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Dynamic pair-breaking current, critical superfluid velocity, and nonlinear
electromagnetic response of nonequilibrium superconductors

Ahmad Sheikhzada * and Alex Gurevich†

Department of Physics and Center for Accelerator Science, Old Dominion University, Norfolk, Virginia 23529, USA

(Received 20 April 2020; revised 19 June 2020; accepted 20 August 2020; published 15 September 2020)

We report numerical calculations of a dynamic pair-breaking current density Jd and a critical superfluid
velocity vd in a nonequilibrium superconductor carrying a uniform, large-amplitude AC current density J (t ) =
Ja sin �t with � well below the gap frequency � � �0/h̄. The dependencies Jd (�, T ) and vd (�, T ) near the
critical temperature Tc were calculated from either the full time-dependent nonequilibrium equations for a dirty
s-wave superconductor or the time-dependent Ginzburg-Landau (TDGL) equations for a gapped superconductor,
taking into account the GL relaxation time of the order parameter τGL and the inelastic electron-phonon relaxation
time of quasiparticles τE . We show that both approaches give similar frequency dependencies of Jd (�) and
vd (�) which gradually increase from their static pair-breaking GL values Jc and vc at �τE � 1 to

√
2Jc and√

2vc at �τE � 1. Here Jd , vd and a dynamic superheating field at which the Meissner state becomes unstable
were calculated in two different regimes of a fixed AC current and a fixed AC superfluid velocity induced by
the applied AC magnetic field H = Ha sin �t in a thin superconducting filament or a type-II superconductor
with a large GL parameter. We also calculated a nonlinear electromagnetic response of a nonequilibrium
superconducting state, particularly a dynamic kinetic inductance and a dissipative quasiparticle conductivity,
taking into account the oscillatory dynamics of superconducting condensate and the kinetics of quasiparticles
driven by a strong AC current. It is shown that an AC current density produces multiple harmonics of the electric
field, the amplitudes of the higher-order harmonics diminishing as τE increases.

DOI: 10.1103/PhysRevB.102.104507

I. INTRODUCTION

Mechanisms of the maximum superfluid velocity vc and
the DC depairing current density Jc, which a superconductor
can carry in an equilibrium state, have been well established
[1]. The first calculations [2] of vc(T ) and Jc(T ) were based
on the Ginzburg-Landau (GL) equations near the critical tem-
perature T ≈ Tc. Furthermore, vc(T ) and Jc(T ) have been
calculated in the whole temperature range 0 < T < Tc in the
BCS model for clean [3–6] and dirty [5,6] superconductors
with nonmagnetic and magnetic impurities [7] and taking into
account strong electron-phonon coupling in the Eliashberg
theory [8]. The DC depairing current densities have been mea-
sured for different superconducting materials [9–11]. These
issues are closely related to a maximum superheating mag-
netic field Hs which can be sustained by a superconductor
in the vortex-free Meissner state. Here Hs(T ) near Tc has
been calculated from the GL theory [12,13] and for type-II
superconductors with a large GL parameter κ � 1 at T = 0
[14] and in the entire temperature range 0 < T < Tc both in
the clean limit [15] and for arbitrary concentrations of non-
magnetic and magnetic impurities [16]. Nonlinear screening
and breakdown of superconductivity in proximity-coupled bi-
layers under a strong DC magnetic field have been calculated
in Refs. [17–20].

*asheikhz@odu.edu
†gurevich@odu.edu

Unlike the static vc and Jc in equilibrium, the physics of
the dynamic critical superfluid velocity vd and the depairing
current density Jd at which superconductivity is destroyed
in a nonequilibrium state is not well understood. The dy-
namic vd and Jd are controlled by both the nonlinear current
pair-breaking effects and a complex kinetics of quasiparticles
driven out of equilibrium by a time-dependent electromag-
netic field [21]. For an oscillating superflow J (t ) = Ja sin �t ,
the dynamic vd and Jd depend on the frequency � and the re-
laxation time constants for the superfluid density τGL(T ) and
quasiparticles τE (T ). At � � �/h̄ the AC field does not gen-
erate new quasiparticles which transfer the absorbed power to
phonons. At kBT � � this power transfer is mostly limited
by an inelastic scattering time of quasiparticles τs(T ) and a
recombination time of Cooper pairs τr (T ) due to electron-
phonon collisions [22]:

τr � τ1

(
Tc

T

)1/2

e�/T , τs � τ2

(
Tc

T

)7/2

, (1)

where τ1 and τ2 are materials constants. Depending on the am-
plitude Ja, the distribution function of quasiparticles f (E , t )
can either deviate strongly from the Fermi-Dirac distribution
f0(E ) at (τr, τs)� � 1 or relax to f0(E ) at (τr, τs)� � 1.
Since both τr (T ) and τs(T ) increase as T decreases, nonequi-
librium effects become more pronounced at T � Tc. By
contrast, τGL(T ) increases as T increases and diverges at
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T = Tc [21],

τGL(T ) � π h̄

8kB(Tc − T )
, T ≈ Tc. (2)

At T � Tc the condition �τGL � 1 is satisfied up to 0.1–1
THz for most superconductors but breaks down at temper-
atures very close to Tc. For instance, at 1 GHz we have
�τGL(T ) � 1 at Tc − T � π h̄�/8kB ∼ 10−2 K.

The dynamics of the condensate at �τGL � 1 remains
nearly quasistatic if the effect of quasiparticles is weak. At
T � Tc the relaxation times τs(T ) and τr (T ) increase strongly
as the temperature decreases so that (τr, τs)� � 1 while
�τGL � 1, and the AC field can produce highly nonequilib-
rium quasiparticles. Yet the density of quasiparticles in s-wave
superconductors at T � Tc and � � �/h̄ is exponentially
small as compared to the superfluid density, so the nonequilib-
rium quasiparticles have only a weak effect on the dynamics
of the condensate which reacts almost instantaneously to J (t ).
In this case, the dynamic vd and Jd at � � �/h̄ and T � Tc

would be close to the static vc and Jc in thermodynamic
equilibrium.

The situation changes at T ≈ Tc where the superfluid
density becomes smaller than the density of nonequilibrium
quasiparticles which significantly affect the dynamic vd and
Jd at which superconductivity breaks down. In this work
we used both the time-dependent Ginzburg-Landau (TDGL)
equations and a full set of nonequilibrium equations for dirty
superconductors in a low-frequency (� � �/h̄) field [21,23–
26] to calculate the dynamic vd (T,�) and Jd (T,�) at T �
Tc, where nonequilibrium effects are most pronounced. We
consider the case of h̄� � kBT in which the microwave stim-
ulation of superconductivity [27] does not happen, but the AC
currents strongly affect the density of states of quasiparticles
[6,28,29] and drive them out of equilibrium.

The physics of the dynamic critical velocity is relevant
to many applications, for instance, microwave thin film su-
perconducting resonators used in kinetic inductance photon
detectors and astrophysical spectroscopy [30,31]. It is also
essential for superconducting resonant cavities for particle
accelerators, where the breakdown fields close to the thermo-
dynamic superheating field Hs have been achieved at very high
quality factors ∼1010 at 2 K in the Meissner state [32,33].
These cavities operate at 0.1–3 GHz much lower than the gap
frequency �/h � 0.8 THz for Nb, and the dynamic super-
heating field Hd sets a theoretical limit of the rf breakdown.
The dynamic superheating field was measured by Yogi et al.
[34] who showed that for Sn, Pb, and In at 90–300 MHz, the
breakdown field near Tc is close to Hs(T ). Pulse measurements
[35] on Nb and Nb3Sn at GHz frequencies at 2 K < T < Tc

have shown that the field onset of magnetic flux penetration
is close to Hs(T ) for Nb near Tc but is smaller than Hs(T ) for
Nb3Sn at lower T .

In this work we calculate the dynamic Jd (�, T ) and a crit-
ical phase gradient Qd (�, T ) of the order parameter related
to vd by Qd = mvd/h̄, where m is the electron mass [1] for a
uniform AC superflow at T � Tc. We focus here on the max-
imum amplitude of the AC current density J (t ) = Ja sin �t
which can be sustained in nonequilibrium Meissner states and
do not consider nonuniform dissipative states at Ja > Jd due to
proliferation of phase slip centers in narrow filaments [36–38]

FIG. 1. Geometries for which Qd (�, T ) and Jd (�, T ) are calcu-
lated: (a) A thin film cylinder in a parallel AC magnetic field, (b) a
thin filament ring in a perpendicular magnetic field, and (c) a thin
wire connected to an AC power supply.

or penetration of vortices in bulk superconductors above the
dynamic superheating field. TDGL simulations of thin fila-
ments have shown that Jd can approach

√
2Jc at �τE � 1

[38], while numerical simulations of kinetic equations [25,26]
have shown [39] that superconductivity can persist during
short current pulses with amplitudes above the static Jc. Yet
the calculations of Jd and Qd , taking into account both the
nonlinear current pair-breaking and nonequilibrium kinetics
of quasiparticles, have not yet been done. We also calculate a
nonlinear electromagnetic response in a nonequilibrium state
at J < Jd and its manifestations in the nonlinear Meissner ef-
fect, kinetic inductance and intermodulation which have been
so far investigated in equilibrium superconductors [40–50].

The paper is organized as follows. In Sec. II we specify
the main equations and discuss the theoretical assumptions
under which the equations have been derived. These equa-
tions were solved for a uniform AC superflow in Sec. III,
where the dynamic Qd (T,�) and Jd (T,�) were calculated.
In Sec. IV we address a nonlinear response and calculate the
current-dependent kinetic inductance both in equilibrium and
nonequilibrium states. The conclusions and broader implica-
tions of our results are presented in Sec. V.

II. MAIN EQUATIONS

We consider a dirty s-wave superconductor exposed to
time-dependent electromagnetic potentials A(r, t ) and ϕ(r, t ).
The dynamic Qd (�, T ) and Jd (�, T ) at T � Tc are calcu-
lated using the equations for the order parameter �(r, t ) =
� exp(−iθ ) and the current density J(r, t ) along with a ki-
netic equation for the distribution function of quasiparticles
[23–26]. The cases of a fixed AC superfluid velocity v(t ) and
a fixed AC current density J (t ) are investigated. These cases
can be realized in the geometries shown in Fig. 1, where a thin
film cylinder (a) and a ring filament (b) exposed to the AC
magnetic field H (t ) correspond to the regime of fixed v(t ),
whereas a thin wire connected to an AC power supply shown
in Fig. 1(c) or a semi-infinite superconductor with κ � 1
corresponds to the regime of fixed J (t ). It is assumed that
the thickness d of films and filaments is much smaller than
the magnetic penetration depth λL, so that the induced current
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density is uniform over the cross section. We focus here on
the stability of a uniform Meissner state and do not consider
thermally activated or quantum proliferation of vortices or
phase-slip centers [51–54] and the influence of AC current
[55,56] on their dynamics at J < Jd (�, T ), or the effects of
inhomogeneities [57] and current leads on the nucleation of
vortices or phase slips. The condition that vortices do not nu-
cleate at J ∼ Jd requires d � ξ (T ), where ξ is the coherence
length. It is also assumed that the magnetic flux threading
the samples shown in Fig. 1(a) is much greater than the flux
quantum φ0 and the Little-Parks oscillations [1] are washed
out. Here the self-field is smaller than the applied field by the
factor d/λL � 1.

The dynamic Qd (�, T ) and Jd (�, T ) for both fixed elec-
tric field and fixed current are calculated by first solving the
TDGL equations. The TDGL approach is useful to address
qualitative mechanisms of destruction of superconductivity
by an AC current, even though the TDGL theory, strictly
speaking, is not applicable for the calculations of Jd (�, T ).
We then calculate Qd (�, T ) and Jd (�, T ) by solving the full
set of dynamic equations of Ref. [24]. Comparing the TDGL
results with a more adequate theory of Refs. [23–26] shows
the effects of nonequilibrium kinetics of quasiparticles and
the extent to which the TDGL approach is applicable. We then
proceed with the calculations of the kinetic inductance and the
nonlinear electromagnetic response in nonequilibrium states.

A. TDGL equations

Slow temporal and spatial variations of �(r, t ) and J(r, t )
in a dirty s-wave superconductor at T ≈ Tc can be described
by the TDGL equations [25,26]:

π

8Tcε

(
1 + 4τ 2

E�2
)−1/2

(
∂

∂t
+ 2ieϕ + 2τ 2

E

∂�2

∂t

)
�

=
(

1 − �2

�2
0

)
� + ξ 2(∇ − 2ieA)2�, (3)

J = πσ0

4eTc
�2Q − σ0

(
∇ϕ + ∂A

∂t

)
. (4)

Here ξ = (π h̄D/8kBTcε)1/2 is the coherence length, D =
vF l/3 is diffusion constant, vF is the Fermi velocity, l is the
mean free path, ε = 1 − T/Tc, τE is an energy relaxation time
due to inelastic scattering of quasiparticles on phonons [21],
�2

0 = 8π2k2
BT 2

c ε/7ζ (3), σ0 = 2e2DN (0) is the normal state
conductivity, N (0) is the density of states on the Fermi sur-
face, −e is the electron charge, and Q = −(∇θ + 2πA/φ0)
is a gauge-invariant phase gradient. Equations (3) and (4) (in
which the units with h̄ = kB = 1 are used) were derived from
the kinetic BCS theory under the condition of local equilib-
rium, assuming that Q(r, t ) and �(r, t ) vary slowly over ξ0,
the diffusion length LE = (DτE )1/2 and τE [21,25,26], where

τE = 8h̄

7πζ (3)λkBT

(
cs

vF

)2(TF

T

)2

. (5)

Here cs is the speed of longitudinal sound, λ is a dimen-
sionless electron-phonon coupling constant, and TF = εF /kB

is the Fermi temperature. For Pb we have [58,59] cs �
1.32 km/s, vF � 1830 km/s, TF = 1.1 × 105 K, Tc = 7.3 K,
and λ = 1.55, which yields τ Pb

E (Tc) � 2.52 × 10−11 s. For Al

with cs � 5.1 km/s, vF � 2030 km/s, TF = 1.36 × 105 K,
Tc = 1.2 K, and λ = 0.43, Eq. (5) gives τAl

E (Tc) � 3.64 ×
10−7 s.

For a uniform superflow, Eqs. (3) and (4) in the gauge ϕ =
0 can be written in the following dimensionless form:

(1 + 4τ 2ψ2)1/2 ∂ψ

∂t
= (1 − q2)ψ − ψ3, (6)

j = uψ2q + ∂q

∂t
, (7)

where ψ = �/�0, q = Qξ , τ = �0τE/h̄, j = J/J0, t is in
units of τGL, J0 = σ0/2eξτGL, and u = π4/14ζ (3) ≈ 5.79.

B. Nonequilibrium kinetic equations

For a uniform current flow, the full set of nonequilibrium
kinetic equations [24–26] given in Appendix A can be reduced
to a single kinetic equation for the odd in energy E part of
the quasiparticle distribution function f (E , t ), and dynamic
equations for ψ (t ) and j(t ):

R2
∂ f

∂E

∂ψ

∂t
+ N1

(
∂

∂t
+ s

2τ

)
δ f = N2R2

s

∂ f

∂E

∂q2

∂t
, (8)

∂ψ

∂t
− 1

ε

∫ ∞

0
R2δ f dE = (1 − q2)ψ − ψ3, (9)

j = uψ2q + ∂q

∂t

∫ ∞

0

(
N2

1 + N2
2

) ∂ f

∂E
dE

+ 2qs
∫ ∞

0
N2R2δ f dE , s = (u/ε)1/2. (10)

Here δ f (E , t ) = f (E , t ) − f0(E ), f0 = tanh(E/2T ), the
quasiparticle energy E and temperature T are in units of �0,
and the scaling factor (u/ε)1/2 = 2τGL�0/h̄ results from the
same normalization of the parameters as in Eqs. (6) and (7).
If �τGL � 1 the spectral functions N1, N2, R1, and R2 are de-
fined by the normal α(E ) = N1(E ) + iR1(E ) and anomalous
β(E ) = N2(E ) + iR2(E ) Green’s functions which satisfy the
quasistatic Usadel equation for 1D current flow [25,26]:

(
1

2τ
− iE

)
β + q2

2
αβ = ψα, (11)

where α2 + β2 = 1. Equation (11) reduces to a quartic equa-
tion for α, the solutions of which are given in Appendix A.
The term 1/2τ in Eq. (11) defines a finite quasiparticle life-
time due to scattering on phonons, resulting in subgap states
at |E | < ψ . We do not consider here other contributions to the
subgap states [60–62].

We solved the integro-differential Eqs. (8)–(10) numer-
ically using the method of lines [63]. By discretizing the
energy, Eqs. (8)–(10) were reduced to coupled ordinary
differential equations in time which were solved by the
Adams-Bashforth-Moulton method [64] with the error tol-
erances below 10−6. Results of the calculations of the
dimensionless jd = Jd/J0 and qd = Qdξ as functions of the
dimensionless frequency ω = �τGL and the quasiparticle re-
laxation time τ = τE�0/h̄ are given below.
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0 500 1000 1500 2000 2500 3000
0

0.2

0.4

0.6

0.8

1

FIG. 2. Dynamics of ψ (t ) calculated at q = qa sin ωt , τ = 100,
and ω = 0.1. Here ψ (t ) eventually vanishes at qa = √

2.

III. DYNAMIC PAIR-BREAKING CURRENT

A. TDGL results

The stationary Eqs. (6) and (7) have the solution ψ = 0 at
q > 1 and ψ =

√
1 − q2 at q < 1. Stability of this solution

with respect to small perturbations δψ (t ) and δq(t ) depends
on the way by which the superflow is generated. In the regime
of fixed q the stationary solution ψ (q) is stable in the whole
region of q < qc = 1, but in the regime of fixed j the solu-
tion ψ (q) is stable if q is smaller than qc = 1/

√
3 at which

j = uq(1 − q2) reaches maximum [1,2]. This gives the GL
depairing current density jc = 2u/3

√
3 above which ψ ( j)

drops from ψ ( jc) = √
2/3 to zero.

1. Fixed Q(t)

Figure 2 shows ψ (t ) calculated from Eq. (6) with q(t ) =
qa sin ωt at ω = �τGL = 0.1, τ = 100, and the initial condi-
tion ψ (0) = 1. Here ψ (t ) relaxes after a transient period t �√

1 + 4τ 2 to an oscillating steady state with a nonzero mean
〈ψ〉 if qa < qd (ω, T ) or to the normal state with ψ (t ) = 0 at
t � 1 if qa > qd (ω, T ). The mean 〈ψ (qa)〉 decreases with qa

and vanishes at qa = qd .
The calculated dependencies of qd on ω and τ are shown

in Fig. 3. Here qd (τ ) at ω = 0.01 increases from qd (0) ≈
1.097 at τ = 0 to qd (τ ) → √

2 at τ � 1. At higher frequency
ω = 0.1, the dynamic qd (τ ) is nearly equal to

√
2 at all τ .

However, if τ is fixed but the frequency changes, qd (ω) varies
from qc = 1 at ω = 0 to qd (ω) → √

2 at ω
√

1 + 4τ 2 � 1.
The universal value of qd = √

2 is achieved at ωτ � 1, that
is, for � exceeding a crossover frequency �c � h̄/τGL�0τE

given by

�c � kB

�0τE
(Tc − T ) ∼ kBT 3

h̄T 2
D

√
1 − T

Tc
, (12)

where TD is the Debye temperature. Here �c(T ) vanishes at
Tc, reaches maximum �m = �c(6Tc/7) at T/Tc ≈ 0.86 and
decreases with T at T < 0.8Tc, as shown in Fig. 4.

0 200 400 600 800 1000
1

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5
1

1.2

1.4

FIG. 3. The calculated dependencies of qd on τ (top) and ω

(bottom). Here qd → √
2 at ωτ � 1.

The increase of Qd (�, T ) at � � �c(T ) by the factor
√

2
can be understood as follows. As follows from Fig. 2, ψ (t ) os-
cillates rapidly around a mean 〈ψ〉. Here 〈ψ〉 �

√
1 − 〈q2〉 is

determined by Eq. (6) with the time-averaged 〈q2(t )〉 = q2
a/2

so 〈ψ〉 vanishes at qa = √
2. A small-amplitude AC correction

δψ (t ) was calculated in Appendix B. The superconducting
state remains stable in the whole region 0 < qa < qd .

The temperature dependence of Qd (�, T ) shown in Fig. 5
is affected by the ratio �/�c(T ). If � > �m = �c(6Tc/7)
(see Fig. 4), the dynamic Qd (T ) → √

2/ξ (T ) has the same
temperature dependence as the static Qc = 1/ξ (T ). How-
ever, if � � �m, we obtain that Qd (T ) → ξ−1

0

√
2(1 − T/Tc)

at T close to Tc and crosses over to the static Qc(T ) at
lower T . There is also a range of frequencies � < �m but
� � �c(Tc/2) (see Fig. 4) in which Qd (T ) evolves from√

2Qc(T ) at T → Tc to Qd � Qc(T ) at T � 0.8Tc and back
to � √

2Qc(T ).

0.5 0.6 0.7 0.8 0.9 1
T/T

c

0

0.5

1

1.5

c/
m

 > 
m

 < 
m

m

FIG. 4. Temperature dependence of �c(T ). The dashed lines
show the levels of fixed � at � > �m and � < �m, where �m is
the maximum value of �c(T ) corresponding to the point m.
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0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

FIG. 5. Qd (T ) calculated for different values of ω0 =
π h̄�/8kBTc and τ0 = τE (Tc )�0(0), where �2

0(0) = 8π 2T 2
c /7ζ (3).

Here the dynamic Qd = √
2(1 − T/Tc )/ξ0 at � � �c(T ) has the

same temperature dependence as the static Qc = √
1 − T/Tc/ξ0. If

� ∼ �c(T ) the behavior of Qd (T ) is affected by the temperature
dependence of τE (T ), as shown for the case of ω0 = 0.001 and
τ0 = 100.

2. Fixed J(t)

We calculated ψ (t ) at a fixed j(t ) = ja sin ωt by solving
the coupled Eqs. (6) and (7). The GL DC depairing current
density jc = 2u/3

√
3 ≈ 2.228 is reached at q = 1/

√
3 and

ψ2 = 2/3, while at q > 1/
√

3 the superconducting state be-
comes unstable and ψ (q) vanishes abruptly [1]. This feature
is characteristic of the AC current as well, which makes it
different from the regime of fixed q(t ). For instance, Fig. 6
shows ψ (t ) calculated at τ = 10 and ω = 0.1. At ja = 1.38 jc

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

0 10000 20000
0

0.5

1

FIG. 6. Dynamics of ψ (t ) calculated at j = ja sin ωt , ω = 0.1,
τ = 10, and different amplitudes ja. At ja = jc, the superconducting
state still exists, but once ja reaches the dynamic pair-breaking cur-
rent jd = 1.38 jc, ψ (t ) vanishes. The inset shows ψ (t ) calculated at
τ = 100 at ja = √

2 jc and ω = 0.1.

0 200 400 600 800 1000
1

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5
1

1.2

1.4

FIG. 7. Dynamic pair-breaking current jd as a function of τ (top)
and ω (bottom). Here jd (ω, τ ) → √

2 jc at ωτ � 1.

the order parameter abruptly vanishes after a transient period.
For large τ , this transition to the normal state occurs at ja =√

2 jc, as shown in the inset for τ = 100 and ω = 0.1. Here
the dynamic pair-breaking current jd (ω, τ ) shown in Fig. 7
exhibits similar dependencies on ω and τ as qd (ω, τ ) at a fixed
q(t ). If ωτ � 1 both the dynamic jd (ω, τ ) and qd (ω, τ ) are
larger by the factor

√
2 than their respective GL values.

The temperature dependence of Jd (�, T ) is affected by the
temperature dependencies of τ (T ) and �c(T ). At T → Tc and
� � �c(T ) the dynamic pair-breaking current Jd is

√
2 times

larger than the static Jc(T ) and is independent of τ . As T
decreases Jd (�, T ) can evolve to Jc(T ) at temperatures for
which � � �c(T ). This behavior of Jd (�, T ) is illustrated in
Fig. 8.
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0
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FIG. 8. Jd (T ) calculated for different values of ω0 = π h̄�/8kBTc

and τ0 = τE (Tc )�0(0), where �2
0(0) = 8π 2T 2

c /7ζ (3). Here the dy-
namic Jd = √

2Jc(0)(1 − T/Tc )3/2 at � � �c(T ) has the same
temperature dependence as the static Jc = Jc(0)(1 − T/Tc )3/2. At
� ∼ �c(T ) the behavior of Jd (T ) is affected by the temperature
dependence of τE (T ), as shown for the case of ω0 = 0.001 and
τ0 = 100.
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FIG. 9. Comparison of ψ (t ) calculated from the TDGL equa-
tion (6) and the full nonequilibrium equations (8)–(11) for q(t ) =
qh tanh t at qh = 0.75 and qh = 1. Here we took τ (T ) = 100 and
T = 0.9Tc.

B. Qd (T,�) and Jd (T,�) calculated from the full set of
nonequilibrium equations

The TDGL calculations of qd (T, ω) and jd (T, ω) give a
qualitative picture of dynamic pair breaking, although Eqs. (6)
and (7) are not really applicable at J � Jd . Indeed, the dy-
namic terms in Eqs. (6) and (7) were derived from the BCS
kinetic theory, assuming weak pair breaking and local equi-
librium in which Qξ � 1 and �(r, t ) varies slowly over the
diffusion length LE = (DτE )1/2 and the energy relaxation time
τE [25,26]. Those conditions break down at Q � Qc ∼ ξ−1

and � � τ−1
GL , so in this section we calculate ψ (t ), qd (T, ω),

and jd (T, ω) from Eqs. (8)–(10) which take into account
both the dynamic current pair breaking and nonequilibrium
kinetics of quasiparticles.

Consider first solutions of Eqs. (8)–(11) at τ (T ) = 100 and
T = 0.9Tc for a superflow q(t ) = qh tanh t which was gradu-
ally turned on at t = 0. As shown in Fig. 9, the qualitative
behavior of ψ (t ) calculated from Eqs. (8) and (9) turns out to
be similar to that of TDGL, except that the nonequilibrium in-
tegral term in Eq. (9) accelerates relaxation of ψ (t ) at qh � 1.
In both cases superconductivity is destroyed at qh = 1.

Shown in Fig. 10 are snapshots of a nonequilibrium part
of the distribution function δ f (E , t ) induced by the stepwise
q(t ). Here the magnitude of δ f (E , t ) calculated at τ = 100
increases as qh increases but remains relatively small up to
qh = 1. As the quasiparticle relaxation time τ increases, the
magnitude of δ f (E , t ) also increases. The peak in δ f (E , t )
shifts to lower energies as qh increases, consistent with the
decrease of the quasiparticle gap due to the DC current pair
breaking.

C. Fixed Q(t )

Solutions of Eqs. (8) and (9) with q(t ) = qa sin ωt are
shown in Fig. 11 along with the TDGL results obtained for
the same input parameters. At qa = 1 the order parameters
ψ (t ) oscillate around nearly the same mean values 〈ψ〉 but
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FIG. 10. The nonequilibrium correction δ f (E ) at the times when
the magnitude δ f (E , t ) reaches maximum after the stepwise increase
of q(t ). Taking T = 0.9Tc, here the top panel shows δ f (E , t ) calcu-
lated for different qh at τ = 100 and the bottom panel shows δ f (E , t )
calculated for different values of τ at qh = 1.

the amplitude of oscillations δψ (t ) calculated from Eqs. (8)
and (9) is noticeably larger than the TDGL δψ (t ). Relaxation
of ψ (t ) from the initial value ψ (0) = 1 to the steady-state
oscillations described by Eqs. (8) and (9) is also faster than
the TDGL transient time, consistent with the above results for
q(t ) = qh tanh t shown in Fig. 9. These features become more
pronounced at the dynamic critical momentum qd � √

2 at
ωτ � 1, where the amplitudes of oscillations δψ (t ) grow sig-
nificantly larger so that ψ (t ) touches zero but then recovers.
Yet, despite a rather different dynamics of ψ (t ) described by
Eqs. (8) and (9) and the TDGL equations, superconductivity
gets destroyed at the same critical value qd → √

2 at τ = 100
and ω = 0.1 in both cases. The calculated dependencies of

0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

FIG. 11. Comparison of ψ (t ) calculated from the TDGL equa-
tions and Eqs. (8) and (9) for q(t ) = qa sin ωt , τ = 100, ω = 0.1,
and T = 0.9Tc.
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FIG. 12. Dynamic qd (ω, τ ) as functions of τ (top) and ω (bot-
tom) calculated from Eqs. (8) and (9) at T = 0.9Tc.

qd on τ and ω shown in Fig. 12 appear similar to the TDGL
results shown by Fig. 3.

Our solutions of Eqs. (8) and (9) have revealed a dynamic
state in which ψ (t ) periodically vanishes but then recovers to
ψ (t ) ∼ 1. This state appears as the frequency decreases, as
shown in Fig. 13. For instance, in the case of ω = 0.1 and
τ = 10 shown in the top panel Fig. 13, ψ (t ) drops down to
∼2 × 10−3 at the minimum but remains finite. As ψ (t ) goes
through the minimum the amplitude of δ f (E , t ) decreases and
changes sign. However, at ω = 0.01 in the bottom panel, ψ (t )
at the minimum drops below the numerical tolerance level of
∼10−7 during a significant portion of the AC period. This case
corresponds to a true transition to the normal state with ψ = 0
in which all terms in Eq. (9) vanish and Eq. (8) describes
an exponential relaxation of δ f (E , t ) ∝ exp(−ts/2τ ) until the
superconductivity recovers as q(t ) decreases. This behavior is
physically transparent: at very low frequencies the quasistatic

4900 4920 4940 4960 4980 5000
0

0.2

0.4

4000 4200 4400 4600 4800 5000
0

0.2

0.4

0.6

FIG. 13. Steady state oscillations of ψ (t ) calculated from
Eqs. (8) and (9) at T = 0.9Tc with q = qa sin ωt for different τ at
ω = 0.1 and qa = 1.35 (top) and different ω at τ = 100 and qa =
1.30 (bottom).

0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

FIG. 14. Qd (T ) calculated from Eqs. (8) and (9) for dif-
ferent values of ω0 = π h̄�/8kBTc and τ0 = τE (Tc )�0(0), where
�2

0(0) = 8π 2T 2
c /7ζ (3). The dynamic Qd = √

2(1 − T/Tc )/ξ0 at
� � �c(T ) has the same temperature dependence as the static Qc =√

1 − T/Tc/ξ0. If � ∼ �c(T ) the behavior of Qd (T ) is affected by
the temperature dependence of τE (T ), as shown for the case of
ω0 = 0.001 and τ0 = 100.

ψ (t ) is determined by the instantaneous q(t ) = qa sin ωt , re-
sulting in periodic transitions to the normal state and the
subsequent recovery of superconductivity once |q(t )| exceeds
1. At higher frequencies ω � 0.1, the superconducting state
does not have enough time to disappear during the parts of the
AC period in which |q(t )| > 1, so that ψ (t ) at the minimum
remains finite all the way to q → qd .

The calculated Qd (T ) curves shown in Fig. 14 are
similar to the TDGL results but generally fall below
them: Qd (�, T ) → √

2Qc = √
2(1 − T/Tc) at � � �c(T )

but Qd (�, T ) → Qc(T ) at � � �c(T/2). The temperature
dependence of τ (T ) ∝ T −3 results in a crossover of Qd (T,�)
from Qc(T ) to

√
2Qc(T ) as T decreases.

D. Fixed J(t )

Solutions of Eqs. (8)–(10) for j = ja sin ωt , ω = 0.1, at
τ = 10 and τ = 100 shown in Fig. 15 are qualitatively sim-
ilar to that of ψ (t ) for a fixed q(t ). Here ψ (t ) vanishes
abruptly at ja = jd (ω, T ), the amplitude of oscillations of
ψ (t ) essentially depends on ω and τ , as shown in Fig. 16.
The calculated jd = 1.35 jc at τ (T ) = 10 turned out to be
slightly smaller than the TDGL value, but at τ (T ) = 100 both
TDGL theory and Eqs. (8)–(10) give the same jd = √

2 jc. The
dependencies of jd (ω, τ ) on τ and ω shown in Fig. 17 appear
similar to those for qd (ω, τ ) in Fig. 12 and clearly demonstrate
that jd → √

2 jc at ωτ � 1. The temperature dependence of
Jd (�, T ) shown in Fig. 18 is similar to the TDGL results
only at T → Tc: Jd (�, T ) → √

2Jc(0)(1 − T/Tc)3/2 at � �
�c(T ) and Jd (�, T ) → Jc(T ) at � < �c(T ). As T decreases,
the Jd (�, T ) curves tend toward Jc(T ) even at � > �c(T ).
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FIG. 15. Dynamics of ψ (t ) calculated at j = ja sin ωt , ω = 0.1,
τ = 10, ja = jc and the critical current ja = 1.35 jc at which ψ (t )
vanishes abruptly. The inset shows ψ (t ) calculated at τ = 100, ω =
0.1 and ja = √

2 jc. All calculations were performed at T = 0.9Tc.

IV. NONLINEAR ELECTROMAGNETIC RESPONSE

In this section we address an electromagnetic response
of a nonequilibrium superconductor. For a nearly uniform
current considered here, the linear response is quantified by
a frequency-dependent complex conductivity,

J = (σ1 − iσ2)E, (13)

where σ1(�) describes a dissipative quasiparticle response,
σ2(�) = 1/μ0�λ2

L accounts for the Meissner effect, and λL

is the London penetration depth. Here σ2 also determines
the kinetic inductance Lk = (d�σ2)−1 = μ0λ

2
L/d per unit

length of a film of thickness d [46–50]. Using λ2
L(T ) =

2h̄kBTc/πμ0σ0�
2
0 near Tc [21] yields

Lk = 2h̄kBTc

πσ0d�2
. (14)

2900 2920 2940 2960 2980 3000

0.9

0.95

1.9 1.92 1.94 1.96 1.98 2

104

0.9

0.95

FIG. 16. Steady state oscillations of ψ (t ) calculated at T =
0.9Tc, j = ja sin ωt , ja = 1.20 jc, and different τ at ω = 0.1 (top)
and different ω at τ = 100 (bottom).
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FIG. 17. Calculated dependencies of jd (ω, τ ) on τ (top) and ω

(bottom) at T = 0.9Tc. Here jd levels off at
√

2 jc at ωτ � 1.

At high current densities the conductivity σ = σ1 − iσ2

depends on Q(t ), causing the nonlinear Meissner effect, in-
termodulation and generation of higher order harmonics of
the electric field E (t ) in response to the AC current J (t ) =
Ja sin �t [40–45]. Defining the kinetic inductance by Eq. (14),
where �(t ) is given by the solutions of Eqs. (6) or Eqs. (8) and
(9), we can expect strong oscillations of Lk (t ) at large Ja due
to the nonequilibrium current pair breaking. Shown in Fig. 19
is the dynamics of Lk (t ) calculated at a fixed q(t ) = qa sin ωt
with qa = 0.9

√
2, ω = 0.01, and τ = 100. Here the ampli-

tudes of Lk (t ) increase with qa and diverge at qa → qd , the
peaks in Lk (t ) getting higher as ωτ decreases. Figure 19 also
shows that the amplitudes of Lk (t ) calculated from the full
Eqs. (8)–(11) can be orders of magnitude higher as compared

0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2
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0.4
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FIG. 18. Jd (T ) calculated from Eqs. (8)–(11) for τ0 = 100 at
different ω0 = π h̄�/8kBTc where τ0 = τE (Tc )�0(0), and �2

0(0) =
8π2T 2

c /7ζ (3). As � � �c(T ), we have Jd (T ) = Jc(0)
√

2(1 −
T/Tc )3/2 at T → Tc, however as T decreases a crossover to Jc(T )
occurs even at � � �c(T ).
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FIG. 19. Dynamics of Lk (t ) in units of Lk0 = πσ0d�2
0/2h̄kBTc

calculated from: (a) Eq. (6) and (b) Eqs. (8)–(11) at T = 0.9Tc and
q(t ) = qa sin ωt with qa = 0.9

√
2, ω = 0.01, and τ = 100. Notice

large-amplitude oscillations of Lk (t ) at small ωτ and large qa, the
peaks in Lk (t ) calculated from Eqs. (8)–(11) can be orders of magni-
tude larger than those obtained from Eq. (6).

to the TDGL results. This reflects larger amplitudes of oscil-
lations of ψ (t ) calculated from Eqs. (8)–(11) and discussed
above (see Fig. 11).

Shown in Fig. 20 is Lk (t ) calculated from Eqs. (6) and
(7) and Eqs. (8)–(11) at a fixed AC current j = ja sin ωt
and τ = 100. Here Lk (t ) can exhibit large-amplitude oscil-
lations at small ωτ . The amplitudes of Lk (t ) calculated from
Eqs. (8)–(11) are larger than the TDGL results, although not
by orders of magnitude.

The above calculations of Lk (t ) pertain to low frequen-
cies ωτ � 1 at which Lk (t ) follows instantaneously to the
time-varying order parameter �(t ). Generally, the nonlinear
electromagnetic response at a fixed q(t ) = qa sin ωt causes

9000 9200 9400 9600 9800 10000
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1.3

1.4

1.5

TDGL

Eqs. (8)-(11)

FIG. 20. Dynamics of Lk (t ) calculated for a fixed current
j(t ) = ja sin ωt with ja = 0.9

√
2 jc, ω = 0.01, and τ = 100 using:

(a) Eqs. (6) and (7) and (b) Eqs. (8)–(11) at T = 0.9Tc.
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FIG. 21. Fourier spectra of the current amplitudes jn =√
j2
1n + j2

2n caused by q(t ) = qa sin ωt calculated from Eqs. (8)–(10)
for different τ at T = 0.9Tc, qa = 0.95

√
2, and ω = 0.1. The Fourier

amplitudes are peaked at ωn = nω with n = 1, 3, 5, . . . .

generation of multiple current harmonics:

j(t ) =
∑

n

[ j1n sin ωnt + j2n cos ωnt]. (15)

Likewise, the AC current j = ja sin ωt produces multiple har-
monics of the electric field ε = q̇:

ε(t ) =
∑

n

[ε1n sin ωnt + ε2n cos ωnt]. (16)

Here the frequencies ωn and the Fourier amplitudes j1n(qa),
j2n(qa), ε1n( ja), and ε2n( ja) are to be calculated self-
consistently from Eqs. (8)–(10), as shown below.

A. Fixed q(t )

Shown in Fig. 21 are the current Fourier spectra calcu-
lated at different τ at qa = 0.95

√
2 and ω = 0.1. Here the

multimode spectrum of j(ω) consisting of equidistant peaks
at ωn = nω, n = 1, 3, 5, . . . changes markedly as τ increases
and the amplitudes of high-frequency harmonics diminish.
The latter is consistent with the results of the previous sections
which showed that at ωτ � 1 the amplitude of oscillations
of superfluid density responsible for the generation of higher
harmonics diminishes and the fundamental harmonic in j(t )
dominates. Here the nonequilibrium effects described by
Eqs. (8) and (9) significantly increase the amplitudes of higher
order harmonics as compared to the respective TDGL results.

Of particular interest is the dependence of the in-phase
and out-of-phase parts of the amplitude of the main harmonic
jm(t ) = j1 sin ωt + j2 cos ωt on qa, where j2 determines the
mean dissipative power p = ωqa j2/2. Shown in Fig. 22 are
steady-state oscillations of j(t ) at τ = 1 and τ = 100. At
qa = 2−1/2 and τ = 100, the current response is nearly in-
phase with q(t ) but at τ = 1 the current has dips when q(t )
is maximum. The latter comes from pair-breaking effects
which mostly reduce the superfluid density and the supercur-
rent when q(t ) reaches maximum. This effect becomes more
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FIG. 22. Nonlinear current response j(t ) calculated at qa =
0.5

√
2 and qa = 0.95

√
2 for two values of τ = 1 and τ = 100 at

T = 0.9Tc. At τ = 100 the current is nearly in-phase with q(t ) at all
qa’s. At τ = 1 the current response at large qa becomes almost evenly
divided into the in-phase and out-of-phase parts.

pronounced for a larger amplitude qa = 0.95
√

2 represented
in Fig. 22(b). In this case ψ (t ) is much reduced during a
considerable part of the AC period so j1 � j2 and the current
response becomes nearly ohmic.

The dependencies of the in-phase j1(qa) and out-of-phase
j2(qa) amplitudes of the current main harmonic on qa are
shown in Fig. 23 at τ = 1 and τ = 100. At τ = 100 the
response current is mostly in-phase with q(t ) up to the critical
qa ≈ √

2, while at τ = 1, the out-of-phase part of jm(t ) is es-
sential and significantly increases with qa and the supercurrent
decreases.

B. Fixed j(t )

To calculate the Fourier harmonics of the dimensionless
electric field ε(t ) = E (t )/E0 = ∂q/∂t with E0 = (2eξτGL)−1,
we solved Eqs. (8)–(10) for ψ (t ) and q(t ) at a fixed AC current
j = ja sin ωt . Shown in Fig. 24 are the Fourier spectra ε(ω) at
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FIG. 23. The amplitudes j1(qa) and j2(qa ) of the main current
harmonic as functions of qa calculated from Eqs. (8)–(10) at T =
0.9Tc with q(t ) = qa sin ωt at ω = 0.1, τ = 1, and τ = 100.
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0
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FIG. 24. Fourier spectra of the electric field εn = √
ε2

1n + ε2
2n in

response to the AC current j = ja sin ωt calculated from Eqs. (8)–
(10) at T = 0.9Tc, ja = 0.77

√
2 jc, ω = 0.1, and different τ . The

peaks in εn occur at the odd multiples of ω.

ja = 0.77
√

2 jc, ω = 0.1, and different τ . Like in the case of
a fixed q(t ), the Fourier spectra of the electric field contain
equidistant peaks at ωn = nω with n = 1, 3, 5, . . . , the ampli-
tudes of higher order harmonics decreasing as τ increases.

Figure 25 shows the in-phase and out-of-phase amplitudes
ε1 and ε2 of the main harmonic εm(t ) = ε1 sin ωt + ε2 cos ωt
as functions of ja at ω = 0.1 and two values of τ = 1 and τ =
100. Here ε2( ja) describing the superfluid response dominates
at all ja and is nearly linear in ja, indicating that the dynamic
differential resistivity ρ2 = ∂ε2/∂ ja is weakly dependent on
ja except for a sharp increase in a narrow region at ja → jd
for both τ = 1 and τ = 100. By contrast, ε1( ja) is linear in ja
at ja � jd/2 but then increases sharply as ja approaches jd .
The differential resistivities ρ1( ja) = ∂ε1/∂ ja and ρ2( ja) =
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0
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FIG. 25. The amplitudes ε1( ja ) and ε2( ja) of the main electric
field harmonic as functions of ja calculated from Eqs. (8)–(10) at
T = 0.9Tc with j(t ) = ja sin ωt , ω = 0.1, and τ = 1 and τ = 100.
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FIG. 26. Differential resistivities ρ1 and ρ2 as functions of ja

calculated from Eqs. (8)–(10) at T = 0.9Tc with j(t ) = ja sin ωt at
ω = 0.1, τ = 1, and τ = 100.

∂ε2/∂ ja as well as the resulting dissipated power p = P/P0 =
ε1 ja/2 as functions of ja where P0 = E0J0 are shown in
Figs. 26 and 27, respectively. At J > Jd the supercurrent
density vanishes jumpwise, resulting in the ohmic response
J = σ0E in the normal state. Notice that both ρ1 and ρ2

turned out to be much smaller than the normal state resistivity
ρ0 = 1/σ0 in the whole region of 0 < Ja < Jd .

V. DISCUSSION

In this work we address the breakdown of superconduc-
tivity by strong rf currents at h̄� � �0 � kBTc. Here the
deviation of the quasiparticle distribution function f (E , t )
from equilibrium is controlled by the amplitude of rf current
and the inelastic electron-phonon scattering time τE which can
be much larger than τGL and the rf period �τE � 1. Because
Eqs. (8)–(10) are applicable at h̄� � kBTc [24–26], they do
not describe a microwave stimulation of superconductivity
which occurs at h̄� � kBT [27]. Yet the kinetic equations
(8)–(10) in which ∂ f /∂E is replaced with its equilibrium
value ∂ f0/∂E for a weak rf field [25,26] can have spurious
solutions corresponding to stimulated superconductivity. We

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

2

4
10-3

0 0.2 0.4 0.6 0.8 1
0

1

2

10-3

FIG. 27. AC power p = ε1 ja/2 as functions of ja calculated from
Eqs. (8)–(10) at T = 0.9Tc with j(t ) = ja sin ωt at ω = 0.1 for τ = 1
and τ = 100.

did observe these solutions of the linearized equations (8)–
(10) but only at large rf amplitudes producing unphysical
δ f (E , t ) > 1. The results presented above are obtained using
the Larkin-Ovchinnikov form of Eqs. (8)–(10) which include
the exact ∂ f /∂E [24]. In this case the nonequilibrium cor-
rection δ f (E , t ) was always smaller than 1 and no stimulated
superconductivity was observed.

The temperature and frequency dependencies of Qd and
Jd calculated from either the TDGL equations or Eqs. (8)–
(10) turned out to be similar. Namely, both Qd and Jd

tend to their respective static GL values at �τE � 1 and
gradually increase with frequency, approaching the universal
values Qd → √

2Qc and Jd → √
2Jc at max(τGL, τE )� � 1.

The physics of this effect is rather transparent: at �τE �
1, the pair potential ψ (t ) = 〈ψ〉 + δψ (t ) undergoes small-
amplitude rapid oscillations of δψ (t ) around a mean value
〈ψ〉 which is determined by quasistatic equations with the
time-averaged 〈Q2〉 = Q2

a/2. Thus, the solutions for the mean
order parameter 〈ψ〉 disappear above the same pair-breaking
critical value of 〈Q2〉 as for a DC current. This result can
also be used to evaluate the dynamic superheating field Hd at
which the Meissner state in a large-κ superconductor becomes
absolutely unstable:

Hd (T ) → Hs(T ), �τE (T ) � 1, (17)

Hd (T ) →
√

2Hs(T ), �τE (T ) � 1, (18)

Hs(T ) =
(√

5

3
+ 0.545

κ

)
Hc, κ � 1, (19)

where Hs(T ) is the DC superheating field at T ≈ Tc [65]. At
κ � 1 the screening current density varies slowly over ξ , so
Q(x, t ) and �(x, t ) are nearly independent of the coordinate x
perpendicular to the surface.
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The relation between the dynamic superheating field
Hd (T ) and the DC superheating field Hs(T ) at low temper-
atures T � Tc and frequencies h̄� � kBTc has not yet been
calculated from a microscopic theory. Yet based on the known
dependence of the quasiparticle gap εg on the mean free
path at H = Hs [16], we can make qualitative conclusions
[66] regarding the essential effect of impurities on Hd (T ) at
T � Tc. In the dirty limit l � ξ0 at T � Tc, the quasiparti-
cle gap εg(H ) diminishes as the field increases but remains
finite all the way to Hs at which εg(Hs) ≈ 0.38�0 [16], where
Hs = 0.84Hc [14]. In this case the density of thermally ac-
tivated quasiparticles remains exponentially small nqp(T ) �
n0(�0/kBT )1/2 exp(−εg/kBT ) in the entire field range of sta-
bility of the Meissner state, 0 < H < Hs. A low frequency
field h̄� � �0 can produce nonequilibrium quasiparticles
which can affect dissipative kinetic coefficients and the sur-
face resistance [66], but the effect of an exponentially small
density of quasiparticles at T � Tc on the dynamics of the su-
perconducting condensate would be negligible, unlike the case
of T ≈ Tc considered in this work. As a result, the condensate
at T � Tc reacts nearly instantaneously to the rf field with
� � �0/h̄, despite slow kinetics of sparse quasiparticles, so
the superconductivity would be destroyed under the same
pair-breaking condition as in the absence of quasiparticles.
Thus, the dynamic superheating field Hd of a dirty supercon-
ductor at h̄� � �0 and T � Tc may be close to the static
superheating field Hs ≈ 0.84Hc even if �τE � 1.

For cleaner materials, the quasiparticle gap εg(H ) vanishes
before the DC depairing limit H = Hs or J = Jc is reached
if l � 8.7ξ0 [16]. In this case the density of quasiparticles
at H = Hs is no longer negligible so their slow kinetics at
T � Tc may increase Hd relative to Hs even at h̄� � �0.
A similar situation can also occur in superconductors with
a nanostructured surface [62] or inhomogeneous density of
impurities [67], where the quasiparticle gap at the surface can
be reduced by both the current pair breaking and the proximity
effect. Complex effects of impurities on the electron-phonon
and electron-electron energy relaxation have been a subject of
many experimental investigations in recent years [68–71].

Our calculations of a nonlinear electromagnetic response
of a nonequilibrium superconducting state show that the
amplitudes of higher order harmonics diminish as the quasi-
particle energy relaxation time τE increases. Typically τE near
Tc is about 2 orders of magnitude higher than τGL, except
a narrow region of T very close to Tc. Given that strong
disorder can significantly reduce τE [68–71], one could expect
that generation of higher order harmonics and intermodulation
effects would be more pronounced in dirty superconductors.
The moderate dependence of the dynamic differential resistiv-
ity ρ2( ja) which defines a nonequilibrium kinetic inductance
on ja shown in Fig. 26 is qualitatively similar to that of Lk ( ja)
under the condition of the DC nonlinear Meissner effect
[40,41,43,45]. At the same time, the dissipative differential
resistivity ρ1( ja) shown in Fig. 26 has a more pronounced
dependence on ja than ρ2( ja). Both ρ1( ja) and ρ2( ja) have
strong peaks as ja approaches the dynamic depairing current
density but remain much smaller than the normal state resis-
tivity at low frequencies h̄� � �. The nonlinearity of ε( ja) in
a nonequilibrium state manifests itself in a strong dependence

of the rf dissipated power on the current amplitude, as shown
in Fig. 27.
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APPENDIX A: NONEQUILIBRIUM EQUATIONS

The equations obtained in Refs. [23–26] for a nonequi-
librium dirty s-wave superconductor at T ≈ Tc and � � �0

include the quasistationary Usadel equation:

D

2
[α(∇ − 2ieA)2β − β∇2α] =

(
1

2τE
− iE

)
β − �α, (A1)

where the normal and anomalous retarded Green’s functions
α(E ) = N1(E ) + iR1(E ) and β(E ) = N2 + iR2(E ) satisfy
α2 + β2 = 1. Equation (A1) is supplemented by the kinetic
equations for the odd f (E ) and even f1(E ) distribution func-
tions of quasiparticles:

D∇ · [(
N2

1 − R2
2

)∇δ f
] + 2DN2R2Q ·

(
∇ f1 − e

∂ f

∂E

∂A
∂t

)

−N1

(
∂

∂t
+ 1

τE

)
δ f = R2

∂ f

∂E

∂|�|
∂t

, (A2)

D∇ ·
[(

N2
1 + N2

2

)(∇ f1 − e
∂ f

∂E

∂A
∂t

)]

+ 2DN2R2Q · ∇δ f − N1

(
∂

∂t
+ 1

τE

)(
f1 + eϕ

∂ f

∂E

)

− N2|�|
(

2 f1 + ∂ f

∂E

∂θ

∂t

)
= 0, (A3)

where f = f0 + δ f and f0 = tanh(E/2T ).
The equations for �(r, t ) = � exp(−iθ ) and J(r, t ) are

expressed in terms of N1,2, R1,2, δ f and f1 as follows [25,26]:[
π

8Tcε

∂

∂t
− 1

�ε

∫ ∞

0
dE (R2δ f + iN2 f1)

]
�

= ξ 2(∇ − 2ieA)2� +
(

1 − �2

�2
0

)
�, (A4)

J = πσ0

4eTc
�2Q + σ0

e

∫ ∞

0
dE

[(
N2

1 + N2
2

)(∇ f1 − e
∂ f

∂E

∂A
∂t

)

+ 2N2R2Qδ f

]
. (A5)

If δ f (E , r, t ) and �(r, t ) vary slowly over τE , ξ , and LE =
(DτE )1/2, the derivatives in Eqs. (A2) and (A3) can be
neglected. In this local equilibrium approximation Eqs. (A1)–
(A5) reduce to Eqs. (3) and (4) [25,26].

If the spatial derivatives in Eqs. (A1)–(A5) are negligi-
ble we readily obtain f1 = −eϕ∂ f /∂E and � = −2eϕ +
∂θ/∂t = 0 from Eq. (A3), giving ∇ f1 − e(∂ f /∂E )(∂A/∂t ) =
1/2(∂ f /∂E )(∂Q/∂t ). In turn, Eq. (A1) reduces to the quartic
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equation:

α4 − Rα3 + Sα2 + Rα − R2

4
= 0,

R = 2(u/ε)1/2(iE − 1/2τ )

q2
,

S = R2

4

[
ψ2

(iE − 1/2τ )2
+ 1

]
− 1. (A6)

The relevant solution of Eq. (A6) is given by

α(E ) = R
4

+ E + 1

2

√
−4E2 − 2A − B

E , (A7)

where

A = S − 3R2

8
, B = 8R + 4RS − R3

8
,

C = 2S3 + 27R2S + 27R2 − 27R4

4
,

D =
[

1

2
(C +

√
C2 − 4S6)

]1/3

,

E = 1

2

√
−2A

3
+ 1

3

(
D + S2

D

)
.

APPENDIX B: HIGH-FREQUENCY LIMIT, ωτ � 1

At high frequencies ψ (t ) = ψ + δψ (t ) has a small-
amplitude oscillating component δψ (t ) � ψ around a mean
value ψ so that 〈δψ〉 = 0, where 〈· · · 〉 denotes time averag-
ing. In this case Eqs. (6) and (7) can be solved by the standard
methods which have been developed for dynamic equations
with rapidly oscillating parameters [72,73].

1. Fixed Q(t )

For a fixed q(t ) = qa sin ωt we expand Eq. (6) up to
quadratic terms in δψ and average over the rf period:

rψ̇ = (1 − 〈q2〉)ψ − ψ3 + 〈hδψ〉 − 3〈δψ2〉ψ, (B1)

h(t ) = 〈q2〉 − q2(t ) = q2
a

2
cos 2ωt, (B2)

where r = (1 + 4τ 2ψ2)1/2, 〈q2〉 = q2
a/2, and 〈δψ̇δψ〉 = 0.

The dynamic equation for δψ (t ) is obtained by expanding
Eq. (6) up to linear terms in δψ :

rψψ̇ − gδψ = h(t )ψ, g = 1 − q2
a/2 − 3ψ2. (B3)

The solution of Eq. (B3) is then

δψ (t ) = A cos 2ωt + B sin 2ωt, (B4)

A = − q2
agψ

2(4ω2r2 + g2)
, B = q2

aωrψ

4ω2r2 + g2
. (B5)

From Eqs. (B1) and (B4) we obtain the following self-
consistency equation for ψ (t ):

rψ̇ =
(

1 − q2
a

2

)
ψ − ψ3 + q2

aA

4
− 3

2
ψ (A2 + B2). (B6)

At 4ω2r2 � g2, Eqs. (B5) and (B6) reduce to

rψ̇ =
(

1 − q2
a

2

)(
1 − q4

a

32ω2r2

)
ψ − ψ3. (B7)

Hence, the mean steady-state ψ is given by

ψ =
(

1 − q2
a

2

)1/2(
1 − q4

a

64ω2r2

)
. (B8)

This state is stable with respect to small perturbations of ψ (t )
if qa < qd = √

2.

2. Fixed J(t )

For a fixed j(t ) = ja sin ωt , we linearize Eq. (7) with re-
spect to an oscillating correction δψ (t ) � 1:

ja sin ωt = quψ2 + 2uψqδψ + q̇. (B9)

Setting here q(t ) = q1 sin ωt + q2 cos ωt and δψ =
A cos 2ωt + B sin 2ωt , we obtain 〈qδψ〉 = 0, and
q(t ) = −( ja/uψ2) sin ωt in leading order in ω/u � 1 and
(ωr)−2 � 1. Substituting this q(t ) into Eq. (6) and averaging
gives the equation for the mean ψ (t ):

(1 + 4τ 2ψ2)1/2ψ̇ =
(

1 − j2
a

2u2ψ4

)
ψ − ψ3. (B10)

The right-hand side of Eq. (B10) has the GL form for a fixed
current except that the time averaging of 〈q2(t )〉 = j2

a/2u2ψ4

reduces the current pair-breaking term in half as compared to
the DC current. As a result,

j2
a = 2u2ψ4(1 − ψ2). (B11)

Stability of the above steady state with respect to slow pertur-
bations ψ1(t ) can be addressed by setting ψ (t ) = ψ + ψ1(t )
and linearizing Eq. (B10) with respect to ψ1:

rψ̇1 =
[

1 + 3 j2
a

2u2ψ4
− 3ψ2

]
ψ1. (B12)

Hence, ψ1 ∝ exp(γ t ), where the decrement γ is given by

γ = 2

r
(2 − 3ψ2). (B13)

Here j2
a in Eq. (B12) was expressed in terms of ψ2 using

Eq. (B11). This state becomes unstable (γ > 0) at jd = √
2 jc

for which ja(ψ ) reaches maximum at ψ2 = 2/3.
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