 0.805 29.87 10.75 0.007 

Energy, Cal -0.00 0.01 0.867 0.00 0.01 0.552 

BMI Category       

 Obese -29.03 12.28 0.020 -3.03 16.10 0.851 

 Overweight -14.15 9.23 0.129 -15.23 11.98 0.207 

CRP1 mg/L -3.93 3.48 0.262 3.57 4.55 0.435 

Ferritin1 ng/mL 15.33 4.24 <0.001 -44.58 5.57 <0.001 

Regression models were adjusted for age, sex, ethnicity, and MFP intake. 
1CRP = C-Reactive Protein 

DII= Dietary Inflammatory index 

Data were log transformed.    

 

 

Discussion 

  

Systemic inflammation can be triggered by several factors including diet and 

obesity (44,177,184,185) and can lead to adverse health outcomes such as type 2 diabetes 

and cardiovascular diseases. Recent studies have shown that inflammation may also play 

a role in iron status regulation through the protein hepcidin. For example, low grade 

inflammation in obesity has been implicated in the poor iron status observed among 

individuals with obesity (23,169,179,186,187). While diets may play a role in iron status 
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through their heme and nonheme iron contents, it is not clear if their inflammatory and 

anti-inflammatory properties also influence iron status. In this study, we investigated the 

relationship between the inflammatory score of diets assessed using the DII and 

circulating iron biomarkers, namely serum iron and TIBC, adjusting for obesity status 

and other potential confounders. We chose the circulating iron biomarkers because 

elevated hepcidin concentration directly reduces circulating iron through poor iron 

absorption or iron sequestration (91,176,188). 

Median nutrient intakes in our studies were not significantly different among the 

three BMI categories (normal weight, overweight and obese). Compared to other studies 

(189), we found a much higher median MFP intake in our study population  (5.08 ounces 

or 142 g vs 91 g) despite similarities in age group. This is due to the fact that the dietary 

intakes of subjects in their study were modified in some cases. On the other hand, fiber 

intake data by BMI in our study is similar to those among US college students reported 

by Garcia-Meseguer (190) in a study of fiber patterns among college students in three 

different countries (Spain, USA and Tunisia).  They observed median fiber intakes 

among USA students of 18.1g, 15.3g and 18.3g in normal weight, overweight, and obese 

participants respectively compared to 17.28, 14.41 and 16.68 among our study 

participants.   

DII scores in our study ranged from -4.44 to 3.49 with median of 0.99. The lowest 

DII score in this study compares favorably to the -4.93 minimum DII score reported in 

another study among young adults (21-35y) living in southeastern US (South Carolina) 
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(191), although they reported DII scores much higher than our maximum value of 

3.49.  Median DII scores in our study did not differ significantly among the different 

BMI categories (p=0.8).  In a study of associations between body weight and dietary 

inflammation, Muhammad et al. (192) also found no associations between BMI and DII 

as a continuous variable or with DII tertile. While these support our findings, the contrary 

was reported by Ruiz-Canela et al. (193) who found a positive association between the 

two variables in a population with high risk for CVD.  In this study, the correlation was 

found only among women and all the study participants were at least 55y.  In a college 

setting similar to our study, Kim et al.(194) compared DII scoring with HEI and glycemic 

index scores.  In their study, DII was positively correlated with glycemic index (GI) and 

inversely correlated with HEI. Wirth et al., also reported negative correlations between 

the DII scores of young adults and the HEI-2010 (r = −0.65, P < .01), AHEI (r = −0.55,P 

< .01), as well as the DASH diet (r = −0.52,P < .01).  Even though DII scores were also 

not associated with BMI, lower DII values were found in individuals with the lowest 

waist-to-hip ratios (WHR), a reliable indicator of central adiposity (195–198).  However 

we did not have WHR measures for our analyses. 

In our study, geometric mean of CRP was 1.1 mg/L (0.9, 1.2).   In two recent 

studies of young adults, mean CRP was found to be 1.72 mg/L and 1.5 mg/L 

(199,200).  Our lower value may be due to the fact that we reported the geometric mean, 

while these studies reported the arithmetic mean. Our findings showed that CRP 

concentration increased with BMI category, being highest in the obese category and 
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lowest in the normal weight category. This affirms what has been reported in several 

earlier studies (201,202).  

We also found in a positive association between DII score and CRP 

concentration, which attests to the ability of the DII score to predict inflammation. Our 

results also corroborate the findings from several other studies (164,167,200,201).  For 

example, Boden et al. (203) observed that DII predicted 1.7% of elevated CRP in a 

prospective case control study of 1,389 verified cases of first myocardial infarction (MI). 

Wirth et al.  (167) reported positive associations between DII scores and CRP levels 

among African Americans in the fourth quartile of DII category in baseline data of the 

Healthy Eating and Active Living in the Spirit (HEALS) intervention study. In our 

regression analyses that included DII scores, both DII scores and overweight and obesity 

status categories were predictors of CRP suggesting that diet in addition to increased 

adiposity may contribute to the higher CRP among young adults. Dietary factors are 

shown to trigger inflammation via NFk-β activation and subsequent induction of 

inflammatory cytokines through upregulated innate immune signaling of toll like 

receptors-4 (TLR-4) and via the NRLP3 complex (124,154,204). High fat diets, 

particularly those high in saturated and trans fatty acids are shown to increase 

inflammation in mouse models and human studies while diets low in animal products are 

known to be anti-inflammatory.  In an early mouse model, Lumeng et al. (205) found that 

a high-fat diet increases the inflammatory properties of macrophages recruited by adipose 

tissue in obese compared to lean mice. In a later study, Kim et al. (206) reported 
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increased systemic inflammation and acceleration of adiposity via increased TLR4 

signaling by high fat diet induced endotoxemia in the intestinal lumen of mice. In 

humans, a recent meta-analysis that controlled for weight loss reported that plant-based 

diets were independently associated with reductions in CRP in subjects with obesity 

(207). 

We also compared iron status and inflammatory markers among the different BMI 

categories. While other iron status biomarkers did not differ significantly, serum iron was 

significantly lower among subjects with obesity compared to those with normal weight 

(p=0.014). It is well documented that obesity is a risk factor for poor iron status 

(19,170,172,208) and the impaired iron status in obesity has been attributed to factors 

such as inflammation and concomitant elevated hepcidin concentration. Citelli et al. 

(179) reported increased hepcidin gene expression and iron accumulation in spleen and 

liver tissues as well as reductions in ferroportin (FPN) gene expression in obese mice fed 

a high fat diet.  In humans, a combined cross-sectional and longitudinal case control 

study by Moreno-Navarette et al.,(188) reported increased serum hepcidin, ferritin and 

hepatic iron content (HIC) among patients with obesity along with subsequent 

improvement in these values after dietary weight loss interventions. Chang et al. (2014 

REF) observed associations of fat to carbohydrate ratios with BMI among women with 

iron deficiency anemia (IDA) but not among healthy women.  Their findings showed a 

positive relationship between BMI and fat consumption (p = 0.035) and an inverse 

relationship between BMI and CHO intake (p = 0.045) only in women with IDA. These 
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studies suggest that obesity alone is not responsible for the alterations of iron metabolism 

in obesity (15,209,210).  Therefore, in the present study we investigated how dietary 

inflammation, assessed through the DII scoring methodology, influences iron status 

independent of obesity related inflammation. 

During inflammation, the iron transport protein transferrin is a negative acute 

phase protein, and its production, therefore is downregulated, reducing its concentration 

(211–214).  In a female rat model, Zeid et al. (215) observed reduced TIBC in obese 

Wistar rats fed a high fat diet compared to control non obese mice fed standard chow.  

The researches also reported lower serum iron and transferrin saturation in high fat diet.  

This same study reported increased hepcidin, IL-6, ferritin and plasma leptin in the obese 

rats compared to control.  In the regression analyses of our study, higher DII scores 

predicted lower TIBC levels which suggests lower transferrin levels among subjects 

whose diets were estimated to have had higher inflammatory effects.  TIBC is reduced in 

both iron replete and inflammatory states.  Since our analyses controlled for meat, 

poultry, fish intake and as well as for other iron status biomarkers, it is more likely that 

the inflammatory effects of the diet predicted reduced TIBC rather than increased iron 

intake. 

Limitations 

While data from the present study were from mostly female subjects (72%) which 

could affect the value of the iron status biomarkers, we did not find a significant 

difference in sex distribution among the different BMI categories.  Another consideration 
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of this study’s results is that the current version of the DII which is weighted toward anti-

inflammatory components does not score more recently studied food components such as 

added sugars, non-nutritive sweeteners and advanced glycation end products which were 

common among the dietary records of the study’s sample.   Future studies are needed to 

determine the effects of dietary inflammation on transferrin production by the liver, as 

well as longitudinal investigations into how added sugars, non-nutritive sweeteners and 

the cooking effects of manufactured edible oils may influence inflammatory and 

micronutrient status. 

Conclusion 

In conclusion, we are the first to use the DII to examine the inflammatory effects 

of diet on circulating iron biomarkers and to demonstrate a relationship between 

inflammatory diets and decreased TIBC.  While it may be easy to presume that the effects 

of weight gain, including increased adiposity, alone account for poor health outcomes, 

lifestyle factors such as diet and activity patterns may play a key differentiating role.  In 

this study we have demonstrated that diet, independent of body weight status, predicts 

inflammation among young adults.  This implies that less inflammatory diets can be 

prescribed for reducing inflammation in all patients independent of weight status and for 

improving outcomes in chronic diseases. 
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