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1 Introduction

A conjecture by Emil Artin [2] states that a form f (homogeneous polynomial) of degree k
with integer coefficients in s variables has a non-trivial solution of f =0 in Q, for all primes p
if s> k2. A non-trivial solution of the form f is a solution f(z) = 0 with at least one x; # 0.
The only cases in which this conjecture is known to be true are the ones with k = 1, which
is trivial, k = 2 by Meyer [33] and k = 3 by Dem’yanov [I5] for p # 3 and, independently, by
Lewis [29] for all primes p. But in general the conjecture was disproved by Terjanian [39] with
a counterexample in the case k = 4. He used the quartic form

2 4

g(m,y,z):azyz(az+y+z)+a:2y2+x 22+y222—x4—y4—z

in three variables to compose a quartic form

f(z1,...,218) = g(@1, 22, 23) + g(24, 25, 76) + g(27, 28, 79)

+4g(x10, 11, x12) +49(213, T14, T15) + 49(216, T17, T18)

in 18 > 42 variables and proved that the equation f(x) = 0 has only the trivial solution
in Qo. Browkin [4] even found for all primes p forms f of some degree k in more than k2
variables without a non-trivial p-adic solution of the equation f = 0. However, none of these
was a form in more than k% variables, leaving the possibility that Artin’s conjecture could
be true provided that s > k% or at least s > k™ for some n € N. Results by Arkhipov and
Karatsuba [I], Brownawell [6], and Lewis and Montgomery [31] showed that this hope was in
vain. For every n € N and every prime they found infinitely many degrees k for which there
are counterexamples in more than k™ variables.

Nonetheless, there are different directions in which one can still examine Artin’s conjecture.
One of them is indicated by a similarity between all known counterexamples. They all disprove
Artin’s conjecture for an even degree. Thus, Artin’s conjecture could still hold for forms of
odd degree or, maybe more likely, for forms of prime degree.

Another direction was pursued by Ax and Kochen [3] who proved for all degrees k that
there are only finitely many primes p for each k£ such that there are forms f of degree k
in s > k? variables for which the equation f(z) = 0 does not have a non-trivial solution in
Qp. In particular, for every k there is a number pg(k) such that for all forms f of degree k
in s > k% variables the equation f(z) = 0 has a non-trivial p-adic solution for all p > po(k).
Furthermore, they could prove a generalisation of this statement. Namely, that for every
R-tuple (ki,...,kg) € N¥ there is a finite set of primes A = A (ki,...,kg) such that for all
primes p ¢ A and every system fi,..., fr, where f; is a form in s variables of degree k; for
1 <7 < R, the equations f; = --- = fg = 0 have a non-trivial p-adic solution provided that
s> k% +o+ k%%. Again, it follows directly that there is a natural number py (k1,...,kg) such
that for all primes p > py (k1,...,kg) the equations f; =--- = fr = 0 have a non-trivial p-adic
solutions for all forms f; of degree k;. However, their work does not give an explicit bound for
po (k) and py (k1,...,kr). While there are explicit bounds for pg (k) and py (k1,...,kr) (see



Brown [5] and Cohen [I1]), these bounds contain nested exponentials and are, therefore, huge.
For some small values of k there are better bounds for py (k) known, for example, po (5) <7
by Dumke [I§] and both pg (7) < 883 and pg (11) < 8053 by Wooley [43].

A different approach is to restrict the forms instead of the primes. A popular way is to

focus on diagonal forms, for which Davenport and Lewis [I12] have proved Artin’s conjecture.
Thereby, a diagonal form

S
flry, ... xg) = Zaixf
i=1

has a non-trivial p-adic solution for all primes p provided that s > k2.

A generalisation of Artin’s conjecture for diagonal forms to systems of R diagonal forms of
degree ki,...,kgr leads to the following question. Do the equations f; =--- = fr = 0 for the
forms

s
k; .
fj(ﬂ?l,...,ﬁﬂs)zzai]‘l‘i] (1 S]SR)
=1

have a non-trivial p-adic solution provided that s > k% et k%?

For this version of Artin’s conjecture, it is known, due to the result on R forms by Ax and
Kochen [3] mentioned earlier, that the conjecture holds for each R-tuple (k1,...,kg) for all but
a finite set of primes. But in general, it follows from a result by Lewis and Montgomery [31],
Theorem 2] that this conjecture is not true and, furthermore, Wooley [42] proved that even
the case R =2 does not hold for all tuples (k1, k). However, there are cases in which it does
hold. For example, the case (ki,k2) = (3,2) was proved by Wooley [41] and (ki,k2) = (k,1)
for general k by Briidern and Robert [9].

The case k := ky = ko =--- = kg was first examined by Davenport and Lewis [I3] who proved
that such a system of equations has a non-trivial p-adic solution if

s>2R%klogk (for k odd) or s>48R%k%log(3Rk?) (for k>2)
holds. Briidern and Godinho [7] improved this for k£ >3 and R >3 to
s> Rk,

unless one has R =3 and k =27 for some 7 > 1, in which case s > 36k? suffices. This was the
first bound for the case kj = --- = kg = k with the expected order of magnitude k2. Later,
Knapp [25] was able to improve this bound to s > 4R%k? for all Re N and k > 2.

Further research was done on the case R = 2. Davenport and Lewis [I4] proved that the
expected bound s > 2k? holds if k is odd, whereas for even k they only obtained the bound
5> 7k3. Briidern and Godinho [§] have proved that the expected bound s > 2k? holds for even
k which are not of the shape

k=3-2" or k=p (p-1)

for p prime and 7 > 1 as well. For each of these excluded shapes they proved for all but one
prime that a non-trivial p-adic solution exists if s > 2k?. The missing primes are p = 2 in the
case k=3-2" and pif k= p” (p—1). Here, they gave the bounds s > %kz forp=2and k=3-27,



s>8k? for p=2and k=27, and s >4k? for p>3 and k = p” (p—1). All in all, this established
the bound s > 8k? for all p and all k.

There was some further progress for p=2 and k=2" for 7=1, 7=2 and 7 > 16. For k=2
the expected bound s > 8 follows from the general result by Dem’yanov [16] that for two
quadratic forms fi, fo in at least nine variables the equations f; = fo = 0 have a non-trivial
p-adic solution for all primes p. Poehler [37] proved for k = 4 that 49 = 3k* + 1 variables suffice
and Krinzlein [26] showed for k = 27 with 7 > 16 that the expected 2k® + 1 variables are
sufficient.

For p>3and k =p” (p-1) on the other hand, the bound was further sharpened by Godinho
and de Souza Neto [20), 21I] who proved that

s>2-L 12 _op
p—-1

suffices for p € {3,5} and if 7 > p%l for p > 7 as well. Campos Vargas [40] announced the same

bound in the cases 7 > 3 provided that p > 7 and for 7 =2 if p > % +4, where C' > 3 is a constant

satisfying certain conditions for which he can show that one has C' < 9997. Furthermore,

for 7 = 1, it was announced by him that s > (2% + 26;_—?5

p > 5. Due to the connection k = p” (p— 1) between k and p, one can easily see that the bound
2%1&‘2 -2k is worse than Artin’s bound 2k + 1 in every case. Nonetheless, by combining these

)k2 — 2k variables are sufficient for

results, he proved that for every € > 0 the bound s > (2 + ¢) k2 is sufficient for p large enough.

For k = 6 = 3-2, the bound s > 2k? was reached by Godinho, Knapp and Rodrigues [22]
while later Godinho and Ventura [23] showed that this bound suffices for k = 37-2 with 7 > 2 as
well. Therefore, all pairs of diagonal forms of equal degree k in more than 2k? variables have
a non-trivial 3-adic solution. Chapter 2, which contains the proof of the following theorem,
shows that this statement does not only hold for p = 3 but for all p > 3, by taking care of the
degrees k=p" (p-1) for p>5 and 7> 1.

Theorem 1. Let p>5 be a prime, 7>1 and k=p” (p—1). Then for a;,b; € Z with 1 <i< s,
the equations

Zaixf = szxf =0 (1.0.1)

have a non-trivial p-adic solution for all s > 2k>.

This completes the proof of Artin’s conjecture for two diagonal forms of equal degree for all
odd primes. For p = 2 there are only the questions left whether there is a non-trivial 2-adic
solution for k=3-27 for 7 >2 and k = 27 for 2 <7 < 15 provided that s > 2k%. The argument
by Kranzlein [26] can be easily applied for the case k = 3-27 as well if 7 > 16. Thus, only
finitely many & remain for which the bound s > 2k? is not reached.

The proof of Theorem (1| follows a pattern by Davenport and Lewis [I4] while making use of
some improvements by Briidern and Godinho [§]. Section defines an equivalence relation
on the set of all systems , introduced by Davenport and Lewis [I4]. This equivalence
relation is defined in a way that solubility of in @;\{0} is preserved, which allows
to pick representatives with useful properties from each class and prove the existence of a
non-trivial p-adic solution only for them. Due to a version of Hensel’s lemma, one can show



that a system (1.0.1]) has a non-trivial p-adic solution by proving that the congruences

S S
M aixh =Y ba¥ =0 mod pt (1.0.2)
i=1

%
i=1

have a solution for which the matrix

(1.0.3)

ajxry ar2 ... QAgkg
bll‘l bgl‘g bs:L'S

has rank 2 modulo p. Section [2:2] recalls the notions of coloured variables, introduced by
Bridern and Godinho [8], and contractions which were established by Davenport and Lewis [14].
Together, they are the foundation of the proof. Coloured variables and a refinement of them
provide a way to take care of the rank of the matrix , while contractions are a means
to solve the equations recursively by lifting solutions modulo p' to solutions modulo
p!*1. Furthermore, this section continues the path laid down by Davenport and Lewis [14] and
Briidern and Godinho [8], which issues more restrictions on the pairs of equations one has to
find a solution for. Section [2.3]is a collection of combinatorial results which are frequently
used, directly and indirectly, in the remaining sections. A description on how the notion of
coloured variables is used in combination with contractions to obtain a solution of such
that the matrix has rank 2 is contained in Section whereas Section consists of a
collection of lemmata which describe situations in which one can lift some solutions modulo p*
to solutions of a higher modulus. The remaining two sections contain the actual proof which
is divided into Section for the case k = p(p-1) and Section , where the remaining
cases with k =p” (p—1) and 7 > 2 are handled. This division is due to the different modulus
in (1.0.2). For big 7, one has more variables whose coefficients are not both congruent to 0
modulo p™*!, which is balanced in the case 7 = 1 by a permutation argument.

The cases R € N with k; = k and ky = --- = kg = 1 of the generalisation of Artin’s con-
jecture for diagonal forms merit particular attention. As Briidern and Robert [9] pointed out,
they could be used as a means to prove Artin’s conjecture for some k. The following lemma [9]
Section 2], an immediate conclusion of a theorem by Ellison [19], which works over Q, as well,
describes why this is the case, and which values of R are important for that.

Lemma 1. For a form g€ Q[X1,...,X,] of degree k there are r forms L;j € Q[Y1,...,Yrs]
(1<j<r) of degree 1 and r + s coefficients c; € Q (1< j<r+s) for

s(s+1)...(s+k-1)
k!

0<r<

with the property that the equation g(x1,...,zs) =0 has a solution x € Q\{0} if and only if
the system of equations

T+S

Z;cjyj? =0, Lij(y)=0 (1<j<r)
Jj=
has a solution y € Q;"*\{0}.

Consequently, Artin’s conjecture for systems of diagonal forms containing one form of



degree k and r linear forms for all

(k*+1) (k*+2) - (k* + k)

0<r< ol

implies Artin’s conjecture for forms of degree k.

Leep and Schmidt [27] claimed that if for all systems fi, ..., fr of R diagonal forms of degree
ki,...,kgr in s variables there is a non-trivial p-adic solution of the equations f; =---= fr =0,
then the same holds for R +r diagonal forms of degree k1,...,kgr,1,...,1in s+r variables. It
is easy to see that this statement holds for general forms. There, one can transform a system
of R forms of degree ki,...,kr and r linear forms in s + r variables into R forms of degree
ki,...,kg in s variables just by plugging the linear forms into the R forms of degree ki, ..., kg.
However, for diagonal forms one encounters the problem that the resulting system of forms of
degree k1,...,kg is not necessarily diagonal as well. Furthermore, it turns out to be wrong for
diagonal forms, because this would imply Artin’s conjecture when combined with Lemma
and the result by Davenport and Lewis [12] for one diagonal form. As Artin’s conjecture does
not hold in general, this leads to a contradiction and the case (k,1,...,1) remains an open
problem.

For r = 0, this is the case of one diagonal form which was proved by Davenport and Lewis [12]
as mentioned before. Briidern and Robert [9] took care of the case r = 1 by proving that
s> k? + 1 variables suffice to ensure the existence of a non-trivial p-adic solution for all primes.
Nonetheless, the condition s > k2 +r cannot be sufficient for all » € N, because this would prove
Artin’s conjecture for all k, but it would be of interest to know up to which r this is true.

In the case k = 3 Artin’s conjecture holds. It follows that for every system containing one form
f1 of degree 3 and r linear forms fs,..., fr+1 in s variables the equations f; = fo=---= f,.1 =0
have a non-trivial p-adic solution for all primes p provided that s > 10 + r. This can be seen
by plugging in the linear equations in the cubic equation, which resolves in a cubic form in at
least ten variables which is solvable. In general, Artin’s conjecture is strict for k = 3, which
Mordell [34] proved. Therefore, there are cubic forms in nine variables which do not have a
solution for all primes p. Naturally, this is not true for all cubic forms in nine variables. To
examine this, one can subdivide the set of cubic forms in s variables based on the related
parameter

re{O,l,...,M}
6

as implied by Lemma [I] and ask the question how many variables are necessary for cubic forms
with a fixed parameter r.

The case 7 = 0 was tackled by Lewis [30]. He showed that every equation of the form

S
Z aix? =0, a; €7,
i=1

has a non-trivial p-adic solution for all p provided that s > 7, and, therefore, that all cubic
forms with r = 0 have a non-trivial p-adic solution for all p if s > 7. Furthermore, he even
proved that there is a diagonal cubic form in six variables without a non-trivial p-adic solution
for some prime p. Thus, the bound is best possible. It improves upon the bound obtained
through Artin’s conjecture by three variables.



The aim of Chapter 3 is to prove that for cubic forms with » = 1 one does not loose this
advantage of three variables, which is an immediate conclusion of the following theorem.

Theorem 2. Let s> 8 and a;,b; € Z for 1 <i<s. Then the system
S S
Z CL]’:U? = Z ijL‘j = O, (104)
j=1 j=1

has a solution (v1,...,2s) € Q\{0} for all primes p.

If this statement were correct for s > 7 as well, it would follow by taking, for example, b; =1
and b; = 0 for 2 < ¢ < s that all diagonal cubic equations in at least six variables have a
non-trivial p-adic solution for all primes p, which contradicts Lewis [30] result that the bound
s> 7 is strict for cubic diagonal forms. Thus, this is the best possible bound for s.

Likewise, it is impossible for all systems

T+r T+r

Zajxg?:Zbijxj:O (1Si$?“)
j=1 j=1

with integer coefficients a; and b;; to have a non-trivial p-adic solution for all primes p and all
0<r<84= 7'%'9. Otherwise it would follow from Lemma |l| that every form of degree 3 with
integer coefficients in at least seven variables has a non-trivial p-adic solution for all primes p,
which contradicts that the bound from Artin’s conjecture is strict for k& = 3. Hence, somewhere
between r =2 and r = 220 = % this gap of three variables have to close itself.

The proof of Theorem [2] follows a pattern by Briidern and Robert [9]. The difficulty of
finding a non-trivial p-adic solution for all systems of equations depends on the residue
class of p modulo 3. Those primes congruent to 2 modulo 3 are treated in Section with
a contraction argument by Briidern and Robert [9, Section 3], which traces the problem of
finding a non-trivial p-adic solution of back to the equation

Tt ety =0 (1.0.5)
and the question which ¢ € N guarantee the solubility in Q,. For p congruent to 2 modulo 3
a solution of exists for relatively small ¢ in comparison to primes p congruent to 1
modulo 3 due to Dodson [17]. For the remaining primes, the version of Hensel’s lemma in
Section established by Briidern and Robert [9, Section 4], gives a combinatorial approach
to the problem. If the system of congruences

S S
Z ajz:;? =0 mod p”, Z bjz; =0 mod p
j=1 j=1

with v =1 for p #+ 3 and v = 2 for p = 3 has a solution in the integers such that there are
i,7€{1,...,s} with

2 2
p+ bz-aj:nj -bja;x;,

there is a non-trivial p-adic solution of the equations ([1.0.4]) as well. This indicates a necessity
to distinguish between primes congruent to 1 modulo 3 and the prime 3. An equivalence



relation on the set of systems (1.0.4) which preserves the solubility in Q;\{0}, introduced
by Briidern and Robert [9, Section 6], is used in Section to pick representatives with
useful properties to fulfil the requirements of the version of Hensel’s lemma. Most cases for p
congruent to 1 modulo 3 can be worked on with a simple combinatorial approach in Section
where one finds a solution using only the variables whose coefficients a; and b; are not both
divisible by p. This leaves three cases which require more attention.

The first of those is treated in Section [3.5 using a more complex, but still combinatorial,
approach of Briidern and Robert [9, Sections 8 and 9], which does not only focus on those
variables whose coefficients a; and b; are not both divisible by p but on all, and a result by
Leep and Yeomans [28] on the number of solutions of an absolutely irreducible polynomial.
The two remaining cases can be solved, again using only the variables whose coefficients a; and
b; are not both divisible by p, by Leep and Yeomans result as in the first case. This reduces
the problem to proving that some specific polynomials are absolutely irreducible, which is
either done by contradiction or by using a result by Schmidt [38]. This leaves only the case
p =3, which is solved solely combinatorially in Section [3.7






2 Pairs of Diagonal Forms

This chapter contains the proof of the following theorem, which claims that for two diagonal
forms f,g of degree k =p™ (p—1) for p>5 and 7 > 1 in s variables the equations f =g =0
have a non-trivial p-adic solution provided that s > 2k?.

Theorem 1. Let p>5 be a prime, 7>1 and k=p” (p-1). Then for a;,b; € Z with 1 <i< s,
the equations

S S
S aizl = bl =0 (L-0.1)
i=1 i=1

have a non-trivial p-adic solution for all s > 2k>.

Even though it would suffice to focus on the case k = p” (p—1) and p > 5, Sections
and hold in the general case, where k is a natural number and p any prime as well.

2.1 p-Normalisation

This section recalls an equivalence relation on the set of systems (|1.0.1)) which was introduced
by Davenport and Lewis [I4] in order to choose representatives with specific characteristics.
Define for any pair of diagonal forms

S S
f=Yaaf,  g=Y by (2.1.1)
=1 i=1

with rational coefficients a; and b; (1 < < s) a rational number

9(f,9)= 1 (aibj—a;b;).
1<i,j<s
i#]

For integers v; (1 <i<s) consider the pair
=", p%2s), ¢ =g (e, P ) (2.1.2)

and for rational numbers Ay, Ag, p1 and ps with Ajps — Aspq # 0 the pair
"= Af + Xy, 9" = f + p2g. (2.1.3)

If another pair f,§ with rational coefficients can be obtained by a finite succession of the
operations (2.1.2) and (2.1.3]) on the pair f, g, then they are called p-equivalent. If (z],...,z)

is a non-trivial solution of f’ = ¢’ = 0 then (p"'z,...,p" ) is a non-trivial solution of f = g =0,
whereas if (1, ...,zs) is a non-trivial solution for f = g = 0, then one has a non-trivial solution
for f'=¢' =0 as well, given via (p™'z1,...,p " x;). Therefore, solubility is preserved under



the operation (2.1.2). The same holds for the operation . Here, one direction is obvious,
and the other holds, because the transformation is invertible. Consequently, the existence of a
non-trivial solution for f = ¢ =0 in Q, implies that there is one for all pairs f,§ which are p-
equivalent to f, g. It can also be easily deduced from the definition of ¥ (f, g) that if 9 (f,g) =0,
the same holds for ¥ (f’,¢") and 9 (f”,¢"”) and, therefore, for the whole p-equivalence class.

Definition 1. A pair f,g given by (2.1.1) with integers coefficients and ¥ (f,g) # 0 is called
p-normalised, if the power of p dividing ¥ (f,¢g) is as small as possible amongst all pairs of
forms ([2.1.1]) with integer coefficients in the same p-equivalence class.

As each p-equivalence class contains pairs for which all coefficients a;, b; are integers, it
follows that the existence of a non-trivial solution for all p-normalised pairs induces a non-
trivial solution for all pairs of forms with rational coefficients a;,b; and ¥ (f,g) # 0. Using a
compactness argument, Davenport and Lewis [14] showed that it induces the existence of a
solution for all pairs of forms f,g with ¢ (f,g) =0 as well.

Lemma 2. Suppose for a fized s that the equations f = g =0 have a non-trivial solution in Q,
for all p-normalised pairs f,g. Then, for any rational coefficients a;j,b;, the equations ((1.0.1))
have a non-trivial solution in Q.

Proof. See [14, Section 5]. O

Consequently, it suffices to focus on finding non-trivial p-adic solutions for p-normalised pairs
f,g in more than 2k? variables. The following lemma gives information about the properties
of them.

Lemma 3. A p-normalised pair of diagonal forms f, g of degree k in s variables can be written

as
f=forpfr+-+p"" fu,
g=g0+pgr+-+p" g1,

where f;, g; are forms in m; variables, and these sets of variables are disjoint fori=0,1,... k-1.

Moreover, each of the m; variables occurs in at least one of f;, g; with a coefficient not divisible
by p. One has

2(jJrl)s

- for  j=0,1,...,k-1. (2.1.4)

m0+---+mj

Moreover, if q; denotes the minimum number of variables appearing in any form \f; + ug; (A
and p not both divisible by p) with coefficients not divisible by p, then

(F+3)s
k

Proof. See [14, Lemma 9. O

m(]+"‘+mj—1+QjZ fOI‘ j=0,1,...,k’—1.

At least one integer coeflicient a; or b; of a variable x; of a p-normalised pair f, g is non-zero,
because else one would have 9 (f,g) = 0. Consequently, there is a maximal power [ of p, which
divides both a; and b;. Due to the previous lemma, one can deduce that 0 <[ <k -1 for all
variables x; of a p-normalised pair.

10



Definition 2. A variable x; of a pair f, g with integer coefficients is said to be at level [ if its
coefficients a; and b; are both divisible by p' but not both divisible by p'*!.

By Lemma |3 a p-normalised pair has exactly m; variables at level [ for 0 <<k —-1. The
integ~ers a;, b; are defined for a VaNriable x; at level [ with integer coefficients a;,b; via a; = p‘la,-
and b; = p~'b;. These integers a;, b; are the coefficients of the forms f, g; as defined in Lemma

and the vector (%’) is called the level coefficient vector of a variable x;.

One can restrict the question of the existence of a non-trivial p-adic solution to one of
congruences. To this end, it is useful to adopt the notation k = p”dky with ¢ = ged (k,p-1),
ged (p, ko) =1 and

1, ifr=0
yi=37+1, ifr>0andp>2 (2.1.5)
7+2, ifr>0andp=2,

by Davenport and Lewis [14] which is used in the following lemma.

Lemma 4. If the congruences

S S
> a;z¥ =0 mod p?, > bizk =0 mod p? (2.1.6)
i=1 i=1

have a solution in the integers for which the matriz

airy axr2 ... QgTg
bll‘l 52332 bsxs

has rank 2 modulo p, then the equations (1.0.1)) have a non-trivial p-adic solution.
Proof. See [14, Lemma 7. O

Such a solution is called a non-singular solution. The remainder of this chapter focuses on
finding non-singular solutions for p-normalised pairs f, g.
The next section introduces the methods used to find non-singular solutions.

2.2 Coloured Variables and Contractions

This section recalls the concept of coloured variables, first used by Briidern and Godinho [§],
and refine it in a way such that it meets the requirements of the special case k =p™ (p—1). It
also describes the method of contractions which was introduced by Davenport and Lewis [14].
Together, both concepts form the foundation of this proof.

To have more control over the non-singularity of a solution of , Briidern and God-
inho [§] divided the set of variables at level [ into p+ 1 sets, depending on their level coefficient
vector. For that, they defined the vectors eg = (1) and e, = ('I) for ve{l,...,p}. Viewed as

0
vectors in (Z/pZ)? the vectors define the sets
%, :={ce, | ce(Z/pZ)"}

for 0 < v < p. Modulo p, each level coefficient vector (di, EZ) lies in exactly one of the disjoint
sets .%,.
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Definition 3. A variable x; at level [ is said to be of colour v, if the level coefficient vector
(di, bi) interpreted as a vector in IF'IQ, lies in .%,. The parameter Ill, of a pair f,g is the number
of variables z; at level [ of colour v.

The parameter g; introduced in Lemma [3]denotes the minimum number of variables appearing
with a coefficient not divisible by p in any form Af; + ug; with (A, 1) £ (0,0) modulo p. This
is closely related to the concept of coloured variables. By setting A = 0 modulo p for v =0 or
w=-Avforve{l,...,p} the variables which appear in Af; + ug; with a coefficient divisible
by p are exactly those of colour v. Consequently, if Ill, > IL for all 0 < u < p it follows that

I,l/ =m; — q;. Define Ifnax =my — q;. This notation can be generalised as follows.

Definition 4. For a set ¢ of indices ¢ of variables z; at level [ define I, (-#") as the number
of 1 e & with z; of colour v, Inax (K#') = maxocy<p I, (X) and q (H") = || — Imax (K).

Note that if # is the set of all indices of variables at level I, then |# | =my, I, (X#) = I,
Inax () = Lo and ¢ (X) = g

From the definition of a non-singular solution it follows that whether a solution of
is non-singular depends exclusively on the variables at level 0. If a solution of has
variables at level 0 of at least two different colours set to a value which is not congruent to 0
modulo p, the corresponding matrix has rank 2 modulo p making it a non-singular solution.
To use variables at different levels one can take sets of variables at one level and combine them
in a way that they can be seen as a variable of a higher level. This method was introduced by

Davenport and Lewis [I4] and applied in combination with the notion of coloured variables by
Briidern and Godinho [§].

Definition 5. Let 2 be a set of indices j with x; at level . Let h € N with h > [ and suppose
that there are integers y; with p + y; such that

> ajyf = > bjy;? =0 mod p". (2.2.1)
jex jex

Then " is called a contraction from level l to level at least h. If either } ;¢ » ajy;-f or Yicx bjy;»g
is not congruent to 0 modulo p"*!, then ¢ is called a contraction from level l to level h.

Recall for variables at level [ that a; = p‘laj and l;j = p‘lbj. Hence, a set J# of variables at
level [ is a contraction to a variable at level at least [ +n if there are y; not divisible by p such
that

> &jy;-“ = > l;jyf =0 mod p".
jext jext

If % is a contraction from level [ to some level h, one can set x; = y;X¢ for all j in the
contraction #. Through this, one obtains a variable X at level h. One says that the variable
Xo can be traced back to the variables x; with j € . Assume that there are other variables

X; at level h with i € {1,...,n}, where each of the variables X; is a variable at level h which
either occurred in the pair f, g or is the result of a contraction. If the set of indices {0,1,...,n}
of the variables X, X1,...,X,, is a contraction to a variable Y at a level at least h + 1, then

one says that the variable Y can be traced back not only to the variables X; for i € {0,1,...,n}
but also to all the variables that those variables can be traced back to. For example, Y can be
traced back to all z; with j e .72
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Definition 6. A variable is called a primary variable if it can be traced back to two variables
at level 0 of different colours.

If one can contract a primary variable at level at least +, then by setting this contracted
variable 1 and everything else zero, one obtains a non-singular solution of and, therefore,
a non-trivial p-adic solution.

In some cases the knowledge of the exact level and colour of a variable that was contracted
gives quite an advantage. To gain control about this, the concept of coloured variables is not
strong enough because it can only give the information whether a certain set of variables at
level [ is a contraction to a variable at level [ + 1 or at level at least [ + 1, but one does not
know enough of the behaviour of the variables modulo p!*2. Therefore, one cannot use it to
extract information about the colour of the contracted variable. To gain this information,
one can divide the set of variables of one colour into smaller sets which consider the level

coefficient vectors (?1) not only modulo p but modulo p?.

b;
For that, view the vectors eg = ((1]) and e, = (’I) as vectors in (Z/}?QZ)2 and define the
vectors e’ = (2) and e” = (g) for v e {1,...,p—1}. This enables one to define sets similar to

the sets &, via
Lo = {c(ey +pe’)|ce (Z/pQZ)*}

for O<v<pand 0<pu<p-1. Here again, a level coefficient vector (%l) lies modulo p? in
exactly one of the disjoint sets .Z,,,,.

Definition 7. A variable x; is said to be of colour nuance (v, ) if the level coefficient vector
(&i, BZ) interpreted as a vector in (Z/p2Z)2 lies in .%,,,. The parameter Ill,u of a pair f,g is
the number of variables x; at level [ of colour nuance (v, ).

For all variables x; of colour nuance (v, ) there is a unique integer ¢; € {1,2, ..., p?\pZ for
which (%l) = ¢; (e, + pe’) mod p?. The integer ¢; is said to be the corresponding integer to ;.

Lemmata [2] and [4] show that it suffices to find a non-singular solution for all p-normalised
pairs in order to prove that for any rational coefficients a;,b; the equations have a
non-trivial solution in @,. Due to Lemma [3| one already has some information about the
number of variables at certain levels and the distribution of these variables in the different
colours of p-normalised forms f,g. One can further exploit that every p-equivalence class
contains more than just one p-normalised pair. The next lemma shows further properties that
are fulfilled by at least one p-normalised pair in each p-equivalence class for which ¥ (f,g) #0
holds.

Lemma 5. Fach pair of diagonal forms (2.1.1)), with rational coefficients and 9 # 0, is
p-equivalent to a p-normalised pair f,g possessing the following properties:

(i) go contains exactly qo variables with coefficients not divisible by p.
(ii) One of f1,g1 contains exactly g1 variables with coefficients not divisible by p.

(iii) go has the form

2180 k 4 kS k
go=p" Y auzi+p Y, Biwi + Y. viag,
i

70 0
1=I5,+1 Iy+1
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where 5180+1’ .. "518’715)*1’ ooy Ymeo aTe not divisible by p, and

S mo — qo
m0+m1—Ié—E21802 q.

Furthermore, 13, > Igu forallO<pu<p-1.
Proof. See [14, Lemma 10]. O

It follows from the first property that Iglax = Ig =mg — qo- The second property shows that
either I& =mj—q Or I; =my — ¢1 and, therefore, either the colour 0 or the colour p has the
most variables at level 1. Note that it follows from the third property that

0 1_5_40 I(()]
Io+q0+m1—I0—E21002_

and, thus, that

S
1§ - Iy > E—qo—(ml—fg). (2.2.2)

As every p-normalised pair is p-equivalent to a p-normalised pair possessing the properties of the
previous lemma, it suffices to prove the existence of a non-singular solutions for p-normalised
pairs with these properties.

By using only the variables at level 0 it was proved by Briidern and Godinho [8, Section 4]
that a pair f, g for which qq is large has a non-singular solution as displayed in the following.

They said that a colour v is zero-representing if there is a subset £ of variables at level 0
of colour v for some 0 < v < p, which is a contraction to a variable at level at least . The
following Lemma is an immediate result from this definition.

Lemma 6. If a pair f,g as in (2.1.1)) has two colours that are zero-representing, then there
exists a non-singular solution of (2.1.6)).

Proof. See [8, Lemma 4.1]. O

Using a theorem of Olson [35], they then provided a lower bound of the amount of variables
at level 0 of colour v which are required in order to ensure that v is zero-representing.

Lemma 7. If I,(,) > p7 +p7 L — 1, then the colour v is zero-representing.

Proof. See [8, Lemma 4.2]. O

Using these two lemmata and the theorem of Olson [35] again, they concluded the following
statement.

Lemma 8. If a pair f,g as in (2.1.1) has qo > 2p” -1, then there exists a non-singular solution

of [Z13).
Proof. See [8, Lemma 4.4] O

Therefore, it suffices to focus on p-normalised forms f, g that fulfil the properties of Lemma[5]
and have gg < 2p7 - 2.
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2.3 Combinatorial Results

This section contains a collection of lemmata with combinatorial results on congruences
modulo p and p? for primes p, which is later convenient for finding contraction in certain sets.

Lemma 9. Let n > ggT (k,p-1) and c1,...,c, be any integers coprime to p. Then, the
congruence

clxlf+---+cnx’fl50 mod p
has a solution with x1 # 0 mod p.
Proof. See [12, Lemma 1]. O

Lemma 10. Let o €Z for 1<i<m and 1< j<s with s>np-n+1. Then the equation

s a1j
Zej :1=0 modp
Jj=1 aTL]

has a solution with €; € {0,1} for 1< j<s and some ¢ # 0.
Proof. This is the special case G = (Z/pZ)" of the theorem of Olson [35]. O

Lemma 11. Let s >3p~-2 and a;,bj € Z for 1 < j <s. Then there exists a non-empty subset
Jc{1,2,...,s} with [J|<p and ¥jeyaj =¥ ey bj =0 mod p.

Proof. See [36, Lemma 1.1]. O

Lemma 12. Let d; € Z\pZ for 1 < j < 3p—2. Then there exists a non-empty subset
Jc{1,-,3p—-2} with |J| <p,

ZdjEO mod p and Zdj$0 mod p°.
jeJ JedJ

Proof. See [21, Lemma 3.7]. O

Lemma 13. Let dj € Z\SZ for 1< j<9. Then there exists a non-empty subset J c {1,---,9}
with |J] <5,

ZdjEO mod 5 and Zdj;éO mod 25.
jeJ jeJ

Proof. See [20, Proposition 3.1]. O

2.4 Strategy

This section contains a general description of the remainder of the proof, for which further
notation is introduced. Assume for the remainder of this chapter that 7 > 1 is an integer, p > 5
a prime and k = p” (p—1). This is not be repeated in the following but nonetheless assumed
in all following lemmata of this chapter.
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Definition 8. A p-normalised pair of diagonal forms f,g as in (2.1.1)) is called a proper
p-normalised pair if s >2k*>+1, go < 2p"*! — 2 and it satisfies the properties of Lemma

The restrictions on k, p and 7 show that v = 7 + 1. Therefore, it follows from Lemmata [2]
and [8] that it suffices to prove for every proper p-normalised pair f,g that the equations
f =9 =0 have a non-trivial p-adic solution.

The bound s > 2k? + 1 and Lemma [3| show that a proper p-normalised pair has the lower
bounds

mo -+ +my > (2 +2)pT = (25 +2)pT +1,
m0+"'+mj—l -i-q‘7 > (2j+1)p7+1—(2j+1)p7—+1

for j € {0,...,k -1} and furthermore, Lemma [5| provides
1015y >2p™ = 2p" —qo - (ma - 1) . (2.4.1)

To find a non-trivial p-adic solution for a proper p-normalised pair, it suffices, due to Lemma [4]
to show that a non-singular solution exists. Using contractions as described in Section [2.2]
this can be done by showing that one can construct a primary variable at level 7+ 1.

In the following there are two different strategies to construct a primary variable at level at
least T+ 1. For the first, one contracts the variables at level 0 to primary variables at level at
least 1. Using contractions recursively, one obtains primary variables at higher levels, until
one eventually reaches at least level 7+ 1.

The second strategy is used if Ig >p ™14+ p” —1. By Lemma [7| with « = 7 + 1, it follows that
the colour 0 is zero-representing. In this case it suffices to have a contraction to a variable at
level at least 7+ 1, which can be traced back to at least one variable at level 0 of a different
colour than 0. If such a variable can also be traced back to a variable at level 0 of colour 0,
the variable is already primary. Else, there is a contraction to another variable at level at
least 7+ 1, using only the variables at level 0 of colour 0. Setting both of these variables 1 and
everything else zero proves that there is a non-singular solution of f =g =0.

Definition 9. A variable which is either a variable at level 0 of a different colour than 0 or
can be traced back to one is called colourful.

Thus, if 18 >p ™t 4+ p™ — 1, the goal is to create a colourful variable at level at least 7 + 1.
The gain of this second strategy are the variables at level 0 of colour 0. To contract primary
variables at level at least 1, one usually uses the variables at level 0. If the goal is only to
contract colourful variables at level at least 1, it suffices to use the gg variables at level 0 which
are colourful. Then, the variables at level 0 of colour 0 can be used to create variables at a
higher level, to help contracting the colourful variables to colourful variables at an even higher
level, until one eventually contracts them to a colourful variable at level at least 7+ 1. This
works because one encounters one of the following two scenarios. Either the colourful variable
at level at least 7 + 1 can be traced back to a variable at level 0 of colour 0. Then one has
used one of those variables, which were created using the variables at level 0 of colour 0, some
way along the way, and the colourful variable at level at least 7 + 1 is also primary. If on the
other hand, the colourful variable at level at least 7+ 1 cannot be traced back to a variable at
level 0 of colour 0, those helpful variables were not needed, to create a colourful variable at
level at least 7+ 1. Hence, one can create a colourful variable at level at least 7+ 1, without
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using any of the variables at level 0 of colour 0, which still enables one to create a variable at
level at least 7+ 1, using only those.

The process of creating a colourful or primary variable at level at least 7+ 1 follows the
same pattern. If one has a colourful or primary variable at level at least [, either this variable
is already at level at least [ + 1, or one tries to find a contraction to a variable at level at least
[ + 1, which contains the colourful or primary variable and thus ensures that the resulting
variable at level [ + 1 is colourful or primary, as well. To find such a contraction, one needs
to guarantee that there are other variables at the same level with certain properties. Thus,
one distinguishes between the colourful and primary variables, for which one only needs to
know a lower bound of their level, and the remaining variables, which are useful to contract
colourful or primary variables to colourful and primary variables at a higher level. For them it
is important to know the precise level they are at. This is considered by the following notation.

A primary variable at level at least [ of colour nuance (v, i) is denoted by Pll,“, whereas a
colourful variable which otherwise has the same properties is denoted by Cll,u. The notation
Ell,u is used to describe a variable at the exact level [ of colour nuance (v, u). Note that for
S e {C, P} a variable of type S,lj# can either be of type Sf,;l or of type Ell,#, but not both. It is
said throughout the proof that a set of variables contracts to a variable with certain properties,
if one the following cases occur. Either one of the variables in the set is already a variable
with the desired properties, or the set of indices of these variables contains a contraction to a
variable with these properties. This helps to minimise the amount of cases in which one has
to distinguish between an Sll,u variables being of type Sl;l“} or Elyu for S € {C, P}. Sometimes
one only wants to establish the level and the colour of one variable. Then, this is denoted by
Pll,, CL or Ely If even the colour is of no importance, such a variable is said to be of type P,
C!' or E'. In some cases, one has to denote that a variable of type E' is not of colour v, or
that a variable of type E! is not of colour nuance (v, x). This is denoted by the bar over the
related index in E,l; and E,l,ﬂ, respectively.

It turns out that the number of C' and P! variables one can contract the E? variables to
is at least partly dependent on the parameter ¢g. Therefore, it is useful to define a further
parameter r =1 (f, g) for a pair f, g which restricts the area for gy to

p T <qo<p T+ (r+1)p" - 1. (2.4.2)
For a proper p-normalised pair f,g it follows that » = r(f,g) € {-1,0,1,...,p -1} due to
pT+1 _pT +1< Qo < 2p7'+1 —92.
2.5 Contraction Related Auxiliaries

This section is a compilation of settings in which sets of variables contract to variables at a
higher level.
2.5.1 Contracting One Specific Variable

The lemmata in this subsection describe situations in which one contracts sets of variables to
one variable with specific properties.

Lemma 14. Let % be a set of indices of E' variables. If |.#|>2p -1 and q (') > p, then
J contains a contraction J to a variable at level at least | + 1, such that J contains variables
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of at least two different colours.
Proof. This is a restatement of [14, Lemma 3]. O
Lemma 15. Let S € {C,P}. A set of 2p— 1 variables of type S' contracts to an S variable.

Proof. Either one of the S' variables is already a variable of type S“*! or Lemma [10| can be
used with n = 2 to show that the set of indices of the 2p — 1 variables of type S’ contains a
contraction to a variable at level at least [ + 1 which can be traced back to at least one of the
S! variables. Therefore, it is an S**! variable. O

Lemma 16. Let S € {C, P} and let there be 3p—2 variables of type S'. Then one can contract
them to a variable of type S, using at most p of them.

Proof. Either one of the S* variables is already a variable of type S**! or, due to Lemma one
can contract the S! variables to a variable at level at least [ + 1 using at most p of them. This
variable can be traced back to at least one of the S* variables, thus it is an S™*! variable. [

Lemma 17. Let there be 3p — 2 variables of type Ell, for p>5 and 2p — 1 variables of type E,lj
for p="5. Then one can contract at most p of these variables to a variable of type E'*1.

Proof. For p >5 see [21, Lemma 3.10] and for p = 5 see [20, Lemma 3.8]. O

Lemma 18. Let there be 3p — 2 variables of type E,l//L for p>5 or 2p—-1 variables for p=5.
Then one can contract at most p variables to a variable of type E,lfl.

Proof. Let JZ be the set of indices of these variables. Let ¢; be the corresponding integer of
the variable ;. Due to Lemma [12] for p > 5 and Lemma [I3] for p = 5, there is a non-empty
subset J c £ with |J| < p, such that ¥;.; c; =0 mod p while ¥ ; c; # 0 mod p? and it follows
that

Z (C:LJ) = Z cj (e, +pe”) = (e, + pe”) Z ¢; #0 mod P’

jeJ \7J jeJ jed

while ¢y c; =0mod p. As p|e”, this leaves

> (%j) =e, Y ¢j=pce, mod p?

jeJ \7J jeJ

for some ¢ not congruent to 0 modulo p. Hence, by setting z; = 1 for all ¢ € J, one can see that
J is a contraction of at most p variables to a variable of type EL. O

l
V2

Lemma 19. Let there be p—1 variables of type Ellm1 and one of type E,, . with p1 # pua. Then

one can contract them to an EL variable.

Proof. Define 7! for an integer x € Z\pZ as the element in {1,...,p — 1} which solves
z-2z~! =1 mod p.

Let Z be the set of indices of those p variables and ¢; be the corresponding integer for
i e # . Let x;, be the E. _ variable. Due to Lemma |§| there is a solution of

v

Z ciyf =tp mod p?
e X
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for some ¢t € {1,...,p} with y;, # 0 mod p. Consequently, one has yfo =1 mod p because p—1 | k
and it follows that

aA
Z (I;Z) yf = Z ¢ (ey +p1e”) yf + ¢ (€y + poe”) Z/lko = tpe, + cipe” (u2 —p1)  mod p2,
4 € \{io}

which is divisible by p because e” is. For v =0 one has
v 1 0
tpe, +cige” (pa — p1) Ep(t (0) + ¢ (1) (p2 = Ml))

ter! (o —pa) ™"
Ep(Cio (Nz—m)(czo (le ) )) mod p?

because p divides neither ¢;, nor po — 1. It follows that the resulting variable lies at level [ +1
and is of colour v/ # 0 with v/ = tc;.' (2 - 1) mod p. For v # 0 one gets

v 1
tpe, + cipe” (2 —p1) =p (75 (11/) + ¢ (0) (p2 - Ml)) mod p?

which is for ¢ = 0 mod p congruent to

p (Cio (p2 = p1) ((1)))
o)

Again because p divides neither c¢;, nor po — p11, one obtains a variable at level [ + 1, which is
for ¢ =0 mod p of colour 0 and for ¢ # 0 mod p of colour v/ for v' = v+t 1¢;, (2 — p1) mod p
with v/ # v. O

and else congruent to

Lemma 20. Let S ¢ {C,P} and 0<m <p-1. Let there be p—m — 1 variables of type E', and
m+1 of type S'. Then they contract to a variable of type S

Proof. Either one of the S!, variables is already a S.*! variable, or one can assume that they
are all of type Ell, as well. The cases [ > 0 can be reduced to the case [ = 0 by working with the

level coefficient vector (ZL) instead of the coefficient vector (§'). See [20, Lemma 3.7] for the

case [ = 0. O]

Lemma 21. Let ¢ be a set of indices of variables of type Ell, with || > 4p - 3 and either

for all i € 72 the corresponding integer c; is congruent to an element in the set {1,2, cee 7%1}
modulo p or all c; are congruent to elements in the set {7%1, ce,p- 1}. Then € contains a
contraction & to a variable of type EL, with || < 2p - 2.

Proof. For all i € J, let (v,u;) be the colour nuance of the variable z; and let d; €
{1,2,...,p—1} and f; € {0,1,...,p—1} be such that as ¢; = d; + pf;.

For the proof one can assume that |77°| = 4p— 3. If this is not the case, one can take a subset
of 7 to obtain the desired result. The first part proves the weaker claim that .57 contains a

19



subset J£ containing at most 2p variables such that

d; a 2
=0 mod and =" | =dpe, mod p~,
i D (IR

for some d £ 0 mod p. By Lemma [10] the set .7 contains a non-empty subset J such that

d;
>[40 modp. (2.5.1)
ied Ji@

This leads to

Z (%) = Z ci (e, +pie”) = Z (d; + fip) (e, + pni€”)

ieJ \ 7t ieJ ieJ
=Y die, + Y dipie” + ) fipe, + Y fippie”
ieJ ieJ ieJ ieJ
=e, Z d; mod p?,
ieJ

where the last equivalence holds due to p | e” and the second and third entry in (2.5.1). The
first entry shows that this is congruent to 0 modulo p. As J is a non-empty subset of 57, it
follows from the fourth entry that |.J| € {p, 2p,3p}. If |J| = 3p, take a subset J c J containing
3p — 2 elements. By Lemma |10] with n = 3, there is a subset J ¢ J with

d;
5[ dipi| =0 mod .
ied fz

and, hence,
> i =e, » d; mod p?
s bz l/A , i ;
ieJ i€

as before, which again is congruent to 0 modulo p. As J = J U (J \j ), it follows that

d;
Z dip; | =0 mod p,
ieJ\J f2

and, therefore,

2 (%)56” > di mod p’,

jeJ\J \ ie\J

which is congruent to 0 modulo p as well. Furthermore, both sets J and J \j are non-empty,
and the smallest of them has at most % < 2p elements. It follows that in every case there is a
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non-empty set £ c ¢ containing at most 2p elements, such that

Z(%) =e, . d; mod P2, and Z}(
v i€

i€ i€

d;
=0 mod p.
diui) P
Assume now for such a set J# that all corresponding integers ¢; are congruent to elements in
the set {1, 2,..., ’%1} modulo p. It follows that d; lies in the same set for all i € # . Hence, it
can be deduced from

-1
1< > d;< ZPQ <p(p-1),

et e

that ¥, d; # 0 mod p? and, therefore,
> (%Z) = dpe, mod p?
et \7

for some d # 0 mod p. This proves the weaker claim if all ¢; are modulo p congruent to an
element in the set {1,..., ’%1} Now let all ¢; be congruent to elements in the set {1%1, N 1}.
It follows that

(:%)E(p2‘00(6v+ﬂﬂf)E(p—di+p(p—f%—1ﬁ(eu+uﬁf) mod p?

and that the corresponding integers p —d; + p (p — f; — 1) lie modulo p in {1, 2,..., 1%1}, again.
Using the obtained results, there is a subset %" c 7 with || < 2p and

> (_%j) = dpe, mod p?
jeor \7YJ

for some d # 0 mod p and, as (g”) lies in the same set .Z,,, as (:‘ZZ), one further has

p—d;j \_
=0 dp.
j§(<p—dj>uj) mod p

It follows that
Z (C}j) =— Z (_C}j) = —dpe, mod p?
—~ \b; —~ \-b;
jex J jex J

for some d # 0 mod p and it further holds that

d;

=0 mod p.
jor (djﬂj)

This completes the proof for the weaker claim. Now let J#" c . be a subset with || < 2p,

d; \ _ i\ )
igg(dim):O mod p and i;/(gi)_pde,, mod p

21



for some d # 0 mod p. Ass~uming that || > 2p—1, there is, according to Lemma [10| with n = 2,
a subset . c % with |.Z|<2p-1 and

D (d‘?i');o mod p.

ied it

It follows that

> (%) =e, ), di+pe, ), fi mod p’,

jed \ 14 et

which is congruent to 0 modulo p, but not necessarily incongruent to 0 modulo p?. As

D (di )50 mod p

ieA\A difti

holds as well, one can deduce that

> (%i)zeu > di+pe, Y fi modp

et \A ‘ e \H i€ \H

which is again congruent to 0 modulo p. For at least one of those sets, either & or ¢ \%; ,
the sum is not congruent to 0 modulo p? as the sum over all i € % is not, and, therefore, it is
impossible for both subsums to be congruent to 0 modulo p?. The set for which this sum is
incongruent to 0 modulo p? is a contraction to a variable of type Ellfl.

Both subsets are non-empty and, hence, as all d; are incongruent to 0 modulo p, they contain
at least 2 elements. Thus, each one has a most 2p — 2 elements, which proves the claim. [J

Lemma 22. Let S € {C,P} and 0 <m <p—1. Let there be p +m variables of type S' and
further p—m — 1 variables of type Ely Then one can contract them to an S variable.

Proof. If one of the S* variables is already an S'*! variable, the claim is fulfilled. Thus, one
can assume that the S' variables are E' variables as well. If there are p variables of the same
colour 1, then at least one of them is an S variables, because there are at most p — 1 variables
which are not. Hence, Lemma [20{ shows that one can contract them to an S™*! variable.
Else, there are at most p — 1 variables of the same colour. Let J# be the set of indices of
all 2p — 1 variables. Then, one has Ijax () < p -1, and thus, ¢ () > p. By Lemma
the set J£ contains a contraction to to a variable at level at least [ + 1, using at least two
different colours. One can trace that variable back to at least one of the S variables, because
the variables which are not of type S! are all of the same colour, which proves the claim. O

Lemma 23. Let S € {C,P} and 0 <m <p-1. Let there be p—1 variables of type E',, p—m—1
variables of type EL and m + 1 variables of type S'. Then one can contract them to an S'*!
variable.

Proof. If one of the variable of type S' is already an S'*! variable, the claim is fulfilled, thus
one can assume that these variables are of type E' as well. Furthermore, one can assume that
none of the S* variables is of type Sll,, because else, Lemma can be use to contract the p—1
variables of type E,lj together with the Sll, variable to an S™*! variable.
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Therefore, one can assume that one has p—1 variables of type Ell, and p variables of type Elﬁ
from which at least one is an S* variable. For convenience name the Elu variables z1,..., 7)1
and the Ell7 variables xp, ..., x2p-1, where 9,1 is an St variable. Furthermore, let ¢; be the
corresponding integer of x; for 1 <4 < 2p—1 and v; # v the colour of the variables x; for
p<i<2p-1. These 2p — 1 variables contract to an S™*! variable if there is a solution of

p-1 2p-1
Z cz-el,aci»C + Z ciey; f =0 mod p,
i=1 i=p

with x9,-1 # 0 mod p. The existence of such a solution follows from the proof of Theorem 2 by
Olson and Mann [32], but not from the statement of the theorem, from which one can only
conclude the existence of a solution, but not that one has one with x2,-1 # 0 mod p. Thus, for
the convenience of the reader, the following contains a proof that such a solution exists. In
essence the proof uses the same methods as the proof by Olson and Mann, but is tailored for
this exact case.

By applying the linear transformation induced by

b2

if v # 0, one can transform the case v # 0 to the case v =0, because

1 1
(1 _OV) e, =veg and (1 _OV) e, €%y

for some o # v. All that remains is to solve a system of the kind
p-1 2p-1
i\ k Bi\ K _
; ( OZ)%‘ + ; (’yj)xl =0 mod p (2.5.2)
= =p

where p + a; for 1 <i<p-1and p +; for p<i<2p-1 such that p + x9,-1. By Lemma@
there is a solution y; with p <4 <2p -1 of the equation

2p-1 .
>, iy =0 mod p

i=p
with y2p-1 # 0 mod p. This reduces the system (2.5.2]) by setting x; = y; for p<i<2p-1 to
p—1
> ¥ +C=0 modp (2.5.3)

i=1

for C = Z?f ; ! ,Biyf. Now consider an additional variable yq. If p 4 yo then yg = 1 mod p, hence,
applying Lemma [J] again, this time to the system

p-1

> iz + Oyl =0 mod p

i=1

provides a solution y; with p 4 yo. It follows that z; = y; for 1 <7 <p—1 is also a solution for
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(2.5.3) and, therefore, one has a solution of (2.5.2)) given by z; = y; with 1 < < 2p -1 with
D + w2p-1. This completes the proof. ]

2.5.2 Contracting Several Variables

The lemmata in this section show how to contract a set of variables at level at least [ to
another set of variables at level at least [ + 1.

Lemma 24. Let 5 c {1,...,mp} be a subset of indices of variables at level 0. Then

COntaZ"fLS at 1041815
2p ’ p

pairwise disjoint contractions to variables of type P!.

Proof. This is the special case § = ged (k,p—1) = p—1 of a result from Lemmata 1 and 3
of [I4] which is proved in the second paragraph of Section 6 of that paper. O

Lemma 25. Let S € {C, P} and let there be = variables of type S'. They contract to [%3] -3

variables of type S™*1, where each contraction contains at most p variables, leaving at least
min{2p - 2,z} variables of type S' unused.

Proof. For x < 3p— 3 the statement is trivial. Therefore, let = > 3p — 2. Assume first that all =
variables are also of tyEl. Then there is a contraction of at most p variables to an S*!

z+3

variable due to Lemma Hence, after doing this [T] — 4 times, there are still at least

x—([x+3]—4)p2$—(x+3+p—1—4p)=3p—2
p

unused S’ variables. Hence, one can apply Lemma once more, to obtain [%3]—3 contractions,

leaving at least 2p — 2 variables unused. Thus, in this case, the claim holds.
Now assume that of the z variables of type S' there are y variables already of type S
while the remaining x — y variables are of type E'. One has

yZ[xTTB]—3+2p—2—(:U—y)

because of x> 3p—2. If 2 —y < 2p — 2, one can divide the y variables of type S™*! in one set

containing [%3] -3 and one set containing 2p — 2 — (z —y) of them. The variables in the

second set together with the remaining x — y variables of type S are at least 2p — 2 variables of
type S!, while the first set contains the [%3] — 3 variables of type S*!. Thus, one can assume

that  —y > 2p -1 and use the first part of this proof. The set of the z —y variables of type E'

contains at least
r—y+3
=]
p
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contractions to variables of type S™!, leaving at least 2p — 2 variables of type S’ unused.
Together with the y variables of type S™*! this gives at least

T-y+3 C3ay- a:——y-i-3+y 5. z+y(p-1)+3 _3s r+3 3
p p

p p

to variable of type S'*1. O

Lemma 26. Let there be x variables of type Ell, They contract to [ﬁ] — 4 wvariables of type

EX leaving at least min{6p — 9,z} variables of type E! unused.

Proof. For x < 8p—7 the statement is trivial. If z > 8p—7, one can divide the x variables in two
sets. Those for which the corresponding integer ¢; is congruent to one element in {1,..., 1%1

modulo p, and the remaining variables. As long as there are at least 8p — 7 variables left, at
least one of these sets contains at least 4p — 3 variables, which indicates that one can contract
at most 2p — 2 of them to a variable of type E/*! due to Lemma Doing this [21%2] -5

times leaves at least

m—(2p-2)([2;—_2]—5)Zx—x-2p+3+10p—10=8p—7

unused variables, hence, there is another contraction, leaving at least 6p—9 variables unused. [J

Lemma 27. A set of x > 3p® - 3p+ 1 variables of type Ell, contracts to [%] -2p+ 2%3 variables
of type El;l forp>5. A set of x> 2p? — 2p + 1 variables of type Ely contracts to [%] -2p+3

variables of type Ellf'1 for p=>5. In both cases, this leaves at least 6p — 9 of the E,l/ vartables
unused.

Proof. A set of at least (3p—3)p + 1 variables of type E! contains at least 3p — 2 variables
which are of the same colour nuance. By Lemma [I8 one can contract at most p variables
of them to a variable of type Ellfl. Repeating this as often as possible provides [%] -3p+3

variables of type E,lfl and leaves at least

x—p([§1—3p+3)2x—(:c+p—1—3p2+3p)=3p2—4p+1
p

unused E!, variables. For p = 5 this can be done as long as there are at least (2p—2)p + 1
variables left. Therefore, one can do it [%] —2p + 2 times, leaving at least
x—p([£]—2p+2) 2x—(:c+p—1—2p2+2p) =2p* - 3p+1
p

unused variables. Using Lemma [26| provides another p + ’%1 — 4 variables of type EL! for p> 5
and one for p = 5, while leaving at least 6p — 9 unused variables. All in all, one obtains

-1 _
[E]—3p+3+p+p —4=[§]—2p+]9—3
P 2 p 2
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variables of type EL for p > 5 and
[§]—2p+2+1: [§]—2p+3
p p
for p = 5. O

Lemma 28. Let S € {C, P} and x, y and z be non-negative integers with y+z > (2-m)p—2
for some m € {0,1,2} and x —m > 0. Let there be (p—1)y variables of type E., (p-1)y
variables of type E,l7 and px +y+ z variables of type S'. Then one can contract them to x+y—m
variables of type S without using z + mp of the variables of type S'.

Proof. Using Lemma [16] to contract p of the variables of type S! to an S™*! variable can be
done x — m times. This leaves y + z + mp > 2p — 2 variables of type S’. Then one can construct
y sets, each consisting of one S* variable, p — 1 variables of type E,l, and p— 1 variables of type
Ell7 By Lemma each of this sets contains a contraction to an S™*! variable, giving a total
of = +y —m variables of type S"*! as claimed, without using z + mp variables of type S!. O

Lemma 29. Let S € {C, P} and z be a non-negative integer. Let # be a set of E' variables
with || > (2p-2)z+p? - 3p+1 and q(H) > (p— 1)z and let there be further x variables of
type S'. Then one can contract them to = variables of type S™*1.

Proof. The first part of the proof shows via induction on z that the set JZ contains z distinct
sets S; with |S;|=2p—-2and ¢(S;)=p—-1forall 1 <i<uz.

For x = 0 the statement is true. It suffices to show for x > 1 that J# contains a set 77
with || = 2p — 2 and q(J#) = p - 1 such that | #\J#| > (x - 1) (2p-2) +p*> - 3p+ 1 and
q(A\A)>(x-1)(p-1). If such a set S exists, the induction hypothesis ensures that one
can find further x — 1 distinct sets in 2\

Let |7 =z (2p - 2)+p?*-3p+1+aand ¢ (#) =z (p - 1)+ with o, 8 € Ng. As z > 1 it follows
that (£ )2p-1and |#|2p*-p-1=(p+1)(p-2)+1, hence, Inax (H) =1, (H)2p-1
for some 0 < v < p. Thus, one can take 7 as a set containing p — 1 variables of type Ell/ and
p — 1 variables of type E. from which it follows that |.7#] = 2p -2, ¢ () = p -1 and

| NA| = | A |-2p+2> (x-1) (2p-2) +p° - 3p + 1.
For 8 > p—1 one has the trivial bound
QAN 2 q(H)=2(p-1)= (2= 1) (p-1) + - (p-1) > (& -1) (p-1),
whereas for 8 < p—2 it follows that

Imax () = | |- q(H) =z (p-1)+B+a+p’-3p+1-28
>q(H)+p? -bp+5>q(H)

and thus
q(AN\H)=q(H)-(p-1)2(z-1)(p-1).

It follows that the set .# contains x distinct sets S; with |S;| =2p -2 and ¢ (S;) =p-1.
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For each set S; there is a v; such that Inax (5i) = 1, (Si) =p—1. For i e {1,...,x} take the
set S; and one variable of type S', which gives p — 1 variables of type E,lji, p — 1 variables of
type E. and one S! variable. Such a set contains a contraction to an S'*! variable due to
Lemma Thus, one obtains z variables of type S+, O

Lemma 30. Let S € {C,P} and x, y and z be non-negative integers with y+z > (2-m)p—2
for some m € {0,1,2} and x —m >0. Let there be (2p —2)y + p*> — 3p + 1 variables of type E'
from which at least (p— 1)y variables are of type Ell—, for any 0 <v < p. Furthermore, let there
be px +y + z variables of type S'. Then one can contract them to x +vy—m variables of type
S without using z +mp of the variables of type S*.

Proof. Using Lemma [16] to contract p of the variables of type S' to an S™*! variable can be
done x —m times. This leaves y + z + mp > 2p — 2 variables of type S'. One can contract y
of them together with the variables of type E' to y variables of type S due to Lemma
This gives a total of &+ —m variables of type S'*! as claimed, without using z + mp variables
of type S’. 0

Lemma 31. Let x be a non-negative integer. Let there be at least px + p® — 3p + 3 variables of
type E', from which at least x are of type Ell,u for some v and at least x are of type Ell,ﬁ. Then
one can contract px of them to x variables of type ELL.

l

v the next

Proof. Divide the E! variables in three sets. One contains x variables of type F
contains x variables of type Ell,ﬁ and the last contains the remaining variables.

The statement is trivial for x = 0, thus one can assume that z > 1. Assume now that the
last set contains z > (p—2)p + 1 = p? — 2p + 1 variables, and the first two both contain y > 1
variables. Then there is an 7 such that the last set contains at least p — 1 variables of type
E,lj77 and one can choose one variable in one of the first two sets, which is of type E,l/ﬁ. These p
variables contract to an EL! variable due to Lemma Then, one can take one variable in
the untouched set and put it in the last set, such that the first two sets both contain y — 1
variables and the last one contains z — p + 2 variables.

Starting with z > (p—2)z + p? - 3p+ 3 and y = x, after following this process = — 1 times,
one still has at least p? — 2p + 1 variables in the last set left, while the other two each contain
one variable. It follows that one can contract one more variable of type EL! as described
above, giving a total of = variables of type ELL. O

2.5.3 Inductive Contractions

This subsection uses induction to contract sets of variables at some level to variables more
than one level higher.

Lemma 32. Let S € {C,P} and i,j € Ng withi < j <7 as well as m € Z with m > —1. Let there
be pT T 4 mp™ -2 variables of type S*. Then one can contract them to p™ 7+t + mp™7 -2
variables of type S7 and at least 2p — 2 variables of type S' for all l € {i,...,5-1}.

Proof. For i = j the statement is trivial, thus, the cases i < j < 7 remain. Assume for an
le{i,...,j—1} that there are p”"*! + mp™~! — 2 variables of type S' and 2p — 2 variables of
type S™ for all n € {i,...,l —1}. Lemma [25| shows that these variables can be contracted to

pT—l+l + mpT—l +1

p

_3:p7‘*l+mp7'*l*1_2
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variables of type S**1. This leaves at least 2p— 2 variables of type S! unused. The claim follows
via induction. O

Lemma 33. Let S € {C,P} and i,j € Ny with i < j <7 as well as m € Z with m > -1. Let
there be p" =1 + mp™=" wariables of type S and for alll e {i,...,j—1} let there be an v, and
2p — 2 wvariables of type Ell,l. Then one can contract them to p” I+t + mp™™7 wariables of type
S7.

Proof. For i = j the statement is trivial, thus, the cases ¢ < j < 7 remain. Assume for an
le{i,...,j—1} there are p™'*! + mp™~! variables of type S’ and 2p — 2 variables of type E,ljl.
Lemma [25] shows that there exist

T—l+1

P + mpT_l +3
p

contractions to variables S"*!, each of them containing at most p variables. Therefore, there
are even 2p variables of type S' remaining. Together with the 2p — 2 variables of type El,l,
they can be contracted to another two S**! variables, using Lemma [2 E twice. This gives a
total of p™~! + mp™ I~ variables of type S'*!. The claim follows via induction. O
Lemma 34. Let m <p—1 be an integer and let there be a j € {0,1,...,7 -1} such that there

are

i+l B 5 Pp-1 & gy -1 & o
2p +(4-2m)p TN Z p'+(2m-1)p +3 Z p'—=2p-2,
i=1 i=0

variables of type EJ. Then one can contract them to p—m—1 variables of type E] and 2p —2
variables of type E!, for allie{j,j+1,...,7—1}.

Proof. If j <7 -2, assume that for some [ € {j,j7+1....,7 -2} one can contract the variables
to 2p" 4 (4-2m)pT ! - B2 1ZT -1 pi+(2m—-1)p™" - 1+3ZT =2 pt — 2p — 2 variables of type
E! and 2p -2 variables of type E¢ for allie {j,j+1,...,1-1}. Usmg Lemma [27] the variables
of type Ell, can be contracted to

"2p7l+1+(4_2m)pﬂ'l Pllel Z+(2m 1)p711+327l2 i 2p+1] 5 p-3
P

p
P 1 P-17E? o2 e p-
=2p" "+ (4-2m)p 5 >, '+ (2m-1)p +3 ) p-1-2p+
i=0 =0
_ 171 T=(+1)-2
_ 2p7——(l+1)+1 n (4 _ Qm)pT—(l+1) _ pT Zl p " (2m 1)]97 (1+1)-1 +3 Z pz —2p-2
: ~

variables of type E,lfl, while leaving at least 6p—9 > 2p -2 variables of type E,l/ unused. Hence,
by induction, one can contract the E}, variables to

p-1 T=(7-1)-1 T-(r-1)-2
2p7’—(7’—1)+1 i (4 _ 2m) pT—(T—l) _ T Z pz 4 (2TTL _ 1)p7'—(7'—1)—1 +3 Z pz _ 2p —_9
i=1 =0

=20 +(2-2m)p+2m -3

28



variables of type E7~! and 2p — 2 variables of type E! for all i € {j,j +1,...,7 —2}. This
reduced the cases j < 7—2 to the case j = 7—1. For j =7 -1, one can contract the variables of
type E771 to

2p2 +(2-2m)p+2m -3
2p -2

-4=p-m-1

variables of type E] with Lemma while leaving at least 6p — 9 > 2p — 2 variables of type
E7~!. This proves the claim. O

Lemma 35. Let p=5 and m <p—1 be an integer. Let there be

. . e
3pT I —mp™ T =3pT T - N pr-2p+2
i=0

variables of type E! for some j €{0,1,...,7}. Then one can contract them to p—m~—1 variables
of type E] and 2p — 2 variables of type E}, for all i€ {j,j+1,...,7—=1}.

Proof. One can assume that j € {0,1,...,7 — 1}, because the claim is trivial for j = 7.

For j <7 -2, assume that for some [ € {j,j + 1....,7 — 2} one can contract the variables to
3pT L —mpTt = 3pTt - Z;_Ol_l p' = 2p + 2 variables of type E! and 2p — 2 variables of type
E¢ for allie{j,j+1,...,1-1}. Using Lemma 27| for p = 5, the variables of type Ell, can be
contracted to

3p7'—l+1 _ mpT—l _ 3p7'—l _ Zz’;olfl pz —2p+2
p

-2p+3

T=1-2
=3p  —mpT T _gpT Yop-2+1-2p+3
i=0

T—(l+1)-1
— 3p7’—(l+1)+1 _ mpT—(l+1) _ 3p7’—(l+1) _ Z p’L _ 2p +92
i=0
variables of type E,lfl, while leaving at least 6p — 9 > 2p — 2 variables of type Ell, unused. By

induction, it follows that one can contract

T—(r-1)-1
~3p (D - S op -2p+2=3p* —mp-5p+1
=0

T—(7-1)+1 _ T—(7-1)

3p mp
variables of type E7~1 and 2p — 2 variables of type EY for all i € {j,j+1,...,7 - 2}. This
reduced the cases j <7 —2 to the case j =7 - 1.

For j = 7 — 1 one has 3p%> — mp — 5p + 1 variables of type EJ. This is at least as big as
2p? = 2p + 1 for m < 2. Thus, one can use Lemma [27| for p = 5 to contract them to

"3p2—mp—5p+1

}—2p+3:3p—m—5+1—2p+3:p—m—1
p

variables of type E7 while leaving at least 2p — 2 variables of type E7 ' unused. For m = 4 the
claim follows because p—4 — 1 = 0, which leaves 3p% —4p —5p+ 1 =6p+ 1 > 2p — 2 variables of
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type E771. In the remaining case m = 3, one obtains

{3p2—3p—5p+1

~4=1=p-3-1=p-m-1
22 } P p-m

variables of type E;, with Lemma 26| while leaving at least 6p —9 > 2p — 2 variables of type
E7~! unused. O

Lemma 36. Let there be 4p™ 7 — P~ L :_1] Lpies Y I72 i _ 252 variables of type EY for some

je{0,1,...,7=1}. Then one can contmct 2p—2 varzables of type E for all i€ {j,...,7 -1},
sz’multaneously.

Proof. For j =71 the statement is trivial, thus, the cases j € {0,1,...,7~2} remain. Assume
that for some [ € {j,...,7 -2} one can contract the variables of type Fj, to 2p — 2 variables in
E for allie {j,...,1-1} and 4p™ ' - b= Lyl + 337072 pf — 2p — 2 variables of type EL.
Then they can be contracted with Lemma 27] to

"4]) pl -r_ll z+3z7—l2 % 2p 2‘| p_3
-2p+

P 2
1 T=1-2 T-1-3 P
=qp Lo Zp+3 Zp 2+1-2p+
-1 T*(l+1)71 ) T-(l+1)-2
:4p7'*(l+1)_1)_ Z p2+3 Z pl_zp_2
2 i=1 i=0
variables of type E'!, while leaving at least 6p—9 > 2p -2 variables of type E. Via induction,
one can deduce that one can contract 2p — 2 variables of type E;, for all i € {j,...,7 -2} and
4pt - = Z 1 +3 Zi_:lo p' —2p -2 =2p -2 variables of type E77L. O

2.6 Pairs of Forms with 7 =1

This section contains the proof that for all proper p-normalised pairs f,g with 7 = 1 the
equations f =g =0 have a non -trivial p-adic solution. This is primarily done by contracting a
C™1 = O? variable if IO > p? +p -1, which indicates that the colour 0 is zero-representing, and
else by contracting a P™*! = P? variable.

The following lemma exploits p-equivalence classes by transforming some pairs f, g into
p-equivalent pairs f g, for which one can contract a P? variable.

Lemma 37. Let 1 < m < p be a natural number and j € {0,...,k—-1}. Let f,g be a pair
given by with integer coefficients, T =1, q¢j > pm, mj >m(2p-1), gj+1 2 p-m and
JEARIDS p—1. Then there exists a non-trivial p-adic solution of f =g =0.

Proof. Apply x — px for all variables at level [ for all [ € {0,...,j — 1} and then multiply
both equations with p™/. This transforms the pair f,¢ into a p-equivalent pair with integer
coefficients, qo > pm, mg > m(2p-1), ¢ 2p-m and I} = I} > p-1 for some v. Using
Lemma one can contract the E° variables to m variables of type P'. The p— 1 variables of
type E! and the p—m variables of type EL can be contracted together with the P! variables to
a P? variable due to Lemma Thus, the transformed pair has a non-trivial p-adic solution,

from which it follows that the p-equivalent pair f, g has one as well. O
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Due to this lemma, one can assume in the cases ¢; > pm and m; > m(2p—1) for some
j€{0,...,k -1} that either ¢j.1 <p-m—-1or Ifng( <p-2. For a p-normalised pair, one has
mo>2p? —2p+12>(p-1)(2p—-1) and qo > p?> —p+ 1> (p—-1) p. Therefore, one can assume
that one has either ¢; =0 or I}, < p-2. The following two lemmata divides the case 7 = 1
into I}, >p-1and I}, <p-2.

ax

Lemma 38. Let f,g be a proper p-normalised pair with 7 =1 and I} = Irlnax >p—1. Then the
equations f =g =0 have a non-trivial p-adic solution.

Proof. As described above, one can assume that ¢; = 0 and thus I} = Il =m;. It follows
that

mo>3p° -3p+1—qi=3p°>—3p+1>2p%—p. (2.6.1)

Assume first that r (f,g) = > 0. Then one can use Lemma [24] to contract the E° variables
to p variables of type P! and Lemma [22| to contract the P! variables together with the El}
variables to a P2 variable. Consequently, one can assume that r = —1, which leads to

1823p2—3p+1—q0—q122p2—3p+22p2+p—1.

Hence, the colour 0 is zero-representing and it suffices to show that one can contract a C?
variable.

By Lemma [5, one knows that v € {0,p}. If v = p, one can contract 2p — 2 of the variables of
type Eg to an Eé variable, using Lemma [21] once, because 2p> - 3p+2>8p-7=2(4p-4) +1
for all p > 5. If on the other hand v =0, one has

IO
I > >2p-3>p-1,
p

due to Lemma [{ and
10 - 150> 2p* = 2p—qo— (m1 - Ig) 2 p* - 2p+ 1 > 1,

by . Hence, one can contract p — 1 variables of type Eéo and one Eg(—) variable to an Eé
variable due to Lemma

In both cases, there are still at least 2p? —3p +2 - (2p - 2) = 2p? — 5p + 4 > 2p — 2 variables
of type E8 remaining. Those contract with p? — p of the C° variables to p — 1 variables of
type C! due to Lemma All in all, one has p — 1 variables of type E!, one EL variable and
p — 1 variables of type C'. By Lemma , these can be contracted to a C? variable, which
completes the proof. O

Lemma 39. Let f,g be a proper p-normalised pair with =1 and I} = I}, <p-2. Then the
equations f =g =0 have a non-trivial p-adic solution.

Proof. By Iﬁ <IL.. <p-2forall 0<pu<p, it follows that

mi<(p-2)(p+1)=p*-p-2.

If one has ¢; > p and my > 2p — 1, one can assume, due to Lemma [37], that either ¢ < p—2 or
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max

<p-2. For g2 <p—2 it follows that
mo25p2—5p+1—p2+p+2—p+2=4p2—5p+524p2—6p+3,

while for I2,. <p -2 it follows that mo < p?> — p— 2 and thus

max —
2 2 2 _ 2 2
mo26p°—6p+1-p +p+2-p“+p+2=4p° —4p+5>4p” - 6p+ 3.

Else, one has either g1 <p—-1or my <2p-2. If 1 <p-1 it follows that my < 2p -2 as well,
because my = I+ q;. Then one obtains

mo>4p> —4dp+1-2p+2=4p? - 6p + 3.
One of these three bounds holds in any case, thus, one can assume that
mo > 4p® — 6p + 3. (2.6.2)
This lower bound for mg leads to
R=mo-qo>4p* —-6p+3-p>—(r+1)p+1=3p°> —rp-Tp+4. (2.6.3)

For r < p—2 this is at least as big as p? + p— 1 for p > 5, hence, it suffices to contract a C?
variable, whereas one has to contract a P? variable for r = p — 1. The remaining proof is
divided into three cases, based on the value of r =7 (f,g).

Caser=p-1. If mg>(2p—-1)(2p—-1) = 4p® —4p + 1, one can use Lemma [24] to contract
the E° variables to 2p — 1 variables of type P'. By Lemma it follows that one can contract
those P! variables to a P? variable. Hence, one can assume that mg < 4p? —4p and thus mq > 1.
Due to one has mq > 4p? - 6p +2 = (2p - 1) (2p — 2). Therefore, Lemma [24] shows that
one can contract the E? variables to 2p — 2 variables of type P!. Lemma [10| with n = 2 shows
that one can contract them together with one of the E' variables to a variable of a level at
least 2. This contraction cannot contain only the E' variable, thus the resulting variable has
to be a P? variable.

max <P —1—2, because else, Lemma [33| can
be used to contract p? + rp of the C¥ variables together with 2p — 2 variables of type E8 to
p +r variables of type C!. Then one can contract them together with the E! variables to a
C? variable, using Lemma It follows that that

Case 0<r<p-2. One can assume that I} = I

mi<p?—(r+1)p-r-2. (2.6.4)

If g>p-1and I2,, >p-1, one can use Lemma [17| to contract p (p—r — 1) of the variables
of type Eg to p—r — 1 variables of type E'. This is possible, because afterwards, there are
still at least

3p° —rp-Tp+d-p(p-r-1)=2p" ~6p+4>3p-2

of the Eg variables unused. Lemma [33| can be used to contract p? + rp of the CY and 2p -2
of the remaining Eg variables to p + r variables of type C'. One can assume that the C!
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variables are of type E', because else one already has a C? variable. Take the set % of the
2p — 1 variables of type E! that were contracted, from which p +r are of type C'. If there is a
p with I, (J£) > p there are at least p variables of type E/i in . As p+r of the variables
in ¢ are of type C!, it follows that there is at least one C}L variable in J#. Thus, one can
contract the E}L variables in .# with Lemma [20 to a C? variable. Else, one has ¢ (%) > p
and thus, one has transformed the pair f, g into another one with my > 2p—1 and ¢ > p. This
new pair has the same values for g2 and I2,, thus it follows from Lemma [37] that it has a
non-trivial p-adic solution. Consequently the pair f, g has one as well. Thus, one can assume
that either go <p—-2or I?, <p-2.

max —

By , it follows for ¢, < p—2 that
mo25p2—5p+1—p2+(r+1)p+r+2—p+2:4p2—5p+rp+5+r
and for 12, <p-2 that mg < p? — p—2 and, therefore,
mo26p2—6p+1—p2+(r+1)p+r+2—p2+p+2:4p2—4p+rp+5+1“.
In both cases, one obtains the lower bound
m024p2—5p+7“p+5+7“,
which leads to

Ig:mo—qg23p2—6p+6+r22p2—2rp+2r—1.

Now one can distinguish between the cases m; > 1 and m; = 0.

Case mi1 >1. One can use Lemma to contract the Eg variables to

2p? = 2rp +2r -1
2p—2

-4=p-r-2

variables of type Eé. This leaves at least 6p — 9 > 2p — 2 variables of type E8 . Hence, one
can use Lemma to contract them with p? + 7p of the C° variables to p + r variables of
type C'. A set ¢ containing the p — r — 2 variables of type E&, the p + r variables of type
C'! and one further E' variables, which exists due to m; > 1, contains a contraction to a
C? variable. If none of the C! variables is already of type C?, there is either a p such that
1, () >por q(J€) >p. If 1, () > p, then at least one of the E}L variables in 7 is a C*
variable and thus 2 contains a contraction to a C? variable due to Lemma 20l If on the
other hand ¢ () > p, then J contains a contraction to a variable at level at least 2, which
can be traced back to at least two variables of different colour at level 1, due to Lemma
The only way that such a variable is not of type C?, is that the contraction contains no C*
variable. The variables in # which are not of type C' are p —r — 2 variables of type Eé and
one E' variable. As the contracted variable can be traced back to two variables of different
colours at level 1, the E! variable has to be an E% variable. But if a subset ¢ of J# contains
this variable and additionally only variables of type Eé, then it cannot be a contraction to a
variable at level at least 2, because then one has exactly one i € # for which the second entry
b; of the level coefficient vector is not congruent to 0 modulo p. Therefore, one cannot solve
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Yjex I;jyf =0 mod p with all y; # 0 mod p. Consequently, this cannot occur, and the resulting
variable is a C? variable.

Case m; =0. This leads to the even better bound
mo > 4]02 -4p+1
and thus
I>4p* —4p+1-p> —(r+1)p+1=3p> - (5+7)p+2.

For p > 7, this is at least as big as 2p? + 2p — 2rp + 2r — 3, thus, one can use Lemma to
contract the Eg variables to p—r — 1 variables of type Eé, while leaving at least 2p—2 variables
of type E8 unused. For p =5, this is at least as big as 3p? — rp — 5p + 1, thus Lemma [35 shows
that one can contract the Eg variables to p — r — 1 variables of type Eé as well, while leaving
at least 2p — 2 variables of type E8 unused. In both cases, one can use Lemma [33|to contract
the 2p — 2 variables of type Eg with p? + rp of the C° variables to p + r variables of type C.
Then one can contract them together with the p — r — 1 variables of type E& to a C? variable
due to Lemma

Case r = -1. Note first that one has m; —I& <p*-2p=(p-2)pdueto Il <p-2, and thus
I3 - I3, 22p2—2p—q0—(m1—fé) >1,
by . If mo > 4p? — 4p, one obtains the lower bound
19 >3p* —4p+1

and, consequently, it follows that

IO
I§> 2 >3p-4>p-1.
p

Therefore, one can take p — 1 variables of type E(())o and one of type Eg(—) to contract a Eé
variable by Lemma There are at least 3p? — 5p + 1 variables of type Eg remaining, which
can be contracted to p — 1 variables of type E& using Lemma [26| for p > 7 and Lemma [27| for
p =5. This leaves at least 6p —9 > 2p — 2 variables of type E8, which can be contracted with
p? — p of the CY variables to p — 1 variables of type C'!' using Lemma Then one can use
Lemma [23| to contract the p — 1 variables of type Eé, the p — 1 variables of type C! and the
Eé variable to a C? variable. Hence, one can assume that

mo§4p2—4p—1.
It follows that mq > 2. Note that one has
I9>3p° —6p+422p-1=(2p-2)(p+1)+1 and I523p-6>p-1

due to (2.6.3)).
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Case mi — I(% =0. Due to m;j > 2, one has I& > 2. Take a set which contains p — 1 variables
of type E{, and one Eg(—) variable. This set contains a contraction to an E(—l) variable due
to Lemma Then there are at least 3p? — 7p + 4 > 2p? — 2p + 1 variables of type E8 left.
Therefore, one can use Lemma [26[ to contract them to p— 3 variables of type E&, giving a total
of p— 1, while leaving at least 6p — 9 > 2p — 2 variables of type Eg unused. Lemma [33| can be
used to contract 2p — 2 of the remaining E8 variables together with p? — p of the C° variables
to p— 1 variables of type C'. One can contract the p — 1 variables of type E{, the E% variable
and the p — 1 variables of type C! to a C? variable, due to Lemma

Case m; - I} >1. Use Lemma [26]to contract the EJ variable to p —2 variables of type E{,
while leaving at least 6p — 9 > 2p — 2 unused. Then one can take Lemma [33| to contract p? — p
of the C? variables together with 2p — 2 of the remaining E{ variables to p — 1 variables of
type C1. If I& > 1, then one can use Lemma [23[ to contract the p — 1 variables of type Eé, the
p — 1 variables of type C! and one of the Eé variables to a C? variable. Thus, one can assume
that I& =0, my —I& >2 and

mi Sp2 _2]7,

because Il . <p-2. If none of the C* variable is already of type C?, they are all E! variables.
Take a set J# containing the C! variables, two of the E% variables which exist due to mj—1I} > 2
and the p — 2 variables of type Fj. If there is a u such that I,, (J#) > p, then there is at least
one C’}L variable in .#". By Lemma [20| one can contract the variables in ¢ of colour u to a C?
variable. Else, one has g (") > p, because |#| = 2p - 1. It follows that one has transformed
the pair f, g into a pair with m; > 2p -1 and ¢; > p. The new pair either has a non-trivial
p-adic solution due to Lemma from which it would follow that f, g has one as well, or it
has g2 <p—2or I2, < p-2. As the new pair has the same parameter g and 2, as the pair
f,g, one can assume that ¢go <p-2 or Iﬁlax <p-2 holds for f,g as well. This contradicts the
p-normalisation, because then one of the inequalities

mg+m1+q2§4p2—4p—1+p2—2p+p—2:5p2—5p—3<5p2—5p+1,
and
2 2 2 ) 2
mo+mi+mo <4p° —4dp—-1+p° -2p+p°—p-2=6p°-Tp—-3<6p”—6p+1,

holds, hence, it follows that this case cannot occur.
This concludes the case r = —1 and with that the claim follows. O

This shows that for every proper p-normalised pair f,g the equations f = g = 0 have a
non-trivial p-adic solution provided that 7 = 1.

2.7 Pairs of Forms with 7> 2

This section contains the proof of the theorem for 7 > 2, which completes the proof. In general,
the proof relies on the same techniques independent on the actual value of 7, but sometimes
one has to separate the cases 7 = 2 and 7 = 3, because the proof is easier for bigger 7 and,
hence, the cases 7 € {2,3} require some extra effort.
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In order to avoid a repetition of the same argument, the following lemma points out a
situation in which one can contract a C™*! or a P7*! variable, which appears constantly in
the proof for 7 > 2.

Lemma 40. Let S € {C,P} and 0<m <p-1. Let there be p” /"1 + mp™I variables of type
S7 for some j €{0,...,7 -1} and p—m -1 variables of type E7, for some v. Furthermore, for
i€{j,j+1,...,7 =1} let there be 2p — 2 variables of type E,Z/Z for some colours v;. Then one
can contract them to a variable of type ST*1.

Proof. One can contract the variables of type S7 and type E,Z/Z forie{j,....,7—1} top+m
variables at level of type S” due to Lemma Those and the p —m — 1 variables of type E],
can be contracted to a variable of type S™*! using Lemma O

The following lemma focuses on cases, where the number of variables at level 0 is small.

Lemma 41. Let f, g be a proper p-normalised pair with T > 2 and mqo < 3p™' —4p™ =2p" L +p+3.
Then the equations f = g =0 have a non-trivial p-adic solution.

T+1 T+1

Proof. By the p-normalisation of f, g, one has gg >p™" —p” +1 and mg > 2p" " - 2p” + 1, from
which it follows that one can contract the variables at level 0 to p” —p” ! variables of type P!

due to Lemma 24] The upper bound of mg provides the bounds

T+1 T+1

mp>4p™ - dpT +1-3p " 4pT +2p7 - p-3

=p T o p_2> T+ dp"T 4 pPop-7T
T2

:(p7_1+3 Zpl—l)(Qp—2)+p2—5p—3
i=0

and

T+1 T+1

@ >3p T =3+ 1-3p 4pT +2p" - p-3

T=2
=p7+2p7‘1—p—2=(p7‘1+32p2—1)(p—1)-
=0

Therefore, there are at least ( 3y 02 p' - 1) (2p — 2) +p? —3p+1 variables of type E' from
which at least (pT_1 +3YT 2 - ) (p—1) are of type E} for all 0 < v < p. Those variables
can be contracted together with the P! variables to 2p7~! + p7=2 — 2 variables of type P? by
using Lemma with z = p™1 - 2p" 2 - 3% T 03pz ~1,y=p t+3%L 02])Z —land z=p-2.
Then Lemma [32| can be used to contract the P? variables to 2p — 1 variables of type P7, which
contract to a P™*! variable due to Lemma [15] O

For bigger myg it is helpful to divide the cases depending on the value of r(f,g). The
following three lemmata completes the proof that a for a proper p-normalised pair f,g with
7>2and r=r(f,g) >0 the equations f = g =0 have a non-trivial p-adic solution.

This is done by using different strategies depending on the size of mg. The area of the value
of mg in which one has to use a certain strategy differs between p > 7 and p = 5. This is due
to some inequalities, which do not hold if p is too small. To counter this, the lemmata that
are stronger in the case p = 5 are used, which results in the different areas.
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Lemma 42. Let f,g be a proper p-normalised pair with T > 2, r = r(f,g) >0 and mqg >
3p™ +8p” for p>T and mg > 3p™t + 3pT for p = 5. Then the equations f = g = 0 have a
non-trivial p-adic solution.

Proof. As I§ = mg — qo, one can estimate I via

I =mo—qo23p™  +8p" —p™ = (r+ 1)p" +1=2p"" 4 (T-7)p" +1,
for all primes p > 7, and via

I =mo—qo23p ™ +3p" —p" = (r+ )p" +1=2p"" + (2-7)p" +1,

for p = 5. Both are at least as big as p”*! + p” — 1, because r < p — 1, from which it follows
that the colour 0 is zero-representing, and, hence, it suffices to contract a C7*! variable.
Furthermore, the lower bound for Ig implies that

T2
I§>2p™ + (4-2r)p" +(2r-1)p" ' +3 > p'-2p-2

i=0
for p>7 and
-1
I0>3p™ —rp” =3p" = Y p' - 2p+2
=0

for p = 5. Thus, one can contract the Eg variables to p — r — 1 variables of type E, using
Lemma [34] for p > 7 and Lemma [35| for p = 5, while leaving at least 2p — 2 variables of type

E} for all i € {0,1,...,7 - 1}. Then one can contract p”** + rp” variables of type C° together
with the 2p — 2 variables of type Ej for all i € {0,1,...,7 - 1} and the E variables to a C™*!
variable due to Lemma O

Lemma 43. Let f,g be a proper p-normalised pair f,g with 7 > 2, r = r(f,g) >0, and
mo > 3p™ L+ pT — 3 which has mo < 3p™ 1 + 8" =1 for p>7 and mo <3p" Tt +3p" =1 forp=>5.
Then the equations f =g =0 have a non-trivial p-adic solution.

Proof. By qo < 2p™*! — 2, one obtains

T+1

I[()):mo_qozgp +p7_3_2pr+1+2:p7+1+p7_17

from which it follows that the colour 0 is zero-representing. Therefore, it suffices to contract a
C™*! variable. The variables of type EJ can be contracted with Lemma [36]to 2p — 2 variables
of type Ef for all i € {0,1,...,7 -1} as

_17'—1 ) -2
182p7+1+p7—124p7—7Zp’+3zp’—2p—2.
i=1 i=0

If I7 > p—r -1 for some v, then one can contract the p™*! + rp” variables of type C? together
with the p—r—1 variables of type E] and the 2p—2 variables of type E{, for all i € {0,...,7—1}
to one variable of type C™*! with Lemma Thus one can assume that

my<(p-r=-2)(p+1)=p*-(r+1)p-r-2<p. (2.7.1)
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Likewise, if I > 2p™ 7+ + (4= 2r)p™J - == ! :f Lol (2r=1)p7 " L+33T I=2 pi —92p -2 for
some j € {1,...,7— 1} and some v, one can contract the variables of type Eﬁ top—-r-1
variables of type E] due to Lemma Then again, one can contract the p™*! + rp” variables
of type C? together with the p - — 1 variables of type E7 and the 2p — 2 variables of type Eé
for all i € {0,...,7 -1} to a C7*! variable with Lemma Hence, one can assume that this is

not the case, giving the upper bound

' 4 T —j— T—j-2
e < pT_J+1+(4_2T)pT—j_p2 Z 2r—1)pT -1, 3 Z p 2p - 3. (272)

max
i=1 =0

If mj >2p" 9 —(2r+2)p" 7 +p? -3p+2r+1 and ¢; > p" 7 = (r+1)p™7 +r for some
je{l,...,7 =1}, one can contract p”™! + rp” of the C” variables together with the 2p — 2
variables of type E§ for i € {0,...,5 -1} to p” 7+ +7p7J variables of type C7, using Lemma
It follows from the lower bounds for m; and ¢; that one can contract the variables of type
EJ together with the p”7*! + +p™J variables of type C7 to 2p™ 7 — p” 7~ — 1 variables of type
CI*1 using Lemmaw1th z=p I —pTi Y Il pi gy = pmd -y Il piand 2z = r.
This leaves at least p +r of the C7 variables unused. Furthermore, the 2p 2 variables of
type E(J) which were contracted at the beginning of the proof are unused as well. Hence,
Lemma can be used to contract p — 1 of them and p of the remaining C’ variables to
another C7*! variable. All in all, one has 2p" 7 — p" 7! variables of type C/*! and 2p — 2
variables of type Ej for all i e {j +1,...,7 -1} left. By Lemma these variables contract to
a CT*! variable. One can therefore assume that either m; < 2pT I (2r +2)p7 T +p? —3p+2r
or ¢; < p It —(r+1)p" 7 +r—1for j e {l,...,7—1}. It follows that either one has
mj < 2p" I = (2r +2) p™ 7 +p? = 3p+2r or for ¢; < p” ™ — (r+1)p" 7 +r -1 one obtains,
due to , the upper bound

. Cop-17I . T2

my <3p" I 4 (3-3r)pT Y - TN Nop+@r-1)p 7 +3 > pr-2p+r-4.
i=1 i=0

Both upper bounds are smaller than 4p”7*!, thus one can assume that m; < ApTI+L for

je{l,...,7—1}. It follows that one has m; < 4p” for all 7 > 2 and my <4p™ ! <p7 for 7 > 3.

Furthermore, one has ms < p” for 7 =2 due to (2.7.1)). It follows that

mo+my+me<3p T +13pT —1<6p™ —6p7
for all p > 7, whereas one obtains
mo+mi+me<3p" L+ 8" —1<6p” " —6p”
for p = 5. This contradicts the p-normalisation of f, g, from which the claim follows. O

Lemma 44. Let f,g be a proper p-normalised pair with 7> 2, r =7 (f,g) >0 and 3p™"! -
ApT =27 4 p+d <mg <3Pt +pT —4. Then the equations f = g =0 have a non-trivial p-adic
solution.
Proof. By Lemma r >0 and mg > 2p" "' — p7, one can contract the E° variables to p”
variables of type P1.

If there is a v such that I} > 2p7 +4p™ ! - et i fpl p 2+ 330 ngz 2p — 2, one can
contract the variables of type E} with Lemma [34] and the resulting variables together with
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the variables of type P! to a variable of type P™*! with Lemma From now on, one can
assume that

—17=2 -3
I,}SZpT+4prl—pT Zpl—p772+32pl—2p—3
i=1 -

for all v.
If my >3p” +5p7 ! — 1%1 i 12 p-pT2+3%L 03 p' —3p -4, it follows, therefore, that

T— .
g1 =m1 = Ly 27 497 —p—1=(p7‘1+22p1—1)(p—1)
=0
and
T=2
m122p7+2p7_1+p2—5p—1:(pT_l+2Zp2—1)(2p—2)+p2—3p+1.
=0

Hence, one can use Lemma [30| with z = p™ ! - p™2 - 237 03 p-1,y=p t+2%7 02 p' -1 and
z=p—-1 to contract the E! variables together with the P! variables to obtain 2p™ ! + p™=2 - 2
variables of type P2. Then one can contract them to 2p—1 variables of type PT with Lemma
and these to one P™*! variable with Lemma Thus, one can assume that

p_17—2 . =3
mls3pT+5pT—l_TZpl_p7—2+3zpl_3p_5.
i=1 =

If one has the even stronger upper bound m; < 2p? — p — 3, the p-normalisation of f, g can
be used to obtain the lower bounds

T+1 T+1

mo>6p" " —6p” +1-3p —pT+4—2p2+p+3

=3 T -2+ p+ 8> 4 2p T 24 p? - 3p -3

-3 .
:(p7_2+2Epz)(2p—2)+p2—3p+1

and

T+1 T+1

go>5p" " —5pT +1-3p —pT+4—2p2+p+3

:2p

7-3
= (p7‘2+2 ;}p") (p-1).

T+1

—6pT -2 +p+82p  L4pT2 -2

One can contract the P! variables to p”~! — 2 variables of type P? using Lemma For 7 =2,
one can use Lemma [29] to contract one of the P? variables together with the E? variables to
a P3 = P! variable, because p*>2 + 2 222 g’p’ =1. For 7 > 3 on the other hand, one can use
Lemma [30| with z = p™ 2 —p™3 -2 ZZ: pi—1,y=p 2+2 ngog p' and z = p— 4 to contract
the P? variables to 2p7 =2 + p” 3 — 1 variables of type P3. Then one can use Lemma to
contract them to 2p — 1 variables of type P and Lemma [15|to obtain a P7*! variable. One
can therefore assume that my > 2p? —p—-2=(2p-3) (p+1) + 1, from which it follows that
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there is a v such that
I'>2p-2.

One can contract the p™ variables of type P! together with the 2p -2 variables of type E} to
p" ! variables of type P? with Lemma The p-normalisation of f,g can be used to obtain
the lower bound

me>6p°—6p°+1-3p° —p?+4-3p>—2p+6=3p° - 10p*> - 2p+11>p* —p—1

for 7 =2 and

T3
me>6p T —6pT +1-3p T —pT +4-3pT - Zp +p 32p’+3p+5
i=0
p_l’T—Q' 7'3'
=3p™ —10pT =5 e = S p 4+ pT 2 =3 Y PP+ 3p+ 10
2 i34 i=0
> 2pT +6p” 1+ 3p7 2 T3+62p >(p+1)(2pT1 +dp™ 2 —pT” +3Zp)
=0

for 7 > 3. Thus, there is a p with Iﬁ >p-1for 7 =2 and a p with

173

T— .
Ih>2p" "+ 472—7219 —p P43y p -2p-2,
=1 =

for 7 > 3. For 7 = 2, one can contract the p — 1 variables of type E2 together with the p
variables of type P? to a P3 = P7*! variable with Lemma n If 7 > 3, one can obtain a P7*!
by contracting the E# variables with Lemma [34] and the resulting ones together with the P2
variables with Lemma O

This completes the case 7 (f,g) > 0. The following three lemmata completes the case 7 > 2 by
showing that for every proper p-normalised pair f, g with 7> 2 and r (f,g) = —1 the equations
f =9 =0 have a non-trivial p-adic solution. Here, it is useful to choose strategies depending
on the value of I{]. As for r (f,g) >0, some of the bounds differ for p =5 in order to balance
that some inequalities only hold for p > 7.

Lemma 45. Let f,g be a proper p-normalised pair with T > 2, r =r(f,g9) = -1, and Ig >
2p7 1+ %pT 13T 2pi 4 2p? - %p -2. Then the equations f = g =0 have a non-trivial
p-adic solutz’on. For p=>5 even Ig >3p7tt - oD+ 2p? — 6p + 2 is sufficient.

Proof. Tt is sufficient to contract a C7*! variable because Ig > p™* 4 p” — 1 is given, which
implies that the colour 0 is zero-representing. By Lemma [5], it follows that

I 11 =3 11
10> >9p7 4 = p 243 +2p— —
00 2 D p” 2]9 ZP P 5
for p>5 and
-1
IOO>3p—Zp+2p 6,
=0
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for p =5, which is both bigger than (p—1) (pT_l +p- 2) =p” —p™ ' +p? —3p+2. Furthermore,
by (2.4.1]), one obtains

R-18 220" —2p" —qo - (m1 —I&) >pTho2pT 41— (m1 —I&),

T+1

as one has ¢ <p”*! -1, due to r = —1. This is bigger than p™ ' +p -2 - (m1 - I&), therefore,
one can take p” 1 +p—2— (m1 - I&) sets containing one variable of type Eg(—] and p—1 variables
of type Ego. By Lemma each of this set contains a contraction to a Eé variable. For p>5

there are at least

7-1 T-2

-1 , ,
2pT+1+5pT_l)_Zpl_p7—1+32pl+p2_4p_2
2 i=1 1=0
and for p =5 at least
-1
3p7’+1_2p7’_zp2+p2_4p+2
=0

variables of type E8 left, which is both at least as big as

P’ +4p® —6p+1 =p(pT_1 +p—2) +3p® —4p+1.

As long as there are at least p (3p—3) + 1 = 3p? — 3p + 1 variables of type Eg left, one has at
least 3p — 2 variables of type Egu for some u. Therefore, one can use Lemma E to contract
p" +p? —2p of the E8 variables to p™~! + p — 2 variables of type E&, using each time p variables
of the same colour nuance. Now, one has p”~! + p — 2 variables of type EO1 and p" ' +p-2

variables of type E%. This leaves at least
p- 1 -1 T2
2p7'+1+4p7'__ Zpl_p7—1+3 Zp2_2p_2
2 3 i=0
variables of type E8 for p > 5 and
-1
3pT T -3pT - > p'-2p+2
i=0

for p = 5 remaining. Use Lemma [34] for p > 5 and Lemma 35 for p = 5 to contract the EJ
variables to p— 1 variables of type EJ and 2p - 2 variables of type E{ for all i € {0,1,...,7—1}.
With Lemma one can contract p” ! —p” of the variables of type C? and the 2p — 2 variables
of type Eg to p” — p7~! variables of type C'. Use Lemma with z = p™~! - Z;}? -1,
Yy = ZZT;OQ p'+1 and z = p— 2 to contract p” ' + p — 2 variables of type E(% and p” ' +p-2
variables of type E% together with the C! variables to p™~! — 1 variables of type C? without
using 2p — 2 > p of the C' variables. The 2p — 2 > p — 1 variables of type E&, which where
contracted while the p — 1 variables of type Ej were contracted, are also unused. One can
contract p — 1 of them together with p of the remaining C! variables to an additional C?
variable using Lemma This gives a total of p”~! variables of type C?. Then one can
contract the C? variables with the E{ variables for i € {2,...,7 -1} and the EJ variables to a
C™! variable due to Lemma [40l O
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Lemma 46. Let f,g be a proper p-normalised pair with 7> 2, r =1 (f,g) = =1 and p"** +

pr-1<I)<2p™ 4+ UpT —pT 4 3Y Tt +2p? - Hp -3 forp>T and pTtt+pT -1 < I <
3pTHt - oD+ 2p? —6p+1 for p="5. Then the equations f = g =0 have a non-trivial p-adic
solution.

Proof. 1t follows from r = —1 and the restrictions on I8 that

11 T -1 = 7 2 11
5P P +3Y p'+2p —?p—ﬁl, (2.7.3)
=0

mo < 3p7'+1 +

for p > 7, whereas one can obtain for p = 5 the even better bound

T

mo < 4p™ - Zpi +2p? - 6p. (2.7.4)
i=0

As Ig >p™*1 4+ p™ — 1, the colour 0 is zero-representing, hence, it suffices to show that one can
contract a C™*! variable. Due to the p-normalisation of f,g and 7 = -1, one has the lower
bound

Ip23p™ " =3p +1-qo-q22p"" =3p"+2-q
as well.
Assume first that I} =T} >p™ +4p™1 - 7%1 Z;—f P +3 Z;—:_O?’ p' —p—4. Then one can make

sure that, additionally, one has p” + p — 2 variables of type E. by contracting the Eg variables
to at least p” +p — 2 — q1 variables of type Ei as described in the following paragraph.

One can assume that ¢; < p” + p — 3, because else, there is nothing to be done. If v # 0, one
can contract the variables of type E8 to

{219”1—319”2—(11} p-3 -q

2 3
—2p+—22p7—3p7_1+——2p+—
P 2

2

variables of type E} with Lemma [27] for p > 7, which is at least as big as p” +p—2 - ¢ for
p>7 and to

|'2p7'+1 _ 3p7' +9- ¢
p

9_
“—2p+322p7—3p7_1+—ql—2p+32p7+p—2—q1
p

variables of type Eé with Lemma 27| for p = 5. This leaves 6p — 9 > 2p — 2 variables of type E8
unused in both cases. If, on the other hand, one has v =0, it follows that

0

I 2-
19> >0 —gpr e 224
P

>p +p-2-q

and by m1 - I} = ¢1 and (2.4.1) that

I0-I0y22p™ " =2p" —qo—q1 2 p

T+1

“2p"+l-q2p +p-2-qu.
Furthermore, one has

I822p7+1—3p7+2—q1 2pT+1+2p2—5p—q1p+3=p(p7+p—2—q1)+p2—3p+3.

42



Thus one can contract p™*! + p? — 2p — q1p of the E8 variables to p” + p — 2 — ¢ variables of
type Eé due to Lemma leaving at least p™*! —3p” —p?+2p+2+ (p—1) q1 > 2p — 2 variables
of type EJ unused.

In both cases, one has contracted enough E! variables to have at least p™ + p — 2 variables
of type E},, while there are 2p — 2 variables of type Eg remaining. The Eg variables can be
contracted together with p™*! — p™ of the C° Variables to p” — p™~! variables of type C*, using

Lemma Then one can contract 4p” ! — p ! pZ +3%7 03 p’ — 2p — 2 of the variables of

type E} with Lemma [36[to 2p — 2 variables of type E,J, for all je{1,...,7—1}. The remaining
p” +p — 2 variables of type E. together with the p™ +p 2 Variables of type E,% and the C!

variables can be contract using Lemma [28] . 8 with x = p” D 03 pt— =370 Lpi+1
and 2 =p-2, to 2p""" —p" =2 variables of type C?. With Lemma E, those and the 2p -2
variables in EJ, for j € {2,...,7 -1} can be contracted to a C7*! variable. Thus, from now on,

one can assume that

-3

Ly <17 +4p”——2p +33p' -p-5. (2.7.5)
=0

Ifq >p +p-2= (T pi +1)(p-1) and my > 2p" +p?—p-3 = (g p' +1) (2p - 2) +p*-3p+1,
one can use Lemma |36/ to contract the Eg variables to 2p — 2 variables of type Eé for all
i€{0,...,7—1} because I§ > p™ 4+ pT —1>4p” - ’%1 Yl pt+3Y 2 pt-2p-2. By Lemma
the pTJrl — p” variables of type CV can be contracted together with the 2p — 2 variables of type
Eg to p pT_l variables of type C!. Using Lemma with ¢ = p™ 1 - 2p™2 - I Spi—1,

Yy = ZZ op'+1 and z = p-2, one can contract the E' variables together with the c!

variables to 2p7 ! — p7 2 variables of type C2, which contract together with the 2p — 2 variables

of type Ej for i € {2,...,7 -1} to a C™™! variables due to Lemma Therefore, one
can assume that either m; < 2p” +p> —p—4 or ¢1 < p” +p—3. The latter case leads to
mi=q+IL  <2pT +4pTt - 221 Z;‘f Pt +3Y0 03 p' -8 due to (2.7.5)). Hence, from now on,

max 2
one can assume that

-1 T2 T3
my £2p7+4p771—pT sz+32p’+p2—8, (2.7.6)
i=1 i=0

because this is an upper bound for the upper bound for m; in both cases.

By the p-normalisation of f,g, it follows that
T3
I0>4p™ —4p” +1-qo-m1 23" —6p" —4p” ' =3 > p' - p? + 10. (2.7.7)
i=0

Therefore, one has .780 >3p" —6p" L —4pT 2 3% T 04 p'—p>p ' +2p-3and, due to , it
follows that

18—1802219”1—2pT—qO—(m1—Ié)2 T opT +1—(m1—10)
2p7_1+2p—3—(m1—I§).

It follows from (2.7.7) that I§ > p™ +2p*-3p-p (m1 - I&)+p2—3p+3, and thus, if my I} <p™ 1+
2p—3, one can contract p” +2p° —3p—p (m1 - Iol) of the Eg variables to p” ! +2p-3 - (m1 - I&)
variables of type Eé with Lemma There are at least 3p™ ! ~7p™—4p™ 1 -3 XT3 p' ~3p?+3p+10
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variables of type Eg remaining, which contract to

3pTH T —4pT T -3 - 3p? + 3p + 10]_2p+p—3
P 2

3+4

T4 . p-
>3p" —Tp" - 4p™ -3 p - 5p+
i=0

variables of type E& with Lemma while leaving at least 6p —9 > 2p — 2 variables of type Eg
unused. This is at least as big as p” ! + 2p — 3. Thus, one has at least p” ! + 2p — 3 variables
of type Eé, as well as a total of p”~! + 2p — 3 variables of type Eé. By Lemma one can
contract p™*t! —p” of the C? variables with the remaining 2p -2 variables of type E0 to p —pt
variables of type C! and then use Lemma 28 with x = p7! - ZZ Zpi-1,y=YT2p" +2and
z=p—3 to contract them together with the E! variables to p” varlables of type C2.

For 7 =2 it follows for p > 7, due to ) and -, that

3

33, 5
ma > 3p ——p2+§p+ 102p*-p-1=(p-2)(p+1)+1,

2
and for p =5, due to (| and ( - that
m222p3—10p2+3p+102p2—p—1:(p—2)(p+1)+1.

Therefore, one has a p with Ii > p -1, from which it follows that one can contract the p
variables of type C? and the p—1 variables of type Eﬁ to a C3 = C™*! variable due to Lemma
Thus, from now on, one can assume that 7 > 3.

IfI2 2, >2p L+ 4pT2 7%12: 2o -p 3+ 3X 7 p' - 2p -2, one can use Lemmato
contract the Ei variables to p — 1 variables of type Ej, and 2p - 2 variables of type £, for all
i€{2,...,7—1}. Tt follows that one can contract them together with the C? variables to a

C™! variable due to Lemma From now on, one can assume that
p — . T4 .
Lnax <297 +4p7 0 == Y p' =pT+3 3p -2p =3,
. ]
and, therefore,
T4
ma <2p7 +6p" T +3p" 2+ 20" 2 +6 Y p' - 2p* —5p - 3. (2.7.8)

Then one can contract the p - Variables of type C? to p"~2 - 2 variables of type C? using

Lemma Due to , and , it follows that

19 17 =,
mo+my +mg <3p" T+ ?pT + ?pT_l +6p" 2 +8p 2 +12 ) p' +p? —10p - 15,
=0

which does not only hold for p > 7 but also for p = 5 because the upper bound ([2.7.3) is in the
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case p = 5 bigger than the upper bound (2.7.4). This leads to

1 T4
24p‘l'+1_3_23pT_E7pT*1_6pT*2_8pT*3_12 sz_p2+10p+16Zp‘l'*2+p‘l'*3_2
=0
and
1 e
mg > 5pT ! 3 T——7pT_1 —6pT 2 -8p 3 —12 sz—p2+1()p+16

SR =
>2p" 24+ 2p7 3 4 p? —3p-3.

For 7 = 3 one can contract one of the C® variables together with the E? variables to a C*
variable using Lemma [29| with 2 = 1. For 7 > 4 the C? variables can be contracted with the E3
variables, using Lemma [30{ with z = p™ 3 —p™"% -2 i 05 pi-1,y=p"3+2 22;04 ptand z =p-4,
to 2p™ 3 + p7~* — 1 variables of type C*. Then one can use first Lemma |32 to contract them to
2p — 1 variables of type C™ and then Lemma [15|to contract them to a C™*! variable. O

Lemma 47. Let f,g be a proper p-normalised pair with T > 2, r = r(f,g) = -1 and Ig <

p™ +pT —2. Then the equations f = g =0 have a non-trivial p-adic solution.

Proof. Due to the upper bound for I and r = -1 it follows that

mo<p T apT —2+p" o1 =2p" 4 pT -3 (2.7.9)
and, hence,
3 =3+l - T 43 =™ Ay 4> +p -2 (2.7.10)
and
mi>Ap T —dpT 412" —pT 43 =27 —5pT + 4> 2" +p? —p-3. (2.7.11)

Use Lemma . to contract the EO variables to p” —p" ! variables of type P!.

Ifrl=1L, >p +4p™ p7+32 37 —p—4, one can contract 4pT_1—7%1ZZT 12pl+
3Y T3 p'-2p—2 of the Varlables of type E! to 2p—2 variables of type EJforallje {1,...,7-1}
using Lemma which leaves p” + p — 2 variables of type E,} unused. Then Lemma [28| can
be used with z = p™ 1 - 2p" 2 - ZZ‘T:_O?’pi -1,y = Z;_Ol p'+1 and z = p— 2 to contract the
remaining Ei variables together with the p™ + p — 2 variables of type E,% and the P! variables
to 2p™~! — p™=2 variables of type P2. Those and the 2p — 2 variables in E} for j e {2,...,7 -1}
can be contracted to a P™*! variable, using Lemma

Thus one can furthermore assume that one has I, = IrlnaX <pT+4pTT 1%1 T 12 I
ZZ -0 p' —p—->5. It follows that
=3
my <p 4 5pT +4pT 4+ 3pT 246 p (2.7.12)
i=0

Due to (2.7.10) and (2.7.11)), one can use Lemma with = p™ 1 - 2p72 - Z;_ngi -1,

= ZZ:_Ol p'+1 and z = p—2 to contract the p” —p7 ! variables of type P! and the E' variables

to 2p" ! — p™~2 variables of type P?. For 7 = 2, one can use Lemma [15| to contract the 2p — 1

45



variables of type P? to a P3 = P™*! variable. Hence, one can assume that 7 > 3. As a
consequence of (2.7.9) and (2.7.12]), it follows that

=3
my > 6p7+1 _ 6p7 +1- 2p7’+1 _pT +3 _pT+1 _ 5p7' _ 4p’r—1 _ 3pT—2 -6 Z pz
1=0
=3
— 3p7'+1 _ 12p7' _ 4pT—l _ 3p7'—2 -6 Z p’L + 4’
1=0

which is bigger than (p+ 1) (4pT_2 - p%l I +3Y Tt - 2p - 2). Hence, there is a p such
that I 3 >4p™2 - p%l Z;‘f’ p'+3 22;04 p’ —2p — 2, thus, one can contract the Ei variables using
Lemma [36| and then the resulting variables together with the P? variables to a P7*! variable,
using Lemma [40] O

It follows that for a proper p-normalised pair f,g with 7 > 2 the equations f = g =0
have a non-trivial p-adic solution, which in combination with Section proves the claim of
Theorem [1l
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3 Beyond Artin’s Conjecture for Cubic Forms

This chapter comprises the authors article Beyond Artin’s Conjecture for Cubic Forms [24]. It
contains the proof of the following theorem, which claims that for one diagonal cubic form f
and one linear form ¢ in s variables the equations f = g = 0 have a non-trivial p-adic solution
for all primes p provided that s > 8.

Theorem 2. Let s> 8 and a;,b; € Z for 1 <i<s. Then the system
S . S
> ajal =Y bjx; =0, (1.0.4)
j=1 j=1
has a solution (1,...,xs) € Qo\{0} for all primes p.

This is an improvement upon the authors master thesis, where the corresponding statement
for s > 9 was proved. The proof given in Section for the case p = 2 mod 3 is the same
as the one given in the master thesis for s > 9 as it holds in the stronger case s > 8 as well.
Furthermore, Lemmata [54] to [63] and [87] to [98] as well as Conclusions [2] to [9] and their proofs
are adopted directly from the master thesis. Even though the statements of the lemmata in
the master thesis corresponding to Lemmata [57] and [58| are weaker, the proofs hold for this
stronger version as well.

3.1 The Case p =2 mod 3

This section contains the proof of Theorem [2| for primes p congruent to 2 modulo 3. These
primes are relatively easy to handle since the set of cubic residue classes modulo p equals the
set of all residue classes modulo p. Hence, the equation

Qs+ .. +exd =0, (3.1.1)

in which all coefficients are integers, has a non-trivial p-adic solution even if ¢ is relatively small
for primes p congruent to 2 in comparison to primes p congruent to 1 modulo 3. Dodson [17]
denoted the smallest ¢ such that a non-trivial p-adic solution exists for all equations
by I'*(3,p). More general, I'*(k,p) denotes the smallest number ¢ € N, such that for all
c1,...,¢ € Z the equation

clxlf+...+ctxf:O

has a solution x € Q;\{0}. Briidern and Robert [9, Section 3] transformed a system ([1.0.4)
into an equation of the shape (3.1.1) to prove that, provided that I'*(3, p) is small in relation
to s, a system ((1.0.4) has a non-trivial p-adic solution.
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Lemma 48. Suppose s > 2I'*(k,p). Then the system

s
Zaixf = Ebzwz =0

s
i=1 i=1

has a non-trivial solution in Q.

Proof. See [9, Lemma 3.1]. O

All that remains to be shown is that I'*(3,p) < 4 for all p congruent to 2 modulo 3.
Dodson [17] defined v*(k,p™) as the least positive integer ¢ with the property that if cj,..., ¢
are any integers coprime to p, then the congruence

clm’f+...+ctxfzo mod p"

has a primitive solution, that is an integer solution with not all variables x1,. ..,z divisible
by p. For 6 = ged(k,p—1), he remarked that the non-zero residues modulo p form a cyclic
group of order p — 1 and, hence, the sets {ajk | x e Fp} and {3:5 | x € IE‘p} are equal, which
implies v*(k,p) =v*(d,p). Then he established the following connection between I'*(k,p) and
~v*(k,p"), where p” || k and

|7+ 1, forp>2,
T+2, forp=2.

Lemma 49. [t holds r* (k,p) <k(v*(k,p")-1) +1.

Proof. See [17, Lemma 4.2.1]. O

For the cases p # 2 and p = 2 mod 3 this provides

r*(3,p) <3(yv*(3,p)-1)+1.

Here, one has v*(3,p) = v*(1,p), which is obviously 2 and hence I'*(3,p) < 4. The only
remaining prime p = 2 mod 3 is 2. Lemma [49] can be applied to show that

I*(3,2) <3(7*(3,4) - 1) + 1.

It is easy to see that v*(3,4) = 2 as well. If ¢1,co are coprime to 2, then they are congruent to
1 or 3 modulo 4. Since both 1 and —1 are cubic residues modulo 4, there is always a primitive
solution of the equation

c123 + s =0 mod 4.

Hence, it holds I'*(3,2) < 4 as well and Theorem [2| is fulfilled for all primes p congruent to 2
modulo 3.

For primes congruent to 1 modulo 3 this does not give the desired result because I'* (k, p) is
too large. For them, a special case of Hensel’s lemma by Briidern and Robert [9, Lemmata 4.1
and 4.2] can be used to reduce the problem to one of congruences.
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3.2 A Special Case of Hensel’'s Lemma

Throughout this section the parameters 7 and « defined in the previous section which depend
on the prime p and the degree of the first equation in the system are used. In Theorem
this degree is 3 and, hence, one has v =7+ 1, where 7 =0 for all p >3 and 7 =1 for p=3. The
following lemma was proved by Briidern and Robert [9, Lemma 4.2]. Although they excluded
k = 3 before they proved it, the proof for k=3 and p > 2 is the same.

Lemma 50. Let s>2, p>2 be a prime, v defined as in the previous section and suppose that
x € 7.° satisfies the congruences

S

3 = Y
Zajxj_() mod p’,
J=1 J

S
bjx; =0 modp (3.2.1)
-1
with p + blagxg - bgalx%. Then there are y1,y2 € Zy with (y1,y2) # (0,0) and
3 3. % 3 .
a1yy + a2ys + Z aja:j = blyl + bgyg + Z bjl‘j =0.
j=3 j=3

For the remainder of this chapter a simultaneous solution of
S S
Z ajx? =0 modp’ and Z bjz; =0 mod p
j=1 j=1

is called non-singular if there are 1 <¢,j < s such that p 4 biajx? - bjaix?. The indices can
be renumbered, if necessary, such that p + blagac% - bgalx%. Then the preceding lemma can
be applied to show that a non-singular solution implies a non-trivial p-adic one. This can be
summarised to the following result.

Lemma 51. Let s> 2, p>2 prime, v defined as in the previous section and suppose that the
equations

S S
> aj:c;-’ =0 modp’, > bjz;=0 modp (3.2.2)
j=1 j=1

have a non-singular solution. Then (1.0.4) has a non-trivial p-adic one.

3.3 Conditioned Systems

This section contains a description of conditioned systems, introduced by Briidern and
Robert [9], which are a variant of the p-normalised systems by Davenport and Lewis [12]. One
says that two systems are equivalent if one can be converted into the other one by a
finite series of the following processes.

(i) Substitute (z1,...,xs) ~ (c121,...,csxs) with all ¢; € Q.
(ii) Multiplication of one of the equations by a non-zero rational number.

(iii) Permutation of indices.
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It can be easily seen that if one representative of an equivalence class has a non-trivial p-adic
solution, so has the whole class.

Briidern and Robert [9, Section 6] showed that every system with a;, b; € Q\{0} for
1 <4 < s has an equivalent system with the properties that

(i) all coefficients a; and b; are non-zero integers,
(ii) there is an ¢ with p + b; and
(iii) the number of coefficients a; with p/ + a; is at least %5 for 1<j<3.

They called such a system conditioned. By combining this with a compactness argument, they
proved the following lemma.

Lemma 52. Suppose that for a fized s there is a non-trivial p-adic solution for all conditioned
systems. Then all systems ((1.0.4) with rational coefficients have non-trivial p-adic solutions.

Proof. See [0, Lemma 6.1]. O

The work with conditioned systems and systems requires the following notation.
(i) For 1<i<s, the parameters v; and pu; are defined by p*i|a; and p#|b;.
(ii) The parameter ¢ describes the number of 1 <i <'s with v; = u; = 0.
(iii) For j € Np, the parameter v; is defined as the number of 1 < < s such that v; = j.

A variable z; is called low if u; < v; and high otherwise. The level of a variable x; is defined by
min (u,4). It follows from the definition of a conditioned system with s > 8 that v; € {0,1,2},
vy 2 3, vg+v1 =6 and vy + v + v = s.

The set of systems

> ajri =3 bjzj=0 (3.3.1)

with non-zero integers coefficients where p® + a; (1 <i<s) includes the set of conditioned
systems. For each system one can find integers «; € Z such that a;p™ib; = 1 mod p for
all 1 <i < s, because p*i||b;. Applying x; » ajz; for 1 <i < n provides an equivalent system
with p™#ib; = 1 mod p. As this transformation does not modify the parameters v; and ¢, one
can assume that every system and, hence, every conditioned system has this property.

In the following, all conditioned systems are divided into different sets, depending on the
parameter used to describe them, to prove that they all have a non-trivial solution p-adic
solution. To make the proofs easier to follow, it is really helpful to establish an order of
the variables in a conditioned system. A permutation of indices transforms a conditioned
system into an equivalent one without changing the parameters v; and t, while permuting the
tuples (4, p;) in the same manner as the indices. Therefore, to prove that every conditioned
system with fixed parameters v; (0 <4< 2) and ¢ has a non-trivial p-adic solution, it suffices
to prove the existence of a non-trivial p-adic solution for every conditioned system with the
same parameters having a fixed order of variables.
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Definition 10. A system (3.3.1)) is called an ordered system (3.3.1)) if the variables with
v; = 0 are x1,...,%,,, whereas those with v; = 1 are xyy41,...,Tyy+v, and the remaining
variables Ty, 415 - - - s Tug+v,+vo are those with v; = 2. Furthermore, the variables with v; = j
for j € {0,1,2} are ordered, such that the ones with p + b; are followed by those with p | b;. If
an ordered system is also conditioned, it is called an ordered conditioned system.

As every system is equivalent to an ordered conditioned system, it would suffice to
prove the existence of a non-trivial p-adic solution for all ordered conditioned systems. In
some cases, however, the proof also holds on a larger scale, hence, some of the lemmata are
slightly more general than others, which proves to be useful.

3.4 The Case p=1mod 3

As shown in Section [3.2] one has to handle congruences modulo p, for which the following
lemmata are useful tools.

Lemma 53. Let p be a prime, § = (k,p—1), p>20+1 and a1 ...ap, £0mod p. Then

alx’f +...+ anx,’fb (3.4.1)
represent either all residues modulo p or at least 1+ ((2n-1) (p-1)/d).
Proof. See [10]. O

For k =3 and primes congruent to 1 modulo 3, this implies § = 3, hence, for p > 7 this can
be summed up as follows:

Conclusion 1. Let p > 7 be a prime congruent to 1 modulo 3 and ajas # 0 mod p. Then
alx? + agxg represent all residues modulo p. If additionally a3 # 0 mod p, then

28 + apxs + azzs =0 mod p

has a non-trivial solution with x; # 0 mod p arbitrary.

The following lemma provides a similar result for p = 7.
Lemma 54. Let ajosag #0mod 7. Then
T3 + aoxs + a3zs =0 mod 7 (3.4.2)
has a non-trivial solution.

Proof. For those a; = 4,5 or 6 mod 7 one can apply x; » —x; to transform (3.4.2)) into an
equation where all ; are congruent to 1, 2 or 3 modulo 7. If now all coefficients are distinct
modulo 7, it has, after a permutation of indices if necessary, the shape

x5 + 223 +3x§ =0 mod 7.

Setting x1 = x9 = —x3 = 1, one obtains a non-trivial solution. Else there are 1 <i < j < 3 with
a; = ajmod 7 and a non-trivial solution can be obtained by setting x; = —z; = 1 and the
remaining variable zero. O
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These lemmata can be used to provide a non-singular solution in a simple case.

Lemma 55. Let p = 1mod 3 be a prime, ai,az,a3,by € F, and by,bz,b3 € F,. Then there
exists a non-singular solution in F, of

3 4

Zaia:? = Z bixi =0.
i=1

i=1

Proof. Conclusion [1f and Lemma provide a non-trivial solution of Y3, a;z? = 0 for all
primes congruent to 1 modulo 3. After renumbering the first three indices if necessary, one
can assume that x; is not congruent to 0 modulo p. Setting x4 such that byxy = — Z?:l bjz;,
this becomes a non-singular solution because b4a1x% - b1a4xi = b4a1x% £ 0 mod p. O

This simple case can be applied to a lot of systems (3.3.1]).

Lemma 56. Let p = 1 mod 3 be a prime. An ordered system (3.3.1)) with vy > 3 and a low
variable at level 0 has a non-trivial p-adic solution.

Proof. The variables 1, ..., z,, are at level 0, but they are high. Therefore, there is a j > v
with p + b;. Set x; =0 for ¢ >3 and 7 # j. It remains to solve the system

3 3
Z aixf’ = Z biz; +bjzj =0 mod p,
i=1 i=1

for which Lemma [55] provides a non-singular solution. Hence, Lemma [51] can be used to lift
the non-singular solution to a non-trivial p-adic one. O

Lemma 57. Let p = 1 mod 3 be a prime. Suppose v; > 3 for j € {1,2}. Then an ordered
conditioned system has a non-trivial p-adic solution if s > 8.

Proof. An ordered conditioned system with s > 8 has by definition vy > 3 and, hence, if it has
a low variable at level 0, the existence of a non-trivial p-adic solution follows from Lemma
In an ordered conditioned system without a low variable at level 0, the coefficients b;

(vo < i < s) are divisible by p and, hence, one can deduce that p + by. Writing xo = (21,...,Zy, ),
X1 = (Tpgals - - s Togrvy ) A0 X2 = (Tygavy+1, - - -, Ts), the cubic term can be seen as
5 3 2
Y aixi = fo (x0) +pfi(x1) +p° fa (x2), (3.4.3)
i=1
where f; (x;) =p~J I a;x? are polynomials in Z[x1,...,2s]. Apply z; = px; for 1 <i < v

or 1 <i<wvg+wv if j =1 or j =2, respectively, and divide the cubic equation by p’ and the
linear one by p. This provides an equivalent system (3.3.1)) and changes (3.4.3)) into

p?fo(x0) + fi (x1) +pfa(x2), forj=1
pfo (x0) +p*f1 (x1) + f2 (x2), for j=2.

The altered cubic term has at least three variables with p 4+ a;. Furthermore p|a; and p + by,
hence, vg > 3 and it exists a low variable at level 0. By applying a permutation of indices
one obtains an ordered system (3.3.1]), hence, all conditions of Lemma [56| are fulfilled and a

non-trivial p-adic solution exists. O
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The impact of the two previous lemmata can be summarised as follows.

Lemma 58. If an ordered conditioned system with s > 8 does not have a non-trivial p-adic
solution for all primes p congruent to 1 modulo 3, then

and there is no low variable at level 0.

Proof. Tt follows from Lemma that v; and vy have to be at most 2. But since s > 8 one
obtains the lower bound vy > 4. Furthermore, Lemma [56| can be applied to show that no low
variable at level 0 exist. ]

To prove Theorem [2 for all primes congruent to 1 modulo 3 it remains to show the existence
of a non-trivial p-adic solution for those conditioned systems (3.3.1)) described in Lemma
which can be divided up into different sets, depending on the correlation between vy and t.

Lemma 59. Let p=1mod 3 be a prime. An ordered conditioned system with vg >t+ 3 has a
non-trivial p-adic solution.

Proof. Set x; =0 for all 1 <i<tandt+4<i<s. Hence, all x; with p + b; are 0. This
ensures that the linear equation is congruent to 0 modulo p independently of the choice of
the remaining variables. Then, Conclusion [I] for p > 7 and Lemma [54] for p = 7 provide a
non-trivial solution of the cubic equation

3 3 3 _
Qt11%5,1 + Q142T), 9 + a443T1,3 =0 mod p

with z.,; # 0 mod p for some j € {1,2,3}. A conditioned system has, by definition, an z; with
p 4+ b;, which was set 0 at the beginning of this proof. Hence, this is a non-singular solution
of the ordered conditioned system, because biatJrj:L‘?Jrj - btﬂ-aix? = biatﬂw?ﬂ- # 0 mod p, which
can be lifted to a non-trivial p-adic solution with Lemma [51} O

Lemma 60. Let p=1mod3 be a prime. Let 3<m <n and a; #0modp for 1 <i<n. If
there are 1 <i < j <m such that a; = a; mod p, then the equations

a1x§’+ Lot amxi’n + am+1xiﬁ1 +...+ anmi =0 mod p,

Ti+...+ Ty =0 modp

have a non-singular solution.

Proof. Set x; = —x; = 1 and the remaining variables zero. This solves the equations non-singular
because

a1} + L AT, F ATy + o+ AT = @i +aa) = a;—a; =0 mod p,

T1+...+ Ty = z;+ zj=1 -1 =0 mod p,

and there is a k # 4,7 with 1 <k <m, for which x; has the value 0 and akxibi - aia:?bk =-a; ¥
0 mod p. ]

This allows to handle the cases vg=t+2>5 and vy =t+1 > 5, as is done in the next two
lemmata.
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Lemma 61. Let p =1 mod 3 be a prime. An ordered conditioned system with vo=t+2>5
has a non-trivial p-adic solution.

Proof. If a; = as mod p, Lemma [60] provides a non-singular solution as ¢ > 3. If they are
distinct modulo p, setting all variables zero, except x1, x2, Tt+1 and w49, transforms the
system into

2 3 3 3 _
127 + GTH + A141T5,1 + Q2T =0 mod p,

i ) =0 mod p.

The linear equation can be solved by setting x1 = —x9 = x without giving an explicit value to
x. All that remains of the cubic equation is

3 3 3 _
(a1 — ag) x° + a1y + apr2xr 9 =0 mod p.

Conclusion [I] for p > 7 and Lemma [54] for p = 7 provide a non-trivial solution because
a1 — a2 # 0 mod p. Hence, there is an i € {1,¢+ 1,¢+ 2} with x; # 0 mod p. Because CLi{L‘?bg -
biaga:% = bgaix? # 0 mod p this is a non-singular solution and Lemma [51| provides the required
non-trivial p-adic solution. O

Lemma 62. Let p=1mod 3 be a prime. An ordered conditioned system with vg=t+1>5
has a non-trivial p-adic solution.

Proof. Set all variables zero except x1,...,24 and x,,. The obtained system has the shape
T+ .+ agrs + avoxf’)o =0 mod p,
T1+...+ T4 =0 mod p.
If two of the coefficients ay, ..., a4 are equivalent modulo p, Lemma [60] provides a non-singular

solution. Else, one can assume that all a; modulo p are distinct for 1 <¢<4. Set z1 = —x2 =11
and xg = —x4 = yo. It follows that

3
Vo

3 3 3 _ 3 3
1] + .o+ gy + Gy, Ty = (a1 —a2) Yy + (a3 — aq) Yo + Gy, mod p,

T1+...+ T4 Sy —Y1+Y2— Yo =0 mod p.

As both a; — as and a3 — a4 are not congruent to 0 modulo p, Conclusion [I] for p > 7 and
Lemma for p = 7 provide 1, y2 and x,, which are not all divisible by p, such that
the cubic equation is fulfilled. If not all three are divisible by p, then at least two of
them are not, and hence, one of y; and y2, say y;, is not divisible by p. It follows that
bgjagj_lx%j_l - bgj_lagjx%j = agj_ly?- —agjy?- = (agj-1 - azj) yjz- # 0 mod p and, therefore, Lemma
provides a non-trivial p-adic solution for both cases. O

The following lemma uses that the non-zero cubics modulo p are a multiplicative group with
1%1 elements, hence, ) is the disjoint union of (IF ;)3 and its two cosets. Every element in one
of the three cosets can be transformed in any other element in the same coset by multiplying
it with a cube.

Lemma 63. Let p = 1mod 3 be a prime. An ordered conditioned system with t > 5 has a
non-trivial p-adic solution.
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Proof. If aq,...,a5 are not distinct modulo p, Lemma provides a non-singular solution.
Else, if they are distinct modulo p, at least two of them have to be in the same coset of (IE‘;)3.
After a permutation of the first five indices one can assume that these are a; and as. Hence,
there is a b € Z not congruent to 0 or 1 modulo p such that b3a; = ay mod p. Put z; = by,
xo = —y and z; = 0 for all ¢ > 6. This transforms the cubic equation of the system into

CL1£C§) + CLQQB% + ag.Tg + CL4SCZ + a5x§ = a1b3y3 - a2y3 + (I3£C§ + a4azi + CL5.T§

= a 0%y — a1b3y® + azad + agxd + asa

= a3xs + agxs + asrd mod p
and the linear equation into

Tl +To+x3+T4+T5=by—y+ax3+24+ TS

=(b-1)y+x3+x4+w5 mod p.

Conclusion [I] for p > 7 and Lemma [54] for p = 7 provide a non-trivial solution of the cubic
equation with an i € {3,4,5} such that 2; # 0 mod p. As b—1# 0 mod p it is possible to choose
y in a way that the linear equation is simultaneously fulfilled.

To show that the obtained solution is non-singular, one has to separate the case y = 0 mod p.
If y # 0 mod p then bgalx%—blagx% = a10%y?—a1b3y? = a1b*y? (1 - b) £ 0 mod p, else, y = 0 mod p
and blam? - bialm% = aim? - a1b2y2 = aiaz? # 0 mod p. This proves that there is a non-singular
solution, which can be lifted to a non-trivial p-adic one by Lemma [51} O

The cases not yet proved are those with (vo,t) € {(4,2), (4,3),(4,4)}. These more complex
cases are treated in the following two sections.

3.5 The Case (vg,t) = (4,2)

The main part of this case can be handled as the cases in the previous section, with the prime
p =7 being treated individually.

Lemma 64. Let p=1mod 3 be a prime with p > 7. An ordered conditioned system with vg = 4,
t =2 and a1 # ag mod p has a non-trivial p-adic solution.

Proof. Setting x1 = 1, 29 = =1 and x; = 0 for ¢ > 5 solves the linear equation. The cubic
equation transforms into a — ag + agxg + a4:z:i = 0 mod p, which has, due to Conclusion (1} a
solution which is non-singular as al:):%bg - agx%bl = a1 —ag # 0 mod p and can be lifted with
Lemma [511 O

Lemma 65. An ordered conditioned system with vg =4 and t =2, where a1 # as mod 7, has a
non-trivial 7-adic solution.

Proof. A multiplication of the cubic equation with « such that aas = 1 mod 7 still leaves
a1 # ao mod 7. So does the application of x4 — —z4, if necessary, to ensure that a4 is congruent
to either 1, 2 or 3 modulo 7. If a4 =1 mod 7, set x3 = 1, x4 = —1 and everything else zero. This
solves the cubic and the linear equation modulo 7 and because agxgbl - alx%bg =a3=1mod?7
this solution is non-singular. The cases with a4 = 2,3 mod 7 can be solved by choosing
x3,x4 € {-1,0,1}, not both 0, such that CLgSE% + a4azi = +(a; —ag) mod 7 and then setting
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x1 = F1 and x5 = +1, such that the cubic solution is solved as well as the linear one modulo 7.
Let i € {3,4} be such that x; # 0 mod 7. Then a;22b; — a123b; = a; £ 0 mod 7. Both times the
solution can be lifted with Lemma [51] O

It remains the ordered conditioned systems where a; = ag mod p. Multiplying the cubic
equation with b‘rfbg’ and applying biz1 — z1 and baxa — 2 do not change the values of v;
and p; because b3b3 = 1 mod p and the characteristic a; = az mod p stays untouched as well,
because b1 = b = 1 mod p. This transforms the ordered conditioned system in an equivalent
ordered conditioned system with coefficients a; and b; with b1 = bs = 1. By choosing an integer
a with a;a =1 mod p and multiplying the cubic equation with it, one gets a; = a2 =1 mod p.

Furthermore, one can assume that a; # ao because else, setting 1 = 1, 2 = -1 and the
remaining variables zero solves the system. Therefore, there is a 6 € N such that a; —ag = p’a’
with p 4 d'.

The last two lemmata contain useful information about the coefficients of the first two
variables, whereas the following lemma gives some additional information about the coefficients
of the remaining coefficients of the cubic equation, for which further notation is needed.

Definition 11. Two integers a and b differ by a cube, say [a] = [b], if there is a ¢ # 0 mod p
such that a = ¢>b mod p.

Lemma 66. If an ordered conditioned system with a1 = as = 1 mod p, by = by =1, vg = 4,
v1 =2, v9=2 and t =2, which has no low variable at level 0, has no non-trivial p-adic solution
for a prime p =1 mod 3, then for all i € {0,1,2} it has to hold that

[a2i+3] # [agisa].

Proof. Assume that there is an i € {0, 1,2} such that ag;.3 = c3agi+4 mod p for some ¢ # 0 mod p.
Set all variables zero except 1, 2;+3 and 9,44 and apply x1 —~ pzi. Dividing the cubic
equation by p’ and the linear by p transforms the system into one with 1 = 3 -4 > 1,
v2i+3 = V2ir4 = 0, p1 = 0 and poi43, 2ir4 > 0. Setting x9;43 = 1 and 2,4 = —c solves
the cubic equation independent of the values of x1 modulo p. Taking z; such that the
linear equation is solved modulo p provides a solution, which can be lifted, because of
alx%b2i+3 - a2i+3x§i+3b1 = —a9;43 ¥ 0 mod D, with Lemma J

Definition 12. An ordered conditioned system with a; = ao = 1 mod p, by = by = 1, vy = 4,
v1 =2, v9=2,t=2and 6 € N such that a1 —as = paa’ and p + @’ which has no low variable at
level 0 is called a critical system if [ag;43] # [agi+4] for all i € {0,1,2}.

To conclude the case vg = 4 and ¢ = 2, one has to prove that every critical system has a
non-trivial p-adic solution for all primes p = 1 mod 3. For that, the following lemmata are
useful, first among them one, similar to Lemma fitting better for critical systems which is
proceeded by a tool which uses the knowledge about a; and as.

Lemma 67. Let a’cica 2 0mod 7 and [c1] # [c2]. Then a’ + c1y3 + coy3 = 0mod 7 has a
non-trivial solution.

Proof. Without loss of generality, one can assume that @’ =1 mod 7. Else, multiplying the
equation with a b € Z such that a’b =1 mod 7 turns it into such an equation. If there is an
i € {1,2} such that ¢; = +1 mod 7, set x; = ¥1 and the other variable zero. Else, one has
¢; € {£2,£3}, but [¢1] # [c2], hence, there are i, j € {1,2} with ¢; € {+2} and ¢; € {+3}. Choose
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z; € {1} such that ¢;z? =2 mod 7 and z; € {£1} such that cja:? = -3 mod 7. This solves the
equation non-trivially. O

Lemma 68. Let p = 1 mod 3 be a prime, a; —as = p’a’ for some 6 € N with p + o' and
a1 = az = 1modp. Let ¢ and d be integers with p + cd and (%d) = (%), where (5) is the

Legendre symbol. Then, for each | with 1 <1 < 0, there are integers x1, x2 and ¢ with

¢ = cmod p, alcz:? + agzng =ple’ and z1 + xo = pld.

Proof. Set z1 = x + p'd and x5 = —z. Choose & such that 3a;22d = ¢ mod p. This is possible

because
(3—1a;1d—1c) ~ (3a1cd) ~ (3)2 _q
p p p '
This gives
alxi’ + agx% = a1m3 + 3a1x2dpl + 3a1xd2pm + a1d3p31 - a2x3
= pea'x?’ + 3a1x2dpl + 3a1xd2p2l + aldgp?’l
= 3a122dp’ = cpt  mod p*t,
and, hence, alx:f + agwg = ¢/p! for some ¢ = ¢ mod p. ]

Lemma 69. Let p=1mod 3 be a prime, a; —as = p’a’ for some 0 e N with p + a’, a1 = as =
1 mod p, ¢1,¢2,d1,da, e, f €Z such that p + cicaf, [c1] # [c2] and 1 < 5 < 0. Then the system
of equation

3 3 3 3 +1_.3
a1T] + a2x2+p6 (clyl + C2y2) +plez3=0,

w1+ wot+p” (diys +doya) + pPfz =0
has a non-trivial solution (x1,x2,y1,Y2,2) € Qg.

Proof. As [e1] # [¢2], it follows that ¢; # —co mod p. Hence, —¢1 — ¢2 # 0 mod p and, therefore,
one can apply Lemma with [ = 8 and ¢ = —¢1 — ¢ while choosing d € {£1} such that

(%’l) = (%) This provides 1, z2 and ¢’ = ¢ mod p such that

a1z} +axzh +p° (eryf + coyl) + 97 e = pP + 0P (eryl + o) + P eR?
and

1+ g+ p’ (diys + dayz) +p° f2 = pPd+ PP (duyn + day) + PP f2.
Dividing both equation by p® leaves the system

'+ cly% + Cng +pez’ =0,
d+ d1y1 + d2y2+ fz =0

to be solved. Setting y1 = y2 = 1, the upper equation is solved modulo p and choosing z such
that the lower equation is solved modulo p gives a solution of the system modulo p. Since
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cly%f —pez?d; = ¢1 f £ 0 mod p this solution can be lifted with Lemma [51] to a solution in Qg
of the system.

Lemma 70. A critical system with a low variable at level B < 0 has a non-trivial p-adic
solution for primes p =1 mod 3.

Proof. Choose a low variable x; with level 8 smallest among the low variables of the system.
Critical systems have no low variables at level 0, hence, 1 < 5 <6 —1. Due to the minimality of
B, the variables wog,3 and 25,4 are high variables at level 3. Put all variables zero, except w1,
T2, T28+3, T23+4 and x;. This is a system as in Lemma @ hence, it has a non-trivial p-adic
solution. ]

Lemma 71. Let p=1mod 3 be a prime, a; —as = p’a’ for some 0 e N with p + o', a1 = as =
1 mod p, c1,c2,d1,ds € Z such that p + cicady, di =1 mod p and ds is congruent to either 0 or
1 modulo p. Let furthermore c1 # co mod p and 1 <5< 60 —3. Then the system of equations

3 3 3 3
a1T] + aaxs +p/3 (clyl + 02y2) =0,

21+ wa+p” (diyy +dayz) = 0
has a non-trivial p-adic solution.
Proof. Set y1 =y1p, y2 = y4p, x1 = 1+dp®*3 and x5 = —1. This provides the system of equation
a'p? + 3a1dp”*? + 3d2a1p*?*0 + a1 PpPPHO + pfte (clyf)’ + ¢y yg)’ ) =0,
dp°*? +p*! (diyy +dayh ) =0,

where the upper equation can be divides by p®*3 and the lower one by p?*!,
In the case ds = 0 mod p, this transforms the system modulo p into

a'p? P34 3d+ 1y + cays =0 mod p,
y1 =0 mod p.

Setting | = 0, y4 = 1, and choosing d such that 3d = —c3 — a’p?~#~3 mod p give a non-singular
solution, due to c1yi2ds — coyi?dy = —ca # 0 mod p.
In the case ds = 1 mod p, this transforms the system modulo p into

a'pafﬁfg’ +3d + clyf’ + CQyég =0 mod p,
y1+vy5=0 mod p.

Setting y| = 1, y5 = -1 and d such that 3d = —¢; + c2 — a’p?#~3 mod p gives a non-singular
solution because of cly?dg - 62y§2d1 = ¢1 — co # O0mod p. In both cases, the solution can be
lifted with Lemma [511 O

The following lemma concerning the number of zeros of an absolutely irreducible polynomial
f(z,y) with coefficients in F, proves useful in the remaining steps.
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Lemma 72. An absolutely irreducible polynomial f(x,y) with coefficients in Fy of degree
d>0 has

N2q+1—%(d—1)(d—2) |22 |-

where N = #{(z,y) € F, | f(z,y) = 0}.
Proof. See [28, Corollary 2.b]. O

In the following, deg, (k(z,y)) and deg, (k(x,y)) denote the degree in = and y, respectively,
of a polynomial k(x,y).

Lemma 73. The polynomial f(z,y) = a’z® - 3yx? + c1y> + co € Fp[x,y] has a zero for all prime
p=1mod 3 if a’cica 20 mod p.
Proof. Assuming that f(xz,y) is reducible in Fp, there are polynomials g(z,y),h(z,y) €

F,[x,y] such that f(z,y) = g(x,y) - h(x,y). Without loss of generality, one can assume that
deg,(9(x,y)) > deg,(h(x,y)), hence, deg,(g(z,y)) = 2 and deg, (h(z,y)) = 1. Writing

9(@,y) =) +q(y)z+g0  and  h(z,y) = hi(y)z +ho(y)

with g;(y),h;(y) € Fy[y] for 0<4 <2 and 0 < j < 1, one obtains deg, (92(y)) = deg,(h1(y)) =0,
deg, (91(y)) = deg,(ho(y)) = 1 and deg, (go(y)) = 2 by comparing the degree of the polynomial
in y in front of ' in f(z,y) with that in g(z,y) - h(x,y). Therefore, one can write the
polynomials g;(y) and h;(y) as

90(Y) = goav*+gmy + 900,  91(y) = guy+gro,  92(¥) = 920,
ho(y) = ho1y + hoo, hi(y) = hio

with g;j, hi; € Fp, where goagi1g20ho1hio # 0. By dividing h(x,y) by hio and multiplying
g(x,y) with it, one can assume that hjg =1. A comparison of the polynomials in y in front of
x3 of both sides of f(z,y) = g(z,y) - h(x,y) shows gog = a’. Likewise, the polynomials in y in
front of 20 lead to the equations

gozhor = c1, (3.5.1)
go1ho1 = —goz2hoo, (3.5.2)
go1hoo = —gooho, (3.5.3)
goohoo = c2. (3.5.4)

From (3.5.1) and (3.5.4) it follows that goahor # 0 and goohoo # O and, hence, (3.5.1) and
(3-5.4) provide

h01 = — and h()() =—,
go2 goo

which can be insert into (3.5.2) to obtain

2
_2 902

go1 = .
C1 goo
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Inserting all of this in (3.5.3]) leads to
€395 = C1960- (3:5.5)

The equation goghgg + g10h10 = 0 can be obtained by comparing the polynomial in y in front of
x2. Using what was already obtained before, one gets

coa’

gio = —
goo

The polynomial in y in front of x provides the equations

g11ho1 + go2h1o = 0, g11hoo + g10ho1 + go1hio = 0, g10hoo + gooh1o = 0,
which, combined with the established equations, show

205y = —c1d/, (3.5.6)

csa’ = gy (3.5.7)
By inserting (3.5.7) into (3.5.5) it follows g3, = c7a’ which, together with (3.5.6)), leads to
—c%a' = 2g8’2 = 2cfa'.

It would follow that —1 = 2, which is false because p > 3, and, hence, such a factorisation cannot
exist and f(x,y) is absolutely irreducible. The total degree of f(x,y) is 3, and, therefore, for
N being the number of zeros of f(z,y) in F,, Lemma [72| shows

N>p-[2p)-2.

For p > 7 it follows that there is a zero of f(z,y). The only prime p <7 with p=1mod 3 is 7.
It is possible to find a solution for all values of a’, ¢; and ¢y where a’cica 2 0 mod 7 holds as
described in the following.

The equation
dz® +c;=0 mod p (3.5.8)

is solvable if [d] = [c2], because then there is a b € F,, such that db® = ¢ mod p, and, hence,
x = -bmod p is a solution. Setting x = 0 or y = tx with ¢t € F7 in f(x,y), one obtains an
equation of this type, with various values for d, in fact, it can be c1, a’, a’ +cy +i and a’ —c; + 7
with i € {1,2,4} and j € {3,5,6}. In the following, one sees that for every value of (a’,c1,c2)
and at least one of the possible values of d one has [d] = [¢2] and, hence, there is always a
solution.

In F7, it holds [1] = [6], [2] = [5] and [3] = [4]. Assume (d’, c1, c2) are such that f(x,y) has
no zero. For d = ¢; it follows that [¢1] # [c2] and from d = a' that [a'] # [e2]. If @' = —¢; mod 7
or a’ =c¢; mod 7, the values d =a’ + ¢ +4 with i € {1,2,4} or d=a' —¢; +¢ with i € {3,5,6},
respectively, represents each equivalence class and, hence, it is always possible to choose x
and y such that [d] = [e2]. But then, f(z,y) would have a zero, hence, [a’] # [c1]. If @’ is
chosen, it follows that ¢; can only be in one of the two remaining equivalence classes, and if ¢q
is chosen as well, the equivalence class of ¢y is fixed. In the following table all possible values
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of (a’,c1) with [a] # [e1] are listed together with a value for d which is in the remaining
equivalence class, showing that there is no possible value for ¢y such that there is no zero of
f(z,y), which proves the Lemma.

a' | e d a | d a' | e d a | a1 d

112 |ad+e1+1 || 24 |a+c+2| 41 |ad+c;+4| 5|4 |a'+c1+4
1 (3 |a'+c1+1 | 2|6 |ad+c1+2| 4] 2 |d+c;+2|| 5|6 |a'-c1+5
114 la'-c+5| 3|1 |a+c+1|| 4|5 |d+c1+4|| 6] 2 |a'+c+2
15 |a'+c1+4 || 3|2 |a+c1+1| 4|6 |ad+c;+2|| 6|3 |a-c1+6
211 |d+e1+1 3|5 |a'-c1+3|| 5|1 |a+ci+4| 6|4 |d-c1+3
213 |d+e1+1| 3|6 |a'-c1+5|| 5|3 |a-ci+6| 6|5 |a-c1+3

Lemma 74. The polynomial f(x,y) = c12® - 3z + coy® - 3y + a’ € Fp[x,y] with p + cicoa’ is
absolutely irreducible for all primes p =1 mod 3.

Proof. Assuming that f(z,y) is reducible in F,[x,y], there are polynomials g(z,y), h(x,y) €
F,[x,y] such that f(z,y) = g(z,y) - h(z,y). One can assume without loss of generality that
deg, (g(z,)) 2 deg, (h(x,y)), hence, deg, (9(z,y)) = 2 and deg, (h(z,y)) = 1. One can write
9(2,y) = g2(y)2* +91(y)z+g0 and h(w,y) = b1 (y)x-+ho(y) with gi(y), h;j(y) € Fp[y] for 0<i <2
and 0 < j < 1. By comparing the degree of the polynomial in y in front of z* in f(z,y) with that
in g(x,y) - h(x,y), one obtains deg, (g2(y)) = deg, (h1(y)) =0, deg,(g1(y)) = deg,(ho(y)) =1
and deg,(go(y)) = 2. Therefore, one can write the polynomials g;(y) and h;(y) as

90(y) :902?/2 + go1Y + goo, 91(y) = 911y + 910, 92(y) = 920,
ho(y) = ho1y + hoo, hi(y) = hio

with g;j, hi; € Fp, where goagi1920ho1hio # 0. By dividing h(x,y) by hio and multiplying
g(x,y) with it, one can assume that hig=1. A comparison of the polynomials in y in front of
23 shows go = ¢;. Likewise, the polynomial in front of 20 leads to the equations

goz2ho1 = c2, (3.5.9)
goohoo = d’, (3.5.10)
go2hoo + gorho1 = 0. (3.5.11)

From (3.5.9) and (3.5.10) it follows that goz2ho1 # 0 and goohoo # 0, and, hence, one obtains

/ ’.2
(&) a a 9o2

hor = —, hoo = — and go1 = — .
go2 goo 2900

Comparing the polynomial in front of 2> provides the equations

g20ho1 + g11h10 =0 and 920ho0 + g10h10 = 0,

61



which can be combined with the previous equations to obtain
c1cy a'cy

gu=-——and  gio=-
902 goo

The polynomial in front of 2! leads to
giihot + go2hio =0 and  gi1hoo + g10ho1 + gorhio = 0.
These combine with the previous equations to
932 = Cgcl and 982 = —203017

which would lead to 3 =0. This is a contradiction to p =1 mod 3, which only holds for primes
p > 3, hence, the polynomial is absolutely irreducible.
O

Lemma 75. Let p = 1 mod 3, a; —as = pPa’ for some 6 € N with p + o/, ay = az = 1 mod p,
c1,¢a,d1,do € Z such that p 4 cicady, di =1 mod p, do is congruent either to 0 or 1 modulo p
and ¢1 % b3y mod p for some b e ;. Then the system of equations

3 3 0 3 3
a7} + aszy + p’ (c1yi + c2y3) = 0,

1 + o +p0 (d1y1 + dgyg) =0
has a non-trivial p-adic solution.

Proof. In the case dy = 0 mod p, setting =1 = z + dp? and x5 = —z transforms the system of
equation into
a'z%p? + 3a12°dp? + 3a12d*p®® + ard*p*® +p (c1y} + c213) = 0,
dp? +p? (d1y1 + day2) = 0.
Dividing both by p?, they have, modulo p, the shape

a2+ 3dx? + e1y? + ys =0 mod p,

d+y; =0 mod p.

Now setting d = —y; mod p and ys = 1 solves the lower equation modulo p and transforms the
upper equations into

z3a’ - 3y12” + clyi)) +c2=0 mod p.
It follows from Lemma [73| that this always has a solution. This solution is non-singular, as it
holds cly%dg - @y%dl = —cod; £ 0 mod p.

In the case ds = 1 mod p, setting z1 = 1 + dp? and z» = -1 and dividing both the cubic and
the linear equation by p? transform the system, modulo p, into

a' +3d+cryd +coys =0 mod p,
L2t b (3.5.12)
d+y1+y2=0 mod p.
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Setting d = —y1 — y2 solves the lower equation modulo p and transforms the upper one into
a -3y —3ya + clyi’ + Cng =0 mod p. (3.5.13)

If V is the number of solution of this equation, it follows, because the equation is absolutely
irreducible due to Lemma [74] with Lemma [72] that

N>p-[2/p)-2.

Every solution of this equation solves the system of equations above. If cly% - Cng # 0 mod p,
this solution can be lifted to a non-trivial p-adic solution. Else c1yf = CQy% mod p has to be
fulfilled. There are at most six pairs (y1,y2) which fulfil this and solve because the
equivalence is fulfilled if
iz 2y,
C1

which has no solution if (%) = —1. If on the other hand (%) =1, it follows that there is a
b such that y; = +bys mod p. Putting this in (3.5.13)), one obtains

a’ ¥ 3bys — 3yz + clbgyg + CQyS =0 mod p,

which has at most three solution in both cases. Hence, if N > 6 there is at least one non-trivial
p-adic solution. Solving p — [Qﬁj —2> 06, one obtains that there are at least seven solutions if
p > 17. The remaining primes for which a non-singular solution of has to be found are
7 and 13. It follows from the assumption of this lemma that [¢1] # [c2]. Every solution of this
equation with 0 £ y; = +y2 mod p is a non-singular solution of the system of equation, because
in that case c19? — cays = (c1 — c2)y? # 0mod p. Setting y2 = —y; # 0 mod p, one obtains a
solution if [¢; — ¢2] = [@']. Furthermore, if, for fixed values of c¢1, ¢, and a’, the equation
has a solution which is non-singular as a solution of the system , the same holds
if the values of ¢; and ¢y are swapped or if a’ is replaced by —a’. Hence, it suffices to show that
there is a non-singular solution for all triples (c1,c2,a’) with ¢1,¢0 € {1,...,p—1} with ¢; < ¢,
[c1] # [e2].[er —co] # [a'] and @ € {1,..., 7%1} If y; =0 mod p and y; # 0 mod p for 4, j € {1,2}
solve then this solution is non-singular because one has cjy]? - ciy? = cjy? # 0 mod p.

p =7 By setting either y; = 0 or yo» = 0, one obtains that if one, co or ¢, is equivalent
to x +d for x € {3,5,6}, there is a non-singular solution. Furthermore, by setting
y1 = y2 # 0 mod p, one also obtains a non-singular solution if ¢; + co =  + a’ for x as
before. For all values of (¢, c2,a") not excluded above, one of this possibilities provides
a non-singular solution.

p = 13 Again, by setting either y; = 0 or yo = 0, one obtains that if one, cs or ¢y, is equivalent
tox+a for x € {1,3,9} or x +5a’ for z € {4,10,12}, there is a non-singular solution.
Setting y; = y2 # 0 mod p provides a non-singular solution if ¢; +co = z+a’ for x € {2,5,6}
and if ¢; +¢9 = x+8a’ for x € {7,8,11}. Here, for each value of a’, there is one pair (¢, c2),
which gets not excluded in this way. The following table provides these problematic
triples, together with values for y; and y» which provide a non-singular solution because
one has cly% - Cng # 0 mod p in all cases.
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a e | e Yr | Y2 a e | e Yi | Y2
1131651 4 |1 2 17 |1
2148|115 5 107 |1
3151919 |1 6 |11 |12 1 | 2

Hence, all the remaining primes do have a non-singular solution as well, which can be lifted
with Lemma [51] to a non-trivial p-adic solution. O

Lemma 76. Let p=1mod 3 be a prime. A critical system with 0 = 3v+1r where 0 <r <2, for
which p; > 60 —v for 2r + 3 <i<2r +4 holds has a non-trivial p-adic solution.

Proof. Set all variables zero except 1, X2, 9,43 and x2-14. This transforms the system into

3 3 r 3 3
127 + axxy +p (clx2r+3 + czx2r+4) =0,

O-v+1
1+  To+p (dixors3 + dawarea) = 0,

where p"c¢; = agr404; and pe_“”di = boryo44 for 1 <4 < 2, hence, the coefficients ¢; are not
divisible by p. Setting xo,,0.; = p¥z; for 1 < < 2, one obtains

alwi’ + agxg +p9 (clzig + czzg’) =0,

T+ ) +p6+1 (dlzl + dQZQ) =0.

Due to Conclusion [If and Lemma one can choose (z,z1,22) # (0,0,0) mod p such that
a'z? + clz? + Cng =0 mod p. As at least one of z, 21 and 25 is not equivalent to 0 modulo p,
and they fulfil the equation, it follows that at least two of them are not equivalent to 0 modulo
p. After swapping z; and zo if necessary, one can assume that z; # 0 mod p. Set z; = x and

x9 = -2+ (—d121 — dazo )p9+1. Modulo p, the function
_ 3
o(t)=p? (a1x3 +as (—x + (=dit - d2Z2)p9+1) ) +ert® + o2

has a zero at z1, whereas ¢'(z1) = 3c127 # 0 mod p. Hensel’s lemma provides Z; with ¢(21) = 0
in Q,. This is equivalent to

9“)3 +p? (cléi” + czzg) =0,
-0

r + (—3: + (—d1,§1 - d22’2)p0+1) -+-p‘9+1 (d121 + d222)

alx?’ + a9 (—1‘ + (—dlfl — dQZg)p

which proves the claim. O

Lemma 77. Let p=1mod 3 be a prime. A critical system with 6 <3 has a non-trivial p-adic
solution.

Proof. By the definition of a critical system, it follows that 6 > 1, hence, the variables zog,3
and x99,4 are the only ones with the property v; = 6. Suppose that for all i € {20 + 3,260 + 4}
it holds u; > . Then Lemma [76] yields the desired non-trivial p-adic solution. If there is an
i€{20+3,20 +4} with u; <0, then z; is a low variable at level less than 6. Therefore, Lemma
gives a non-trivial p-adic solution. It remains the cases with p; > 6 for i € {20 + 3,20 + 4}
and p; = 6 for at least one of them. This case is solved in Lemma O
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For the remainder of this section some new notation is needed. For 7 € Ny, which can be
written as 7 = 3u + p with 0 < p <2 and u € Ny, define

8
Ax) =Y aia?,  A(x)= A(@1, 22, 0" Yo, D Y D Ypr1s - D Y2),
=1

8
B(X) = Z bixia BT(X) = B($1a$2apu+190) s 7pu+1yp7puyp+1) s 7puy2)7
i=1

where y; = (22i+3,T2i+4). The system A,(x) = B,(x) = 0 is equivalent to A(x) = B(x) =0,
hence, it suffices to find a non-trivial p-adic solution for A,(x) = B-(x) = 0 for some 7. Denote
by al(T) and bET) the coefficients of the system A.(x) = B;(x) = 0, and let p”z‘(T) Hagﬂ and
7

e

Lemma 78. Let p=1mod 3 be a prime. A critical system with p; > v; for all i > 3 has a
non-trivial p-adic solution.

Proof. Let 6 = 3v+r with 0 <r < 2. It follows from the definition of Vi(T) and ,uZ(T) that
for 7 big enough one has yfT) > ul(.T) for all i > 3. Let t be the smallest integer possible
such that there is an ¢ > 3 such that Vi(t) > Mgt). In the case t > 0 — 3, it follows from the
definition of ¢ that 1/1.(9_3)

I/z~(€73) =vi+3(v-1+1) =r+3v =10, u, = pui+v—1+1 = p;+v and, therefore, p; > —v. Hence,
Lemma [76] provides a non-trivial p-adic solution. It remains the case with ¢ < —3. Write
t =3u"+p" with 0 < p’ <2. As t was chosen smallest possible, it follows that i € {2p’+3,2p" +4}

for those ¢ with ,uz(»t) < Vz-(t). Define

< ,ul(.g_g) for all ¢ > 3. Furthermore, for all i € {2r + 3,2r + 4}, one has
(0-3)

B3 := min {ugt) | ul@ < Vi(t)} = min {ugt) |2p" +3<i<2p + 4}.

For all i € {2p" +3,2p" + 4}, it holds that Vft) =p'+3(u' +1) =t+3, hence, one has 3 <t+3<6.
Writing 8 = 3u” + p”" with 0 < p” <2, one can choose an i’ € {2p" + 3,2p" + 4} with ,ug,t) = 0.

Suppose ,u(t) < Ui(,t) and, hence, § < t+3 < #. By the minimality of ¢, it follows that

i
VZ.(,t_l) < ,ul(,t_l). However, one has V,L.(,t) = yz.(,t_l) +3 and ,uz(.,t) = ug,t_l) +1, such that VZ.(,t) -3< ,ul(,t) -1
and hence the inequality ¢ < 8 -1 <t + 2 holds, which gives 8 =t +2 and p” = p’ + 2 mod 3.
In both cases, if p” = p'+2 and v” =« and if p” = p' =1 and v = v/ + 1, it follows for
i€{2p"+3,2p" +4} that Vft) = 3 and, due to the definition of ¢, ,ul(t) > yi(t) = B can be deduced.
Setting all variables in A;(x) and By(x) to 0 except x1, x2, 2 and y,» provides a system as
in Lemma [69] and, hence, a non-trivial p-adic solution exists.

The remaining case, ,u,l(,t ) - I/i(,t) and, hence, 5 =t + 3, can be divided into different cases
again. If =t+3 =60 or f=t+3<0-2, one sets all variables in A;(x) and By(x) to 0 except
x1, x2 and y,y. For all i€ {2p" +3,2p" + 4}, it holds I/Z-(t) < ,ul(t) with at least one equality and,
hence, the system turns into

t+3 (

3 3 3 3
a1xy +agxy +p o (C1Toy43 + 62332p1+4) =0,

t+3
T+ o +Dp (dlxgpq_g + d2$2p1+4) =0.

This system has a non-trivial p-adic solution, which follows either by Lemma [75] or Lemma
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Now, let 5 =t+3 =60k for ke {1,2}. Set everything zero except x1, 2, ¥, and y,. As before,
(t) > y(t) for all i € {2p" +3,2p" +4}. Tt is easy to verify that y(t) Ok forie{2p +3,2p +4}

and I/j(~ ) =6 -3 for all j € {2r + 3,2r + 4} by distinguishing between the different values of k

and p’. Let, without loss of generality, be jio,,3 < j12,44, hence, one has ,ug 13 < ,ug 14 for all

7 € Np. It follows from Lemma [76] that, if no non-trivial p-adic solution exists, 6 — v > f12,43.
Assuming k = 1, it follows that ,uglﬁg = pors3 +u' for r € {1,2} where v’ = v -1 and
ugi)+3 piorss +u' + 1 for 7 = 0 where u/ = v — 2. If pg,.3 <0 — v, by applying y, — p? v H2r+3y,
one obtains
’7523 = Vg»)+3 +3(0—v—p23) 2 V2(£)+3 +3=0,
~(t
iy = iy + 0~ = iz =0 - L.

Therefore, in setting xo,4+4 = 0, the system A;(z) = B;(z) = 0 becomes

3 3, ,60-1 3 3 0
a1y + agxy + p (clxgp,+3 + 02:172p,+4) +p’ dxore3 =0,

9-1 0-1
x1+  xo+p  (dixopes + dokopyia) + P exopy3 =0,

with p + c1ce, which can be solved with Lemma For o3 = 0 — v, applying y, — py, gives

ﬂg,)w ,uglr3 +1=6 and 1/524 ~§f1)+3 1/523 +3 =0. Setting y, = 0, one obtains

3 3, .0 3 3
a1T] + asxy +p (clx2T+3 + 02562,,+4) =0,

0
x1+ 22+’ (dixore3 + daora) = 0,

with p 4 c1cady, which can be solved with Lemma

It remains the case k = 2. Here, for r € {0,1}, it follows that ,uéT)Jr?) = lory3 +u’ + 1, where

u' =v-2 and for r = 2 that uéT)Jrg = por+3+u’ where v’ = v—1, which can be combined to obtain

,uglr3 = por+3 + v — 1. Because of 1/523 =60 -3, due to the minimality of ¢t and po,43 <0 — v, it

follows that
_ () _ _ _
03 < pg,yq=por3+v-1<60-1,

hence, it suffices to regard the cases ué )+3 =6-1 and ug )+3 =6-2. For uér)+3 =0 -1, setting
Y, = 0 and applying y, = py, transform the system into

3 3 0 3 3
a1y + asxy +p (clx2r+3 + 02x2r+4) =0,

0
1+ 22+ (diZores + daxoria) =0,

with p 4 ¢1c2dq, which, again, can be solved via Lemma [75] For Mgzg = 0-2, applying y, = py,

D =0, @D, =01, =0+1and iy, >0-1

2r+1 Horys

for i € {3,4}, where uép)H =6 -1 holds for 2p" +1 =14" with some [ € {3,4}. Setting x1 =1=—z9,

one obtains a system of the shape

and y, — py, provides a system with o Uy p, i

10 0+l 3 3 0 3 3
ap +p (Cl$2p/+3 + CQ‘TQp’+4) +p (€1$2r+3 + 62932r+4) =0,

-1 -1
PP (diwayss + dowaysa) + P77 (fivarss + fowaria) = 0,

66



with p + cicado_jeres fi. Multiplying the cubic equation with p‘e and the linear one with p_9+1,
one obtains, modulo p, the system

! 3 3 —
@’ +e1x5.,3 + ety =0 mod p,

d1%op 13 + doT2p 44 + f172r43 + foT2r44 =0 mod p.

It is always possible to solve the cubic equation modulo p with xo,,; # 0 mod p for at least one ¢ €
{3,4}, say j, due to Conclusion |1 for p > 7 and Lemma for p = 7. The linear equation can be
solved by setting the remaining variable, which is not xs,,;, zero and choosing x3,/; accordingly.
This solution is non-singular, because 6j_2$%“_jdl_2 —pCl_Q.fL'%p,+lfj_2 = ej_2$%r+jdl_2 # 0 mod p.
Hence, it can be lifted to a non-trivial p-adic solution with Lemma, ]

Lemma 79. Let p=1mod 3 be a prime. A critical system with 6 >5 has a non-trivial p-adic
solution.

Proof. If p; > v; for all i > 3, a non-trivial p-adic solution is provided by Lemma [78] If p; <v;
for some 7 > 3, this is a low variable at a level smaller than 6 and, hence, Lemma [70] provides a
non-trivial p-adic solution. In the remaining cases, it holds y; > v; for all ¢ > 3 and pu; = v; for at
least one j > 3, but it follows from the definition of a critical system that pus > v3 =1 and pug > vy
and, hence, p; = v; for at least some j > 5. For this j, it holds 1 < pj =v; <2=5-3<0-3,

hence, Lemma [71] provides a solution. O

It remains the two cases 6 = 3 and 6 = 4 which are handled in the next two lemmata.

Lemma 80. Let p=1mod 3 be a prime. A critical system with 6 =4 has a non-trivial p-adic
solution.

Proof. If p; > v; for all ¢ > 3, the system can be solved with Lemma [78] and if there is an ¢ > 3
with p1; < v, a non-trivial p-adic solution is provided by Lemma [70} Due to the definition of a
critical system, one already knows p; > v; for 3 <i <4. If u; = v; for some 5 <7 <6, a solution
exists due to Lemma To sum it up, the remaining cases have got p; > v; for 3 <i <6 and at
least one of 7 € {7,8} with u; = v;. Without loss of generality, one can assume that u; = v7 = 2,
ps > vg =2 and us < pe. If ps >0 —v =4-1=3, Lemma [76] provides a non-trivial p-adic
solution, hence, one can assume 2 < us < 3. In the case us = 3, applying y1 ~ py: transforms
the system into one with pus =3+1=0 and v5 = g =1 + 3 = 0 and, hence, Lemma [75] provides
a non-trivial p-adic solution. The remaining case with us = 2 can be changed by applying
y1 + py1 and ys — pyo into one with ug > us =3, v5 =vg =4, puy =3 and vy = 5. Setting x1 = 1,
Ty = -1, x3 = 24 = g = 0 and multiplying the cubic equation with p~* and the linear one with

p~3, one obtains

o' vasrd + agry =0 mod p,

l~)5 s + EG Tg + l~)7x7 =0 mod p,

with p + @sdgbsbr. Solving the cubic equation modulo p such that z; # 0 mod p for some
i € {5,6} can be done due to Conclusion [1| and Lemma Then one can use z7 to solve
the linear equation modulo p to obtain a solution which can be lifted to a non-trivial p-adic
solution with Lemma because dim?in - pdyx%i = dixfgy £ 0 mod p. This solves the case
0=4. O
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Lemma 81. Let p=1mod 3 be a prime. A critical system with 6 = 3 has a non-trivial p-adic
solution.

Proof. If p; > v; for all 4+ > 3, Lemma provides a non-trivial p-adic solution. Likewise,
Lemma [70] provides one if u; < v; for some i > 3. Without loss of generality, one can assume
that ps < g, ps < pe and py < pg. If ps > 0 —v =2, a non-trivial p-adic solution exists due to
Lemma [76] hence, one can assume that 1 < pg < 2.

Assume ps > vs = 1. Then pg > v = 1 as well and it follows py = v7 = 2 because for at
least one ¢ > 3 it has to hold that u; = v;. If furthermore us = 2, by applying yo — pyo one
obtains a system with us = v3 = v4 = 0, which can be solved with Lemma Hence, one has
3 = 1. Such a system can be transformed with yg — pyg into one with pu3 =2 and v3 =3. As
w7 = v7 = vg = 2, this is solvable with Lemma [69]

It remains the case with 1 = us = v5. Here, for us = 2, applying yo — pyo transforms the
system into one with 4 > u3 = v3 = v4 = 6 and, hence, the system can be solved with Lemma [75]
For pus = 1, applying yo + pyo and y; — py; transforms it into a system with v3 = vy = 6
pa > ps = s =2 and vs = 4. Setting x1 = 1, x9 = -1, x¢ = 7 = g = 0, multiplying the cubic
equation with p~3 and the linear one with p~2, the systems has, modulo p, the shape

o/ +azxs + dgrs =0 mod p,

ngg +bhyxy + 551‘5 =0 mod p,

with p + @s@absbs. One can solve the cubic equation modulo p such that z; # 0 mod p for
some i € {3,4} with Conclusion 1| and Lemma Then one can use z5 to solve the linear
one modulo p. This solution modulo p can be lifted with Lemma [51] to a non-trivial p-adic
solution because ZLZ'CL‘?BE) - &5:6%152- = &imii)g, £ 0 mod p. O

Hence, every system with (vg,t) = (4,2) has a non-trivial p-adic solution.

3.6 The Cases (v, t) =(4,3) and (v, t) = (4,4)
One has to find a non-singular solution of the system

a1 x5 + apay + azxs + agrs =0 mod p,

bix1 + baxo + bgrs + bgxry =0 mod p,

with ajagagasbibebs £ 0 mod p, where, dependent on the value of (vg,t), either p| by or p + by.
If such a solution exists, it can be lifted to a non-trivial p-adic solution with Lemma
Applying z; — b;lxi for those b; with 1 < i < 4 where p + b;, one can assume that b; is
equivalent to 1 or 0 for 1 <4 <4. Starting with the case (vo,t) = (4,3), one has to solve the
system

a5 + agws + agacg +a4rs =0 mod p,

(3.6.1)
r1+x2+2x3=0 mod p.

Due to Lemma [60} one can assume that a1, az and ag are distinct modulo p, else a non-singular
solution exists. If the system can be solved with x4 # 0 mod p, one has a4xﬁbl - alx%b4 =
a4x?l # 0 mod p and, hence, the solution is non-singular. Setting xo =1 and x3 = -1 — x1 solves
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the linear equation modulo p and transforms the cubic one into
(a1 - a3)as - 3asx? - 3aswy + ag — a3 + agzs =0 mod p. (3.6.2)

There can be at most three solution of with x4 = 0 because this is a polynomial of
degree 3 over a field. Hence, if there are at least four solutions of , at least one of them
has to be non-singular. To estimate the number of solution, one can use Lemma [72| again. For
that, one needs to show that is absolutely irreducible. The following lemma provides a
way for that.

Lemma 82. Suppose the polynomial yd—f(x) has coefficients in a field k. Then the following
three conditions are equivalent.

(i) y? - f(x) is absolutely irreducible.
(i) y? - cf(z) is absolutely irreducible for every c#0, c € k.

(iii) If f(x) = a(x — aq)?( — apy) ¥ is the factorisation of f in k, with o; # aj fori # j,
then (d,dy,...,dny) =1.

Proof. See [38, Lemma 2C]. O

Lemma 83. Let p=1mod 3 be a prime. The function f(x,y) = (a1 — az)x® - 3azz? - 3azx +
as —ag + agy’ € Fplz,y] with p + ajazazaq is absolutely irreducible.

Proof. Define g(x) via
ay' f(z,y) =y’ = (a1' (a3 — a1)2” + 3a;" aza® + 3ay agw + ay ' (a3 - az)) = y° - g(x).

Let g(z) = “-2 (2 - o) (2 — az2)(z - a3) be the factorisation of g in F,. Either all o; with
1 <i <3 are equal, or at least one of the zeros is simple. If all three are equal, a comparison
of the coefficients shows a; = —az(a3z — a1)™! and a? = az(as — a1)~' which can be combined
to conclude a; = 0, contradicting the assumption, hence, at least one of the zeros is simple.
Therefore, the third equivalence of Lemma [82is fulfilled and, hence, a;! f(z,y) is absolutely
irreducible as well as f(x,y). O

Applying Lemma [72[ to the function f(z,y), one obtains N >p— [2\/1_7J -2 and, therefore,
N > 3 for all p > 11. It remains to show for p = 7 that a solution of the system (3.6.1))
with x4 # 0 mod 7 exists. Showing that it is possible to choose x1, x2 and x3 such that
[a123 + agxd + agxg] = [a4] while 1 + 22 + 23 = 0 mod 7 is equivalent to show that the system
has a solution, because it enables one to choose x4 # 0 mod 7 such that the system is
solved. Multiplying the cubic equation with a;l, one can assume that a4 =1 mod 7. Denoting
by a; the representative of a; modulo 7 with 1 < @; < 6, there have to be 7,5 € {1,2,3} with i # j
such that @; and a; are either both in {1,2,3} or both in {4,5,6}. One can apply z; — —z; for
1 <1 <3 and multiply the linear equation by —1 to obtain a system as before, where the signs
of a1, az and a3 have changed. This changes the set in which @; and a; are in. By applying
this transformation if necessary, one can assume that they are both in {1,2,3}. By permuting
the first three variables if necessary, one obtains a system with 1 < a; < do <3 and as < az <6.

If o —a; =1, setting 1 = -1, 2 = 1 and x3 = 0 provides the desired solution, hence,
one can assume that a; = 1, ag = 3 and as € {4,5,6}. For each of these cases, one can
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choose (1, z2,23) € {(0,-1,1),(1,1,5),(3,2,2)} such that [a123 + agz3 + azz3] = [as] while
x1 + 22 +x3 =0 mod 7, which proves the case p=7.
For (vg,t) = (4,4), one has to solve the system of equations

alx:{’ + agxg + agacg + a4xi =0 mod p,

(3.6.3)
r1+To+x3+24=0 mod p.

If a; = aj mod p for some 1 < < j <4, the system can be solved due to Lemma Hence, from
now on, one can assume that a1, as, ag and a4 are distinct modulo p. Setting x4 = —x1 —z2— 23
solves the linear system. For A; :=a; — a4 for i € {1,2,3} and a := a4, by setting either z; =1
or x3 = 1, the cubic equation transforms in either

Asxl - 3a(1+x3) 25 - 3a (1 + 223 + 23) 20 + A3xi — 3az3 - 3azs + A1 =0modp  (3.6.4)
or
Aoz —3a (1 +x1) 23 - 3a (1+23; + x%) To+ Azt - 3ax? — 3axy + A3 =0mod p.  (3.6.5)

The conditions on the a; transform into A; # A; for i # j, a#0, a+ A; # 0 and A; =0 modulo
p for 1 <i < 3. The following lemma shows that at least one of them is absolutely irreducible
over [Fp,.

Lemma 84. If modulo p one has A; # A, fori+j, a#0,a+A; #0 and A; #0 for 1<i,j <3,
at least one of the polynomials

fi(z,y) = Asx® - 3a (1 +y) 2 —3a(1 +2y+y2)x+A3y3 —3ay® - 3ay + A,
and

fo(z,y) = Asa® - 3a (1+y) z? - 3a (1 + 2y + y2) z+ Ary® - 3ay? - 3ay + As,
is absolutely irreducible in F,

Proof. Let f(x,y) = A2z®-3a(1+y)x?-3a(1+2y +g_;2):c+By3 —3ay?-3ay+C. If f(x,y) is not
absolutely irreducible, there are g(x,y),h(x,y) € Fp[z,y] such that f(z,y) = g(z,y) - h(z,y).
Without loss of generality, one can assume that deg,(g(x,y)) > deg,(h(x,y)), hence, one has

deg,(9(z,y)) = 2 and deg, (h(z,y)) = 1. One can write g(z,y) = g2(y)2* + g1 (y)z + go(y) and
h(z,y) = hi(y)x + ho(y) with ¢;(y),h;(y) € Fply] for 0 <i<2 and 0 < j <1, which provides
the equations
92(y)h(y) = A,
g2(y)ho(y) + g1(y)ha(y) = -3a (1 +y),
g1 (®)ho(y) + go(y)h1(y) = -3a (1 +2y +y°),
90(y)ho(y) = By’ - 3ay* - 3ay + C,

where one can compare the degree in y to obtain

(3.6.6)

deg,(go(y)) =2, deg,(g91(y)) €{0,1}, deg,(g2(y)) =0
deg,(ho(y)) =1, deg,(h1(y)) =0,

70



and hence,

90(y) = go2y” + g1y + goo,  91(¥) € {g10, 91y + g0},  92(y) = g0,
ho(y) = ho1y + hoo, hi(y) = hio,

with go2g10920h01h10 # 0 or go2g11920h01h10 # 0, depending on the degree of gi(y). By
multiplying g(x,y) with gg& and h(z,y) with g0, one can, without loss of generality, assume
that g0 = 1.

If deg,(g1(y)) = 0, expanding the left hand side of the first three equations of (3.6.6) and
comparing the coefficients in front of the powers of y, one obtains

3a
th = A’ hOl = —3CL, h’OO =-3a - AglOa go2 = _Za

which can be combined with the fourth equation of to 9a% = AB. If both functions,
fi(z,y) and fo(x,y), can be written as a product of functions g;(x,y)h;(x,y) = fi(x,y), the
corresponding functions g%i)(y) have to have degree 0 or 1. If the degree is 0 in both cases, it
follows that AsA; = 9a® = A A3 and, hence, A; = A3, which contradicts the assumption. It
follows that at most one of the functions f;(x,y) can have a corresponding function gfl)(y)
with degree 0. Hence, one can choose f(x,%) as one of the equation f;(x,y) with 9a® + AB.
If this equation is not absolutely irreducible, it follows that deg(gi(y)) = 1. Here, expanding
the left-hand side of the first three of equations and comparing the coefficients in front
of the powers of y gives

hio = A, ho1 = =3a - Ag1, hoo = =3a - Agio,
——3—a+3—a +q° __6_a+3_a +3—a +2 ——3—a+3—a +q°
goo = A A gi1o0 + 910, go1 = P A 910 ) g11 g10911, go2 = A A g1 +911-

By combing them with the fourth one, one obtains

9a® - 9a’g11 + 3aAgi1 - 6aAgl, — A%g}, = AB, (3.6.7)
9a® - 9a’g10 + 3aAgio - 6aAgi, — A%g}y = AC, (3.6.8)
g10 (—aA +3a® + 4aAgy + Azgfl) = 9a% + aA + 2aAg1; - 64’911 - 2aAg%1, (3.6.9)
g1 (-aA+ 3a% + 4aAgio + AZg%O) = 9a” + aA + 2aAgi - 6a’gio - 2aAgl,.  (3.6.10)

Assuming g19 = 0, the equation transforms to g11 (A +3a) =9a+ A. As g11 # 0, either
3a-A=9a+ A =0 or both are not 0. If both are 0, it follows that 3a = A = -9a and hence
a =0, which contradicts the assumption. Hence, one has 3a — A # 0 and 9a + A # 0. Plugging
gi1 = g‘;—fﬁ and g10 = 0 into (3.6.9)) one obtains

-3a(a+A)(3a+ A)(9a+ A) =0.

As 3, a, 9a+ A and a + A are not zero, it follows that —3a = A. Plugging in g1o = 0 in ((3.6.8)
provides 9a® = AC, hence, 9a? = —-3aC and therefore C' = —-3a = A, which contradicts the
assumption. From that one can conclude that gig # 0. Assume that the equation

9a + A +2Ag - 6ag—2A4¢> =0 (3.6.11)
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for g € {910,911} holds. As both g1 and g;; are not 0, one can conclude from (3.6.9) and

(3.6.10) that
—aA+3a® +4aAg + A%¢* = 0. (3.6.12)

Combining both equations, one obtains g = 76262‘4, which plugged into (3.6.12)) provides A =0,
contradicting the assumption. Hence, 9a+ A+2Ag—6ag—2Ag? # 0 for g € {g10,911}. Therefore,
solving (3.6.9) and (3.6.10)) for gip and g11, respectively, one obtains

9a® + aA + 2aAgy1 - 6a*g11 - 2aAg?,
—aA+3a® + 4aAgni + A%g?, ’

9a? + aA + 2aAgio - 6ag10 - 2aAg3,
—aA+3a® + 4aAgio + A%g3, ’

gio =

g11 =

hence, it is possible to write each, g19 and g¢11, in terms of the other one. Inserting one into
the other, one obtains for g € {g10, 911} the equation

—a(a+A) (—81a4 ~36a®A - 3a% A% + 81a*g - 54a Ag — 24a® A%g — aA3g
+108a3Ag2 - 4aA392 + 54a2A293 + 6aA3g3 + 12aA?’g4 + AA‘g4 + A495) =0,
which is, as a # 0 and a + A # 0, equivalent to

—8la* - 36a%A - 30% A% + 8latg - 54a® Ag — 24a® A%g — a A3y

3.6.13
+108a3Ag? — 4aA3¢® + 54a® A% g% + 6aA3g> + 120 A3¢* + A*gt + AP = 0. ( )

By bringing ¢® to one side of (3.6.7) and (3.6.8)) and putting this into (3.6.13), one obtains
for (g, D) € {(g10,C), (911, B)}

~A(a+ D) (9a® + 3aA + 6aAg + A%g + A%¢*) = 0,

and because A # 0 and a + D # 0 that

o 9a° +3aA+ A%g +6aAyg

g9 = e ,
which, inserting into (3.6.7) and (3.6.8)), provides
_ 3a+D
g= A

If one puts this into (3.6.7) and (3.6.8) one obtains, again for (g, D) € {(g10,C), (911, B)}, the
equation

(-A+D)D(3a+A+D)=0,
but as A+ D and D # 0, it follows that
C=-3a-A=8B,

which contradicts the assumption. Hence, neither fi(x,y) nor fo(x,y) can be the product of
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g(x,y)h(z,y) with deg(gi(y)) =1 and at most one of them can have deg(gi(y)) = 0, hence,
at least one of them is absolutely irreducible. O

It follows from the previous Lemma that one can set either z1 = 1 or 3 = 1 such that
the cubic equation transforms into an absolutely irreducible polynomial. Due to Lemma
the number of solution N of this polynomial can be estimated through N > p - [2\/1_)J - 2.
Let 4,7 € {1,3}, i # 7, such that x; = 1 provides an absolutely irreducible polynomial. Then
aix?bg - agl'%bi =a; - agm% mod p. If this is not equivalent to 0 modulo p for a solution of
the absolutely irreducible polynomial, the solution is a non-singular solution of the system,
which can be lifted to a non-trivial p-adic solution. For a; — a2x§ = 0 mod p, there are at most
two values of xo which can solve this equation, and for each of them there can be at most
three values of x;, which solves the absolutely irreducible polynomial. Hence, if there are at
least seven solutions of the absolutely irreducible polynomial, at least one does not solve the
equation a; — agl‘% = 0 mod p, proving that it is a one non-singular solution, which can be lifted
to a non-trivial p-adic solution, as needed. Therefore, if p — [2\/]_7J — 2> 6, which holds for
p > 17, the case is solved. The cases p =7 and p = 13 are handled using the following lemmata.

Lemma 85. Let p = 1mod 3 be a prime. Let 1 <i,j,k,1 <4 be all distinct with [a; - a;j] =
[ar —a;]. Then the system (3.6.3) has a non-trivial p-adic solution.

Proof. Setting x; =1, x; = -1, x;, = x and x; = —x solves the linear equation and transforms
the cubic one into

(ai—a;) + (ax —a;)z* =0 mod p,

which can be solved non-trivially due to [a; — a;] = [ax — @;]. Furthermore, one has a;x?b; -
ajxgbi = a; — a; # 0 mod p because ay,a2,a3 and a4 are distinct modulo p, hence, the solution
is non-singular and can be lifted due to Lemma O

Lemma 86. Let p=1mod 3 be a prime. Let 1<1,j,k,1 <4 all distinct with [a;] = [a;] and
[ax] = [a;]. Then the system (3.6.3|) has a non-trivial p-adic solution.

Proof. As the a; for 1 <i <4 are all distinct and all non-zero modulo p, it follows that there
are b and ¢ not equivalent to 0 or 1 modulo p such that a; = b3aj mod p and ay, = ¢>a; mod p.
Setting x; = b, x; = -1, 2; = cx and xj, = —x solves the cubic equation and reduces the linear
one to

(b-1)+(c=1)z=0 mod p,

which can be solved by choosing = appropriate as ¢—1 is not zero. This solution is non-singular,

because ajx? —a; 22 = ajbz(l —b) which is not equivalent to 0 modulo p because a;j, b and 1-b
are not. By Lemma the system has a non-trivial p-adic solution. O

There are only three classes for [a;], hence, it follows that at least two of them are in the
same class. Furthermore, due to Lemma [86], one can assume that the other two are not in
the same class, therefore, after renumbering if necessary, either [a1] = [a2] = [a3] # [a4] or
[a1] = [a2] while a3 and a4 are in the two remaining classes. Multiplying the cubic equation
with a[l does not change this relation. For p = 7, only the second case can occur, because there
are only two elements in every equivalence class. Hence, one can assume that a; =1 mod 7 and
ay = 6 mod 7 while ag is congruent to 2 or 5 modulo 7 and a4 to 3 or 4. If [az —a1] = [a3 — a4],
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there is also a solution due to Lemma [85| hence, it remains the cases (a3, a4) € {(2,3),(5,4)}
which can be solved non-trivial with (x1,z9,23,24) € {(5,1,1,0),(1,5,1,0)}.

For p =13, if [a1] = [a2] = [a3], it follows that ay and a3 are congruent to 5, 8, or 12 and
a4 is congruent to one element of the set {2,3,4,6,7,9,10,11}. As before, one can assume
without loss of generality that as < a3. Those cases which cannot be solved with Lemma
are solved in the following table.

a9 as aq il T2 I3 Ty as as ayq I X9 T3 | T4
o (8|16 10| 1|0 2 5 (817311019
o (8|10 8| 1|0 4 511214 111011
o (12,9 5|0 |17 5124110 | 1|5 |7
811212 | 5| 1|0 |7 811214 |3 |1 |01|9
81121 9 |4 | 11108

If [a1] = [a2] but a3z and a4 are in the two remaining equivalence classes with [az] # [a4],
one can assume that ag is equivalent to an element in the set {2,3,10,11} and a4 to one in
{4,6,7,9}. Most of these cases can be solved with Lemma [85[ and the remaining ones with
their solution modulo 13 can be seen in the following table.

a9 as aq | I T2 I3 Ty as as ay I X9 T3 | T4
o1 27| 7] 1|50 8|12 4|5 |1 | 710
513 (6 (111 1/0 8|13 412 |1|10]0
5|10 7|8 |1 |4]0 8 |10} 714 |10] 3|6
5 116 (10| 1 | 0| 2 8 110 910 | 3| 8] 2
5 119 (12| 0 | 2 |12 8 |11 9|6 | 1|6 |0
1212 16 |11 0 | 1 1112121915 1 0| 7
12314141 (8]0 12(10] 9 10| 1 210
1211114 | 6 1106 1211 7 | 2 1 0 |10

Hence, for p =7 and p = 13, all cases have a non-trivial solution modulo p. Those solution
are even non-singular, because every solution has at least one of the x; = 0 for some 1 <7 <4,
and one x; # 0 mod p for 1 < j <4. Hence, ajx]?bi - aix?bj = ajx? # 0 mod p shows that these
solutions can be lifted to a non-trivial p-adic one. This completes the case (vg,t) = (4,4) and
with that the case p =1 mod 3. Finally, some more attention has to be paid to the case p = 3.

3.7 The Case p=3

As every partial differential of the cubic equation is divisible by 3, one has to find a non-singular
solution which solves the cubic equation modulo 9 and the linear one modulu 3, to prove the
existence of a non-trivial p-adic solution, as stated in Lemma To show that a non-singular
solution for a system exists, the parameters used in the previous section are not precise
enough. Hence, the following notation is required.

For 0 <i <2, define

XZ'Q = {:L‘k|]{3€{1,...,8},3i || ak,Serk}, Xil = {xk|k€{1,...,8},3i || ak,3|bk},

and the partial unions X; := X;ouU X;1. The cardinality of these sets ¢;; := #X;; and the partial
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sums v; := t;0 + t;1 = #X; are adequate to describe a system for this proof.

In the proof of Lemma the basics of this idea were already used. By mapping a
system to an equivalent one with a non-trivial 3-adic solution, one proves that it has
one as well. The following three transformations are a finite series of the processes introduced

in Section They map subsets of the set of systems to the set of systems .
(i) Apply x; = 3x; for all z; € Xy and multiply the cubic equation by %
(ii) If t9p = 0, multiply the cubic equation by 3 and apply x; — %xz for all x; € Xo.
(iii) If t10 + tao = 0, multiply the cubic equation by 9 and apply z; — %xz for all x; € X7 U Xs.

The second and the third transformation cannot be applied to every system , because
if the condition is not fulfilled, then the systems turns into one with non-integer coefficients.
A system which gets mapped by one of these transformations to a system with a
non-trivial 3-adic solution has one as well, because they are equivalent to each other. By
applying one of the transformations one can therefore extend the set of systems having
a confirmed non-trivial 3-adic solution.

The following lemmata proves that systems with specific parameters have a non-
trivial 3-adic solution, which can be combined to show that all ordered conditioned systems

(3.3.1]) are covered by these systems.

Lemma 87. If c1,ca,c3 € (Z/9Z)" are pairwise distinct, it is possible to choose two of them
such that the difference is congruent to 3 modulo 9 and, by swapping the minuend and the
subtrahend, to 6 modulo 9.

Proof. In (Z/9Z)", only two residue classes modulo 3 are contained. Therefore, at least two ¢;
have to be in the same residue class. Those two are not equal, hence, they differ by 3 or 6. [

Lemma 88. A system (3.3.1) with too+t10+t20 >3 and 1 <i < j <tgy such that a; = a; mod 9
has a non-trivial 3-adic solution.

Proof. Set x; =1, zj = =1 and the remaining variables zero. Hence, the system (3.3.1)) turns
into

aix? + ajx;-’ =a;-a; =0 mod 9,

i+ x;=1 -1 =0 mod 3.

There is a variable x; € Xoo U X190 U Xoo\{xi,z;} which has the value 0. It follows that
bkaixf - biaka:i = a; # 0 mod 3 and, hence, Lemma [51| provides the wanted solution. ]

Lemma 89. A system (3.3.1)) with too+ti0+t20 > 1 and a; = a; mod 9 for some too+1 < i < j < vy
has a non-trivial 3-adic solution.

Proof. Set x; =1, x; = —1 and the remaining variables zero. This solves the cubic equation
modulo 9 and the linear one modulo 3. There is a variable xj € X9 U X719 U Xo9 with z; = 0.
It follows that bkaia:? - biakx% = a; # 0 mod 3 and, hence, Lemma |[51| can be applied to obtain
a non-trivial 3-adic solution. O

Lemma 90. A system (3.3.1) with tgp =5 has a non-trivial 3-adic solution.
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Proof. One can assume that the a; corresponding to those x; € Xop are all distinct modulo 9,
because else, Lemma [88| provides a non-trivial 3-adic solution.

Since tyg > 5 it follows from Lemma @ that it is possible to choose z;,x; € Xog such that
a; —a; = 3mod 9. The remaining elements in Xqo are still at least 3. Lemma can be
applied again to provide xy,z; € Xoo\{xi, z;} such that a; —a; = 6 mod 9. Taking x; = x), = 1,
xj = 17 = -1 and setting the remaining variables zero provides a solution for both the cubic
and linear equation. Since there is at least one variable, say x,,, in X9 which was set zero,
one gets bmaix? —bijamz? = a; £0mod 3 and, therefore, a non-trivial 3-adic solution can be

m

obtained by Lemma [51] O

By applying transformation (i) to a system (3.3.1) with ¢19 > 5 it becomes an equivalent
system (3.3.1)) with ¢go > 5.
Conclusion 2. A system (3.3.1]) with ¢;9 > 5 has a non-trivial 3-adic solution.

Lemma 91. An ordered system (3.3.1) with vo > 4 and ty9 > 1 has a non-trivial 3-adic
solution.

Proof. Choose x; € Xo¢ and set every variable zero except x1,...,z4 and ;. One can choose
x1,...,T4 in a way that the cubic equation is congruent to 0 modulo 9. If either two of
the corresponding coefficients are equivalent modulo 9, then one can set one of them 1, the
other one -1 and the remaining zero. Otherwise, at least one of the sets {1,8}, {2,7} and
{4,5} is completely represented by z1,...,x4 modulo 9. Choose these two, set both 1 and the
remaining zero. In either case, there is a variable, say z;, among z1,...,r4 which is 1. Now
set x; such that the linear equation is congruent to 0 modulo 3. This does not change the
2

value of the cubic equation modulo 9. Since biajacj - bjaia:? = aj # 0mod 3, it follows from

Lemma [51] that there is a non-trivial 3-adic solution. O

Setting x; = 0 for all x; € X190 U Xo¢ turns a system with t11 > 4 and tgp > 1 into one
with ¢19 + to9 = 0. Then transformation (iii) can be applied to change it into an system ([3.3.1)
with vg > 4 and t9g > 1. After renumbering to obtain an ordered system, Lemma [91] provides a
non-trivial p-adic solution.

Conclusion 3. A system (3.3.1)) with ¢1; >4 and tpp > 1 has a non-trivial 3-adic solution.

Lemma 92. An ordered system (3.3.1) with vg > 2, v1 > 1 and tag > 1 has a non-trivial 3-adic
solution.

Proof. Let x; € X1 and x; € Xp0. Set all variables zero except 1,2, 2; and x;. Now set z1 =1

and choose x9 € {-1,1} such that alzc‘rf + agl'% = 0 mod 3. This is always possible since both a;

and ag are congruent to either 1 or 2 modulo 3. Now one can choose z; € {0,1,-1} in a way

that the cubic equation is congruent to 0 modulo 9 because a; € {3,6} modulo 9. To make the

linear equation congruent to 0 modulo 3, one can choose z; suitably without changing the
2

value of the cubic equation modulo 9. Furthermore, bjalac% - blajxj = a1 # 0 mod 3 ensures

that one can lift the solution with Lemma [51] to a non-trivial 3-adic one. O]

To apply transformation (ii) or (iii) to a system with v > 1, t10 > 1 and t21 > 2 or
t11 2 2, to1 2 1 and tgg > 1, one has to set z; = 0 for all x; € Xog or x; € X109 U Xog, respectively.
It then becomes an equivalent system with vg > 2, v1 > 1 and tog > 1, which can be
renumbered to obtain an ordered system with the same parameters.
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Conclusion 4. A system (3 with vg > 1, t19 > 1 and t97 > 2 has a non-trivial 3-adic solution.
Conclusion 5. A system (|3 with £11 > 2, to1 > 1 and tgg > 1 has a non-trivial 3-adic solution.

Lemma 93. A system (3.3.1) with tog >3 and t11 > 1 has a non-trivial 3-adic solution.

Proof. If there are z;,x; € Xqp such that a; = aj mod 9, it follows from Lemma that a
non-trivial 3-adic solution exists, else all the corresponding coefficients of x; € Xyg are distinct.
There is an zp € X11, hence, from the definition of X7 it follows that aj is congruent to 3
or 6 modulo 9. With that in mind one can choose, due to Lemma, @ ai,a;j € Xoo such that
a;—aj = —a mod 9. Now setting x; = x3, = 1 and z; = -1 and the remaining variables zero solves
the cubic equation modulo 9 and the linear one modulo 3. T here is an xl € Xoo which was set
zero. The lift of the solution follows by Lemma E because blaZ -b; alxl =a;#0mod 3. [J

By applying transformation (i) to a system (3.3.1) with t19 > 3 and t2; > 1 it becomes an
equivalent system (3.3.1)) with ¢oo > 3 and t17 > 1.
Conclusion 6. A system (3.3.1)) with t19 > 3 and t9; > 1 has a non-trivial 3-adic solution.

Lemma 94. A system (3.3.1)) with to1 > 2, t11 > 1 and too + t19 + too > 1 has a non-trivial
3-adic solution.

Proof. Let x;,xz; € Xo1, 1 € X171 and set every variable zero except these three. Then the
linear equation is solved modulo 3 independent of the value of these variables. It is possible to
choose x;,z; € {1,-1} in a way that a;z} + ajx =0 mod 3 and xj € {0,1,-1} that the cubic
equation is solved modulo 9, because a is congruent to 3 or 6 modulo 9 per deﬁnition of X11.

There is also an x; € X9 U X19 U Xop with z; = 0. One sees that blal - b; al:cl =a; # 0mod 3
and, hence, the solution is liftable to a non-trivial 3-adic one by Lemma ]

By applying transformation () to a system ((3.3.1)) with 17 > 2, to; > 1 and t19 +t90 > 1 it
becomes an equivalent system with t91 > 2, t11 > 1 and tgg + t10 + 2o > 1.

Conclusion 7. A system (3 with t11 > 2, to1 > 1 and t19 + 99 > 1 has a non-trivial 3-adic
solution.

Lemma 95. A system (3.3.1) with top >3 and to1 > 2 has a non-trivial 3-adic solution.

Proof. If there are x;, x; € Xqo such that a; = a; mod 9, Lemma [88| provides a non-trivial 3-adic
solution. Let x;,x; € Xo1. If one of a; + a; and a; — a; is congruent to 0 modulo 9, set x; = 1
and choose x; € {1,-1} such that the cubic congruence is fulfilled. Else a; +a; or a; — a; is
congruent to 3 or 6 modulo 9 because a; and aj are congruent to 1 or 2 modulo 3. Set x; =1
and choose z; € {1,-1} such that azx + aja: =0 mod 3. Then Lemma provides xy, x; € Xgo
with ar —a; = —az:r;?’ - aj:rj mod 9. Therefore, one can set x; =1 and z; = —1. In both cases,
setting all the remaining variables zero fulfils the cubic congruence modulo 9 and the linear
modulo 3. There is an z,, in X9 which was set zero. Since bmal - b; amx =a; # 0mod 3,

this solution can be lifted to a non-trivial 3-adic one by Lemma |5_TL ]

Apply transformation (i) to a system (3 with t19 > 3 and t17 > 2. It then becomes an
equivalent system ((3.3.1)) with ¢p0 > 3 and t01 > 2.
Conclusion 8. A system (3.3.1)) with ¢;0 >3 and t1; > 2 has a non-trivial 3-adic solution.

Lemma 96. An ordered system (3.3.1)) with too > 4 and ti9 > 1 has a non-trivial 3-adic
solution.
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Proof. One can assume that all a; with 1 <7 < ¢y are distinct modulo 9 because otherwise
Lemma [88| can be applied to show that there is a non-trivial 3-adic solution.

Permute the first four variables such that a1 = ... = a;, mod 3 and a; # ajy+1 = ... = a4 mod 3.
Modulo 9, there are three residue classes which are in the same residue class modulo 3,
hence, ig € {1,2,3}. If ig = 2, set 1 = —x9 =1 and 23 = —x4 = 1 or x3 = —z4 = —1 such that
the cubic equation is fulfilled and every other variable zero. This solves the cubic equation
modulo 9 and the linear one modulo 3. This solution can be lifted by Lemma [51] since
bgala:% - b1a33:§ = a1 —ag # 0mod 3.

Therefore, one can assume that ig € {1,3}. In this case one of the sets {1,4,7} and {2,5,8}
is completely represented by ai,...,as modulo 9, and the remaining coefficient lies in the
other set. Hence, one can choose 4,5 € {1,...,4} such that a; + a; is congruent to 3 modulo 9.
Likewise, one can choose them such that a;+a; is congruent to 6 modulo 9. Therefore, choosing
them such that a; +a; is congruent to —a;, where x; € X19, one can set x; = z; = x; = 1 and the
remaining variables zero to solve the cubic equation modulo 9 and the linear one modulo 3.
This solution can be lifted by Lemma because aix?bl - alx?bi =qa; # 0 mod 3. ]

Lemma 97. An ordered system (3.3.1) with too > 1, to1 > 3 and tip > 2 has a non-trivial
3-adic solution.

Proof. 1t follows from Lemma [89] that if there are x,,, z,, € Xo1 with n #+ m and a,, = a,;, mod 9,
the system has a non-trivial 3-adic solution. Let x;,x; € X10. If a; # a; mod 9, set z; = —x; = 1.
Lemma [87| can be applied to show that it is possible to choose m,n € Xy such that a,, — a, =
aj —a; mod 9. Setting x,, = —r, = 1 and the remaining variables zero provides a non-singular
solution, because blanac% - bnalx% = a, # 0 mod 3, which can be lifted by Lemma to a
non-trivial 3-adic one.

Else a; = a; mod 9. If there is an a, for tgo + 1 < n < vy such that ay +a; + a; = +a, mod 9
set x1 = x; = x; = 1, x, = F1 and the remaining variables zero. This solves the cubic
equation modulo 9 and the linear modulo 3, and can be lifted by Lemma because
bialm% - blaix? = a1 £ Omod 3. Else, all a, for tgo + 1 < n < vy are neither congruent to
aj + a; + aj nor to —a; — a; — a; modulo 9. But they have to be in the set {1,2,4,5,7,8},
and, since a; + a; + a; is modulo 9 in one of the sets {1,8}, {2,7} and {4,5}, the a, with
too +1 < n < vg have to be in the two remaining sets. They are distinct modulo 9, hence, one of
the sets is entirely represented. Therefore, there are tog+1 < n < m < vy with a, +am, = 0 mod 9.
Set z, = &, = 1 and the remaining variables zero. This is a non-singular solution because
blanac,z1 - bnalx% = a, # 0 mod 3 and can be lifted to a non-trivial 3-adic solution by Lemma
which proves the lemma. ]

Lemma 98. A system (3.3.1) with to1 > 4 and top + t10 + t20 > 1 has a non-trivial 3-adic
solution.

Proof. If there are x;,x; € Xo1 with a; = a; mod 9, Lemma @ provides a non-trivial 3-adic
solution. Else, at least one of the sets {1,8}, {2,7} and {4,5} is by the a; with x; € X¢1
completely represented modulo 9. It is therefore possible to choose x;,z; € X1 such that
a; +aj =0mod 9. Setting x; = x; =1 and the remaining variables zero provides a non-singular
solution, which can be lifted by Lemma [51] because, for x; € Xop U X109 U X9, it follows that
blam% - bialxlz = a; # 0 mod 3. O]

By applying transformation (i) to a system ({3.3.1)) with ¢;; > 4 and t19 + to9 > 1 it becomes
a system (3.3.1f) with tg; > 4 and tgg + t10 + t20 > 1.
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Conclusion 9. A system (3.3.1) with ¢17 >4 and t19 + t29 > 1 has a non-trivial 3-adic solution.

Lemma 99. An ordered system (3.3.1) with tog > 2, t19 > 1 and t11 > 1 has a non-trivial
3-adic solution.

Proof. Setting x1 = 1, one can choose z9 € {+1}, depending on whether a; and as are in
the same or in different equivalence classes modulo 3, such that a;23 + asx3 = 0 mod 3. To
solve the linear equation modulo 3, one chooses x,,+1 € {0,+1} and choosing Zyy+t0+1 €
{0,£1} one can solve the cubic equation modulo 9 without changing the value of the linear
equation. Setting all remaining variables zero, one obtains a non-singular solution, because
alx%byoﬂ - avo+1x12)0+1b1 = a1 # 0 mod 3, which can be lifted to a non-trivial 3-adic solution
with Lemma [511 O

Lemma 100. An ordered system (3.3.1)) with top > 3, to1 > 1 and t1g > 2 has a non-trivial
3-adic solution.

Proof. One can assume that all a; with 1 < i < tgg are distinct modulo 9, because otherwise
Lemma [88] provides a non-trivial 3-adic solution.

Set all variables zero except xi, X2, X3, Ttgg+1, Lo+l and Ty,12. In the case ay 1 #
Qyy+2 mod 9, the coefficients ai, az and a3 are either in the same equivalence class modulo 3, or
one of them is in another class than the other two. If they are in the same class, it follows that
a1 + as + az = 0 mod 3 but not equivalent to 0 modulo 9. Hence, setting x1 =22 =x3=1 and
Typg+1 = £1 and 42 = F1, dependent on whether a; + a2 +as is equivalent to 3 or to 6 modulo 9,
solves the cubic equation modulo 9 and the linear one modulo 3. This is a non-singular solution
because alx%bvoﬂ - avoﬂxfjo +101 = a1 mod 3. Else, without loss of generality, one can assume
that a1 and a9 are in the same equivalence class modulo 3 and a3 in the other one. Therefore,
it holds that a; + ag = ag + a3 = 0 mod 3, but as a; # az mod 9, one can choose i, j € {1,2} such
that a; +az #0mod 9, and a; + a3z + ayy+; =0 mod 9. Setting x; = 3 = 24,1, = 1 and everything
else zero solves the cubic equation modulo 9 and the linear one modulo 3. This is non-singular,
because aix?bvoﬂ- - av0+j:pgo+jbi =q; # 0 mod 3.

For the remaining case ayy+1 = Gyy+2 mod 9 define

. _ .3 3 3 3
Ax = A(21, 2,23, Tigg+1) = Q1T] + AT + A3T3 + Gy +1T5 41 € L[,

By = B(x1,%2,%3, Ttgg+1) = T1 + T2 + w3 € Z[3Z.

If it is possible to choose two vectors x = (1,22, 3, Ttoe+1) € 10,1, -1}4, such that Ay € {3,6}
and By € {1,2} where one of Ax and Bx has the same value for both vectors and the other
one has two different values, one can set either both xy,+1 = Ty,+2 = 1 or just x,,+1 =1 and
Zyy+2 = 0. One of the settings of z,,+1 and z,,.2 together with one of the settings of x solves
the cubic equation modulo 9 and the linear one modulo 3. If there is an i € {1,2,3} with
x; # 0 mod 3, this solution is non-singular, because aix?bvoﬂ - avo+13712;0 +10i = a; #0mod 3 and,
hence, can be lifted to a non-trivial 3-adic one.

If a1, az and a3 are in the same equivalence class modulo 3 and ay,,+1 is in the other, a;+a¢y,+1
is congruent to 0, 3 and 6 modulo 9, depending on 7 € {1,2,3}, hence, setting x; = 4,11 = 1
for those ¢ which belongs to 3 or 6 and the other variables zero provides (Ax, Bx) = (3,1)
or (Ax, Bx) = (6,1), respectively, as needed. If as+1 is in the same equivalence class as ay,
ay and a3, one can obtain (3,1) and (6,1) as well, because a; — aty,+1 is equivalent to 0, 3
and 6, depending on i € {1,2,3} and, hence, setting z; = 1 = —z4,,+1 as above and the other
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variables zero gives the desired result. From now on, one can assume without loss of generality
that a1 and as are in the same equivalence class modulo 3 and ag is in the other. If ag is
not equivalent to —a; and —as modulo 9, setting x1 = x3 = 1 or 9 = 3 = 1 and the other
variables zero provides (3,2) and (6,2). Hence, one can assume without loss of generality
that a3 = —a; mod 9. By multiplying the cubic equation with aIl one obtains a; =1 mod 9,
a3 =8 mod 9 and ag equivalent to either 4 or 7 modulo 9, while ayy,+1 € (Z/9Z)*. The following
table proves the existence of the required vectors for the remaining cases.

a2 | Gtoo+1 | T1 | T2 | T3 | Tigp+1 Ay | Bx a2 | Gtoo+1 | L1 | T2 | T3 | Tigp+1 Ay | Bx
4 1 0 1 0 -1 3 1 7 1 0 1 1 0 6 2
1 1 -1 0 6 1 0 1 0 -1 6 1
4 2 1 0 0 1 3 1 7 2 0 1 1 0 6 2
0 1 0 1 6 1 0 0 1 -1 6 1
4 4 0 0 1 1 3 1 7 4 0 1 1 0 6 2
-1 1 1 1 6 1 1 0 0 -1 6 1
4 5 1 0 0 1 6 1 7 5 0 1 1 0 6 2
0 0 1 -1 3 1 1 0 0 1 6 1
4 7 1 0 0 -1 3 1 7 7 0 1 1 0 6 2
0 0 1 1 6 1 0 0 1 1 6 1
4 8 0 1 1 0 3 2 7 8 0 1 1 0 6 2
0 1 0 1 3 1 0 1 0 1 6 1

O]

Lemma 101. An ordered system (3.3.1)) with top > 2, to1 > 2 and t19 > 2 has a non-trivial
3-adic solution.

Proof. Assume ayy,+1 = £a15,+2 mod 9. Then one can set 4,41 = 1 and choose x40 € {1}
such that at00+1x§00 T at00+2x§00 +2 = 0mod 9. Setting the remaining variables zero, one
obtains a solution of the cubic equation modulo 9 and the linear one modulo 3. The solution
is non-singular because at00+1xt200+1b1 — a123byge+1 = Gtge+1 £ 0 mod 3 and, therefore, it can be
lifted to a non-trivial 3-adic solution.

Hence, one may assume that as,+1 # +a¢,+2 mod 9. Depending on them being in the same or
in different equivalence classes modulo 3, either the difference or the sum of both is congruent
to 0 modulo 3, but not to 0 modulo 9. It follows that for n € {3,6} fixed, it is possible to
choose Tyyy+1, Ttge+2 € {1} such that argee123 Lo+ atggs22}, .o =nmod 9. Setting 1 =1 and
choosing x5 € {+1} such that alx‘rf + GQIE% = 0 mod 3, one can choose Ty, +1,Tyy+2 € {0, 1} such
that the linear equation is equivalent to 0 modulo 3. Doing this does not change that the cubic
equation is equivalent to 0 modulo 3. If it is also congruent to 0 modulo 9, this solves the
system, else one can choose z,,+1 and z,,+2 as described above, to solve the cubic equation
modulo 9, without changing the value of the linear equation modulo 3. This solution is
non-singular, because a1x%byo+1 - av0+1x30 +101 = a1 #0mod 3 and can be lifted to a non-trivial
3-adic solution with Lemma O

The preceding lemmata and conclusions can be applied to prove Theorem [2] for p = 3.
Lemma 102. An ordered conditioned system with s > 8 has a non-trivial 3-adic solution.

Proof. From the definition of a conditioned system it follows that one with s > 8 must fulfil
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the following four equations:

vg > 3, (3.7.1)

v +v1 > 6, (3.7.2)
§=vg+ v +vy>8, (3.7.3)
to0 + t1o + ta0 > 1. (3.7.4)

Assume there is a conditioned system with s > 8 without a non-trivial 3-adic solution.
If this system has t99 > 1, Lemma [91| can be applied to show that vy < 3. From and
, it follows that vg = 3 and v; > 3, which contradicts Lemma Hence, t5y has to be
Zero.
Lemma [90] can be applied to show that 0 < tgp < 4. This leaves four cases to consider.

too =0 If tgg =0, it is forced by that tgq is at least 3. Then it follows from Lemma
and that 91 = 3. Lemma and can be applied to show that ¢1; = 0 and
because of it follows that t19 > 3. At the same time, Conclusion [2| forces t19 to be
at most 4. Hence, one has t9; > 1, because of , which contradicts Conclusion @
Therefore, this case cannot occur.

too =1 One can apply to show that tg; > 2. This, together with Lemma reveals
that 2 < tp; < 3. Again, Lemma forces t11 to be zero. Because of @ it follows
that t19 is at least 2 and, by Conclusion [2] at most 4. Lemma [97] coerces to; to be 2 and,
hence, makes it necessary for t21 to be at least 1. Conclusion |§| can be applied to
obtain t19 = 2, which leads together with to t91 > 3. This contradicts Conclusion
and therefore tgy cannot be smaller than 2.

too =2 For tgo = 2, it follows that 1 < g1 < 3 because of (3.7.1) and Lemma Hence, (3.7.2)
can be applied to show that v1 > 1. At this point, further restrictions do not follow from

the previous lemmata, hence, another case analysis is necessary.

to1 = 3 Lemmata [94] and [97] restrict £1; to be zero and tio to be at most 1. But then
one has t1y = v1 which has to be at least 1, as proved above. Hence, it follows that
t10 = 1. Then t9; is at least 2 because of (3.7.3]), which contradicts Conclusion

to1 =2 Again, Lemma [94] shows that ¢1; = 0. But here, (3.7.2) displays that 2 < vy = t19,
which contradicts Lemma [I011

to1 =1 Here, (3.7.2)) can be applied to show that v; is at least 3 and Conclusion [2f to
obtain 19 < 4. Unfortunately, this is not enough to conclude anything else and
another case analysis is in order.

t10 > 3 It follows from Conclusion |§| that to; = 0 and, hence, from (3.7.3) that
v1 > 5. Hence, one has t11 > 1, which contradicts Lemma
t10 =2 By (3.7.2)) it follows that ¢1; is at least 1, which contradicts Lemma

t10 =1 It follows from (3.7.2) and Conclusion [9] that ¢1; has to be at least 2 and
at most 3. This leads, with (3.7.3|) which shows that ¢ > 1, to a contradiction
with Conclusion [7l

t10 =0 Here, t17 is at least as big as 3 because of (3.7.2). Conclusion |5 can
be applied to show that t2; = 0 and hence t1; > 5 follows by (3.7.3) which
contradicts Conclusion [3l
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Every case with tgg = 2 and ty1 = 1 leads to a contradiction, hence, a conditioned
system (3.3.1]) with s > 8 and these two parameters has a non-trivial 3-adic solution.

This proves for the last possible value of tg; if oo = 2 that there exists a non-trivial
3-adic solution, hence, tgy = 2 cannot occur if such a solution does not exist.

too = 3 It follows from Lemmata [93] and [95] that ¢11; = 0 and ty; < 1. Hence, Conclusion [2| and
forces t1g to be at least 2 and at most 4. By Conclusion [4}, it follows that o1 <1
and, hence, due to , one obtains 3 < t19 < 4. Conclusion |§| shows that t91 = 0 and,
hence, again due to , one has tg; = 1, which contradicts Lemma m

too =4 Again one sees with Lemmata (93| and (95| that ¢1; = 0 and #9; < 1. Hence, by (3.7.2]),
the parameter t1g is at least 1 which contradicts Lemma

As shown above, a conditioned system (3.3.1)) with s > 8 which has no non-trivial 3-adic
solution cannot have tyg < 4. But as proved before the case analysis those cases with tgg > 5

do have a non-trivial 3-adic solution, hence, the lemma is proved.
O

As discussed at the beginning of this section, this suffices to prove Theorem [2] for p = 3. For
every other prime the theorem was proved in the previous sections, hence, Theorem [2] holds.
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