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Abstract
Global Navigation Satellite System (GNSS) are crucial for fast and precise positioning in outdoor areas
worldwide. Their applications include personal navigation in vehicles or with smartphones, autonomous
driving and Internet of Things (IoT). However, in urban areas, tall buildings block and reflect the satellite
signals, causing large and unpredictable positioning errors. To improve positioning in urban areas, there is a
need for efficient signal processing methods, ideally ones that can operate with low-cost hardware, so that the
solutions can be applied on a large scale.

Error Characterization To get an understanding of the measurement errors in urban areas, they have
been characterized for two carrier frequencies using a ray tracing simulation. The results show that the
pseudorange errors follow a highly non-Gaussian distribution, which highlights the challenge of navigation
in urban canyons. Furthermore, the pseudorange errors on two frequencies are highly correlated in case of
the Non-Line-of-Sight (NLOS) reception mode, which is not the case for Multipath (MP), where interference
causes irregularity in the error. In general, the largest errors are caused by NLOS reception.

Multipath Detection To detect satellites with faulty measurements so that an optimal subset of satellites
can be selected, two methods have been developed, both based on dual-frequency correlator output. The first
one is closely related to Signal-to-Noise Ratio (SNR)-based methods by averaging 10 correlator points, while
the second method scales better with more correlator points by computing the Pearson linear correlation.
Both methods show good performance in classification of GNSS signals compared with the state of the art,
and a preliminary validation from a test drive with real satellites shows promising results. Positioning can
thus be improved simply by selecting the most error-free measurements.

Multipath Mitigation In order to correct measurements from the specific case of MP reception, a triple-
frequency signal power-based method has been developed. For this, measurement noise on the signal power of
a dual-frequency receiver has been characterized, and a corresponding Maximum Likelihood (ML) estimation
problem has been derived. The method shows promising results in MP delay estimation compared with
state of the art methods, given that the hardware can deliver precise signal power measurements. Using this
method, navigation in areas where less than four satellites are available can be improved.

Positioning To produce a complete positioning solution, the previously explained dual-frequency satel-
lite selection procedure has been integrated into an urban area simulation, where multiple vehicles are
communicating in a collaborative positioning scenario. By combining dual-frequency satellite selection
with collaborative positioning, the faulty measurements can be excluded, while more measurements become
available through Vehicle to Vehicle Communication (V2V). According to the simulation, this combination
can reduce the positioning error in a moderate urban area to 2.5 m.



Zusammenfassung
Das „Global Navigation Satellite System“ (GNSS) ist ausschlaggebend für weltweite, schnelle und genaue
Positionsbestimmung. Die Anwendungen umfassen die Navigation, autonomes Fahren und das Internet
der Dinge. Trotzdem können in Städten hohe Gebäude die Satellitensignale reflektieren und zu großen
Positionsfehlern führen. Um die Navigation zu verbessern, ist es erforderlich effiziente Methoden der
Signalverarbeitung anzuwenden. Idealerweise sollten es Methoden sein, die auch mit einer kostengünstigen
Hardware anwendbar sind und für den Massenmarkt eingesetzt werden können.

Fehler-Charakterisierung Um ein Verständnis der Messfehler in Städten zu bekommen, wurden sie mit
einer „Ray Tracing“-Simulation charakterisiert, welches auf zwei Trägerfrequenzen arbeitet. Die Ergebnisse
zeigen, dass die Pseudorange-Fehler einer Verteilung folgen, die hochgradig „nicht-Gauss“ ist. Dies zeigt,
welche Herausforderung es ist, in Städten zu navigieren. Weiterhin sind die Fehler im „Non-Line-of-Sight“-
Modus (NLOS) hochgradig korreliert. Im Multipath-Modus (MP) ist dies nicht der Fall, weil Interferenzen
zu unregelmäßigen Fehlern führen können. Im Allgemeinen scheint NLOS zu den größten Fehlern zu
führen.

Multipath Erkennung Um Satelliten mit fehlerhaften Messungen zu erkennen und die beste Teilmenge
auszuwählen wurden zwei Verfahren entwickelt, die beide auf dem Ausgangssignal eines Dual-Frequenz-
Korrelators beruhen. Das erste hängt eng mit dem Verfahren des Signal/Rausch-Verhältnisses zusammen,
bei dem 10 Zeitpunkte des Korrelator-Ausgangs gemittelt werden. Das zweite Verfahren nutzt die lineare
Pearson-Korrelation. Beide Verfahren zeigen ein gutes Ergebnis um die Klassifikation der GNSS-Signale mit
dem Stand der Technik zu vergleichen. Eine vorläufige Validierung einer Testfahrt mit realen Satelliten zeigt
vielversprechende Ergebnisse. Die Navigation kann dadurch verbessert werden, dass man die fehlerfreien
Satellitensignale auswählt.

Multipath Abmilderung Um die Messwerte für einen bestimmten Fall des MP zu korrigieren, wurde
ein Verfahren entwickelt, welches auf der Messung der Signal-Leistungen auf drei Frequenzen beruht. Dafür
wurde das Maximum-Likelihood Schätzungs-Problem formuliert. Die Methode zeigt vielversprechende
Ergebnisse bei der MP Delay-Schätzung verglichen mit dem Stand der Technik, vorausgesetzt die Hardware
unterstützt genaue Leistungsmessungen. Mit dieser Methode kann die Navigation in Fällen mit weniger
als vier Satelliten verbessert werden.

Positions-Bestimmung Um eine komplette Navigations-Lösung aufzustellen, wurde das oben erwähnte
Dual-Frequenz-Verfahren zur Satellitenauswahl in eine Simulation integriert. Dabei kommunizieren viele
Fahrzeuge in einem gemeinschaftlichen Navigations-Szenario. Durch die Kombination vom Dual-Frequenz-
Satellitenauswahl und dem Datenaustausch zwischen mehreren Fahrzeugen können die fehlerhaften Mes-
sungen entfernt werden und gleichzeitig sind mehr Messungen durch den Datenaustausch verfügbar. Die
Positionsfehler können in einem moderaten Stadtgebiet auf 2.5 m verringert werden.
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Chapter 1

Introduction

Accurate, reliable and fast localization has never been more important. Autonomous driving and
advanced driving assistance systems require that vehicles can locate themselves in all types of
environments and weather. Another application is the Internet of Things, where a vast amount of
objects need to be connected and localized. Location-based services in, e.g., smartphones need
regular updates on the user’s position. In indoor areas, localization can be done through, e.g.,
Wi-Fi fingerprinting, however this is an active research field [KH07, p. 898]. In outdoor areas,
on the other hand, Global Navigation Satellite System (GNSS) is the dominant technology, with
almost world-wide availability. Furthermore, GNSS gives an absolute position (relative to the
earth), which can be acquired within a matter of seconds after starting the receiver. Drawbacks of
GNSS include its high power consumption at high sampling rates and its sensitivity to jamming
and spoofing. Another problem, that is especially serious for automotive applications, are the tall
buildings in dense urban areas, which reflect and block the signals on their way from satellite to
receiver. An example of this from the City of London (latitude 51.510537◦ and longitude -0.091505◦)
can be seen at Fig. 1.1, where the receiver position is estimated to be outside the roads for most
of the time. Other difficult scenarios are tunnels and indoor parkings. To combat this, GNSS
receivers can be combined with other sensors, typically an Inertial Measurement Unit (IMU) that
acts in a complementary way by providing relative positioning at a high sampling rate, and it
is insensitive to reflections. Furthermore, other wireless ranging signals can be added to aid the
GNSS positioning. Sensor fusion of GNSS with IMU and wireless signals are both considered and
studied in this thesis to quantify their relative contributions to reduce positioning errors. However,
the focus of this thesis is GNSS multi-frequency reception, and how it can reduce positioning errors
in urban areas. GNSS multi-frequency reception means that the satellites transmit the signals on
several carrier frequencies (typically two or three), and that the receiver can process the signals
at at least two of these carrier frequencies. As of 2020, this type of receiver is reaching the mass
market, mainly in the smartphone market to start with, but it is also a highly interesting option for
the automotive mass market.
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Satellite navigation in dense urban areas can be especially difficult, such as in the City
of London [Goo15]. The vehicle was driving along the east-west road in the middle of the figure,
however the navigation system estimated positions of up to 50 m north of that road, due to tall
buildings blocking and reflecting the satellite signals.

The section for related work in this chapter is primarily based on [OBB18], with the addition
of more recent works.

1.1 Research Questions

The goal of the research presented in this thesis is to improve the accuracy of positioning in urban
areas with the help of multi-frequency GNSS transmission. The research questions are

• Which statistical distribution do the pseudorange errors caused by reflections in urban
follow? How do pseudoranges on two carrier frequencies differ?

• How can multi-frequency reception be used to classify the reception mode of the received
signal from a satellite? Which observables are relevant for this?

• Are there multi-frequency-based methods to mitigate errors caused by reflections, i.e., to
repair the faulty measurements so they are still useful?

• To which extent can the multi-frequency-based methods contribute to reducing positioning
errors in urban areas, compared with sensor fusion approaches?
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1.2 Basics of Satellite Navigation

Since the United States launched the first Global Positioning System (GPS) [Glo15] satellite in 1978,
other satellite navigation systems with global reach have been developed. These include the Rus-
sian Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS) [Rus17], the Galileo [Eur16]
of the European Union, and the Chinese BeiDou Navigation Satellite System (BDS) [Chi17]. The
methods presented in this thesis are mainly based on GPS, because at the time of data collection
GPS had the most number of satellites available for dual-frequency transmission. The simulation-
based results also partly include the Galileo system, which is similar to GPS, with the exception of
the modulation schemes of several signals.

GNSS Segments Satellite navigation systems typically consist of three segments: a space seg-
ment, a control segment, and a user segment. The space segment are the satellites, which orbit
earth and transmit signals containing information about their identity, position, and status. The
control segment is a network of stations on the ground; GPS has two master control stations, four
stations for uploading data to the satellites and 16 stations to monitor the satellites, spread across
the earth. The final segment is the user segment, which is the ensemble of all receivers that can
process satellite navigation signals, e.g., in smartphones or in vehicular navigation systems.

Orbits and Satellites Fig. 1.2 shows an example of a receiver that receives 11 GPS satellites. The
satellite trajectories are visualized, each one is defined by an inclination (the angle with respect
to the earth’s equator, which is around 55◦ for all satellites). Moreover, the right ascension of
ascending nodes of the orbital planes are 60◦ apart, defining six planes around the globe. Several
satellites share these two parameters, however they are then spaced apart in the same orbital plane.
Other satellite navigation systems follow similar rules, however, e.g., BDS also uses geostationary
orbits. Note that orbital planes are only true in earth-centered inertial coordinate systems, while
the rest of this thesis uses Earth-Centered, Earth-Fixed (ECEF) coordinates.

Channel Access Methods In GNSS, there are two techniques to distinguish satellites from each
other: Code Division Multiple Access (CDMA) [Tor15] and Frequency Division Multiple Access
(FDMA). CDMA is the most common one, also known from, e.g., cellular systems. It is used by
GPS, Galileo and BDS, where each satellite is given a unique code. This code is a sequence of
bits, that can be generated from, e.g., a Gold code [KH07, p. 17]. This is the case for GPS, where
each satellite of the L1 Coarse Acquisition (CA) signal is represented by a Gold sequence of 1023
bits. The cross correlation of the code between different satellites is low, to avoid misidentification
of the satellites. Historically GLONASS is the only satellite navigation system that used only
FDMA, which means that the satellites are distinguished by different carrier frequencies, spaced
0.5625 MHz apart. As of 2020, GLONASS is transmitting both CDMA and FDMA signals.
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Figure 1.2: At the receiver’s location, it can receive all 11 Global Positioning System (GPS) satellites
that are above the 10 degree elevation. The satellite orbits are marked in black, and their velocity
vectors can be seen as red arrows. The magenta lines represent the line of sight between each
satellite and the receiver.

Carrier Frequencies Different carrier frequencies are not only used for FDMA, most satellite
navigation systems use multiple carrier frequencies to transmit several signals. Multi-frequency
transmission is a central theme for this thesis, and Fig. 1.3 gives an overview of the frequency
bands used by GPS, GLONASS, and Galileo. Note that the GPS L1 and Galileo E1 signals share a
central frequency; the same applies to the GPS L2 and Galileo E5b signals. Dual-frequency signal
processing methods can thus be applicable to both systems in many cases.

Modulation Schemes A central property of a GNSS signal is its modulation scheme, which
specifies how the signal encodes the information it contains. This information is the aforementioned
ranging code and the navigation data message that contains information about the satellite orbit
and status. The most basic modulation scheme used in GNSS is Binary Phase Shift Keying (BPSK),
where the signal has two phases, spaced π radians apart. Whenever the symbol switches between
0 and 1, the phase also switches, see Fig. 1.4. Another modulation scheme is Binary Offset
Carrier (BOC), used by, e.g., the Galileo System. It uses square sub-carriers, partly to split the
spectrum into two parts, to assure the interoperability of satellite navigation systems, see Fig. 1.5.

A summary of the modulation methods, carrier frequencies, chip rates, and details on the codes of
the most common open GPS and Galileo signals can be found in Table 1.1. BDS will offer three
carrier frequencies (B1, B2, B3) [Chi17] and GLONASS will add an L2 signal to the existing L1
one [Rus17]. The chip frequency is important for accurately determining the pseudorange in urban
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Figure 1.3: The frequency bands of the main signals of Global Positioning System (GPS), Globalnaya
Navigatsionnaya Sputnikovaya Sistema (GLONASS), and Galileo are visualized.

Table 1.1: A list of non-restricted signals of GPS and Galileo. The data is based on [Glo15, Glo13,
Eur16]. The table is adapted from [OBB18], ©2018 IEEE.

System Band Component f
(MHz)

fchip
(MHz)

Modulation Code
length
(kbits)

Code
length
(ms)

GPS

L1
CA 1575.42 1.023 BPSK(1) 1.023 1

C 1575.42 1.023 TMBOC(6,1,4/33) 10.23 10

L2
CM 1227.6 0.5115 BPSK(1) 10.23 20

CL 1227.6 0.5115 BPSK(1) 767.25 1500

L5 SoL 1176.45 10.23 BPSK(10) 10.23 1

Galileo
E1 OS 1575.42 1.023 CBOC(6,1,1/11) 4.092 4

E5
a 1176.45 10.23 AltBOC(15,10) 10.23 1

b 1207.14 10.23 AltBOC(15,10) 10.23 1

areas, since a higher one can more easily separate a direct signal from reflections. Many modulation
schemes and variants of them exist, in addition to the previously explained BPSK, there is also
BOC, Composite Binary Offset Carrier (CBOC), Alternative Binary Offset Carrier (AltBOC) and
Time Multiplexed Binary Offset Carrier (TMBOC).

Navigation Message The GPS signal modulates not only a code, on top of this, the so called
navigation message is transmitted. The bits of the navigation message are coded by inverting
the entire code sequence to send a 0, and by doing nothing to send a 1. For the GPS L1, the
navigation message is transmitted at 50 bits per second, and the entire almanac consists of 37.5 kbit
(25 sub-pages of 30 seconds, each with 50 bits), so it takes 12.5 minutes to completely decode it, see
Fig. 1.6. This time can be reduced by saving the navigation message when the receiver is turned-off
(to perform a hot-start later), or by downloading the navigation message via a cellular connection.
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Figure 1.4: In Binary Phase Shift Keying (BPSK), the phase switches between two phases whenever
the code changes.

To compute the position, only the ephemeris is necessary, which consists of only two subframes
of six seconds. Depending on when the receiver is switched on, this can take between 12 and 36
seconds to decode. The most important part of the navigation message is the information about
the satellite positions and trajectories, but it also contains information on their status.

Time-of-Flight Measurement When arriving at the receiver, the satellite signal is very weak,
below the thermal noise floor based on a bandwidth adapted to signal (which is 2 MHz for GPS L1).
The CDMA process uses correlation to pick up the signals despite the low signal strength, and as
mentioned before, this is also how the satellites are distinguished. Furthermore, the pseudoranges
are also computed based on the code correlation. These pseudoranges are the main measurements
that a GNSS receiver uses to computes its position. They are one-way measurements of the time-of-
flight of from satellite to the receiver. To determine the pseudorange, the correlation between two
signals is computed. The first signal is the one that is being received from a satellite, at this point it
is unknown which one. The second signal is a replica of the satellite code (the receiver uses one
channel per satellite for this). The correlation will be significantly higher for the satellite channel
that corresponds to the transmitting satellite. Thereafter, the acquisition of the satellite is done by
searching for the correlation peak along several code delay bins and several carrier frequency bins.
The search along the code delay will give the time of flight, while the search along the frequency
bins will give the Doppler shift, which is related to the satellite and receiver velocities. The satellite
acquisition process is visualized in Fig. 1.7, where a Fast Fourier Transform (FFT)-based search has
been done. When a signal is acquired, the tracking process keeps computing the code delay and
the Doppler shift. While tracking, only the correlation within short delays of the peak (around
one chip) that was identified during acquisition needs be computed. One code sequence for the
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Figure 1.5: The Global Positioning System (GPS) L1 and Galileo E1 signals share a central carrier
frequency at 1575.42 MHz, however, the Binary Offset Carrier (BOC) modulation of Galileo
improves the interoperability of the two systems.

GPS L1 signal roughly corresponds to 300 km, this creates a code ambiguity to be resolved. This
is done by identifying certain frames in the navigation message, which has a significantly larger
periodicity than the code. Different tracking methods use different numbers of correlation points,
with different spacing in-between them. The tracking is done on two channels, the in-phase and
quadrature channels (I and Q), which are separated by a 90◦ phase difference. For, e.g., the GPS L1
CA signal, the tracking seeks to maximize the energy in the quadrature channel, while keeping the
energy in the in-phase channel to a minimum. This, however, differs between different systems
and signals.

Navigation Equations The determination of the receiver position r using the pseudorange ρ
and the decoded satellite positions s is based on trilateration (or, more general, multilateration).
This means solving a non-linear equation system. In this system, one equation per received
satellite is given, and four unknown variables need to be estimated: the receiver position in three
dimensions, plus the receiver clock bias b. The receiver clock bias is due to the receiver clock not
being synchronous to the GPS time. For this reason, b needs has to be treated as an unknown
variable in the equation system. Due to this, the position estimation cannot be considered a true
multilateration problem. This clock bias actually consists of two parts: one of the receiver (that
will be solved along with the equations), and one related to the satellite, which is corrected using
information from the navigation message and partly using relativistic clock correction with a
second-degree polynomial. The navigation equation system for the minimum number of four
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Figure 1.6: The Global Positioning System (GPS) navigation message consists of 25 frames, each
made up by 5 subframes. These subframes contain each 10 words, that in turn consist of 30 bits
each.

received satellites can be written as

ρ1 =
√

(rx − s1,x)2 + (ry − s1,y)2 + (rz − s1,z)2 + b

ρ2 =
√

(rx − s2,x)2 + (ry − s2,y)2 + (rz − s2,z)2 + b

ρ3 =
√

(rx − s3,x)2 + (ry − s3,y)2 + (rz − s3,z)2 + b

ρ4 =
√

(rx − s4,x)2 + (ry − s4,y)2 + (rz − s4,z)2 + b.

(1.1)

Closed-Form Solutions Closed-form solutions to the navigation equation system exist [Ban85],
including variants that are dedicated to detecting reflection errors [RC09]. These solutions do not
generalize for any number of satellites. Furthermore, they are difficult to generalize to include
multiple constellations and other sensor measurements.

Gauss-Newton Solution An efficient way of solving non-linear equation systems is the Gauss-
Newton (GN) method [Bjö96]. In the case of the system described in (1.1), where the minimum of
four satellites are received, the goal is to find a solution to

f1(x, y, z, b) = ρ1 −
√

(rx − s1,x)2 + (ry − s1,y)2 + (rz − s1,z)2 − b = 0

f2(x, y, z, b) = ρ2 −
√

(rx − s2,x)2 + (ry − s2,y)2 + (rz − s2,z)2 − b = 0

f3(x, y, z, b) = ρ3 −
√

(rx − s3,x)2 + (ry − s3,y)2 + (rz − s3,z)2 − b = 0

f4(x, y, z, b) = ρ4 −
√

(rx − s4,x)2 + (ry − s4,y)2 + (rz − s4,z)2 − b = 0.

(1.2)
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Figure 1.7: To identify the code delay and the Doppler shift of a satellite, a search is made, typically
based on Fast Fourier Transform (FFT).

To get closer to the solution, the correction term H needs to be computed, this is the inverse of the
Jacobian matrix multiplied with the vector that contains the functions to minimize

H = J−1
[
f1(x, y, z, b) f2(x, y, z, b) f3(x, y, z, b) f4(x, y, z, b)

]T
(1.3)

The Jacobian matrix is the derivative of each function to minimize in each row, derived with respect
to each unknown variable x, y, z, b in each column

J =


∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f1
∂b

∂f2
∂x

∂f2
∂y

∂f2
∂z

∂f2
∂b

∂f3
∂x

∂f3
∂y

∂f3
∂z

∂f3
∂b

∂f4
∂x

∂f4
∂y

∂f4
∂z

∂f4
∂b

 . (1.4)

This process is repeated, subtracting H from the minimization function vector until the norm
of H is under a tolerance limit, that has to be selected. The GN method can be sensitive to the
initial guess, and if no upper limit in solution time or number of solutions is set, it can get stuck
searching for a solution forever. So far, we have ignored pseudorange measurement noise, to
which the GN solver is sensitive. This solution is easily generalizable to more than four satellites,
and by introducing a new clock bias variable per constellation, multi-constellation variants are
also feasible.
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Least Squares Solution The Least Squares (LS) [KH07, p. 941] solution exists in two variants:
unweighted and weighted. Like the previously explained closed-form and GN solutions, it is a
standard method to solve the navigation equations. In this thesis, the focus is on its version that
also incorporates a transition model, the Extended Kalman Filter (EKF), which is explained next.

Extended Kalman Filter Due to its abilities to perform sensor fusion, the EKF is widely used in
GNSS. It is a linearized version of the linear Kalman Filter (KF) [Kal60]. The goal is to estimate the
state of the receiver, consisting of the 3-dimensional position and clock bias, together with their
derivatives with respect to time

xk =
[
rxk ṙxk ryk ṙyk rzk ṙzk bk ḃk

]T
. (1.5)

The EKF incorporates a transition model, so information about the movement of the receiver can be
incorporated. A common transition model is the Constant Velocity (CV) transition one, supposing
that the receiver moves with a constant velocity. It relates the current state to the previous state
using the matrix

A = I4 ⊗

[
1 τ

0 1

]
, (1.6)

where τ is the sampling interval and ⊗ is the Kronecker product [Bro06]. Id is an identity matrix of
dimension d.

The process covariance matrix for the x, y, and z positions is

Qxyz = σ2
xyz

[
τ3

3
τ2

2
τ2

2 τ

]
, (1.7)

and for the clock and its drift it is

Qb =

[
Sfτ + Sg

τ3

3
Sgτ

2

2
Sgτ

2

2 Sgτ

]
. (1.8)

Together, they form the process covariance matrix

Q = diag
( [

Qxyz Qxyz Qxyz Qb

] )
. (1.9)

To create a diagonal matrix with a vector input as its diagonal, the function diag(·) is used

diag
( [
a1 a2 a3

] )
=

a1 0 0

0 a2 0

0 0 a3

 . (1.10)



1.2. BASICS OF SATELLITE NAVIGATION 11

The error covariance matrix Pk is diagonal, with dimension 8× 8, and it is initialized according to

Pk−1 = I8 ⊗ p0, (1.11)

where p0 is a tuning parameter.

Like for the GN solver, an initial estimate of the state, x̂−k−1 is needed, This choice is important,
since the EKF can diverge under certain conditions when the initial state is not well estimated.

When the initial values are set, the EKF starts a loop, where first a prediction of the state

x̂− = Ax̂k−1 (1.12)

and the error covariance
P−k = APk−1A

T + Q (1.13)

is made.

Next, supposing that L satellites are received, indexed by l, the linearization via the Jacobian
measurement matrix is done

J =


∂ρ1
∂x 0 ∂ρ1

∂y 0 ∂ρ1
∂z 0 1 0

...
...

...
...

...
...

...
...

∂ρL
∂x 0 ∂ρL

∂y 0 ∂ρL
∂z 0 1 0

 , (1.14)

where

∂ρl
∂x

=
−(sl,x − r̂x)√

(sl,x − r̂x)2 + (sl,y − r̂y)2 + (sl,z − r̂z)2
(1.15)

∂ρl
∂y

=
−(sl,y − r̂y)√

(sl,x − r̂x)2 + (sl,y − r̂y)2 + (sl,z − r̂z)2
(1.16)

∂ρl
∂z

=
−(sl,z − r̂z)√

(sl,x − r̂x)2 + (sl,y − r̂y)2 + (sl,z − r̂z)2
. (1.17)

The zero columns appear since the derivative of the measurements do not depend on the states
containing a time derivative.

The measurement error auto-covariance matrix

R = diag
( [
σ2

1 · · · σ2
L

] )
(1.18)

is a diagonal matrix with the pseudorange measurement variance along its diagonal.

Then, the Kalman gain
K = P−k JT (JP−k JT + R)−1 (1.19)
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is computed.

The measurement vector consists of the pseudoranges

z =
[
ρ1 · · · ρL

]T
. (1.20)

Thereafter, the current state estimate is given by

x̂k = x̂− + K(z− Jx̂−). (1.21)

Subsequently, an update of the error covariance matrix is performed

Pk = P−k −KJP−k . (1.22)

Finally, the EKF processes the next time step by restarting from (1.12). Alternatively, the EKF can
be written using the Joseph form for improved performance [BJ68].

Unscented Kalman Filter The Unscented Kalman Filter (UKF) [WV00] is similar to the EKF,
however in this case, the linearization is based on the unscented transform, which takes sigma
points and passes them through a non-linear function. In this way, a Gaussian distribution is
approximated. The UKF has also shown good results in GNSS applications [GHG+18, ZZS+15,
LCL+07].

Particle Filter Another method that is widely used for non-linear estimation problems is the
particle filter [Del97, LC98]. The position to be estimated is represented by a number of particles,
each representing a different position according to a probability density function. The particles
are then weighted according to how well their proposed positions fit the measurements. Particle
degeneracy, meaning that all particles end up proposing the same position is a problem in particle
filters, this can be mitigated by resampling. In order to find a suitable trade-off between computa-
tional time and precision, the number of particles has to be well selected. Particle filters have also
been successfully applied to GNSS [YLG11].

Single Point Positioning Single Point Positioning (SPP) [KH07, p. 293] is the most standard
positioning method in GNSS, it means that the code measurements are used to determine the
position. No augmentation services, special corrections or differential procedures are used. It is
what was previously explained under GN and EKF, but with a general number of satellites.

Precise Point Positioning Precise Point Positioning (PPP) [KH07, p. 746] differs from SPP by
basing the position on carrier phase measurements instead of on code range measurements.
Furthermore, preciser satellite orbits and dual-frequency measurements are typically included.
This can reduce the position error down to around 1 cm.
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Differential GNSS Differential GNSS [KH07, p. 709] means that fixed reference receivers trans-
mit their positions and measurements, so that a mobile rover receiver can compute its position with
more precision. This is done by correcting its pseudorange measurements, however the advantage
of differential GNSS diminishes with the distance to the reference receiver(s). In some areas, active
reference station networks are available, so that corrections are available also in-between reference
receivers.

Real Time Kinematics Real Time Kinematics (RTK) [KH07, p. 741] is a version of differential
GNSS that also uses carrier phase measurements. It can achieve cm-level precision, and it is widely
used for surveying applications.

Multi-Constellation GNSS Multi-constellation (or multi-system) [KH07, p. 672] receivers are
capable of receiving several constellations, i.e., a combination of GPS, Galileo, GLONASS, and BDS.
This gives the advantage of being able to receive significantly more satellites, however multiple
clock biases might have to be taken into account. Furthermore, the antenna and receiver front-end
have to be adapted for multiple carrier frequencies for certain combinations.

Satellite-Based Augmentation Systems Some countries have decided to develop their own
Satellite-Based Augmentation System (SBAS) [KH07, p. 703] to make more satellites available
in certain parts of the world. These satellites typically have geostationary or Tundra orbits, so
that they cover the desired geographical area most of the time. Examples include Japan’s Quasi-
Zenith Satellite System (QZSS), India’s Indian Regional Navigation Satellite System (IRNSS), USA’s
Wide Area Augmentation System (WAAS), and the European Geostationary Navigation Overlay
Service (EGNOS) in Europe.

Accuracy of GNSS Positioning Methods An overview of the positioning performance of differ-
ent GNSS positioning methods can be found in Table 1.2, based on [KSS+16]. The most difficult
scenario is a moving receiver in the mountainous terrain (which is similar to an urban environment,
since satellites are reflected and blocked). In this scenario, a multi-GNSS RTK receiver with QZSS
is the most accureate one. More information can be found in [KH07, p. 661].

1.3 Related Work

An overview of methods to improve GNSS positioning in urban areas can be found in [BROW16].
These methods can be categorized as

1. antenna-based,

2. map-based,

3. based on fusion with external sensors and signals,
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Constellations Mode CEP static (m) L static RMSE dynamic (m) L dynamic
Open field

Single GNSS GPS 0.141 7.0 0.204 7.6
DGPS 0.063 9.5 0.168 7.9

Multi-GNSS

SPP 0.217 16.0 0.767 14.0
SPP + QZSS 0.192 16.0 0.701 14.0

PPP 0.048 16.0 0.664 14.0
PPP + QZSS 0.034 16.1 0.451 14.0

RTK 0.057 18.0 0.545 15.1
RTK + QZSS 0.031 18.7 0.152 15.6

Mountainous area

Single GNSS GPS 1.14 5.1 1.557 5.0
DGPS 0.583 5.2 1.372 5.1

Multi-GNSS

SPP 2.822 10.9 8.842 15.0
SPP + QZSS 2.694 12.0 6.384 15.1

PPP 0.533 9.8 5.633 9.1
PPP + QZSS 0.456 10.2 4.198 12.1

RTK 0.717 9.6 4.871 9.9
RTK + QZSS 0.386 10.6 1.130 10.1

Table 1.2: The table presents a comparison of the positioning accuracy for different positioning
techniques, along with the number of satellites the receive on average. The values are based
on [KSS+16]. DGPS is differential GPS. CEP is the circular error probable and RMSE is the root
mean square error. The multi-GNSS receiver is a combination of GPS, Galileo and GLONASS. The
variable L is the number of received satellites, on average.
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4. received-based.

The first category [KH07, p. 612], includes placing the antenna near the ground (so that only
short delays or received) or coating the reflectors with radio frequency-absorptive materials. This
works in open environments in static situations, but when obstacles are present, it is beneficial
to raise the antenna, so that lower elevation signals are received with less gain. A particular
type of antenna is the choke ring antenna, which rejects low-elevation reflections. It can further
be improved by rejecting Right Hand Circular Polarization (RHCP) signals, since the Left Hand
Circular Polarization (LHCP) signals emitted by the satellites switch polarization upon reflection.
Also, multiple antennas can be used, since reflections can be received differently on locations that
are just around 1 m apart.

The second category includes map matching, which supports the positioning by incorporating
information from geographical information systems. In many applications, this is a 2D map that
can match the estimated trajectory to a road network [JSZ04]. However, 3D maps are also of inter-
est [Gro11], since they can be combined with ray tracing to detect and mitigate reflections [LC07].

The third category is sensor fusion of GNSS with other sensors. A typical example is IMU, since it
provides data that are complementary to GNSS, by outputting data that are not sensitive to the
environment, at a high sampling rate. Particularly, the gyroscope of an IMU can be combined
with an odometer to obtain a simple Dead Reckoning (DR) solution. This can provide a precise
position in short time windows when GNSS is affected by reflections or unavailable, however
drift and integration errors will quickly grow large. Other examples include sensors such as radar,
lidar and camera, often in combination with approaches such as simultaneous localization and
mapping [AEMR15].

The fourth category, receiver-based methods, means redesigning receiver so that they are less
sensitive to reflections [KH07, p. 613]. From this category, one notable method that could be
considered state of the art, is the multi-correlator approach [LKR08, WCL18]. By using several
correlators with different delays, individual peaks (corresponding to direct signals or reflections)
can be identified and compared, so that the original Line-of-Sight (LOS) peak can be used. This is,
however, expensive in terms of hardware; mass-market receivers typically include few correlators.
The rich information provided by the correlator output is suitable for analysis using machine
learning, such as convolutional neural networks [MBC20].

This thesis focuses on multi-frequency methods, which are a part of the receiver-based methods (al-
though sensor fusion-based methods are also used). Little additional hardware, low computational
load, and low cost are examples of advantages of multi-frequency based methods. Multi-frequency
methods have previously been used for general accuracy improvement [KRB04] or to remove the
influence of Multipath (MP) on ionospheric errors [SL11, MPOC11].

Several multi-frequency methods that detect or mitigate errors caused by MP or Non-Line-of-
Sight (NLOS) have already been developed, an overview is given in Table 1.3 and in [OBB18] (on
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which this section is based). Some systems offer three carrier frequencies, and [HLN+09] discussed
the advantages and disadvantages of different frequency combinations, reaching the conclusion
that E1 + E5a is an optimal combination, partly since it is inter-operable with the GPS L1 and L5
bands. Triple-frequency combinations contain additional information that lowers the probability
that all frequencies are identically affected by MP compared with using only two frequencies. This,
however, comes at a cost of higher complexity [SG16]. The KF [Kal60], with the non-linear variants
EKF and UKF are also relevant for multi-frequency signal processing. An example is to apply
them on antenna arrays [LCL+07], where the UKF was found to be better at estimating carrier
phase MP errors than the EKF, however requiring multiple antennas.

The existing methods that detect or mitigate reflection errors can be classified in several ways, one
of them is according to their input parameters. Here, three main input parameters are identified
and their usage is explained: Signal-to-Noise Ratio (SNR), carrier phase, and correlator output.

SNR-Based A first relevant input parameter is the SNR, a bandwidth-dependent quality measure
of the received signal after the correlation procedure. In receivers, typically the Carrier-to-Noise-
Density Ratio (C/N0) is available, which is the SNR based on a 1 Hz bandwidth. For a given
receiver-antenna configuration, the SNR is mainly influenced by the satellite elevation, decreasing
for lower satellites, but also MP can influence it by constructive or destructive interference. This
interference is in turn dependent on the difference in phase between direct signal and reflection,
which is influenced by the carrier frequency of the signal. A review of SNR-based MP mitigation
methods an be found in [LC07], where, i.e., the Modified SNR stochastic model is mentioned.
This method uses dual-frequency carrier phase measurement and SNR for MP detection. Another
notable method for MP detection is based on the SNR difference on multiple frequencies, for
two frequencies [GJRS13], [Shi09], [vH17], [Rud12] or three frequencies [SG16]. The researchers
found that a calibration based on SNR in a low MP environment can improve the results of the
MP detection. These SNR difference methods are useful mainly in scenarios where the receiver
movement is limited (walking speed or below [GJRS13]). SNR on several frequencies can also
be used to weight the measurements differently, so that more weight is given to pseudorange
measurements with less MP influence. Machine learning can be used to learn these weights,
e.g., using a neural network [MCR06]. The machine learning methods, however, require large
quantities of realistic and representative reflection data to train them. For lower complexity and
low computational load, SNR weighting can be implemented in the receiver architecture directly,
e.g., equal gain combining and adaptive gain combining, [MGCR05], [MGR05].

Carrier Phase Combination-Based If a receiver capable of measuring the carrier phase is avail-
able (or, if a stationary reference receiver is transmitting corrections such as in RTK), carrier phase
measurements can be used to compute a preciser position by providing precise pseudorange
measurements. This is possible since the carrier phase measurements count the number of wave-
lengths that fit in the signal path between satellite and receiver. This means, however, that the so
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Table 1.3: Overview of methods that can reduce positioning errors in urban areas. * = simulation,
** = real satellite acquisition; Code = code multipath error, CP = carrier phase multipath error; M
= mitigation, D = detection; S = static, D = dynamic. If no information about the performance
in dynamic scenarios is given, static is supposed. The table is an extended version of the one
in [OBB18], ©2018 IEEE.

Method References Scope Capacity Scenario N
freq.

Unscented Kalman filter [LCL+07]* CP M S+D 2
Modified SNR stochastic
model

[LC07]*/** CP D+M S+D 2

SNR difference [GJRS13]**,
[Shi09]*/**,
[vH17]**, [SG16]**

Code,
CP

D S+low-
D

2, 3

SNR weighting [MGCR05]*,
[MGR05]*,
[MCR06]*

MP M S 2

Geometry-free [Sim06],
[LZL16]*/**,
[GMG+18]*/**,
[GK88]**,
[PBLO18]*/**

Code,
CP

M S+D 2, 3

Code minus carrier [YSS11]**,
[KV17]**,
[PBLO18]*/**

Code M S 2, 3

Sideband carrier phase
combination

[Shi09]*/** Code M S+D 2

Modified lambda method [SKL10]*/** CP M S+D 3
Double-difference single-
epoch least squares

[Lau04]*/** CP M S+D 2, 3

Cocktail multiple outlier
detection

[Lau05]*/** CP D S+D 3

Multiple-frequency fault
detection and exclusion

[LHQL17]*/** Code D S 2, 3

Early late phase [MD10a]* CP D S 2
Triple-frequency linear
combination

[SSR19]** Code M S 3

Multipath combination [JHS+19]** Code M S 3, 4
Code minus phase, Multi-
path linear combination

[MFG20]** Code M D 2

Time differenced position-
ing filter

[GWS+20]** Code D S 2

Extra-wide-lane, Narrow-
lane

[GMG+19]** Code M S 3



18 CHAPTER 1. INTRODUCTION

called integer ambiguity must be resolved, numerous methods exist for this. The carrier phase
measurements are also useful for MP detection and mitigation. The work [GK88] proposed a
dual-frequency method suitable for detecting stationary MP. As previously mentioned, a combina-
tion of SNR and carrier phase measurements is used in the Modified SNR stochastic model. The
geometry-free linear combination is a method to cancel the geometric parts of a measurements,
e.g., the ionospheric refraction [Sim06], [GMG+18]. The dual-frequency version is obtained by
simply computing the difference between the carrier phase and the pseudorange measurements.
Ionospheric corrections can also be made in other ways, such as using a ionospheric model or by
downloading corrections over a cellular network. In these situations, the dual-frequency combi-
nation is useful to mitigate MP (otherwise, a triple-frequency version is required). The double
differenced geometry-free [LZL16] version is an extension that detects carrier phase MP, also
working in dynamic situations. A useful method to estimate MP on two frequencies is the Code
Minus Carrier (CMC) method, which combines pseudoranges based on code and carrier phase. To
improve this estimation, adaptive filters have shown good results [YSS11], another possibility is to
use a triple-frequency combination [KV17]. This method is of main interest for static applications,
since it takes several hours for it to converge. The work [PBLO18] presents a combination of CMC
and the geometry-free approach, so the numbers of excluded measurements due to MP can be
reduced. This CMC-based approach can be used both for detection and for mitigation through
deweighting of satellites [PBLO19]. A method to estimate carrier phase MP errors is the Sideband
carrier phase combination [Shi09], which uses a carrier lock loop to estimate the error on two
frequencies. This is done by analyzing the difference between the carrier phase error on both
frequencies. This method’s performance slightly decreases in highly dynamic situations, due to
the Doppler shift getting larger between the carrier frequencies. An approach that is suitable in
dynamic situations is the modified Lambda method [SKL10], where a-priori information is used in
the ambiguity search process. This mitigates carrier phase MP for RTK receivers. A further method,
that is applicable in both dual- and triple-frequency versions, is double-difference single-epoch
least squares [CC95, Lau04]. The cocktail multiple outlier detection method [Lau05] can detect
static carrier phase MP errors, but it requires reception of three carrier frequencies. Residuals on
all three frequencies are tested against a threshold, however the method does not perform well
when the reflectors are close, creating short reflection delays. The last method in the carrier phase
category is fault detection and exclusion [HTK+17], where statistical tests are used to exclude
error-affected satellites. This includes MP, jamming, and also hardware errors. Extensions for dual
and triple-frequency versions exist [LHQL17], which can be combined with differential positioning.

Correlator Output-Based The correlator output can also be used to evaluate the MP situation.
For multiple antennas, the analytical probability of false alarm and detection using correlator
output on two frequencies has been derived [GGS11]. A notable method in the correlator output-
based category is the Early late phase MP detector [MD07]. It analyzes the carrier phase difference
between two correlator outputs, and the correlator spacing is a tuning parameter, with higher
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detection probability for larger spacing. It exists in both single- and dual-frequency versions,
in the latter case it performs better, since the parameter is less likely to be near zero on both
frequencies simultaneously [MD10a]. The detection threshold is C/N0-dependent, and it depends
on requirements on the probabilities of false alarm and detection. As for SNR-based methods, a
reference low-multipath C/N0-value is helpful. Since the correlator output reacts quickly to the
received reflections, it is useful also for dynamic situations [PBL17].

1.4 Contributions and Outline of this Thesis

The pseudorange measurement errors caused by MP, NLOS, and blocked satellites in urban areas
are non-Gaussian and they change quickly. This has a heavy impact when positioning algorithms
such as EKF or Gauss-Newton are used, since small errors centered around zero are assumed.
This thesis addresses this issue, first by characterizing the measurement urban errors in urban
canyons. This is done for signals on two carrier frequencies, the GPS L1 and the GPS L2 signal.
Thereafter, the problem is treated using novel multi-frequency signal processing methods. This
starts with classifying the reception mode of each satellite using dual-frequency observables (such
as pseudorange as SNR). Subsequently, the satellites that are received MP are specifically analyzed,
so that their MP can be estimated and their pseudorange measurements corrected. This is a type of
MP mitigation, since the satellites are not excluded, but their measurements are corrected. Finally,
positioning in an urban canyon is studied, where realistic measurement are simulated in an urban
scenario, so that the resulting positioning accuracy can be analyzed and compared. The common
theme for all chapters of this dissertation is thus multi-frequency GNSS, with the red thread going
from characterization, to detection, via mitigation, and finally accurate positioning. In Fig. 1.8, the
relation between the chapters can be studied, they support each other in different ways.

Characterization of Reflections in Urban Canyons – Chapter 2. To get a better understand-
ing of the positioning errors of GNSS in urban canyons, a simulation that includes a 3D urban
environment is presented. In this environment, a vehicle is moving, and for each time step, ray
tracing is used to determine which signals that are reflected or blocked on their from satellite to
the receiver. The chapter offers four contributions. The first one is to give the distributions of
the underlying reflection parameters: reflection delay, Reflection Ratio (RR), reflection Doppler
difference, and reflection phase shift. This is done grouped by the simulated building height and
by the satellite elevation, which is an easily accessible parameter in most receivers. The second
contribution is a method to estimate the reflection delay distribution using the number of received
satellites, which supports MP delay estimation methods such as the one presented in Chapter 4.
The third contribution is an analysis of the distribution of the pseudorange errors in urban canyons,
on two carrier frequencies. This is important when an algorithm is using these measurements to
estimate the receiver position, which is done in Chapter 5. Fourth, the simulation code itself is a
contribution; researchers can download the code to create their own geometric configuration and
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Figure 1.8: The chapters of this dissertation are related according to this flow chart.

positioning algorithm, giving quick and comparable results.

Detection of Reflections for Satellite Selection – Chapter 3. In urban canyons of moderate
building height, where enough error-free satellites are still available, the satellites affected by
NLOS or MP can be detected and their measurements excluded from the positioning algorithm.
Two contributions are made in this area. First, two algorithms to classify the reception mode of a
satellite, based on its dual-frequency correlator output are presented. These satellite classification
algorithms can be used for satellite selection, or to identify MP satellites whose pseudorange
can be corrected according to Chapter 4. Second, an algorithm to select the satellites with the
smallest pseudorange errors is presented, using SNR and pseudoranges as input, also on two
carrier frequencies. This is then used for satellite selection in Chapter 5, since the positioning
algorithm is sensitive to pseudorange measurements that quickly change due to reflections.

Mitigation of Multipath – Chapter 4. Satellites that are received as MP still have contact with
the receiver through the direct signal, making it possible to correct the pseudorange errors if the
reflection delay is known. The contribution is a method to estimate this reflection delay, based on
signal power measurements on multiple carrier frequencies. The measurement noise on signal
power measurements is analyzed through a hardware experiment, and a corresponding Maximum
Likelihood (ML) estimation problem is derived and solved. This is especially helpful in urban
areas with tight streets and tall buildings, where every available satellite is important for accurate
positioning.
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Accurate Positioning in Urban Canyons – Chapter 5. The last contribution takes the urban
canyon navigation problem into the positioning domain, by exploiting the pseudorange mea-
surements on multiple frequencies to estimate the position of several receivers. The previously
mentioned satellite selection algorithm is used to exclude MP and NLOS satellites, while fusion
with data from Vehicle to Vehicle Communication (V2V) and DR is performed. The contribution is
a method to combine these measurements with an EKF, together with a comparison that shows
how much each data source helps to reduce the positioning error. It can be seen as a platform,
capable of including whichever measurements that are available (between dual-frequency GNSS,
V2V, and DR) to compute the most accurate positioning that it can, given the available data.





Chapter 2

Characterization of Reflections in Urban
Canyons

In this chapter, we start by characterizing the errors caused by reflections on GNSS receivers in
urban areas. Twelve urban areas with different building heights are generated, and the signals that
reach a moving receiver are analyzed. In this way, a basic understanding of the nature of GNSS
reception in urban canyons is achieved. How large the pseudorange errors typically are, and which
distribution they follow is studied. This is important, since filters for position estimation (such as
the EKF, discussed in Section 5.4) make certain assumptions about the statistical distribution of
the measurement errors.

This chapter is primarily based on [OBB20b], with the addition of the distributions of RR,
Doppler shift difference, phase shift, and pseudorange errors.

First, the problem is formulated in Section 2.1 and Section 2.2 presents related work. Second, a
3D urban area simulation is detailed in Section 2.3, while Section 2.4 explains how ray tracing is
applied to generate reflections. Third, Section 2.5 presents the distribution of the reception modes.
Fourth, the resulting distributions of reflection delays are given in Section 2.6, along with a method
to estimate these distributions based on the number of satellites. Thereafter, the distributions of RR
(Section 2.7), the Doppler shift difference (Section 2.8), and the pseudorange errors (Section 2.9) are
presented. Finally, Section 2.10 gives a brief discussion, while Section 2.11 concludes this chapter.

2.1 Problem Formulation

In order to determine the position of a receiver, pseudorange measurements from L satellites,
indexed by l

ρl =
√

(rx − sl,x)2 + (ry − sl,y)2 + (rz − sl,z)2 + b+ wl + vρ (2.1)

23
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are central, where b is the receiver clock bias in meters, wl is the error caused by reflections and vρ
is Gaussian measurement noise with zero mean and standard deviation σρ.

The variables sl,x, sl,y, and sl,z represent the ECEF position of the satellite l. Each satellite sends
data on two carrier frequencies, thus a second pseudorange is obtained

ρl =
√

(rx − sl,x)2 + (ry − sl,y)2 + (rz − sl,z)2 + b+ wl + vρ, (2.2)

where wl is the error caused by reflections, and vρ is Gaussian measurement noise with zero mean
and standard deviation σρ.

The distributions of the reflection pseudorange errors on each frequency wl and wl will depend
on the geometrical configuration of the urban area. The goal of this chapter is to study these
distributions. The pseudorange error also depends on which tracking method that the receiver
uses, as well as on four underlying reflection parameters: the reception mode, the reflection delay,
the reflection power loss and the reflection Doppler difference. For this reason, the distributions of
these four parameters are also given, so that receiver-independent results can be presented.

2.2 Related Work

Reflection distributions in urban canyons can be analyzed in two ways: by simulation or by directly
measuring satellites. In the following paragraphs, related work is discussed grouped by these two
categories.

Measuring Reflections To measure reflection distributions, a receiver capable of measuring
reflections is required [SA03, XP15, UCPY12, MGZC18]. This receiver can then be mounted be on a
car roof and transported around in urban area, recording all reflections that are encountered. This
leads to realistic results that are representative of the urban area that was used. On the other hand,
the results might not be valid for other urban areas and accurate hardware is needed so that the
reflections are accurately recorded. By measuring reflections in Shanghai, [WCL18] found that the
reflection delays follow a gamma distribution [HC78, p. 103], whose shape parameter is related to
the number of times each signal is reflected on average. The reflections were measured using a
receiver equipped with multiple correlators, making it possible to distinguish individual reflections
from each other and the direct signal. The work [XP15] measured reflections in downtown Calgary
in Canada, and analyzed the resulting correlator output and the Doppler shifts. It concludes that a
high C/N0 is required to separate the direct signal from reflections, and that this becomes easier
at higher speeds. Furthermore, it concludes that the correlator peaks of the direct signal and the
reflection are often hard to distinguish, depending on the used correlator map.

Simulating Reflections The second way is to simulate MP distributions, by generating a 3D
environment and implementing ray tracing to identify the reflections [SL04, LS05, SLS09, Ger19,
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ERKH04]. Noteworthy is the work of the German Aerospace Center [SA03,SL04], which measured
GNSS-like signals emitted from a zeppelin, and then developed a more general MATLAB simula-
tion based on those data. In [ERKH04], a 3D environment combined with ray tracing was used
similarly to the method in this chapter, but in order to evaluate adaptive antenna algorithms in MP
environments. A 3D environment can also be generated by software, to recreate reflected signals
in a hardware GNSS generator [Spi20]. An advantage of simulations is that the environment can
be easily varied (from relatively open suburban areas to dense urban canyons), and the method
is quite simple if the signals are limited to only reflecting once. However, the complexity of
multi-reflection simulations grow exponentially as more reflectors are present. Furthermore, a
validation with real data is usually necessary with algorithms based on simulations.

To summarize, related work can both be based on measurement in real environment and on
simulations (in both software and hardware). There is however a lack of openly available and
flexible simulation software.

2.3 Urban Canyon Model

A MATLAB simulation was setup to generate a 3D urban area with nine city blocks, where the
buildings are 25 m wide and their height is a random variable that follows a Rice distribution [Ric45]

h ∼ Rice(ν, 5 m). (2.3)

The non-deterministic height gives the simulated urban area more realism. In a real city, all
buildings rarely have the same height, and satellites can quickly disappear and reappear when
the receiver suddenly passes nearby a taller building. The Rice distribution was chosen because a
strictly positive distribution is required (all buildings must be taller than 0 m). The variable ν is the
non-centrality parameter, which will increase the average building height. A spread of 5 m was
used for all simulations, so that the building heights vary in a way similar to a real urban canyon
(this was based on satellite photos and 3D maps of Manhattan in the center of New York City).
The side of each square city block is 250 m and a road of width 30 m separates them, Fig. 2.1. Since
the receiver only moves in the inner area of the simulated city, all buildings along the outer side
were removed, creating a cross shape. This was done to decrease the computational load of the
ray tracing, Section 2.4. The Rice distribution only supports positive values, and its mean (for the
spread of 5 m) is

µ = 5

√
π

2
L1/2

(
−ν2

50

)
, (2.4)

where L1/2 is the Laguerre polynomial of degree 1/2. This mean is slightly above the non-centrality
parameter, mainly for low building heights. Thus, the non-centrality parameter ν can be interpreted
as a variable that is close to the mean building height of the urban area.
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Figure 2.1: On the left, the top view of the urban area is seen, following deterministic road and
block widths. To the right, a single building is visualized from the side, it has a deterministic width,
but the height follows a Rice distribution. The figure is adapted from [OBB18].

Environments To generate results from urban areas with varying building heights, 12 environ-
ments were generated, each with different values of ν, that varied from 5 m to 60 m in steps of 5 m,
see Fig. 2.2. In this way, results from an area with low buildings ν = 5 m representing a suburban
area can be seen, and compared with urban canyons, where ν = 60 m. As an example, Fig. 2.3
shows a generated urban environment, where ν = 25 m can be seen.

Vehicle A cuboid with identical sides of 2 m, and a height of 1.5 m represents the vehicle. It has
an antenna placed on the center on its roof, with a distance above the roof of 1 cm. The vehicle
velocity is ṙ and its speed is ‖ṙ‖ = 5 m/s. The vehicle drives a full turn around the central city
block, driving in the middle of the road, see Fig. 2.1. The vehicle drives a distance of 1.12 km,
which represents 224 s of time in the simulation. The scenario is sampled at 2 Hz.

Satellites The number of received satellites and their maximal elevation depend on the latitude,
which is why an intermediate latitude was chosen near New York City: φ = 40◦, λ = −70◦. The
positions of all 31 GPS satellites were generated using a modified version of the software of [S.
18]. The simulation of each environment was repeated six times, fast-forwarding the satellite
constellation two hours each repetition. The purpose of this to obtain constellation-independent
results. As seen from the receiver, the elevation of a satellite is θ and its azimuth angle is β, see
Fig. 2.4. At these selected coordinates, around eight satellites are above 15◦ elevation on average,
which is what a typical receiver would use in a completely open environment. The simulation was
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Figure 2.2: 12 environments were simulated, each with a different mean building height (repre-
sented by a different Rician non-centrality parameter). The figure is adapted from [OBB18].

done based on the two main carrier frequencies of GPS and Galileo f1 = 1.5754 GHz (GPS L1 and
Galileo E1) and f2 = 1.2276 GHz (GPS L2 and Galileo E5b).

2.4 Ray Tracing of Reflections

Next, given the positions of all satellites and the position of the receiver, the possible paths between
them (direct or reflected) have to be identified. This is done with ray tracing, and for this, each
building is represented by five planes: all the walls and the roof. The ground is represented by a
single large plane. All these planes are stored in a large list, so it can be checked which signals they
reflected, which they block, and which signals they do not influence. The implemented version of
ray tracing only checks for first-level reflections, i.e., a specific path from a satellite to the receiver
can be reflected once at the most. For this, the satellite position s, the receiver position r and all
the planes generated in Section 2.3 are required. Each plane is defined by a point on it qpoint, its
normal qnormal and its limits.

The following process is repeated for each time step, plane, and satellite. First, the receiver position
is mirrored in the plane, see Fig. 2.4

qmirr = r + 2qnormal

(
(qpoint − r) · qnormal

qnormal · qnormal

)
. (2.5)
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Figure 2.3: A generated urban area, where the height of all buildings follow a Rice distribution
with ν = 25 m. The figure is adapted from [OBB18].

Second, projection is used to identify the reflection point in the plane

qrefl = s +
(qpoint − s) · qnormal

(qmirr − s) · qnormal
(qmirr − s). (2.6)

Third, a test whether qrefl is within the limits of the plane is made; the reflection is only saved if
this is true. The process from (2.5) to (2.6) is repeated for all planes in the scenario (the four walls
and the roof of each building, and the ground). For the subsequent analysis, only reflections on
buildings are taken into account. A large number of the reflections reflect on the car roof, where
d < 1 cm (the distance of the antenna above the car roof), but these are ignored. Ground reflections
could also theoretically occur, but none were found in the simulation, since they were also blocked
by the car body.

2.5 Distribution of Reception Modes

To start with, it is relevant to see how the satellites are received in each urban environment, i.e., the
reception modes. Four reception modes are possible: Single Path Line-of-Sight (SPLOS) means
receiving only the direct signal, MP is a direct signal and at least one reflection, NLOS means
receiving only reflections, and a satellite can also be completely blocked, see Fig. 2.5. If four
or more satellites are received as SPLOS, a satellite selection can be done (as in Chapter 3), so
that an accurate position can be computed using a subset of satellites with low pseudorange
measurement errors. Otherwise, MP reception results in interference than can create a widely
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Figure 2.4: To generate a reflection, the receiver with position r is mirrored in the building plane.
The figure is adapted from [OBB20b].

varying pseudorange error, while NLOS typically causes the receiver to erroneously track the
reflection. This is why the reception mode is of interest.

As the buildings of the urban canyon increase in height, fewer satellites are received as SPLOS
and more are blocked, see Fig. 2.6. Furthermore, with increasing urban canyon depth, the MP
becomes slightly less common, while the opposite is true for NLOS. This can be explained since
the taller buildings block more direct signals and they also block more reflections (as can be seen
in Fig. 2.7). By summing the number of satellites in the reception modes SPLOS, MP and NLOS,
the total number of received satellites L is obtained. The critical point L < 4 is reached somewhere
between ν = 40 m and ν = 45 m. After this, 3D positioning using only GNSS is not feasible and
sensor fusion with, e.g., IMU becomes necessary.

2.6 Distribution of Reflection Delays

By computing the path difference between the direct signal and the signal that is taking the path
via the reflection point, the reflection delay

d = ‖qrefl − s‖+ ‖r− qrefl‖ − ‖r− s‖ (2.7)

is obtained, see Fig. 2.8. GNSS receivers work by measuring time-of-flight, resulting in a delay
measured in seconds. However, in this work, to make it easier to relate the delay to the geometrical
configuration in the urban canyon, it is transformed to meters by multiplying with the speed of
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Figure 2.5: A satellite can be received according to four modes: only a direct signal is Single Path
Line-of-Sight (SPLOS), a direct signal and at least one reflection is Multipath (MP), only reflections
is Non-Line-of-Sight (NLOS), or blocked. The figure is adapted from [OBB18], ©2018 IEEE.

light in vacuum c. Note however, that the atmosphere is not a vacuum, thus the speed of light is
slightly differs there in reality, but this is compensated in the receiver as atmospheric effects.

Fig. 2.9 presents the distribution of d as a function of the building height parameter ν. We can see
that the delays are concentrated at rather small values (around 15 m), with a few delays reaching
large values of up to 800 m. The reflections get smaller as the urban canyon height increases. A
reasonable explanation is that the longer reflections tend to get blocked more when the buildings
are taller, making these reflections rare in deep urban canyons. If, however, taller buildings are
present further away, these longer reflections could become more common.

The distribution of d for different elevation angles θ can be found in Fig. 2.10. Most reflections
delays are smaller than 30 m, and in general, satellites with higher elevation angles produce
reflections with smaller delays, except for the first elevation bin of 0◦ < θ ≤ 15◦. Again, a few
outlier reflections have a delay of up to 800 m.

Estimating Reflection Delay Distributions Using the Number of Satellites The focus of Chap-
ter 4 is to estimate the MP delay as a way of identifying the pseudorange error. For this purpose, a
prior distribution on the delay d is of interest. By plotting the Probability Density Function (PDF)



2.6. DISTRIBUTION OF REFLECTION DELAYS 31

Figure 2.6: The average number of satellites in each of the four reception modes depends on how
tall the buildings are. The figure is adapted from [OBB20b].

Figure 2.7: On average, around two reflections are received per time step (mean across all six
constellation repetitions), but fewer reflections are received where the buildings are tall. The figure
is adapted from [OBB20b].

of the reflection delays (making the area of the bars to sum to 1), as opposed to the normalization
method used Fig. 2.9, where the bar heights sum to 1, we can see that a gamma distribution with
a shape parameter that is the median reflection delay quite well approximates most reflection
delays, see Fig. 2.11. The scale parameter is set to 1, regardless of the building heights. The few
delays that are very large (more than 80 m) are however ignored, so that a Probability Density
Function (PDF) that reasonably approximates the most delays can be found. These large delays are
also the reason for using the median as shape parameter, instead of, e.g., the mean. The receiver
can easily compute the number of satellites L that are reaching it. As seen in Fig. 2.6, the number of
satellites decreases as the building height increases, as is the case with the median reflection delay.
Thus, using the least-squares algorithm, a simple model can be achieved, that allows estimation of
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Figure 2.8: The reflection has a delay with respect to the direct path. The figure is adapted
from [OBB20a].

the median delay based on the number of satellites, see Fig. 2.12

d̂m = −0.23L2 + 5.08L− 4.08. (2.8)

Note that (2.8) is simply a data-based parameter of a second-degree polynomial to the results of
the simulation, based only on GPS. A parameter adaption is necessary for it to generalize to other
or multiple constellations. Furthermore, each polynomial coefficient needs a correct conversion
factor to end up with a median delay with a unit of meters.

The Root Mean Square (RMS) estimation error of the median delay for the model is√√√√ 1

N

N∑
n=1

(d̂m,n − dm,n)2 = 0.33 m. (2.9)

This model is only suitable for receivers that are working only with GPS. For a multi-constellation
receiver (that receives, e.g., Galileo as well), one must adjust the coefficients in 2.8. An overview
of the process to use the number of received satellites to get a prior distribution on the reflection
delay is presented in Fig. 2.13. A patent for this procedure is pending [OB20b].
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Figure 2.9: Higher urban areas tend to concentrate the reflection delays around smaller values. A
few outliers values are above 80 m, for a zoomed-in version, see Fig. 2.11.

2.7 Distribution of Reflection Ratio and Phase Shift

The pseudorange does not only depend on the reflection delay, the RR and the phase shift of the
reflection also play an important role. To compute these two parameters, the complex reflection
coefficient Γ is of use [Flo87, p. 246], [Han01]. The complex reflection coefficient in turn, depends
on the material of the reflection point qrefl, specifically the relative permittivity κr and the electrical
conductivity γ. Based on these two variables, the complex dielectric constant

κ = κr − j
60cγ

f
(2.10)

can be formed, which depends on the carrier frequency f . In the simulations, all buildings consist
of concrete, with κr = 3 and γ = 200 mS/m.

The effective reflection coefficient

Γe =
(
|Γc|+ 10

−η sin(θ)
20 dB |Γx|

)
e−jπ (2.11)
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Figure 2.10: Higher elevation satellites tend to concentrate the reflection delays around smaller
values.

consists of two components, a co-polar

Γc =
Γh + Γv

2
(2.12)

and a cross-polar one

Γx =
Γh − Γv

2
, (2.13)

which in turn can be expressed as a function of effective reflection coefficient κ in their horizontal

Γh =
sin(α)−

√
κ− cos2(α)

sin(α) +
√
κ− cos2(α)

, (2.14)

and vertical

Γv =
κ sin(α)−

√
κ− cos2(α)

κ sin(α) +
√
κ− cos2(α)

(2.15)

components. The reflection angle α is visualized in Fig. 2.4, while η = 3 dB is the LHCP rejection
ratio of the antenna.
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Figure 2.11: Urban areas with different building heights result in different reflection delay dis-
tributions. These distributions can be approximated by a gamma distribution, with the median
reflection delay as shape parameter. The figure is adapted from [OBB20b].

To obtain the RR, the absolute value of the effective reflection coefficient is computed

Λ = |Γe|, (2.16)

while the phase shift is the argument

Φ = arg(Γe). (2.17)

The distribution of the RR as a function of the building height can be found in Fig. 2.14. The urban
areas with lower building height result in weaker reflections, with values of Λ ≈ 0.4. For urban
areas with higher buildings (ν > 55 m), we see the values of the RR concentrating around 0.6.
The reflections are weaker at lower elevation angles, while for higher elevation satellites, most
reflections have an RR slightly higher than 0.5, meaning that reflections are just above half the
strength of the direct signal, see Fig. 2.15. The simulation resulted in a phase shift of Φ = π rad for
all reflections, regardless of the building height parameter or satellite elevation.
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Figure 2.12: A second-degree polynomial can predict the median reflection delay based on the
number of received satellites. The number of satellites L is an average across several repated
simulations, thus the data points are non-integer values. The figure is adapted from [OBB20b].

Figure 2.13: The gamma distribution of the reflection delays is useful for reflection delay estimation
problems. The figure is adapted from [OBB20b].

2.8 Distribution of Reflection Doppler Difference

The Doppler shift of the direct signal will not be identical to the Doppler shift of the reflection,
since these two signals typically arrive at the receiver from different directions. The Doppler shift
of the direct signal is

fLOS
D = f

c‖s− r‖ −
(
ṙ · (s− r)

)
c‖s− r‖ −

(
ṡ · (s− r)

) , (2.18)

where c is the speed of light in vacuum, f is the emitted carrier frequency by the satellite, s and r

are the satellite and receiver positions, respectively. The variables ṡ and ṙ are the velocities of the
satellite and the receiver, respectively.

Similarly, the Doppler shift at the reflection point is

fqrefl
D = f

c‖s− qrefl‖
c‖s− qrefl‖ −

(
ṡ · (s− qrefl)

) . (2.19)
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Figure 2.14: Deeper urban areas typically result in stronger reflections.

The Doppler shift of the reflection at the receiver is then

f refl
D = fqrefl

D
c‖qrefl − r‖ −

(
ṙ · (qrefl − r)

)
c‖qrefl − r‖

. (2.20)

Finally, the Doppler shift difference between direct signal and reflection is

Υ = f refl
D − fLOS

D . (2.21)

The Doppler shift difference is highly concentrated at small values around 1 Hz, with a few
outliers at ±50 Hz, see Fig. 2.16 and Fig. 2.17. The elevation angle or the urban canyon building
height of the satellite do not change the distribution significantly. The smaller values are due to
it being a Doppler shift difference between direct signal, and not a Doppler shift by itself. A
zoomed-in version of Fig. 2.16 can be found in Fig. 2.18. The zoomed-in values near 0 Hz follow a
similar pattern for all building heights. In Fig. 2.19, the probabiltiy axis is logarithmic, for better
appreciation of the smaller Doppler shift differences.
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Figure 2.15: The strength of the reflections tends to be slightly over half the strength of the direct
signals at higher elevations, while for lower elevations the strength is spread out on a larger
interval.

2.9 Distribution of Pseudorange Errors

Now, the physical characteristics and their distributions have been explained. However, depending
on the tracking method used by the receiver, these reflection characteristics will result in different
pseudorange errors w and w. First, the LOS signal (if present) and all reflections are summed. We
make the assumption that maximally one reflection is present. This is not always the case in real
situations, but typically one of the reflections is significantly stronger than others [KH07, p. 602].
Thus, we have the direct signal

gLOS(t) =
√

2PLOS cos
(
2π(f + fLOS

D )t
)

+ vg, (2.22)

and a reflection

grefl(t) =
√

2PLOS = Λ cos
(
2π(f + f refl

D )(t+
d

c
) + Φ

)
+ vg, (2.23)

where PLOS is the power of the direct signal and vg is Gaussian measurement noise with zero mean
and standard deviation σg. Due to the CDMA channel method (that allows the satellites to be
distinguished), the receiver cannot access the direct signal and the reflection separately, but it will
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Figure 2.16: For all urban canyon height values, the Doppler shift between direct signals and
reflections is typically small, around 1 Hz.

receiver them as a sum

g(t) = gLOS(t) + grefl(t) =
√

2PLOS

(
cos
(
2π(f + fLOS

D )t
)

+ Λ cos
(
2π(f + f refl

D )(t+
d

c
) + Φ

))
+ vg.

(2.24)

Even if a receiver capable of directly sampling g(t) was available (this would require a sampling
rate of around 3 GHz), it would thus receive a mix of signals from different satellites, possibly with
reflections included. For these reasons, it is more meaningful to work with the output that comes
from the tracking procedure. The tracking method is mainly decided by the correlator, there are
correlators that are specifically designed to reduce MP errors [vDFF92, GvDJM96]. The correlator
is typically a non-linear function and it computes the pseudorange based on the summed signal,
see Fig. 2.20

ρ̂ = Correlator
(
g(t)

)
. (2.25)

This means that small variations in the reflection characteristics can result in widely different
pseudorange errors, depending on, e.g., the interference of the two signals. A receiver using three
correlator points, spaced 0.5 chips apart was simulated to compute pseudoranges based on the
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Figure 2.17: For all elevation angles, the Doppler shift between direct signals and reflections is
typically small, around 1 Hz.

reflection parameters. The correlator determines the pseudorange by finding a point where the
early and late correlator points have approximately equal power, and where the phase correlator
power is high. Fig. 2.21 illustrates the correlator under MP reception (d = 101.5 m and Λ = 3.56).
The pseudorange error varies widely across the two signals, since their different carrier frequencies
causes different interference.

All received signals of the simulation with ν = 30 m (regardless of reception mode) were fed
into the receiver simulation, resulting in the pseudorange error distribution of Fig. 2.22 (GPS L1
signal) and Fig. 2.23 (GPS L2 signal). First, it is interesting to note that the type of signal and
carrier frequency seem to influence the pseudorange error distribution only marginally. Second,
we can identify the main reason why reflection errors are a difficult problem: their distribution
is non-Gaussian, with a majority being near zero. However, around 13 m, the probability gets
again higher. Furthermore, a few errors are around the maximum values near ± 300 m. The large
concentration of errors around 0 m represent satellites that are received mainly through SPLOS,
while the concentration at around 13 m is mainly MP errors. These have a tendency to be positive,
the reflection delay is always positive. The negative pseudorange errors are mostly caused by
destructive interference, that heavily corrupts the correlation form. The very large positive outliers
are mainly caused by NLOS. Zoomed-in versions of Fig. 2.22 and Fig. 2.23 can be found in Fig. 2.24
and Fig. 2.25.
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Figure 2.18: A zoomed-in version of Fig. 2.16.

Correlation Between L1 and L2 Pseudorange Errors In case of NLOS, the pseudorange errors
on the two carrier frequencies show a strong linear correlation, see Fig. 2.26. Due to the absence
of a direct signal and interference, the pseudorange error will closely follow the reflection delay,
regardless of the carrier frequency. However, in case of MP reception, the interference causes the
pseudoranges to jump irregularly, depending on the carrier frequency. The MP errors are however
in general smaller than the NLOS errors. The SPLOS pseudorange errors are, as expected, all
concentrated at zero, and not clearly visible in the figure.

2.10 Discussion

The results on the reflection delay distribution seem to agree with [WCL18], in the sense that they
follow a gamma distribution. However, a difference is that [WCL18] found that the scale parameter
of the distribution varies between 2 and 3, explained by the hypothesis that the signals are typically
reflected two to three times. However, the simulation in Section 2.4 only checks for signals that
reflect once, which could be one reason for this difference. Moreover, Shanghai has wide streets
with skyscrapers sometimes only on one side, which could also be a reason for the discrepancy.
For a quantitive estimation of the fit of the gamma distributions in Fig. 2.11, a statistical analysis is
needed. The presented distributions visually fit, however the historgrams could be plotted with
other resolutions to get a better of how well the fit gamma distributions generalize.
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Figure 2.19: A version of Fig. 2.17 where the probability axis is logarithmic, so that the smaller
values are clearer.

Method-wise, the ideal situation would be to collect data from several cities, such as New York City,
Frankfurt, Chicago, Shanghai, etc., with receivers capable of distinguishing individual reflections
with high precision. In this way, it would be possible to analyze which reflection characteristics
that remain constant for all types of urban canyons. Another possibility would be to take 3D maps
from these urban areas, and import them into the ray tracing simulation, to get a realistic and
representative set of geometric configurations. This could also give an idea of how reasonable the
choice of a Rice distribution is. Unfortunately, there is no natural law that predicts what a city
looks like, the immediate surroundings of the vehicle can switch between tall and low buildings
quickly, furthermore the material can switch between, e.g., glass and concrete on short notice.
Therefore, simulation is still a very powerful tool to get an understanding of the urban canyon
problem in satellite navigation, since the geometric configuration is easy to change. In total, over
20 000 reflections have been considered, so the data sets should be representative of each respective
building height. In these simulations, an LHCP rejection value of 3 dB has been used, however
one could try other values or even make it elevation-dependent instead.

2.11 Conclusions

In this chapter, a 3D urban area has been combined with a model of electromagnetic wave prop-
agation and a receiver simulation, to get an idea of which distributions the pseudorange error
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Figure 2.20: The correlator bases the pseudorange on the sum of all received signals (direct and/or
reflections).

and its underlying parameters follow. The distribution reflection delay is concentrated at smaller
values as the satellite elevation grows, while the RR concentrates around a value of 0.7. Most
importantly, the pseudorange error distribution is non-Gaussian, with most values around 0, and
with outliers up to several hundred meters. The reflection delays follow a gamma distribution,
whose shape parameters is close to the median reflection delay, depending on the urban canyon
depth. The number of satellites also closely depends on the urban canyon depth, thus a simple
quadratic model can give a prior distribution on the reflection delays, which is useful for MP delay
estimation, which will be studied in Chapter 4.

This simulation could also be used to obtain results from non-symmetric urban areas, or to study
the temporal evolution of each reflection; how long to they last and how fast to they change? In
the future, other, more asymmetric geometric configurations could be simulated, to see if and how
the results change. The importance of the building material and window placements could also be
studied, since this could cause the RR to rapidly change at high vehicle velocities. The source code
for the urban canyon simulation is available at https://github.com/Fusion-Goettingen,
so that researchers can create their own simulations to try new scenarios.

https://github.com/Fusion-Goettingen
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Figure 2.21: The Multipath (MP) reception distorts the correlator output of the L1 and L2 signals,
causing pseudorange errors.

Figure 2.22: For the Global Positioning System (GPS) L1 signal, the pseudorange errors follow a
highly non-Gaussian distribution.
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Figure 2.23: For the Global Positioning System (GPS) L2 signal, the pseudorange errors follow a
highly non-Gaussian distribution, similarly to the L1 signal of the same system.

Figure 2.24: A zoomed-in version of Fig. 2.22.
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Figure 2.25: A zoomed-in version of Fig. 2.23.

Figure 2.26: The pseudorange errors on the L1 and L2 carrier frequencies show a strong linear
correlation in case of Non-Line-of-Sight (NLOS) reception.
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Chapter 3

Detection of Reflections for Satellite Selec-
tion

The goal in this chapter is to estimate the quality of the pseudorange measurements from each
satellite, so that a subset of satellites that results in a better position estimate can be selected (in
contrast to naively using all available satellites. This is done using correlator output measured
on two carrier frequencies in Section 3.3) and using a combination of pseudorange and SNR
measurements on two carrier frequencies in Section 3.4. In urban areas with moderate building
heights (Fig. 2.6), or when a receiver works with several GNSS constellations (such as GPS and
Galileo), there can still be enough satellites available to compute a position after filtering out the
ones influenced by reflections. Under these conditions, reflection detection with satellite selection is
a simple approach that can be done using easily available observables that do not require advanced
hardware.

The correlator-based satellite classification method is based on [OBB19], with the addition
of the Pearson correlation variant. The dual-frequency satellite selection algorithm is based
on [OSBB20].

First, the satellite selection problem is formulated in Section 3.1. Second, related work is discussed
in Section 3.2. Third, the dual-frequency correlator-based approach to classification satellite
reception is presented in Section 3.3. Fourth, Section 3.4 introduces a satellite selection approach
that classifies and prioritizes satellites based on dual-frequency pseudorange and SNR. Finally, a
discussion can be found in Section 3.5 and the conclusions are in Section 3.6.

49
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3.1 Problem Formulation

A receiver receives L satellites, indexed by l. Each satellite sends data on two carrier frequencies,
with the most important measurement being the pseudorange

ρl =
√

(rx − sl,x)2 + (ry − sl,y)2 + (rz − sl,z)2 + b+ wl + vρ, (3.1)

where b is the receiver clock bias in meters, wl is the error caused by reflections (following the
distributions from Section 2.9), and vρ is Gaussian measurement noise with zero mean and standard
deviation σρ. The variables sl,x, sl,y, and sl,z represent the ECEF position of the satellite l. The
pseudorange is also measured on the second carrier frequency

ρl =
√

(rx − sl,x)2 + (ry − sl,y)2 + (rz − sl,z)2 + b+ wl + vρ, (3.2)

where wl is the error caused by reflections, and vρ is Gaussian measurement noise with zero mean
and standard deviation σρ.

The SNR on frequency 1 depends on the satellite elevation θ according to [DRB18]

Sl = 3.199e-5(θl)3 − 8.1e-3(θl)2 + 0.6613θl + 31.38 + vS . (3.3)

The L2 signal is transmitted with 3 dB less power than the L1 signal

Sl = Sl − 3 dB + vS . (3.4)

The SNR on both frequencies have Gaussian measurement noise with zero mean and standard
deviations σS and σS , respectively. To obtain the SNR values from a GNSS receiver, one can use
the C/N0, which is the SNR normalized to a bandwidth of 1 Hz. A further analysis of the received
C/N0 for high-sensitive receivers can be found in [WGH05].

Using these input data (pseudoranges and SNR on two frequencies along with the satellite eleva-
tions), the goal is to select a subset containing at least four satellites that output pseudoranges with
the minimal RMS with respect to the true pseudoranges ρ1

ref, . . . , ρ
i
ref, . . . , ρ

I
ref, see Fig. 3.1

ερ =

√√√√1

I

I∑
i=1

(ρi − ρiref)
2

I ≥ 4.

(3.5)
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Figure 3.1: The purpose of satellite selection is to exclude the satellites with largest pseudorange
errors, while keeping at least four to compute the position.

3.2 Related Work

In this chapter, two concepts are important. First of all, multi-frequency reception will recur
throughout the remaining chapters and it is a central theme for this thesis.

Multi-frequency reception in GNSS has been used for, e.g., general accuracy improvement [KRB04],
or to reduce ionospheric errors [SL11], [MPOC11]. It also has applications in detecting MP, e.g.,
based on the SNR as in [SG16], since MP interference causes variations in the SNR. A review of
multi-frequency methods to detect and mitigate reflections can be found in [OBB18].

Secondly, the correlator output contains crucial information about the received signals and if
reflections are present. This is called post-correlation analysis, and typical receivers only use
three correlator points: the early, phase and late correlators. The pseudorange is determined by
finding a point where the early and late correlators have about the same correlation power, and it
should be low. The pseudorange is then determined by the localization of the phase correlator,
who should have a high correlation power there. In case of MP, interference and extra peaks will
appear in correlation form, distorting it (see Fig. 2.21), and NLOS can cause the receiver to simply
identify the reflection as the direct signal, causing a delay in the pseudorange. Post-correlation
can thus detect corrupt correlation forms, for example by analyzing its symmetry [ERSGLS+15].
Another method is the early late phase parameter [MD10b], which analyzes the three correlators to
detect MP. This has also been done based on FFT [ADK+16]. Other examples are methods based
on deconvolution, such as Projection onto convex sets, [SSL09, DB11]. Further methods, based
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on filtering are Virtual MP mitigation technique [RC09], the Linear adaptive filter [UP13], and
Wide-sense stationary uncorrelated scattering [EA17]. Signal quality monitoring is the concept of
analyzing observables related to the GNSS signal, so errors can be detected, including MP. This
can also be done based on the correlator output [PALO17]. Another emerging type of methods
is to apply machine learning to the correlator output [SBL14, SNA17, LHL+16, MBC20], which
is especially interesting for software-defined receivers, since many parameters and raw data are
easily accessible.

In summary, minimization of reflection errors in GNSS has previously been done based on multi-
frequency reception, including based on SNR on multiple carrier frequencies. It has also been done
based on correlator output, however not based on multiple on frequencies, which is the purpose of
this chapter.

3.3 Dual-Frequency Correlator-Based Classification of GNSS

Signals

One approach to the satellite selection problem is to classify all received satellites according to their
reception mode: SPLOS, MP, or NLOS, see Fig. 2.5. Then, assuming that the NLOS pseudorange
errors are in general larger than the MP pseudorange errors (as seen in Fig. 2.26), one selects first
the SPLOS satellites, then the MP satellites and finally the NLOS satellites. The selection stops
when no more SPLOS are available, or when four satellites have been selected if MP or NLOS
satellites have to be included.

The correlator output [KH07, p. 65] is crucial for computing the pseudorange, but it also contains
information about the MP situation. On one hand, the interference between the direct signal and
the reflection under MP will increase or decrease the correlation power and on the other hand,
reflections will cause additional peaks in the correlator output to appear, creating asymmetry.
The resulting MP correlation power depends on the carrier frequency; it might be constructive
on one frequency, while the other is destructive, which is why multi-frequency transmission is
interesting for this purpose. Correlator output-based MP mitigation has previously been done
with one carrier frequency [ERSGLS+15, MD10b, ADK+16, SSL09, DB11], also in combination with
machine learning [LHL+16].

The development and validation of the dual-frequency correlator-based classification method, was
done according to Fig. 3.2. The development was done based on a highly controllable reflection
scenario created in a GNSS signal generator, while a preliminary validation was done with real
satellite data.

Reflection Scenario with Signal Generator A Skydel SDX [Sky19] GNSS signal generator was
used to create a basic reflection scenario. This device generates simulated GNSS signals in real-time,
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Development:

Validation:

GNSS signal
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Figure 3.2: The satellite classification method was developed using data from a signal generator,
then the method was tested with real satellites. The figure is adopted from [OBB19], ©2019 IEEE.

using the same carrier frequencies as the satellites. Up to three reflections can be added, all with
their own delay, power loss, phase shift, and Doppler shift difference.

The reflection scenario consists of 18 reflections, each lasting 1 second and with 1 second of
reflection-free data in-between. All reflections were 3 dB weaker than the direct signal (Λ ≈ 0.71)
and nine different delays were used (all in meters): 1, 2, 3, 4, 5, 10, 15, 20, 25. The first nine
reflections are MP while the following nine reflections are the same without the direct signal,
making them NLOS. A Python script switches the reflections on and of in the signal generator.
Only the GPS satellite with Pseudorandom Noise (PRN) number 32 was affected by the reflections,
however the reflection settings were identical on both carrier frequencies. The simulated vehicle
was set to move with a constant speed of 50 km/h in a circle of 1 km radius with its center near the
border between the United States and Canada, at the coordinates λ = 45◦, φ = −73◦. The reflection
scenario is detailed in Table 3.1.

Dual-Frequency Receiver The generator was connected to a Teseo V from ST Microelectron-
ics [STM19] dual-frequency receiver using an SubMiniature Version A (SMA) cable. The Teseo
V can record 10 correlator points, evenly spaced between -1 chip and 1.25 chips. Furthermore,
pseudorange, Doppler shift, C/N0, and carrier phase offset are available parameters. This output
is given at a sample rate of 5 Hz, in National Marine Electronics Association (NMEA) format.
All output is available on two carrier frequencies; the selected dual-frequency combination was
the GPS L1 and L2 signals, since this gave the most available GPS satellites transmitting both
frequencies at the time of data collection in October 2018. This is interesting for researching dual-
frequency methods, since direct sampling of the signals would require an unrealistic sampling rate
near 3 GHz, and result in a mix of signal of all satellites. It is faster to process than Intermediate
Frequency (IF) data, and results in realistic data with actual receiver noise. Another advantage is
that it can work either with GNSS signal generator data, or (by connecting an antenna) with data
from real satellites.

L2 Norm-Based Classification Feature and Algorithm Two variants of the classification algo-
rithm are presented, each using different features. The first feature is based on the L2 norm. Before
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Table 3.1: The reflection simulation scenario consists of 18 reflections (nine Multipath (MP) and
nine Non-Line-of-Sight (NLOS)), with reflection-free reception in-between them.

Duration (s) Direct signal Reflection Delay (m) Power loss (dB)
240 1 0 — —

1 1 1 1 3
1 1 0 — —
1 1 1 2 3
1 1 0 — —
1 1 1 3 3
1 1 0 — —
1 1 1 4 3
1 1 0 — —
1 1 1 5 3
1 1 0 — —
1 1 1 10 3
1 1 0 — —
1 1 1 15 3
1 1 0 — —
1 1 1 20 3
1 1 0 — —
1 1 1 25 3
1 1 0 — —
1 0 1 1 3
1 1 0 — —
1 0 1 2 3
1 1 0 — —
1 0 1 3 3
1 1 0 — —
1 0 1 4 3
1 1 0 — —
1 0 1 5 3
1 1 0 — —
1 0 1 10 3
1 1 0 — —
1 0 1 15 3
1 1 0 — —
1 0 1 20 3
1 1 0 — —
1 0 1 25 3

120 1 0 — —
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presenting the dual-frequency-based MP and NLOS detection, it is first useful to define the L2

error norm of the vector C of length K

‖C‖2 =

√√√√ K∑
k=1

|Ck|2. (3.6)

Second, a reference correlator output is selected from a reflection-free (SPLOS) environment, see
Fig. 3.3. The corresponding correlator outputs from both carrier frequencies Cref and Cref are
stored. This represents the expected correlator output under normal conditions, and will be used as
a reference when comparing new correlator outputs. It is important that Cref is symmetric and that
the maximum correlator power corresponds to what is expected from a satellite of that elevation.
If no reflection-free environment is available (or if there is no way to detect that the receiver is in a
reflection-free environment), then an elevation-based signal power according to [DRB18] could be
used. The feature on each frequency is then

C =
1√
K
‖C−Cref‖ (3.7)

C =
1√
K
‖C−Cref‖ (3.8)

Third, the classification is done according to Algorithm 1. The intuition behind the classification

Algorithm 1 The satellites are classified according to their reception mode, based on correlator
output on two frequencies.

for all satellites l of L do
C = 1√

K
‖C−Cref‖

C = 1√
K
‖C−Cref‖

C∆ = |C − C|
if (C < TC AND C < TC ) then
El = SPLOS

else
if C∆ > T∆ then
El = MP

else
El = NLOS

end if
end if

end for

algorithm is that, in case of MP, the interference between the direct signal and the reflection will
change the received correlation power, compared with SPLOS reception. The correlation power
will increase in relation to SPLOS in case of constructive interference, and decrease in case of
destructive interference. Furthermore, if enough correlation points are available, the secondary
correlation peak will cause the received correlator form to differ even more from the expected
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Figure 3.3: To detect Multipath (MP), a reference correlator output is compared to the receiver
correlator output on two carrier frequencies. The difference is quantified using the L2 norm, which
will increase when large interference between the direct signal and a reflection is present. The
figure is adapted from [OBB19].

SPLOS correlator output. The used hardware with 10 correlator points is not enough for this, it is
unlikely that the additional reflection peak is near any of these 10 points. For these reasons, the L2

is norm suitable to quantify the difference between two correlator forms, since it can both detect
differences in correlation power and additional peaks (if the hardware proposes many correlator
points). For NLOS reception, no interference is expected, thus the L2 norm will differ in the same
way for both carrier frequencies, making it possible to also identify this reception mode. The
threshold would need fine-tuning depending on the receiver, since the correlation power is given
normalized, relative to the used receiver.

In Fig. 3.4, the feature on each frequency is visualized during the GNSS signal generator scenario.
Based on the signal generator scenario, the thresholds in Algorithm 1 were manually tuned to
TC = 200 and T∆ = 150. A patent for this feature is pending [OB19c].

Pearson Correlation-Based Classification Feature The second variant of the classification algo-
rithm uses a feature that is based on the Pearson correlation coefficient. The previously explained
L2 norm-based feature basically averages the correlator output over all samples, making it highly
related to the received signal strength. This is reasonable when only 10 correlator points are avail-
able, because it is unlikely that the reflection will be near any of the correlation points. However,
with more correlator points, the reflections become more apparent in the correlator output, which
makes it relevant to analyze the correlator form point by point. One way to do this is with the
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Figure 3.4: The correlator-based feature on two frequencies can detect Multipath (MP) and Non-
Line-of-Sight (NLOS) using simple thresholds as in Algorithm 1. The background colors fol-
low Fig. 2.5 and the figure is adapted from [OBB19]. In the blue zones, the interference of
Multipath (MP) causes variations in the feature depending on the phase difference between direct
signal and reflection. In the red zones, the abscence of interference in Non-Line-of-Sight (NLOS)
creates a more regular pattern.

Pearson correlation coefficient, which measures the linear correlation between two vectors of data
X and Y [DHS01, p. 614]

β(X,Y) =

K∑
k=1

(Xk − µX)(Yk − µY)

σXσY
, (3.9)

where

µX =
1

K

K∑
k=1

Xk, (3.10)

is the arithmetic mean of the vector X and

σX =

√√√√ K∑
k=1

(Xk − µX)2 (3.11)

is its standard deviation. If X and Y have a perfect positive linear correlation, β will be equal to 1.
This can be used to measure the similarity of two signals, and that is how it will be used here.

Depending on the interference between the direct signal and reflections, the received signal strength
will increase or decrease the maximal correlation of the received correlator output C. This signal
strength difference is represented by scale factor

G =
max(C)

max(Cref)
. (3.12)
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Figure 3.5: As a preparation for computing the features, a scaling factor and the Pearson correlation
coefficient between a received correlation form and a reference correlation are computed.

To allow the similarity of the correlator outputs, C is scaled using this scale factor

Cscaled =
1

G
·C. (3.13)

Then, the similarity between the correlator outputs is given by

β(C,Cscaled). (3.14)

The scaling and Pearson correlation steps are visualized in Fig. 3.5.

Finally, the parameters G and β are combined to a MP and NLOS detection parameter

B =

∣∣∣∣∣ βG − 1

∣∣∣∣∣. (3.15)

This is done since the scaling factor G is expected to increase when reflections are present, while
the signal similarity β is expected to decrease. The subtraction of 1 is to center the SPLOS samples
around 0. In this way, the feature becomes easier to use for classification purposes. This is done in
the same way on the second frequency, giving B. In this way, the feature varies between 0 and 1,
which gives a normalized value for signal classification. Similarly to the feature B, both differences
in correlation power and differences caused by additional peaks can be detected in this way. Thus,
the C features could be replaced by B in Algorithm 1 (with new thresholds values, since this
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Figure 3.6: The Pearson correlation-based feature varies between 0 and 1 on both frequencies in
case of Multipath (MP), but for Non-Line-of-Sight (NLOS) it stays at around 0.3.

feature is normalized). The intuition is similar to the one of the L2 norm-based classification, with
the advantage of having a normalized feature that should be easier to apply to a wide variety of
receivers. It could be a disadvantage having to compute the Pearson correlation between correlator
outputs with many points however, since this is a complex operation. The feature values during the
signal generator simulation are visualized in Fig. 3.6. A patent for this feature is pending [OB19a].

Comparison with State of the Art The performances of the proposed dual-frequency satel-
lite classification features were compared with two methods from the state of the art: the
CMC [KV17], [HC04] and the SNR difference ∆S [SG16], [vH17].

The first, comparison feature, the CMC feature consists of two observables, one for each carrier
frequency, MP1 and MP2. These two observables compute the difference between the code-based
pseudorange and the carrier phase-based pseudorange on two carrier frequencies

MP1 = ρ1 −
f2

1 + f2
2

f2
1 − f2

2

Ψ1 +
2f2

2

f2
1 − f2

2

Ψ2 (3.16)

MP2 = ρ2 −
2f2

1

f2
1 − f2

2

Ψ1 +
f2

1 + f2
2

f2
1 − f2

2

Ψ2, (3.17)

where ρ1 and ρ2 are the code-based pseudorange measurements. When reflections are received,
this difference between code and carrier-based measurements is expected to increase, because the
extra traveled path will add cycles ι to the carrier phase measurement. The pseudorange based on
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the carrier phase measurement is then

Ψ1 = ι1
c

f1
(3.18)

Ψ2 = ι2
c

f2
, (3.19)

where ι is the carrier phase measurement in cycles.

The second comparison feature is the SNR difference one. It takes the C/N0 on two carrier
frequencies as input parameter, designated as S1 and S2, and looks at their difference to detect MP

∆S =
√

(S1 − S2 − S(θ))2. (3.20)

The variable S(θ) is the expected C/N0 in an environment free of reflection and signal interference,
as a function of the satellite elevation angle θ in degrees

S(θ) = 2 + 0.098θ − 0.0011θ2 + 2.8e−6θ3. (3.21)

The values S1 and S2 are obtained by reading the NMEA log of the Teseo V receiver on each
frequency, respectively. The cofficients of (3.21) are derived from data acquisition in a low MP
environment using a Leica Viva GS15 geodetic GNSS receiver [SG16].

For the comparison, two binary classification metrics, the Area under the Receiver Operating
Characteristic (AUROC) [GS66] and the absolute Fisher Score F [DHS01] are used. The first metric,
is based on the Receiver Operating Characteristic (ROC), which is a common way of evaluating
detection methods. To obtain a ROC curve, a simple threshold-based classification is done. This
threshold is varied, from the lowest value of the feature to the highest value, in a given amount of
steps. For each threshold step, the True Positive Rate (TPR) and the False Positive Rate (FPR) are
computed, which are correctly classified positives among all positives, and the falsely classified
positives among all negatives, respectively. A plot of the TPR against the FPR gives the ROC
curve, where a feature that has a low performance in threshold-based classification will follow the
diagonal closely, resulting in an area under it, AUROC, close to 0.5. On the other hand, a feature
with a high detection performance will stay close to the upper left corner, resulting in an AUROC
close to 1.

The second metric, the absolute Fisher score, will increase when a feature has a high inter-class
difference (thus, the feature values differ between two classes, such as SPLOS and MP). The metric
also increases if the intra-class difference is low, meaning that the values within the same should
stay somewhat constant. The absolute Fisher score is computed as

F =
|(µ1 − µ2)|√
σ2

1 + σ2
2

, (3.22)
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where µc is the mean across all values belonging to a class c and σc is the standard deviation across
the class c.

The two presented metrics work only for binary classification, thus the three class problem (SPLOS
versus MP versus NLOS) cannot be analyzed in this way. Instead, three two-class problems are
defined and analyzed:

1. SPLOS versus MP,

2. SPLOS versus NLOS,

3. SPLOS versus (MP or NLOS).

In summary, all three classification problems above have been analyzed using the two metrics,
for five features (the proposed novel methods and two from the state of the art). Of these three
features, two result in one variable per frequency, thus the results of seven features are presented
in total.

The results can be found in Fig. 3.7 and Fig. 3.8, where it can be seen that the proposed methods
work better than the state of the art, regardless of how the classification scenario is defined.
Furthermore, the Pearson correlation-based variants B and B have a slight advantage over the L2

norm-based ones, C and C.

Preliminary Validation of L2-Based Classification with Satellite Data To get an impression
of the performance of the MP and NLOS detection in real environments with signals from real
satellites, test drives were done in two environments: the A7 highway in central Germany and in
the city center of Frankfurt am Main, see Fig. 3.9 and Fig. 3.10. No hardware to record the ground
truth on reflections was available, so the results are simply the detections made based on real input
data, without being able to verify if they are correct. Despite this, we can see that more MP is
detected in the Frankfurt environment than on the highway. The MP detected at around 70 seconds
on the highway could be a reflection on an overtaken truck. For the test drive, the thresholds of
Algorithm 1 were adapted to TC = 1300 and T∆ = 100. The first part of the Frankfurt test drives is
static, thus the feature is reacting to the slow movement of the satellites.

3.4 Dual-Frequency Satellite Selection Algorithm

In this section, Algorithm 1 is extended so that each satellite is given a priority in addition to
being classified, which makes satellite selection possible. The previously explained correlator-
based features scale well with complex hardware that outputs many correlator points, but for
simpler receivers one can use the more common SNR parameter, which however is not as rich in
information. For these reasons, the satellite selection method in this algorithm is based on the SNR.

The dual-frequency satellite selection procedure is detailed in Algorithm 2. The idea is that, first,
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Figure 3.7: According to the Area under the Receiver Operating Characteristic (AUROC) metric,
the proposed dual-frequency based features consistently detect Multipath (MP) and Non-Line-
of-Sight (NLOS) better than three other features, taken from the state of the art. The figures are
adapted from [OBB19].

the two pseudoranges are compared to identify SPLOS, they are expected to be very close in
this case (only measurement noise should cause differences). In case of MP the pseudoranges
differ due to interference. To distinguish SPLOS from NLOS, the SNR on both frequencies is also
compared, it should be around 3 dB (since the L2 signals is transmitted at 3 dB less power for
GPS). NLOS is then classified if the SNR on frequency 1 is close to what is expected according
to an elevation-based model [DRB18], because in absence of interference mainly the satellite
elevation will influence the SNR. These satellites are then given a priority number that is inversely
proportional to their SNR, so that the strongest NLOS will be selected before the weaker ones. All
other satellites are classified as MP, with the absolute pseudorange different as priority number.
After the classification and prioritization of all satellites is done, they are selected so that all SPLOS
are selected first, then if four satellites are not reached, the selection continues according to first
MP and then NLOS, with the priority described as above. The thresholds were tuned according
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Figure 3.8: According to the Fisher score metric, the proposed dual-frequency based features
consistently detect Multipath (MP) and Non-Line-of-Sight (NLOS) better than three other features,
taken from the state of the art. The figures are adapted from [OBB19].

to the urban canyon simulation in Section 5.6: TS = 0.5 dB, Tρ = 1 m (between wl and vρ) and
Tθ = 4 dB. A patent for this satellite selection procedure is pending [OB20a].

3.5 Discussion

In this chapter, we have seen methods to classify the reception modes based on correlator output,
and based on pseudoranges and SNR. The correlator-based features require receivers that output
rawer data, however they have good potential to scale well as more correlator points are available.
The pseudorange and SNR-based version can be applied to most commercially based receivers,
since the output parameters are typically available. The results in this chapter are based on a
reflection scenario created with a GNSS signal generator, measured by a dual-frequency receiver
that is a prototype for the mass-market. A preliminary validation based on real data (that is,
however, missing a ground truth on the reflections) shows that the signal classification might work
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Figure 3.9: According to the Fisher score metric, the proposed dual-frequency based features
consistently detect Multipath (MP) and Non-Line-of-Sight (NLOS) better than three other features,
taken from the state of the art. The figures are adapted from [OBB19].

well also in a real urban canyon. Thus, Algorithm 1 is promising for real-life applications.

Concerning the methods used in this chapter, ideally the reflections in Frankfurt should be recorded
with a receiver that can record reflections, and decide the reception mode. This way, a high-quality
validation of the method in real urban canyons could be done. The reflection scenario in the GNSS
signal generator uses a combination of common reflections, but the simulation in Chapter 2 could
also be used to generate more representative reflections, with realistic dynamics. The NMEA
data format has limited precision, however the correlator output data are recorded using private
messages which are more flexible. Re
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Figure 3.10: The dual-frequency feature detects significantly more Multipath (MP) in the urban
environment (upper figures) than on the highway (lower figures). Both figures are adapted
from [OBB19] and the satellite photos are from [Goo19].

3.6 Conclusions

In this chapter, we have seen two algorithms that approach navigation in urban areas by classifying
and ranking satellites, depending on how large the pseudorange errors of the satellites are. Both
algorithms use dual-frequency observables as input, the first one a 10-point correlator output and
the second one combines pseudoranges, SNR and satellite elevation. All of these only require a
dual-frequency receiver, the input variables themselves are parameters that standard receivers
typically record. If few correlator points are available, MP can still be detected, since the correlator
power will be reduced or increased by the interference, but if a large amount of correlator points
are available (such as in a software-defined receiver), individual reflections can be identified and
removed.

The results are based on a combination of all three main tools of GNSS research: simulations, signal
generator data, and data from real satellites. This shows good potential for implementing the
proposed satellite selection algorithms in real receivers, however the validation with real satellites
should be done more extensively and with an accurate ground truth on the reception modes.

We have supposed that the selected subset of satellites with minimal errors from reflections will
lead to better positioning, however this ignores the fact that the satellite geometry also influences
the accuracy of the position. Chapter 5 is dedicated to evaluating the positioning performance by
combining the satellite subsets using an EKF.
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Algorithm 2 .

for all satellites l of L do
if |ρl − ρl| < Tρ AND |Sl − Sl − 3 dB| < TS then
El = SPLOS
E

prio
l = 0

else if Slθ = 3.199e-5(θl)3 − 8.1e-3(θl)2 + 0.6613θl + 31.38− Sl > Tθ then
El = NLOS
E

prio
l = 1

Sl

else
El = MP
E

prio
l = |ρl − ρl|

end if
end for
select all satellites belonging to SPLOS
while number of selected satellites I < 4 AND all MP satellites not selected do

select one MP satellite (lowest Eprio
l -values first)

end while
while number of selected satellites < 4 AND all NLOS satellites not selected do

select one NLOS satellite (lowest Eprio
l -values first)

end while
Output the I selected satellites

In the future, combinations other than the L1 and L2C signals could be considered, including,
e.g., combinations with the L5 signals. Furthermore, squaring loss [SMMB07] could be take into
consideration.
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Chapter 4

Mitigation of Multipath

In the case of MP reception, the LOS signal is still present, meaning that the essential ranging
information is still received. In this chapter, a method to mitigate MP is presented. The additional
delay of the reflection with respect to the direct signal is estimated by analyzing the signal power on
multiple carrier frequencies. In contrast to detection of reflections and satellite selection (Chapter 3),
reflection delay estimation has the possibility to correct the pseudorange measurements of satellites
that are influenced by reflections, thus it is useful in areas where few satellites are available, such
as a deep urban canyon.

This chapter is based on [OBB20a], with the addition of including a prior distribution and
more details on the distribution of the signal power measurement noise.

First, the problem of MP delay estimation is formulated in Section 4.1. Second, related work is
presented in Section 4.2. Third, Section 4.3 explains how the problem can be approached with ML
estimation. Fourth, the prior gamma distribution from Section 2.6 is used in Section 4.4. Fifth, a
simulation with different levels of measurement noise is explained in Section 4.5 and its results
are presented in Section 4.6. Finally, Section 4.7 gives a discussion while Section 4.8 concludes the
chapter.

4.1 Problem Formulation

A situation of MP is considered, see Fig. 2.5. It is supposed that a method to classify the reception
mode of the signal is available, e.g., the correlator-based approach described in Section 3.3. Thus,
it is possible to distinguish MP from NLOS or SPLOS. Since MP reception always includes an LOS
signal and at least one reflection, these signals will interfere at the receiver (see Fig. 4.1), creating
variations in the received SNR. Since the SNR is easily available on each frequency, we want to use
these measurements to estimate the reflection delay. To begin with, a model of the signal power is

69
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Figure 4.1: Under Multipath (MP) reception, the direct signal and the reflection interfere at the
receiver, creating variations in the signal power. This interference pattern is different for each
carrier frequency.

needed. For a given reflection scenario, this receiver input power follows a simple rule depending
on the frequency. We will use the two-ray signal model described by (2.24), which consists of a
direct signal

gLOS(t) =
√

2PLOS cos(2πfnt), (4.1)

and one reflection
grefl(t) =

√
2PLOSΛ cos(2πfnt+ ζ). (4.2)

The difference in phase between direct signal and reflection is

ζ =
2πfnd

c
+ Φ, (4.3)

while the signal power of the summed signal g(t) = gLOS(t) + grefl(t) is

P (d,Λ, PLOS, fn) = lim
T→∞

1

2T

∫ T

−T
g2(t)dt = lim

T→∞

1

2T

∫ T

−T
(gLOS(t) + grefl(t))2dt =

lim
T→∞

1

2T

∫ T

−T

(√
2PLOS

(
cos
(
2π(fn + fLOS

D )t
)

+ Λ cos
(
2π(fn + f refl

D )(t+
d

c
) + Φ

))
+ vg

)2

dt.

(4.4)

Four assumptions are made. First, as presented in Section 2.7, the phase shift of all reflections was
equal to π radians, so the first assumption is that the phase change of the reflection itself is constant
Φ = π. The complete phase change of the received signal is then a combination of Φ and the phase
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changed caused by the reflection delay. Second, the Doppler shift difference of the reflection is
typically a few Hz, as seen in Section 2.8, which is small compared to the typical Doppler shift
in the kHz range (thus, f refl

D ≈ fLOS
D ), see also Fig. 1.7. As a consequence, it is assumed that the

carrier frequencies of the direct signal and the reflection are the same. The third assumption is
that the power of the direct signal, PLOS, is known. It can estimated as a function of satellite
elevation [GJRS13], or measured in a reflection-free environment, based on, e.g., the correlator
output [OBB19]. Fourth, the noise vg is ignored at the integral level, it will modeled as signal
power measurement noise, introduced in Section 4.3. The signal power P of the summed signal
in (2.24) is then

P (d,Λ, PLOS, fn) = lim
T→∞

1

2T

∫ T

−T

(√
2PLOS

(
cos
(
2πfnt

)
+ Λ cos

(
2πfn

(
t+

d

c

)
+ π

)))2

dt =

lim
T→∞

2PLOS

2T

∫ T

−T
cos2(2πfnt)dt+ lim

T→∞

2PLOS

2T

∫ T

−T
2 cos(2πfnt)Λ cos

(
2πfnt(t+

d

c
)
)
dt+

lim
T→∞

2PLOS

2T

∫ T

−T
Λ2 cos2

(
2πfn(t+

d

c
) + π

)
dt = 2PLOS

(1

2
− Λ cos(2πfn

d

c
) + Λ2

)
=

PLOS

(
1 + Λ2 − 2Λ cos

(2πfnd

c

))
. (4.5)

The first term of the sum represents the LOS signal, the second the reflection, while the third
term stems from the interference between the two signals, with a periodic dependence on the
carrier frequency. Given signal power measurements at multiple carrier frequencies, the goal is to
estimate the MP reflection delay as defined in (2.7) and in Fig. 2.8. When the reflection delay is
known, the inverse MP error envelope of the correlator function [IB03] can be used to compute the
pseudorange error, which can finally correct the pseudorange measurement.

4.2 Related Work

Numerous SNR-based methods for detection and mitigation of reflection errors exist. If the receiver
is stationary, it is possible to filter SNR with respect to time [BFK+97, ACM96, CA98], so that the
reflection delay is estimated. As of 2020, dual and triple-frequency GNSS transmission [OBB18]
is reaching the mass market, introducing new information diversity. This is interesting for MP
mitigation because different carrier frequencies will fit a different number of wavelengths inside
the extra traveled, which influences the received signal power and as a consequence, the SNR
on each frequency. This adds new potential to the previously mentioned methods, which do not
utilize multi-frequency information. However, SNR-based multi-frequency methods to detect
reflections already exist [SG16,GJRS13,vH17,OBB19]. The detection can then be used to exclude or
down-weight the reflection-influenced satellites, but this requires a sufficient (at least four) number
of error-free satellites. Therefore, it is more interesting to approach the problem with mitigation,
meaning that the satellite measurements are corrected instead of excluded. Examples of methods
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for mitigation of MP errors by estimating the reflection delay are the least squares [MVT94],
maximum likelihood [Fuc97, LK06, XHH12, Asl13] methods, and Bayesian filtering [LKR08]. These
are however only based on data from one carrier frequency, thus the potential of multi-frequency
for reflection delay estimation needs further exploration.

Channel models of SNR have already been studied in the area of wireless communications [CCS11].
This area, however, focuses on reducing communication errors instead of measuring the distance
between a transmitter and a receiver, as in GNSS. Furthermore, the concept of orthogonal fre-
quency division multiplexing [Cha66], is an important related method, that uses carefully selected
orthogonal frequencies, to reduce communication errors under MP. Another related concept is
filter bank multicarrier modulation [ZL08], but it supposes that all carrier frequencies can be
selected, unlike what is possible for GNSS.

4.3 Maximum Likelihood Estimation

The signal power is measured at each frequency n, we will consider the typical triple-frequency
(N = 3) combination of GPS and Galileo

1. f1 = 1.5754 GHz (GPS L1 or Galileo E1),

2. f2 = 1.2276 GHz (GPS L2 or Galileo E5b),

3. f3 = 1.1765 GHz (GPS L5 or Galileo E5a).

Noise Characterization The measured signal power P̂n differs from the true signal power
P (d̄, Λ̄, PLOS, fn) at the true values d = d̄ and Λ = Λ̄

P̂n = P (d̄, Λ̄, PLOS, fn) + vS,n. (4.6)

This is due to the signal power measurement noise, vS,n. To characterize this measurement noise,
the Skydel SDX GNSS signal generator [Sky19] was connected to an STMicroelectronics Teseo V
dual-frequency receiver [STM19]. This hardware simulation used the GPS L1 and L2 signals. The
simulation consisted of nine reflections, each lasting 1 second. The dual-frequency sampled the
correlator output at 5 Hz. The reflection delay d̄ varied from 1 m to 25 m, with the following values:
1, 2, 3, 4, 5, 10, 15, 20, and 25 m. All reflections were 3 dB weaker than the direct signal, giving
Λ̄ = 10

−3 dB
20 dB ≈ 0.71. This is the MP part of the simulation described in Table 3.1.

As previously mentioned, the signal power can be estimated using observables such as the C/N0 or
the SNR. Another possibility is to base it upon the correlator output, which is also highly sensitive
to signal interference (Section 3.3), which is the case in this chapter.

The signal power was based on the average of an 10-point correlator output as in Section 3.3, giving
the variables C for the L1 frequency and C for the L2 frequency. These are, however averaged
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correlation powers that are normalized to the receiver, thus they need a transformation be relatable
to the signal power described in the model (4.5). For this, the linear transformations

P̂ corr
1 = 1.99C + 6.71e-4, (4.7)

on the L1 frequency, and between C and P̄2 on the L2 frequency

P̂ corr
2 = 1.93C + 8.83e-4, (4.8)

were fitted, for PLOS = 1. The fitted linear squares parameters are close on both frequencies,
indicating that the transformation could be valid regardless of the carrier frequency. The mean
absolute error between the transformed measurement and the model is

I∑
i

|P̂ corr
1,i − P̄1,i| = 0.0474, (4.9)

for L1 and
I∑
i

|P̂ corr
2,i − P̄2,i| = 0.0370, (4.10)

for L2.

The results of the least squares fit can be found in Fig. 4.2, for all delays on both frequencies. First,
it is interesting to note how the signal power based on correlator output is typically completely
different for the two carrier frequencies, even though the reflection delay and RR is the same.
This is due to the aforementioned interference. The correlator output was sampled at 5 Hz and
each reflection lasts 1 s, thus one could expect five data points per reflection. However, only four
are present, since the GNSS signal generator and the dual-frequency receiver have no external
synchronization signal. Thus, only the four middle samples are included, to avoid including data
from points in time where the reflection scenario switches.

Subsequently, a Lilliefors test [Con98] was done, supporting (with a p-value of 0.5) the hypothesis
that the measurement noise follows a Gaussian distribution (mean 9.41e-17 V2 and standard
deviation σS,n = 4.28e-2 V2).

Thus, we assume an additive white Gaussian signal power measurement noise with standard
deviation σS,n

vS,n ∼ N (0, σ2
S,n). (4.11)

By combining (4.6) and (4.11),

P̂n ∼ N
(
P (d̄, Λ̄, PLOS, fn), σ2

S,n

)
, (4.12)

is obtained.
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Figure 4.2: Signal power measurements can be obtained by averaging and transforming the
correlator output with a linear model.

Likelihood Function By making the assumption that the measurements on each frequency are
independent, we can form the likelihood Lik of the parameters d and Λ, given the measurements
P̂1, . . . , P̂N

Lik(d,Λ|P̂1, . . . , P̂N ) =

N∏
n=1

1

σS,n
√

2π
exp

(
−
(
P̂n − P (d, r,Λ, fn)

)2
2σ2

S,n

)
(4.13)

In this way, the goal of estimating d can be seen as an ML problem, where the also Λ needs
to be estimated. We seek the values of d and Λ that maximize the likelihood of observing the
measurements P̂1, . . . , P̂N

(d̂, Λ̂) = arg max
d,Λ

(
Lik(d,Λ|P̂1, . . . , P̂N )

)
=

arg max
d,Λ

N∏
n=1

1

σS,n
√

2π
exp

(
−
(
P̂n − P (d,Λ, PLOS, fn)

)2
2σ2

S,n

)
. (4.14)

To simplify, the log-likelihood is applied. If all σS,n are equal (meaning that the measurement noise
on each frequency has the same standard deviation), the log-likelihood becomes

(d̂, Λ̂) = arg min
d,Λ

N∑
n=1

(
P̂n − P (d,Λ, PLOS, fn)

)2
. (4.15)



4.4. PRIOR REFLECTION DELAY DISTRIBUTION 75

Figure 4.3: By identifying where the signal power measurements (planes) intersect the signal
power function surfaces, the reflection delay (15.1 m) can be identified. The figure is adapted
from [OBB20a].

In case of differing σS,n, a weighted solution can be done instead.

Since both the delay and the RR need to be estimated, a minimum of two carrier frequencies are
required, N ≥ 2.

The signal power on three frequencies is visualized in Fig. 4.3. A reflection with a delay of
d̄ = 15.1 m and RR Λ̄ = 1 is present, and signal power measurements intersect the signal power
functions at the magenta circles. The magenta dashed line indicates the introduced delay and RR.
In case of the completely destructive interference, the power function P reaches a minimum at 0
signal power, with the phase difference between direct signal and reflection being ζ = 2πk, where
k is an even integer, and Λ = 1. Completely constructive interference gives the maximal value
of P , 4PLOS, where ζ = 2π(k + 1) and Λ = 1. Furthermore, P (d,Λ = 0, PLOS, fn) = PLOS, which
means that when the RR is 0, the reflection has no power, and the power of the received signal is
simply the power of the direct signal.

4.4 Prior Reflection Delay Distribution

In Section 2.6, a method to estimate the prior distribution using the number of satellites was
presented. According to 2.8, a prior Gamma distribution where the shape parameter depends on
the number of satellites L is then obtained. If this prior distribution is included, the likelihood
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function is transformed to

Lik(d,Λ|P̂1, . . . , P̂N , L) =

Gamma(d̂m = −0.23L2 + 5.08L− 4.08, 1)

N∏
n=1

1

σS,n
√

2π
exp

(
−
(
P̂n − P (d, r,Λ, fn)

)2
2σ2

S,n

)
. (4.16)

In this situation, the log-likelihood is of little help, and a numerical search is done directly within
the multiplied likelihood

(d̂, Λ̂) = arg max
d,Λ

Gamma(d̂m = −0.23L2 + 5.08L− 4.08, 1)

N∏
n=1

1

σS,n
√

2π
exp

(
−
(
P̂n − P (d, r,Λ, fn)

)2
2σ2

S,n

)
. (4.17)

As stated in Section 2.6, this model is only valid for GPS, the coefficients of the polynomial would
have to be adapted for multi-constellation receivers, since more satellites are available in that case.
In the ray tracing simulation, around 8 satellites were received on average.

The multiplication of the likelihoods is visualized in Fig. 4.4. The true reflection delay in this
example is 17.53 m, marked by the dashed magenta line. Other settings are Λ = 0.8 and σ = 50 mV2.
When only frequency 1 is used, the delay cannot be identified, due to the periodicity of the P
function. When two frequencies are used, a peak is seen around the correct delay, but is not the
one with the highest likelihood, several false peaks are larger (this is caused by the relatively high
measurement noise). With three frequencies, not many peaks remain, however the correct delay
still cannot be identified. By also multiplying with the prior gamma distribution, the correct delay
can be identified. Thus, if a PDF that roughly represents the reflection delays is available, it can be
combined with the triple-frequency signal-power based method for improved dleay estimation.

4.5 Simulation with Multi-Frequency Reflection Delay Estima-

tion

To evaluate the performance of the MP delay estimation, a simulation was setup, containing all
possible of delays from 0 m to 29.3 m (in steps of 1 mm), RR values Λ from 0 to 1 (in steps of
0.1), and three values of the signal power measurement noise standard deviation: σS = 1e-3 V2,
σS = 2e-3 V2 and σS = 5e-3 V2. These three σS values represent three different receivers, with
different precisions in signal power measurement.

As performance metric, the RMS delay estimation is used, since a simulation is repeated for M
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Figure 4.4: By multiplying the likelihood functions of three frequencies with the prior distribution,
the correct reflection delay (magenta line) can be identified, in spite of high signal power measure-
ment noise.

Monte Carlo runs

dε =

√√√√ 1

M

M∑
m=1

(d̂m − d̄m)2. (4.18)

The triple-frequency combination in GPS (L1, L2, and L5) will automatically filter out all delays
that are outside one chip of any of the three signals. The L5 signal has the fastest chip rate
fchip = 10.23 MHz, so all d > c

fchip
≈ 30 m could be identified and ideally ignored, or a special

multi-chip rate approach could be developed to handle them. In order to estimate the reflection
delays that are smaller than ca. 30 m, the ML problem in (4.15), needs to be solved. To do this,
a simple numerical solution is used, based on grid search. This means that the P (d,Λ, PLOS, fn)

surface in Fig. 4.3 is divided into steps of 1 mm along the d axis and steps of 0.1 along the Λ axis.
This is followed by a numerical search for the point along the d and Λ axis that maximizes the
likelihood function. This discretization results in ∆d = 3000 points along the delay axis ∆Λ = 100

points along the RR axis. The computational complexity is then O(∆d∆Λ). The signal power of
the direct signal, PLOS, was set to 1. A patent for this delay estimation method is pending [OB19b].

To evaluate the contribution of the prior gamma distribution, a simulation where Λ = 0.8 is held
constant, with M = 500 Monte Carlo runs was done, once with the prior distribution and once
ignoring it (Gamma(d̂m = −0.23L2 + 5.08L − 4.08, 1) = 1). In this simulation, for each Monte
Carlo run, a number of satellites L is randomly generated between 4 and 9, then the corresponding
gamma distribution shape parameter is computed according to 2.8. After this, since the root mean
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Figure 4.5: The performance of the signal power-based delay estimation highly depends on the
measurement noise level. Error-free delay estimation is indicated by dark blue. The figure is
adapted from [OBB20a].

square error of the model in 2.8 is approximately 0.33 m, a normal distribution error with mean 0
and standard deviation 0.33 m is added to the shape parameter. Then, a gamma distribution with
this shape parameter and a scale parameter of 1 is used as a prior distribution in the reflection
delay estimation. This simulation was done for 50 equally spaced measurement noise values from
1 mV2 to 50 mV2.

4.6 Results

An overview of the delay estimation for all simulated delays and RR can be found in Fig. 4.5.
This is based on M = 100 Monte Carlo runs, using no prior distribution. It can be noted that it
is more difficult to estimate the delay of weaker reflections, since they have less influence on the
total received signal power. Since extremely short delays give the same interference regardless
of the carrier frequency, these are almost impossible to correctly estimate. The lowest noise level
(σS ≤ 1e-3 V2) represents almost error-free delay estimation; under this condition most delays can
be identified. However, with larger noise levels, the delay estimation is unreliable.

Next, a special case of the results from in Fig. 4.5 is presented, where Λ is kept constant at around
0.5. This is to reproduce a scenario similar to [LKR08, Fig. 6], so that a comparison with the state
of the art is achieved. M = 1000 Monte Carlo runs were used, also without the prior gamma
distribution. It is important to note that the methods presented in [LKR08] estimate the delay
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Figure 4.6: While σS ≤ 1e-3 V2 the signal power-based delay estimation performs better than the
state of the art ( [LKR08, Fig. 6]). The figure is adapted from [OBB20a].

by sampling a high number of correlators (41) at a high rate (1 kHz). This results in a different
likelihood function, and more importantly, sets high requirements on the hardware. Of the five
methods presented in [LKR08, Fig. 6], three are variants of the sampling importance resampling
particle filter, while two are the narrow and Strobe correlator, which are correlator methods in the
delay lock loop. The results can be seen in Fig. 4.6; the condition σS ≤ 1e-3 V2 is necessary for
the proposed signal power-based method to perform better. As noted in Section 4.5, all delays
d̄ ' 30 m are automatically identified by the high chip rate of the L5 signal. Fig. 4.7 presents the
results of the simulated to evaluate the contribution of the prior gamma distribution. As expected,
it gets more difficult to correctly estimate the reflection delay with growing measurement noise,
but using the prior distribution can reduce the error by several meters on average.

4.7 Discussion

Disadvantages of the proposed signal power-based delay estimation method is include that it can
only handle one dominant reflection. This is the typical case in urban canyons, but in exceptional
cases, two semi-strong reflections could appear, which the model does not take into account.
The presented results are based only on simulations, but with a measurement noise distribution
based on experiments with a real receiver, and with three different standard deviations of the
measurement noise. This experiment also shows that the measurement noise is on the upper limit
of what the proposed method can handle while still correctly identifying the delays, at least for
the used dual-frequency receiver. This means that hardware capable of measuring signal power
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Figure 4.7: On average, the reflection delay estimation can be reduced by using the prior gamma
distribution, based on the number of received satellites.

with high precision (or with high sampling rate, to filter with respect to the time) is important.
The numerical solution method to the ML problem is based on grid search, which means a high
computational load, however it would be easy to adapt it to other distributions of measurement
noise than the Gaussian one (if another receiver would behave differently).

Advantages include that the proposed method can easily be combined with other methods, since
the required signal power information is easily available (e.g., through the carrier-to-noise density
ratio). In terms of hardware, the triple-frequency reception is not yet easily available in the mass-
market as of 2020, but dual-frequency reception is already on its way. Greater delays are easier
to identify, since the power function Pn can more easily be distinguished between the carrier
frequencies when d is large (at the beginning, when d is near zero, it is almost identical for all
carrier frequencies).

In both Fig. 4.5 and 4.6, a minimum delay estimation error can be found along d̄ ≈ 15 m. This is
because the grid search method will always end up finding one of the possible delays (from 0 m to
30 m). At 15 m, the maximum delay estimation error is then around 15 m, and since the simulation
is repeated hundreds of time, this is seen as an average. However, the main message of the results
is to indicate which noise levels that are acceptable for the proposed method.

In Fig. 4.6 the reflections are the same, but the compared methods are based on different input
variables, requiring different types of receiver hardware, so the results should only be interpreted
as a preliminary comparison. Moreover, an ML-based method is compared with a recursive
method, making the comparison somewhat unfair.
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4.8 Conclusions

In this chapter, we have seen that based on the signal power, an observable that is easily available
on a GNSS receiver, it is possible to estimate the delay of MP reflections, to correct the resulting
pseudorange errors. A triple-frequency receiver that can measure signal power with high accuracy
is required for reliable performance that is better than state of the art methods. By incorporating
information from a prior gamma distribution, the delay estimation becomes more robust against
measurement noise. The proposed method shows good potential for combination with, e.g.,
advanced correlators, inertial sensors, and 3D maps.

For future work, the numerical grid-based solver needs to be improved. A solver based on, e.g.,
the EKF could be considered. Furthermore, other distributions of the signal power measurement
noise than the Gaussian one could be studied. Finally, a dual-frequency version should be studied
as an alternative to the proposed triple-frequency approach, since this would make the hardware
cheaper and easier to come by.





Chapter 5

Accurate Positioning in Urban Canyons

In Chapters 2, 3 and 4, the urban canyon problem was analyzed on a per-satellite basis, and in this
chapter we take the step into the position domain by combining several satellites. Specifically, the
dual-frequency satellite selection method from Section 3.4 is used to minimize positioning errors
in an urban canyon environment. Working in the positioning domain also allows one to combine
GNSS with other sensors, such as collaborative positioning via, e.g., Wi-Fi and DR with inertial
sensors, which is also done is this chapter.

The chapter is based on [OSBB20], with an extension of results for DR.

First, in Section 5.1, the problem is formulated, where the goal is to estimate the positions of one or
multiple receivers with minimal error. This is done using pseudorange and SNR measurements
on several frequencies, together with local ranges between receivers. Second, related work on
collaborative positioning is presented in Section 5.2. Third, the an EKF positioning solution with
dual-frequency satellite selection and collaborative position is introduced in Section 5.4. Fourth,
Section 5.5 shows how the EKF can be supported by DR. Fifth, in Section 5.6, an urban canyon
simulation is presented, together with the positioning results. Sixth, the results and the method are
discussed in Section 5.7. Finally, the conclusions can be found in Section 5.8.

5.1 Problem Formulation

Since collaborative positioning is used, up to M receivers, indexed by m are considered. Their 2D
positions in East, North, Up (ENU) coordinates, for each time step k, are

pk =
[
r1,e
k r1,n

k . . . rM,e
k rM,n

k

]T
. (5.1)

Given ground truth trajectories consisting of K time steps p̄1 . . . p̄K and the estimated trajectories

83
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Figure 5.1: N satellites are received byM receivers, which can measure their inter-receiver distances
(local ranges, δ), and share their measured pseudoranges ρ through V2V communication. The
elevation of the satellite n received by the receiver m is θm,n. The figure is adopted from [OSBB20],
©2020 IEEE.

p̂1 . . . p̂K , our goal is to minimize the average positioning error

ε =
1

K

K∑
k=1

√
1

2M

(
(p̄k − p̂k) · (p̄k − p̂k)

)
. (5.2)

To do this, the following input variables are available: pseudoranges, satellite SNR, satellite
positions and local ranges, see Fig. 5.1. The pseudorange measured by receiver m to satellite l on
frequency 1 is

ρm,lk =

√
(rm,xk − sl,xk )2 + (rm,yk − sl,yk )2 + (rm,zk − sl,zk )2 + bm + wm,lk + vρ, (5.3)

where bm is the receiver clock bias in meters, wm,l is the error caused by reflections (following the
distributions from Section 2.9), and vρ is Gaussian measurement noise

vρ ∼ N (0, σ2
ρ). (5.4)

The variables sl,xk , sl,yk , and sl,zk represent the ECEF position of the satellite l. The pseudorange is
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also measured on the second carrier frequency

ρm,l
k

=

√
(rm,xk − sl,xk )2 + (rm,yk − sl,yk )2 + (rm,zk − sl,zk )2 + bm + wm,lk + vm,lk , (5.5)

where wm,l is the error caused by reflections, and vρ is Gaussian measurement noise

vρ ∼ N (0, σ2
ρ), (5.6)

which both typically differ from the measurement errors on frequency 1.

The SNR on frequency 1 depends on the satellite elevation θ according to [DRB18]

Sm,lk = 3.199e-5(θm,lk )3 − 8.1e-3(θm,lk )2 + 0.6613θm,lk + 31.38 + vS . (5.7)

The L2 signal is transmitted with 3 dB less power than the L1 signal

Sm,lk = Sm,lk − 3 dB + vS . (5.8)

The SNR on both frequencies have Gaussian measurement noise

vS ∼ N (0, σ2
S) (5.9)

vS ∼ N (0, σ2
S). (5.10)

The last type of measurement is the local ranges, which are distances between two receivers m and
m∗

δm,m∗
k = ‖rmk − rm∗

k ‖+ vδ, (5.11)

that have Gaussian measurement noise

vδ ∼ N (0, σ2
δ ). (5.12)

The local ranges could be measured by, e.g., lidar, radar or the strength of the communication
channel, which decides the variance of the measurement noise, σ2

δ .

5.2 Related Work

For this chapter, related work in two areas is relevant: multi-frequency signal processing methods
and collaborative positioning.

Multi-Frequency Detection and Mitigation of Reflections Multi-frequency GNSS signal pro-
cessing can be used to detect and mitigate errors in urban canyons, based on, e.g., SNR [SG16].
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More detailed related work on multi-frequency signal processing methods can be found in Sec-
tion 1.3 and in Chapters 3 and 4.

Collaborative Positioning V2V and Vehicle to Infrastructure Communication (V2I) are two
emerging technologies that allow vehicles to communicate with each other, and with infrastructure
(such as traffic lights), respectively. With V2V, vehicles can exchange GNSS data such as pseu-
dorange measurements. V2V for collaborative positioning has been extensively studied, on one
hand to achieve more accurate positioning in open areas [MNH15,AD13,SMM+14,CSGS10]. More
specifically, [MNH15] proposes the angle approximation method and absolute sum of double dif-
ferencing approach, so that the most accurated pseudoranges can be selected. A discussion of the
accuracy provided by cooperative positioning can be found in [AD13], while [SMM+14] discusses
cooperative positiong based on RTK. A hybrid cooperative UKF that fuses both satellites and terres-
trial receivers is presented in [CSGS10]. Furthermore, V2V for collaborative positioning can be used
to improve positioning in urban areas [PCW10, OSM+12, ZWH18, SKD16, KKK15, JCDJ14, Ala11].
The Cramér-Rao bound for hybrid cooperative positioning was derived by [PCW10]. An approach
that combines GNSS, SBAS, V2V with and advanced map matching can be found in [OSM+12].
An approach based on consistency checks between several vehicles was presented by [ZWH18].
The Nav2Nav solution uses machine learning to detect NLOS [SKD16]. Two technies were prosed
by [KKK15]: the multipath-resistant hybrid sum–product algorithm over a wireless network
and the multipath-resistant hybrid cooperative extended Kalman filter. The Wilcoxon method
to detect reflections, combined with a Vehicular Ad-hoc Network can be found in [JCDJ14]. The
work [Ala11] presents a a cooperative positioning that reduces the number of required satellites
to two. In addition to communicating, the distances between the communicating vehicles can be
measured. This is called the local range, and can be based on, e.g., the strength of the commu-
nication signal, radar, or lidar. The main advantage of collaborative positioning in urban areas
is that nearby receivers will obtain different reflection errors from the same satellite, since the
received reflections highly depend on the receiver position. Moreover, nearby receivers might
receive different satellites, and by communicating their measurements, the number of available
satellite measurements are increased. Finally, the local ranges make even more measurements
available.

5.3 Gauss-Newton

For comparison purposes, the GN [Bjö96] method is used. It is often used to solve the multilatera-
tion problem of the GPS navigation equations, since it can solve non-linear equation systems. In
the equation system, there are four unknown variables per receiver

x = [r1,x r1,y r1,z b1rM,x rM,y rM,z bM ]T . (5.13)
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There are two conditions that can stop the GN solver:

• if the solution is below the tolerance, set to 1e-6, or

• when more than 100 iterations are done.

More details on the GN solver are given in Section 1.2. The GN solver includes no transition model,
so no assumption of the movement of the vehicles can support the position estimation. If less
than four satellites are received, the solver will exceed the maximal number of iterations and end
up without a solution. The GN solver was modified in two ways. First, for a new time step, it
uses the solution of the previous time step as initial solution, for improved speed and stability.
Second, it uses the reference position as a solution for the first two time steps, so that the solver
is initially stable. In general, the GN solver is less sensitive to divergence than the EKF, which
however possesses other advantages.

5.4 Extended Kalman Filter for Collaborative Positioning

The EKF is a common tool to estimate the position of a receiver based on GNSS measurements,
and it can be further developed to also include pseudorange measurements from other receivers,
along with local range measurements, as will be done here. The local range measurements are then
treated as pseudorange measurements with no clock bias, and the position of the other receiver
is replacing the satellite position. The EKF is a an extension of the Kalman filter [Kal60], where
a linearization through Taylor approximation is made. The basic version of the EKF for GNSS is
explained in Section 1.2, here it will be extended to work with collaborative positioning and dual-
frequency measurements. It incorporates a transition model, which assumes how the receivers
move between two time steps. A simple but effective approach is the CV transition model, where
the velocities of the receivers are assumed to stay constant. For this, the state space includes the 3D
position (which is desired), the clock bias, and also their derivatives for all receivers

xk = [r1,x
k ṙ1,x

k r1,y
k ṙ1,y

k r1,z
k ṙ1,z

k b1k ḃ1k · · ·

rM,x
k ṙM,x

k rM,y
k ṙM,y

k rM,z
k ṙM,z

k bMk ḃMk ]T . (5.14)

The transition matrix is the relation between the current state and its previous state

A = I4M ⊗

[
1 τ

0 1

]
, (5.15)

where τ is the sampling interval and ⊗ is the Kronecker product [Bro06]. Id is an identity matrix of
dimension d.
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The process covariance matrix for the x, y, and z positions is

Qxyz = σ2
xyz

[
τ3

3
τ2

2
τ2

2 τ

]
, (5.16)

and for the clock bias and its drift it is

Qb =

[
Sfτ + Sg

τ3

3
Sgτ

2

2
Sgτ

2

2 Sgτ

]
. (5.17)

Together, they form the process covariance matrix for one receiver m

Qm = diag
( [

Qxyz Qxyz Qxyz Qb

] )
. (5.18)

To create a diagonal matrix with a vector input as its diagonal, the function diag(·) i used

diag
( [
a1 a2 a3

] )
=

a1 0 0

0 a2 0

0 0 a3

 . (5.19)

By repeating Qm m times in the diagonal, the 8M × 8M complete process covariance matrix is
created

Q = IM ⊗Qm. (5.20)

The error covariance matrix is diagonal and of dimension 8M × 8M . It is initialized according to

Pk−1 = I8M ⊗ p0, (5.21)

where p0 is a tuning parameter, with the value given in Table 5.1.

Furthermore, an initial estimate of the state, x̂−k−1, is needed. In an urban scenario, an accurate
initial state is difficult to compute, which can cause the EKF to diverge. For this reason, the
reference position is used for the first two time time steps.

When the initial values are set, the EKF starts a loop, where first a prediction of the state covariance

x̂− = Ax̂k−1, (5.22)

and the error covariance
P−k = APk−1A

T + Q, (5.23)

is made.

Subsequently, for each receiver m, Im satellites indexed by im are selected using Algorithm 2. Next,
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the linearization by the Jacobian measurement matrix is done

Jm,ρ =



∂ρm,1
∂x 0

∂ρm,1
∂y 0

∂ρm,1
∂z 0 1 0

...
...

...
...

...
...

...
...

∂ρm,Im
∂x 0

∂ρm,Im
∂y 0

∂ρm,Im
∂z 0 1 0

∂ρm,1
∂x 0

∂ρm,1
∂y 0

∂ρm,1
∂z 0 1 0

...
...

...
...

...
...

...
...

∂ρm,Im
∂x 0

∂ρm,Im
∂y 0

∂ρm,Im
∂z 0 1 0


, (5.24)

where

∂ρm,im
∂x

=
−(sim,x − r̂m,x)√

(sim,x − r̂m,x)2 + (sim,y − r̂m,y)2 + (sim,z − r̂m,z)2
(5.25)

∂ρm,im
∂y

=
−(sim,y − r̂m,y)√

(sim,x − r̂m,x)2 + (sim,y − r̂m,y)2 + (sim,z − r̂m,z)2
(5.26)

∂ρm,im
∂z

=
−(sim,z − r̂m,z)√

(sim,x − r̂m,x)2 + (sim,y − r̂m,y)2 + (sim,z − r̂m,z)2
. (5.27)

Each row appears twice for each receiver, since there are two pseudorange measurements (one per
frequency).

Between all M receivers, there can be up to Ξ = M2 −M local range measurements, indexed by ξ.
The Jacobian for the local range measurement between two receivers m1 and m2 is

Jξ,δ =
[
∂δm,m∗

∂x 0 ∂δm,m∗

∂y 0 ∂δm,m∗

∂z 0 0 0
]
, (5.28)

where

∂δm,m∗

∂x
=

−(r̂m∗,x − r̂m,x)√
(r̂m∗,x − r̂m,x)2 + (r̂m∗,y − r̂m,y)2 + (r̂m∗,z − r̂m,z)2

(5.29)

∂δm,m∗

∂y
=

−(r̂m∗,y − r̂m,y)√
(r̂m∗,x − r̂m,x)2 + (r̂m∗,y − r̂m,y)2 + (r̂m∗,z − r̂m,z)2

(5.30)

∂δm,m∗

∂z
=

−(r̂m∗,z − r̂m,z)√
(r̂m∗,x − r̂m,x)2 + (r̂m∗,y − r̂m,y)2 + (r̂m∗,z − r̂m,z)2

, (5.31)
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The complete Jacobian for all measurements and all M receivers then becomes

J =



J1,ρ 02Im×8 · · · · · · 02Im×8

. . .

02Im×8 Jm,ρ · · · · · · 02Im×8

. . .

02Im×8 · · · · · · 02Im×8 JM,ρ

J1,δ 01×8 · · · · · · 01×8

01×8
. . .

...
... · · · Jξ,δ · · ·

...
...

. . . 01×8

01×8 · · · · · · 01×8 JΞ,δ



, (5.32)

where 0rows×columns is a rows× columns-dimensional zero matrix.

The measurement error auto-covariance matrix

R = diag
( [

R1,ρ · · · Rm,ρ · · · RM,ρ Rδ

] )
, (5.33)

is a diagonal matrix, with the pseudorange measurement variance of frequency 1, followed by the
pseudorange measurement variance of frequency 2, repeated for each receiver

Rm,ρ = [σ2
1 · · · σ2

1︸ ︷︷ ︸
Im times

σ2
ρ · · · σρ

2︸ ︷︷ ︸
Im times

], (5.34)

ending with the pseudorange measurement variance of the local ranges

Rδ =
[
σ2
δ · · · σ2

δ

]
︸ ︷︷ ︸

Ξ times

. (5.35)

Then, the Kalman gain
K = P−k JT (JP−k JT + R)−1, (5.36)

is computed.

The dual-frequency pseudoranges of both frequencies from each receiver, and all local range
measurements form together the measurement vector

z =

[
zρ

zδ

]
, (5.37)
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where the pseudoranges are

zρ = [ρ1,1 · · · ρ1,I1 ρ1,1 · · · ρ1,I1 · · ·

ρm,1 · · · ρm,Im ρm,1 · · · ρm,Im · · ·

ρM,1 · · · ρM,IM ρM,1 · · · ρM,IM ]T . (5.38)

and the local ranges are

zδ =
[
δ1 · · · δΞ

]T
. (5.39)

Thereafter, the current state estimate is given by

x̂k = x̂− + K(z− Jx̂−). (5.40)

Subsequently, an update of the error covariance matrix is performed

Pk = P−k −KJP−k . (5.41)

Finally, the EKF processes the next time step by restarting from (5.22).

5.5 Positioning with Dead-Reckoning

Low-cost Microelectromechanical System (MEMS) sensors can support satellite navigation by pro-
viding measurements that are always available at a high sample rate. For automotive applications,
a typical combination is a gyroscope measuring angular rates in one to three dimensions and a
wheel odometer that counts driven distance. A simple approach for DR is to measurement only
the yaw angular rate

Ωmk =
ψk − ψk−1

τ
+ vΩ, (5.42)

with Gaussian measurement noise
vΩ ∼ N (0, σ2

Ω̇
). (5.43)

The main problem of this measurement is that the measurement error will accumulate and grow
with time due to the integration (to get an angle from the angular rate measurement), which means
that it is not reliable by itself, if used for a long time. In reality, the mean of the noise is not zero,
due to the zero-point offset of the gyroscope. This is typically compensated by detecting when the
vehicle is not moving, and saving the offset in a table for several temperatures (since this offset
depends on temperature).
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The odometer gives distance measurements and the speed can be determined by

Dm
k = ‖rmk − rmk−1‖+ vD, (5.44)

where
vD ∼ N (0, σ2

D). (5.45)

As for the gyroscope, the mean of the odometer noise is in reality non-zero, due to a scale point
offset. This is compensated by measuring the tire temperature and pressure. Furthermore, if the
odometer readings are transmitted via Controller Area Network (CAN), they typically arrive with
irregular delays, causing further problems.

The estimated velocity in east-north coordinates according to the gyroscope and odometer is then

ṙDR =

‖ṙk‖ cos(ψk)

‖ṙk‖ sin(ψk)

0

 , (5.46)

while it is according to GNSS

ṙGNSS = TECEF→ENU (r̂k)−TECEF→ENU (r̂k−1), (5.47)

where TECEF→ENU is the ECEF to ENU conversion matrix given in [KH07, p. 29].

The velocities based on GNSS and DR are combined

r̂k = r̂k−1 + (χṙGNSS + (1− χ)ṙDR)τ, (5.48)

with the weight being based on the EKF covariance

χ =

 15
‖Pk‖ , if 15

‖Pk‖ ≤ 1

1, otherwise
. (5.49)

The logic behind this weighting rule is that GNSS-based EKF covariance will increase when
reflections are present, thus the DR-based position is weighted more heavily.

5.6 Simulation

To evaluate the performance of the proposed positioning methods, a simulation with two en-
vironments was setup, where M = 4 vehicles are moving in a rounded square pattern. The
first environment is open-sky, where all satellites above 10◦ elevation are received. The second
environment was generated according to Chapter 2, with the same ray tracing functionality to
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Table 5.1: The following values were used in the simulation and to tune the EKF.

Notation Description Value

Simulation parameters
τ time interval 1 s
σρ pseudorange measurement standard deviation f1 0.1 m
σρ pseudorange measurement standard deviation f2 0.1 m
σS SNR measurement standard deviation f1 1 dB
σS SNR measurement standard deviation f2 1 dB
σδ local range measurement standard deviation 0.1 m
σxyz x, y, and z position standard deviation 1 m
σΩ gyroscope heading rate measurement standard deviation 0.1 rad/s
σD odometer standard deviation 0.001 m
Sg clock bias covariance 0.1 m2

Sf clock bias drift covariance 36 m2 · s−2

p0 initial error covariance 0.01 m2

EKF tuning
σρ pseudorange measurement standard deviation f1 1.5 m
σρ pseudorange measurement standard deviation f2 1.5 m
σδ local range measurement standard deviation 0.1 m

generate reflections. The middle block was removed, creating an open square that allows an
unobstructed V2V channel, see Fig. 5.2. The heights of these buildings follow a Rice distribution
with a non-centrality parameter of 35 m and a spread of 5 m. Each building block side consists
of five buildings with a width of 11 m. The road width is 20 m. A multi-constellation approach
was used, with 31 GPS and 24 Galileo satellites, all sharing the same clock bias. All receivers use a
correlator with 3 points, spaced half a chip apart, see Section 2.9 for more details on the receiver
simulation. The same trajectory (based on [SKJF19, SLM20]) was repeated and averaged over 1000
Monte Carlo runs, to account for different realizations of the measurement noise. Table 5.1 gives
detail on the tuning of the EKF and the simulation parameters. The pseudorange measurement
standard deviations σρ and σρ are tuned to a higher value than the simulated one, to account for
MP and NLOS errors in addition to the Gaussian noise.

Gauss-Newton Versus Extended Kalman Filter The first part of the results compares the GN
solver with EKF, without yet including the DR results. The results are visualized upon the reference
trajectories, with the Circular Error Probable (CEP) at 50% averaged over all Monte Carlo runs, in
Fig. 5.3 and 5.4. In the open area, see Fig. 5.3, the disadvantage of using a CV with the EKF can
be seen. Since the vehicle velocity is not constant while turning, the errors are larger just after
turning. This is not the case for GN, since no transition model is used. In the urban area, see
Fig.5.4, the disadvantage of GN can be seen, where the pseudorange errors cause the solver to
find a local minimum in some areas, where the reflection situation is particularly problematic. The
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Figure 5.2: In the urban square, reflections (dashed) and line-of-sight signals (solid) are present.
The figure is adopted from [OSBB20], ©2020 IEEE.

dual-frequency collaborative EKF, however, manages to keep the error low, even in the urban area.

Extended Kalman Filter and Dead-Reckoning A summary of all positioning results for the EKF
can be found in Tables 5.2 and 5.3, the dual-frequency collaborative dead-reckoning position
solution works well in both environments. In the open environment, the errors generally stay

Table 5.2: Positioning results in the open environment.

mean 2D error, ε (m) M = 1 M = 4

1-frequency 0.23 0.16
0.23 (DR) 0.16 (DR)

2-frequency 0.56 0.29
0.56 (DR) 0.29 (DR)

Table 5.3: Positioning results in the urban environment.

mean 2D error, ε (m) M = 1 M = 4

1-frequency 24.9 41.2
25.0 (DR) 40.5 (DR)

2-frequency 6.79 2.46
5.64 (DR) 2.32 (DR)

under 1 m, the only problematic case is the dual frequency non-collaborative positioning filter,
which shows errors up to 3 m (see Fig. 5.5 and Fig. 5.6). There are two reasons for this: firstly, when
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Figure 5.3: In the open area, the positioning is mainly problem-free, except for the Constant
Velocity (CV) transition model of the Extended Kalman Filter (EKF), which is error-prone where
the vehicle is turning.

the vehicle is turning the CV model contradicts the dynamics, introducing errors there. Secondly,
the dual-frequency satellite selection algorithm removes too many satellites, and without local
ranges to compensate for these, another error is introduced. In the urban environment, large
errors are introduced, especially when no dual-frequency satellite selection is used, see Fig. 5.7
and Fig. 5.8. The combination of dual-frequency satellite selection and collaborative positioning
succeeds in reducing the average error to a few meters. DR reduces the error slightly further in
some critical areas.

5.7 Discussion

We have seen that in spite of the assumption of Gaussian measurement noise of an EKF, it can
still work well for positioning, even in urban areas. For this, the measurements need to be filtered
before being used in the EKF so the most erroneous ones are excluded. This pushes the error
distribution of the used measurements to a more Gaussian one. Otherwise, the positioning error
can increase to values of up to 50 m in just 1 second. The advantages of DR are mainly observed
in specific situations (such as a deep urban canyon or a tunnel), but when performing satellite
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Figure 5.4: In the urban area, the Gauss-Newton (GN) solver finds many solutions that are wrong
by hundreds of meters due to pseudorange errors. The dual-frequency collaborative Extended
Kalman Filter (EKF), however, manages to keep the positioning errors to a few meters most of the
time.

selection and averaging over many simulations, the advantage becomes less clear.

The results in this chapter are not based on real satellite data or data from GNSS signal generators,
but they are only based on simulations. Realistic noise is however used on all simulated mea-
surements, and the pseudoranges have reflection errors based on a 3D city environment with ray
tracing. Furthermore, the results have been compared with a reference reflection-free scenario, to
make sure that the positioning algorithm is not suitable only to urban areas; the open areas have to
still work well.

5.8 Conclusions

In this chapter, we have seen how positioning errors in a challenging urban environment can be
reduced by combining two complementary technologies. Collaborative positioning provides more
measurements (in terms of pseudoranges of other vehicles and local ranges), while dual-frequency
observables removes reflection-affected satellite measurements. A collaborative positioning EKF
capable of combining dual-frequency pseudorange measurements and local range measurements
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Figure 5.5: In an open environment, positioning errors are generally low, however dual-frequency
satellite selection unsupported by collaborative positioning does not work very well. The magenta
markers ABCDE correspond the locations specified in Fig. 5.3.

has been proposed, reducing the average positioning error to a couple of meters. With the addition
of a simple DR solution with a gyroscope and an odometer, the errors can be reduced slightly more.
Even though the EKF is suboptimal for handling the non-Gaussian measurement errors caused
by reflections, a dual-frequency based filtering of the erroneous measurements shows promising
results.

A natural next step would be to implement a positioning solution based on, e.g., the particle filter
or the UKF instead of the EKF. These could handle the non-Gaussian errors better. One could also
integrate the satellite selection step with the EKF, by adapting the covariance of the measurements
based on the dual-frequency observables, instead of the current binary choice solution. In this
work, the position accuracy has been the focus, however in the future states such as heading and
velocity could also be considered.
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Figure 5.6: When zooming in on the results from Fig. 5.5, one can see that the Dead Reckoning (DR)
makes little difference in an open environment.

Figure 5.7: The urban environment is problematic for positioning, but the errors can be reduced to
a few meters by combining dual-frequency satellite selection and collaborative positioning. The
magenta markers ABCDE correspond the locations specified in Fig. 5.4.
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Figure 5.8: A zoom of Fig. 5.7 shows that the dual-frequency collaborative Dead Reckoning (DR) is
especially helpful during certain time steps.





Chapter 6

Conclusions

In this chapter, the conclusions of this thesis are summarized. This thesis has shown that there is a
lot of potential in dual and triple-frequency receivers to improve positioning in urban canyons,
by excluding the most erroneous satellites, by correcting their measurements, or by combining
multi-frequency GNSS with other sensors. These are examples of different approaches that all
profit from multi-frequency in different ways.

We have seen that a ray tracing simulation is a powerful tool to get a better understanding of
satellite navigation problems in urban areas. This is especially true to relate the building height to
the seriousness of the problems, since this parameter is hard to variate in real life. Furthermore,
we can conclude that GNSS positioning in urban areas is a challenging problem, because the
pseudorange errors caused by reflections follow a highly non-Gaussian distribution. These errors
have a strong linear correlation between them on two frequencies in the case of NLOS reception.
MP, however, causes in general smaller and more unpredictable errors. A simple second-degree
polynomial taking the number of satellites as input can give important information about the
reflection delay distribution, which can be approximated as a gamma distribution.

Furthermore, if measurements of pseudorange, SNR, or correlator output are available on several
carrier frequencies, the received satellites can be classified according to their reception mode, and
ranked within each reception mode. This is possible, mainly since the interference between direct
signal and reflection causes variations in the SNR and correlation power in case of MP. Thus, a
satellite combination that reduces the positioning can be achieved using simple white-box thumb
rules with low computational complexity. This shows promising results in a preliminary validation
during a test drive with real satellite data as well.

When satellite selection is problematic due to a lack of satellites with a low measurement error,
their measurements can be corrected and still used. This can be done for MP satellites when the
signal power (or a closely related variable) is available on several carrier frequencies, by exploiting
the fact that MP causes interference between the direct signal and the reflection, which is visible
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in the signal power. By solving an ML problem, the reflection delay of each satellite can be
estimated, which in combination with an inverse MP error envelope can correct the pseudorange
measurement. In this way, positioning in areas with few satellites and significant MP reception
can be improved.

Finally, GNSS is especially useful in combination with complementary sensors (such as other
wireless signals and IMU). We have seen that, in particular the previously mentioned dual-
frequency satellite selection methods, in combination with collaborative positioning and DR can
significantly reduce positioning errors in urban areas, in comparison with stand-alone GNSS
that naively uses all satellite measurements. Despite the non-Gaussian measurement errors on
the pseudoranges, the EKF is a good positioning algorithm when combining different sensors,
especially when supported by efficient satellite selection. According to the simulation, the EKF
solution that combines collaborative positioning with dual-frequency satellite selection and DR
can reduce the positioning errors in difficult areas to a couple of meters.

Outlook This thesis has focused on dual-frequency receivers. These are closer to the mass-market,
however triple-frequency receivers are also of interest. In the future, a thorough comparison of the
proposed methods in their dual- and triple-frequency version should be done. Furthermore, the
methods could use more validation with real satellite data, with high-quality ground truth data
that can record reflections with high precision, using, e.g., multi-correlator hardware.

There is a need for standardization of reflection scenarios, so that novel methods can be easily
compared. A public data set with a maximum amount of parameters and precise reference data on
the reflections is needed, or a simulation that generates a realistic scenario can be used. The method
and the code from Chapter 2 can be used as a basis for the latter suggestion, so that identical
reflection scenarios can be used to validate and compare multiple MP mitigation methods.

The performance of the satellite selection problem could possibly be improved with machine
learning, especially if many satellites and parameters at a high sampling rate are available. In
general, there is little research on machine learning for GNSS problems, and for well-defined
sub-problems there is great potential for this. Especially simpler algorithms, such as naive Bayes
classification and decision trees would be of interest.

The delay estimation in Chapter 4 could be significantly improved by finding a more efficient
solution to the ML problem, such as a GN solver or an iterative EKF. Also here, the trade-off
between a dual and triple-frequency approach should be studied. Depending on the receiver, the
ML problem could be also derived for non-Gaussian signal power measurement noise distributions.

The platform sensor fusion approach presented in Chapter 5 could be extended to including more
visual sensors (such as lidar) and 3D maps. This would give an idea of how much these additional
information sources can further reduce positioning errors in urban areas. A thorough comparison
of the possibility to reduce reflection errors of all these technologies would be useful, so that a good
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trade-off between error reduction capacity and price can be made, to find an optimal combination
for each use case and budget.

To sum up, the positioning in urban areas becomes less of a problem as the number of high-quality
sensors increases. However, designing a robust urban canyon positioning solution that is based
solely on low-cost GNSS is still major challenge, but multi-frequency receivers are a promising
approach to this.





Appendix A

Simulation Source Code

The MATLAB source code of the urban canyon simulation that is used in Chapters 2 and 5 is
available at https://github.com/Fusion-Goettingen. Most parameters can be manually
changed, so one can create a custom reflection scenario, or reproduce the results presented in this
dissertation. The satellite orbits were generated using the function "Satellite Constellation" [S.
18] (modified to support a custom sampling time and a custom start time of the day to allow
fast-forwarding of the satellite constellation). The satellite ranging codes are based on [Dan19].
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