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Abstract: Snow makes a great contribution to the hydrological cycle in cold regions. The parameter to
characterize available the water from the snow cover is the well-known snow water equivalent (SWE).
This paper presents a near-surface-based radar for determining the SWE from the measured complex
spectral reflectance of the snowpack. The method is based in a stepped-frequency continuous wave
radar (SFCW), implemented in a coherent software defined radio (SDR), in the range from 150 MHz to
6 GHz. An electromagnetic model to solve the electromagnetic reflectance of a snowpack, including
the frequency and wetness dependence of the complex relative dielectric permittivity of snow layers,
is shown. Using the previous model, an approximated method to calculate the SWE is proposed. The
results are presented and compared with those provided by a cosmic-ray neutron SWE gauge over
the 2019–2020 winter in the experimental AEMet Formigal-Sarrios test site. This experimental field is
located in the Spanish Pyrenees at an elevation of 1800 m a.s.l. The results suggest the viability of the
approximate method. Finally, the feasibility of an auxiliary snow height measurement sensor based
on a 120 GHz frequency modulated continuous wave (FMCW) radar sensor, is shown.

Keywords: snow; snow water equivalent; SWE; stepped-frequency continuous wave radar; SFCW;
software defined radio; SDR; snowpack multilayer reflectance

1. Introduction
1.1. Snow Water Equivalent Importance

Snow makes a large contribution to the water balance, climate, and economy of
many regions. The seasonal accumulation of snow acts as a form of natural regulation of
great importance in the hydrological cycle. The parameter to characterize the available
water from snow cover is the well-known snow water equivalent (SWE). The SWE is
the equivalent depth of water available if the snowpack melted into liquid water. This
paper presents a near-surface-based technique for determining the SWE from the measured
complex spectral reflectance, in the range from 150 MHz to 6 GHz, and an electromagnetic
model for the analysis of the reflectance of the snowpack.

As we can see, physical knowledge of the snow cover properties, and, in particular,
the availability of field instrumentation to understand them, is crucial. In addition to the
most basic hydrological information [1], these measurements provide data to elaborate
mathematical models of the climate [2] and the snowpack evolution [3] as well as for
avalanche forecasting [4].
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1.2. Instrumentation and Techniques

Among the destructive measuring methods of the snowpack, we can find several
standard sampling procedures for stratigraphy that are manually performed [5]. Non-
destructive methods—mainly, ground-based remote sensing techniques for characterizing
the physical properties of snow—have been exhaustively discussed in the literature [5].
Conventional in situ techniques to non-destructively determine the SWE are based on
cosmic-ray neutron attenuation (CRN) [6,7], or acoustic signal delays [8], among others.
From them, we can directly extract the SWE, but they give no further information about
the structure of the snowpack.

The snowpack is a multilayer structure [9], where each layer has its own physical
properties, depending on the crystallization form during snowfall and the weather condi-
tions during and after the layer deposition. From a physics point of view, we can consider
each layer as a porous body of mixed air with solid and liquid state water. The liquid water
content (LWC) is the key parameter to characterize the presence of liquid water [10–12].

The only physical entity capable of providing information about the internal structure
of a snowpack is an electromagnetic wave in the 100 MHz–6 GHz range [13], where the
layers are sufficiently transparent to allow penetration depths in the order of meters. The
interaction between electromagnetic waves and the snow is determined by the dielectric
permittivity of the latter, which is strongly dependent on its air and water content, and the
aggregation state of the water [10,14].

The most promising electromagnetic methods are those based on microwave radar
analysis. In fact, over the past 40 years, numerous studies on radar applications for
snow cover characterization have been conducted. Impulse waveform radars [15,16] and
frequency modulated continuous wave (FMCW) radars [17–23] have been used to explore
snowpack structure.

Until recently, the construction of an FMCW radar, stepped-frequency continuous
wave (SFCW) radar, or pulsed radars required an expensive vector network analyzer (VNA)
or developing specific electronical equipment [24]. However, a new technology has been
developed, the so-called software defined radio (SDR). An SDR system is a radio in which
some or all its physical layer functionalities are software defined. A shared feature of all of
them is the possibility to generate and detect signals up to 6 GHz, so they are potentially
usable for reconfigurable radar system construction [25–30].

The recent advances in radar technology, propitiated by automotive radars or SDR,
have resulted in low cost and small dimension equipment that will allow portable instru-
mentation with a high vertical resolution to study properties, such as the depth, stratig-
raphy, and SWE, of snow cover. The aim of this paper is to show the operation of an
SDR-SFCW radar, and the application of an electromagnetic model of the multilayer snow-
pack to analyze the SWE of snow cover.

This paper is organized as follows. In Section 2, we present the theory of SFCW radar.
Section 3 shows the electromagnetic model and the procedure to obtain the SWE. Section 4
focuses on the description of the experimental set-up and the measurement method. Sec-
tion 5 presents the results and a comparison between the experimental and theoretical
results. Finally, in Section 6, we summarize the contributions of the present work.

2. Theory of the SFCW Radar
2.1. Measurement Principle

An SFCW [31–33] radar transmits consecutive trains of CW signals of increasing
frequency toward a target. The stepped-frequency increment is δf from an initial frequency
f 0,RF. After receiving the signal at a frequency f 0,RF+iδf, with i as an integer, which is
delayed in phase as a result of the flight time, a heterodyne process is performed with a
local frequency oscillator f 0,RF+iδf+fBB, of unity amplitude. The mixing is performed with
the harmonic oscillator in-phase with the harmonic function used in transmission (I) and
with the harmonic function offset by one quarter cycle (π/2 rads) or in-quadrature (Q) as is
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shown in Figure 1. After low pass filtering, two harmonic functions at the down converted
or intermediate frequency (IF), fBB, are obtained for the ith frequency

UI(i, t) =
1
2

A(R) cos(2π fBBt +φ) =
1
2

A(R) cos(2π fBBt + 2π( f0,RF + iδ f )∆t) (1)

UQ(i, t) =
1
2

A(R) sin(2π fBBt +φ) =
1
2

A(R) sin(2π fBBt + 2π( f0,RF + iδ f )∆t) (2)

where A(R) is the amplitude of the signal received from a target located at an R distance and
is proportional to its reflectance, and φ represents the phase associated to the time-of-flight.
The received IF signals UI(i,t) and UQ(i,t) are multiplied, again, by the signal cos(2πfBBt),
and low pass filtered (homodyne process) to obtain the complex amplitude, Ŝ(i), at each ith
frequency of the scan

Ŝ(i) ∝ ej2π(( f0,RF+i·δ f )· 2R
c ) = I(i) + jQ(i) i = 0, · · · , N (3)

where c is the speed of light in the vacuum, N the number of frequencies of scan, and I(i)
and Q(i) the real and imaginary part of the amplitude Ŝ(i), respectively. Therefore, if we
perform the fast Fourier transform (FFT) with respect to the variable i, we will have an
important peak in the dimensionless frequency domain given by

gpeak = δ f
2R
c

. (4)Remote Sens. 2021, 13, x FOR PEER REVIEW 4 of 23 
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Figure 1. Structure of a stepped-frequency continuous wave (SFCW) radar system. The gray area is the part of the system
that is located in the remote location. Software defined radio (SDR) control is performed in C++ from the remote computer
and also computes the spectral reflectance and sends it to the local computer. Both computers develop their algorithms
using MATLAB®.



Remote Sens. 2021, 13, 616 4 of 23

The received spectral reflected signal by targets contains the transit time information
or the ‘optical path’ from the target, given by

R =
cgpeak

2δ f
. (5)

The FFT resolution, when N frequencies are taken, is given by 1/N. Then, the spatial
resolution is given by

δgpeak =
1
N

= δ f
2δR

c
=⇒ δR =

c
2B

, (6)

which is a well-known relationship in the general radar theory, and where B = Nδf is the
bandwidth of the sweep performed by the SFCW radar. The maximum unambiguous
range, Ru, can be derived from the periodicity of Ŝ(i) (3) as

2πδ f
2Ru

c
= 2π =⇒ Ru =

c
2δ f

. (7)

The main disadvantage of an SFCW radar is its long measurement time. In our
application, however, the snow cover is a ‘static’ target, and the measurement time is not
relevant. The SFCW radar has very narrow instantaneous bandwidth at each frequency
due to the narrow low pass filter width at the end of the DC filtering of the UI and UQ
signals, resulting in a high signal-to-noise ratio at the receiver. The bandwidth, B, can be
very wide, leading, according to (6), to a fine resolution.

Figure 1 presents the different systems of SFCW radar and its operations. At the
remote location, the SDR performs the transmission and reception, obtaining a double IF
temporal file (UI and UQ) at each i-frequency of the reflected electromagnetic wave. The
remote computer performs the homodyne detection numerically at each frequency. Finally,
a file with the complex amplitudes of snowpack reflectance at each frequency is sent to the
local computer.

In the case of multiple targets, we obtain a peak associated with the position of each
target with the height proportional to its reflectance (Figure 1).

3. Snowpack Electromagnetic Model

Many authors describe wave propagation in snow layered media with recursive
relationships of the transmitted and reflected rays, including radiation diffusion and the
thermal emission of slabs in the context of radiative transfer models [14]. However, we can
simplify the radiative behavior of the snow layers working at long wavelengths compared
to the grain size of the deposited snow. In this way, we can minimize the diffusion
effects and assume the snow layers as homogenous and isotropic media with wavelength
dependent and complex dielectric permittivities to take into account the attenuation of
radiation. We used the 2 × 2 matrix method that is typically employed in planar multilayer
optical structures and extensively described in the literature [34,35].

3.1. Matricial Multilayer Snowpack Electromagnetic Model

The matrix formulation is an extremely useful form of the steady-state solution of
Maxwell’s equations subjected to the boundary conditions imposed at the interfaces of a
multilayer stack with n + 1 media where the upper and lower media are semi-infinite, and
the number of layers is n − 1 (Figure 2). Maxwell’s equations reduce to independent sets
of equations for the transverse-electric (TE) and transverse-magnetic (TM) polarizations.
The TE polarization has the electric-field vector E perpendicular to the plane of incidence,
whereas the magnetic-field vector, B, is transverse in the TM case.
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According to Maxwell’s equations, the general expression for the TM polarization of
the x component of electric field in layer j can be written as

Ex(j) =
[

A1(j)eiknxj(x−xj) + A2(j)e−iknxj(x−xj)
]
ei(knzz−ωt), n2

j = εrj, k =
2π

λ
, (8)

nxj = nj cos
(
θj
)
, nz = n0 sin(θ0) = . . . = nn sin(θn), n2

xj = n2
j − n2

z , (9)

where A1 represents the amplitude of a planar wave propagating in the positive x, and
z, direction and A2 represents a plane wave propagating in the negative x direction and
positive z direction, k is the wavenumber in vacuum and nj is the refractive index of the jth
slab related to the relative dielectric permittivity.

By replacing solution (8) in the Maxwell’s equations, we obtain the general expression
of the electric and magnetic fields for TM solutions in jth medium

E(j) =


 A1(j)

0
− nxj

nz
A1(j)

eiknxj(x−xj) +

 A2(j)
0

nxj
nz

A1(j)

e−iknxj(x−xj)

ei(knzz−ωt) (10)

B(j) =
n2

j

cnz


 0

A1(j)
0

eiknxj(x−xj) +

 0
A2(j)

0

e−iknxj(x−xj)

ei(knzz−ωt) (11)

The relationship between the coefficients A’1(j), A’2(j), A1(j + 1), and A2(j + 1) cor-
responding to the amplitudes on one side and the other of the interface (j) − (j + 1),
(Figure 2 right), is given by the continuity of the tangential components of the fields. We
can summarize this relation in a matrix form[

A′1(j)
A′2(j)

]
= TTM(j, j + 1)

[
A1(j + 1)
A2(j + 1)

]
(12)

TTM(j, j + 1) =
1
2


n2

j+1

n2
j
+

nx(j+1)
nxj

n2
j+1

n2
j
− nx(j+1)

nxj

n2
j+1

n2
j
− nx(j+1)

nxj

n2
j+1

n2
j
+

nx(j+1)
nxj

 (13)
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The coefficients A’1(j) and A’2(j) on the interface (j) − (j + 1) are related to the coeffi-
cients A1(j) and A2(j) of the same layer but at the interface (j − 1) − (j) by the propagation
matrix P(j) [

A1(j)
A2(j)

]
= P(j)

[
A′1(j)
A′2(j)

]
; P(j) =

[
e−iknxjdj 0

0 eiknxjdj

]
(14)

The recursive application of the boundary conditions at the interfaces and the propa-
gation for E and B through the layers, leads to a relationship between 0 and n amplitudes
given by[

A1(0)
A2(0)

]
= T(0, 1)P(1)T(1, 2) · · ·P(n− 1)T(n− 1, n)

[
A1(n)
A2(n)

]
= MTM

[
A1(n)
A2(n)

]
, (15)

MTE =

[
M11 M12
M21 M22

]
(16)

Similarly, we can obtain the transmission matrix for TE polarization, but, in our
particular case, as the angle of incidence is null, the two polarizations are equivalent. In a
general case, the transmission matrix from the j + 1 to j layer for TE polarization is

TTE(j, j + 1) =
1
2

 1 +
nx(j+1)

nxj
1− nx(j+1)

nxj

1− nx(j+1)
nxj

1 +
nx(j+1)

nxj

 (17)

3.2. Reflectance Calculation for the Snowpack Multilayer

According to the formulation outlined before, the complex reflectance, Γ, of the
snowpack, and assuming the condition that there is no upward propagating wave in the
medium n, i.e., A2(n) = 0, is given, in the TE or TM case, by[

A1(0)
A2(0)

]
= MTE, TM

[
A1(n)

0

]
=⇒ Γ =

A2(0)
A1(0)

=
M21

M11
, (18)

therefore, to calculate the reflectance of the snow cover, we calculate only the M21 and M11
elements of the M matrix, according to expression 18. This is the amplitude reflectance of a
plane wave (TE or TM) incident from medium 0 with an angle θ0 and reflected with the
same angle.

3.3. Spectral and Spatial Reflectance of Snowpack

According the theory of SFCW radar, in the scan process we obtain the reflectance in
N frequencies, i.e.,

Γ(i) =
M21( f0,RF + iδ f )
M11( f0,RF + iδ f )

, i = 0, . . . N. (19)

The relation between spectral and temporal (spatial) reflectance can be derived by
means of FFT.

Γs(t) =
1
N

N

∑
i=0

Γ(i)ej2π(( f0,RF+i·δ f )t), i = 0, . . . N, (20)

or in function of distance, R,

Γs(R) =
1
N

N

∑
i=0

Γ(i)ej2π(( f0,RF+i·δ f ) 2R
c ), i = 0, . . . N, (21)

with represents the “spatial reflectance” that comes from different distances.

3.4. Complex Dielectric Constant of Dry and Wet Snow

To simulate the reflectance of a multilayer structure, a complex relative dielectric
permittivity model for dry and wet snow in the 150 MHz to 6 GHz band is needed. We
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have used the empirical formula from Tiuri [10]. In the literature, however, there are other
models such as the one proposed by Wiesmann [14], but the permittivities calculated by
the two models are practically the same.

Figure 3 shows the frequency behavior of dielectric permittivity for dry snow and wet
snow with a liquid water content (LWC) of 2% and a relative density of 0.2.
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Figure 3. Relative dielectric permittivity of snow from 100 MHz to 6 GHz for dry snow and wet snow with a liquid water
content (LWC) of 2% and a relative density of 0.2: (a) Real part of the relative permittivity. (b) Imaginary part of the relative
permittivity.

We can see the remarkable effect of the presence of water in liquid form both on the
real part and, particularly, on the imaginary part. The presence of water in liquid form will
have an important impact in the penetration depth of radiation into the snowpack.

3.5. Simulations of Snowpack Reflectance

To show the behavior of the reflected spatial signals of the SFCW radar, we analyzed
several cases calculated with the matrix method. A sweep from 150 MHz to 6 GHz was
used in 15 MHz steps (N = 390).

A 1.5 × 1.5 m piece of sheet metal was incorporated into the soil in the experimental
structure to improve the reflectance of the snowpack–soil interface. The relative permittivity
considered for this layer (nth) was j50. Matrix calculations to simulate the spectral and
spatial reflectances, Γ(i) an Γs(i) respectively were graphically implemented (Figure 4) in
interactive software. Experimentally measured traces can be imported into the application
to compare with the theoretical traces calculated with the matrix method.

Figure 5a presents the reflectance of the signal produced by the aluminum sheet
(orange line) located 2 m away from the origin. This is a reference reflectance in the next
graphs. On the same graph, we overlap the radar reflectances in the cases of one-meter
snow layer with relative density 0.3 and one-meter snow layer with relative density 0.6. A
first reflection on the upper face associated with the air–snow interface can be observed.
The position of this first reflection relative to that of metal without snow cover (orange),
allows us to know the height of the snow cover, H.
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Figure 4. Software developed to calculate the time signal of radar for a snowpack, including the density, wetness, and
frequency of all layers.
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Figure 5. SFCW simulated spatial reflectances with the matrix method: (a) Signals for a 1 m of air and 1 m of snow layer
with 0 (air), 0.3, and 0.6 relative densities. The orange line represents the reflectance of metal without a snow cover. (b) Air +
three-layer structure with thicknesses [1,0.3,0.3,0.4] and relative densities [0,0.2,0.4,0.6]. We use an array format to describe
the thicknesses and densities of layers.

We also observed how the reflection of the metal layer moves to the right as a result
of the flight time inside the snow cover. In the case of a relative density of 0.6, there was
a greater displacement. Finally, there are symmetrical peaks (3 in Figure 5a) that are the
second reflections in the snow cover as is indicated in the draw included in Figure 5a.
More reflections are observed with difficulty; however, it is necessary to note that even the
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case of dry snow, there is an attenuation (see Figure 3b) that reduces the magnitude of the
successive reflections.

Figure 5b shows the superposition of the metal plate signal with a slightly more
complex structure than the previous one. Specifically, there are three layers of thicknesses
of 0.3, 0.3, and 0.4 m with relative densities of 0.2, 0.4, and 0.6, respectively. We can see
how, again the first reflection, positioned at the height of the snow cover. There are some
reflections between the different interfaces of the structure. These internal reflections are
very small in magnitude compared to the reflectance of the air–snow and snow–metal
interfaces.

In Figure 6, we can see the effect of the wetness on the structure of Figure 5b. Increasing
the wetness of the layers results in a higher reflectance at the air–snow interface. This
effect is due to an increase in the real part of the permittivity as a result of the presence of
liquid water. Likewise, for this same reason, there is a slight increase in the optical path
as is evident in the rightward displacement of reflection on the sheet metal as the content
in liquid water increases. Finally, the effect of the imaginary part is seen in the drastic
reduction of reflectance in the sheet metal and all other secondary peaks. Note that we
reduced the vertical scale to see them.
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Figure 6. SFCW radar simulated spatial reflectances with the matrix method. Effect of wetness (LWC)
in the reflectance (blue lines). Thicknesses (m) = [1,0.3,0.3,0.4]. Relative densities of the structure =
[0,0.2,0.4,0.6], LWC = 0 (solid line), 0.02 (dashed line), and 0.04 (dot-dashed line).

3.6. Estimation Procedure of SWE

Figure 7 shows the effect of the layer density on the position on the reflectance of the
snow–metal interface of 1-m-thick snow of relative densities of 0, 0.2, 0.4, 0.6, and 0.8. We
can observe a linear displacement of the peaks, proportional to the relative density of the
layer (ρ).
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Figure 7. SFCW radar simulated spatial reflection of a 1 m snowpack with the relative densities 0,
0.2, 0.4, 0.6, and 0.8.

In view of this effect, and according to the definition of the snow water equivalent for
a multilayer (n + 1 media) particularized to one-layer snowpack

SWE(m) =
n−1

∑
i=1

ρidi(m) = ρd(m), (22)

we can conclude that there is a linear relationship between the SWE and the position of
reflection on the sheet metal when it is covered by a layer of dry snow. This relationship,
a priori, is not obvious. Indeed, the position of the snow–metal peak is determined by
the optical or electromagnetic path, which depends linearly on the refractive index of the
layer, while the SWE is density related. However, we have just seen the proportionality
between them. We can check this fact in the case of dry snow. In fact, using the empirical
expression proposed in [10,14], we can observe that the real part of the square root of the
relative dielectric permittivity is approximately linear with the snow density as shown
in Figure 8—i.e., the real part of the refraction index of dry snow is proportional to the
density [17]. Then, we can assume a relationship between the real part of the refractive
index, n’, and the relative density given by

n′ = Re(n) = Re
(√
ε
)
' 1 + aρ (23)

where Re denote the real part of a complex number. Factor a in the above equation is
obtained from a linear fit of Figure 8 (a = 0.844).
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Figure 8. Real part of refractive index vs. the snow density at a frequency of 1 GHz and 0% LWC.
Results using [10,14] are represented by blue and orange lines, respectively. The linear fit gives
n’(ρrelative) = 1 + 0.8439ρrelative.

Then, the ‘flight time’ or ‘optical/electromagnetic path’, D, into the snow structure,
which is the distance between the air–snow peak and the snow–metal one, can be written as

D =
n−1

∑
i=1

n′idi =
n−1

∑
i=1

(1 + aρi)di =
n−1

∑
i=1

di + a
n−1

∑
i=1

ρidi = H + a SWE , (24)

where n’i is the real part of refractive index of the ith slab, of thickness di, and H is the
snow depth. Then, we have confirmed the relationship between the optical path and the
SWE, which justifies those discussed in relation to Figure 7. The displacement position (see
Figure 5a) of the snow–metal sheet reflection peak with respect to the position of the sheet
in the air, ∆D, is given by

∆D(m) = D− H = a SWE(m) = 0.8439 SWE(m) (25)

SWE(m) = 1.1850 ∆D(m) (26)

Figure 9 shows the comparison between the SWE vs. ∆D calculated with the previous
expression (solid line) and the one provided by the displacement of the metal reflection by
means of the matrix model (circles), for a layer 1 m thick and densities from 0.2 to 0.8 (SWE
from 0.2 to 0.8 m). Accordingly, we can conclude that the SWE of a snowpack is intrinsically
related to its electromagnetic thickness. The measurement of the SWE by this approximate
procedure is independent of the measurement of the height of the snow cover—we should
only need to know the displacement of the snow–metal reflection relative to the position
without snow cover, to obtain the SWE.
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Figure 9. Comparison between the SWE and the displacement of the metal reflectance for the
structure of Figure 7 by matrix simulation (circles) and the analytical expression 25 (solid line)
assuming linearity of the real part of refractive index vs. the density.

4. Materials and Methods
4.1. Test Site Description

The experimental validation of our SFCW radar was carried out at the Formigal–
Sarrios test site located in the Spanish Pyrenees (42◦45′40.6”N 0◦23′31.8”W) at an ele-
vation of 1800 m a.s.l. (Figure 10). The site was the Spanish location established by
the Spanish State Meteorological Agency (Agencia Estatal de Meteorología (AEMet)) in
the World Meteorological Organization Solid Precipitation Intercomparison Experiment
(WMO-SPICE) [36]. Currently, the site is equipped with sensors to continuously record
the meteorological and snow properties. This installation, managed by the territorial
delegation of AEMet in Aragon, is an exceptional laboratory for cryosphere studies since
it has underground electrical infrastructure, broadband communications, real-time video
feeds of the different experiments, a small warehouse with work tools as well as has easy
access in the winter, as it is located inside the ski resort Aramón-Formigal. It is a closed
area with restricted access and is maintained by the ski resort staff.
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Figure 10. The AEMet Formigal–Sarrios test site located in the Spanish Pyrenees (42◦45′40.6” N 0◦23′31.8” W) at an elevation
of 1800 m a.s.l. The cosmic ray neutron gauge (CRN) N014 from the Automatic Hydrologic Information System of the Ebro
River Basin (SAIH-CHE) is buried by the snow. The SFCW radar is located near the CRN.
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It is located in a safe area where a stable snowpack is available from mid-November
to May, reaching up to 2 m of snow thickness. Due to its flatness and low exposure to the
winds, it has a very homogeneous snow cover through the area of experimentation.

We compared our results with the SWE cosmic ray neutron attenuation gauge (CRN)
#N014 [37] from Automatic Hydrologic Information System of the Ebro River Basin (Sis-
tema Automático de Información Hidrológica de la Confederación Hidrográfica del Ebro
(SAIH-CHE)), located 10 m away from the SFCW radar measurement area (Figure 11b).
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Figure 11. (a) Diagram of the SFCW radar measurement process. (b) The SAIH-CHE N014 CRN gauge in soil. (c) Prototype
of the SFCW radar and metal sheet.

4.2. Field Measurement Radar Setup

The SFCW radar was implemented using a SDR platform. Currently, SDR is one
of the emerging areas of research in low cost and accurate radars. The radio frequency
oscillator, the receiver ultrawide band amplifier, the demodulator, and the analog-to-digital
converters were programmed in low level software in a high-performance SDR USRP X300
with a daughter coherent board UBX 10–6000 MHz from Ettus Research. The final system
was a coherent and full-duplex wideband transceiver that covered frequencies from 10 to
6 GHz (see Figure 11a). SDR control was performed in C++ from the remote computer
located in the experimental field, which also processes the IF signals at each frequency of
scan to, finally, obtain the complex amplitude of the reflected signal vs. frequency.

The data are requested by a local computer from this remote system via a 4G link.
The FFT of the signals and the visualization is performed on the local computer. Both
computers develop their algorithms using MATLAB®. A detailed picture of the processes
being carried out is shown in Figure 1 in Section 2.1. Finally, the system used aluminum
Vivaldi transmitter and receiver antennas (UWB3 from RFSpace) placed next to each other
and protected with two radomes. Both antennas also included a heater system (Figure 12a)
to avoid undesirable freezing problems. It has been verified that the radiant parameters (S11)
of the antennas were not modified, from 150 MHz to 6 GHz, by incorporating the heaters.
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Finally, an aluminum sheet of 1.5 × 1.5 m (see Figure 11c) was placed on the ground
in an orthogonal direction to the antenna’s axis and was the n-medium of the stack with an
intrinsically imaginary behavior of relative permittivity. This sheet was buried underneath
the snowpack during the entire snow-covered period. Table 1 summarizes the main
parameters of the radar.

Table 1. SFCW radar specifications.

Parameter Value Parameter Value

Start frequency 150 MHz Stop frequency 6 GHz
Number of steps (N) 390 Stepped-frequency, δf 15 MHz

Chirp period ≈80 s Unambiguous range, Ru
2 10 m

Resolution (in vacuum), δR 1 ≈2.5 cm Intermediate frequency (IF) 31.250 kHz
Sampling rate 3.125 MS/s Antennas wide band 675 MHz–12 GHz

Directivity of antennas 11dBi@2.4GHz FOV 3 of Tx and Rx antennas <15◦

1 Expression 7, 2 Expression 8, 3 Field of View.

A small weather station, CR300 unit, and a temperature gauge from Campbell Scien-
tific, was included in the system to systematically record the temperatures and activate
antenna heaters when the outside temperature dropped below 4 ◦C.

For calibration purposes, a temporal metallic calibration plate (CP) was placed at a
position between the soil and antennas and represents a virtual position that we call ‘0′ and
a reference signal to obtain the spatial reflectance of snow cover. In our system, this was
located 254 cm from the metal platform on the soil. This CP was also used to optimize the
receiver gain in each frequency of the chirp. The measured file generated, ŜCP( f0,RF + iδ f ),
represents a complex amplitude array reference for the succeeding measurements as we
will see later. We have selected this position for the definition of the origin to be able
to perform calibrations also in the winter period if necessary. In addition, the choice of
this origin simplifies the interpretation of spatial reflectance signals by being all of the
same sign.
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4.3. Measurement Process

The remote computer, controlled by the local computer, runs a C++ program in which
the SDR transmitted and received 390 frequencies between 150 MHz and 6 GHz. The
duration of this sweep was approximately 80 s. The IF used (fBB) was 31.25 kHz and
was sampled at a rate of 3.125 MHz. The received signal at each frequency UI(i,t) and
UQ(i,t), was multiplied numerically by the signal at fBB frequency, and low pass filtered
to obtain the magnitude and phase of the amplitude received at each frequency. This file,
Ŝ( f0,RF + iδ f ), was sent via the 4G link to the local computer.

The measured spectral amplitude is divided by that measured with the calibration
plate, ŜCP(i). The spectral reflectance is, then, calculated as

Γ(i) =
Ŝ( f0,RF + iδ f )

ŜCP( f0,RF + iδ f )
, i = 0, . . . , N. (27)

Subsequently, the FFT of Γ(i) was performed to obtain the spatial reflectance, Γs(R),
the file with time and date identification was archived, and a real-time graphical repre-
sentation was made. The definition of reflectance given in expression 18 requires the use
of plane waves according to the theoretical model. In the experimental situation, this is
not possible due to the proximity of the antennas to the snow cover, so the experimental
reflectance given by (26) is not exactly that given in (18), but in normal incidence will be
proportional. For this reason, we have not used a different symbol for both cases. In the
graphs, Γs, vs. electromagnetic path the most important information is the spatial position
of the peaks and their relative magnitudes.

On 25 January 2019, before the first important snowfall of 2019, the SFCW radar was
operative. A previous series of measurements of the distance of metal sheet on the soil
(2.54 m) were made with the radar to later obtain the height of the snow cover.

In Figure 13a, we can see the comparison between the measurement of the position
of the sheet without snow cover, and the reflectance with a thickness of 61 cm of snow.
The reflectance position on the snow–metal interface moved to the right as a result of
the increased flight time due to the refractive index of the snow cover. Reflection on the
air–snow interface was also observed symmetrically, from which it is possible to deduce the
geometric height of the snow cover. According to expression 25, we can, thus, obtain the
SWE. The position of the first peak associated with the air–snow interface was 1.923 m, and
considering that the reference position of the sheet metal was 2.538 m, we obtain a depth of
61 cm. On the other hand, the displacement of the snow–metal interface was 2.667 m −
2.538 m = 0.129 m. Expression 25 allows us to obtain the SWE as 0.129 × 1.185 = 0.153 m.

The reflectance simulation by means of the matrix model was superimposed. To fit
the theoretical reflectance to the experimental one, it was necessary to adjust the den-
sity of the layer of height 0.61 m, to 0.26, and then the SWE using expression 21 is
0.26 × 0.61 = 0.158 m, which is similar to the previous result and confirms the validity
of the proposed model.
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Figure 13. (a) Comparison of the experimental spatial reflectance obtained for a snow layer 61 cm deep and the one
simulated by the matrix model. (b) Outline of the model adjustment procedure with the experimental curve using the
density slider of the visual program.

4.4. Milimeter Wave Radar Depth Sensor

In January 2020, to reinforce the measure of the snow depth, we incorporated a
millimeter wave radar sensor (mmWave). The rapid evolution of radars has generated, in
the last years, the so-called mmWave sensors, characterized by their small dimensions, low
cost, and high processing performances, which were unthinkable a few years ago. In many
of them, the transmitter, the receiver, the antennas, the low noise amplifier, the mixer, and
the pre-processing are included in a single chip.

Currently, we use the sensor MMIC TRX_120_001 of Silicon Radar [38]. This inte-
grated circuit operates in the band for industrial, scientific, and medical (ISM) purposes of
120 GHz (λ = 2.5 mm). These components, halfway between photonics and microwaves, are
practically handled as photonic devices and components based on plastic materials—such
as lenses, guides, etc.—are typically used in this technology. Due to its rapid development,
the application fields are yet to be determined. An example of this fact is the applica-
tion proposed.

Snow height measurement is typically performed using ultrasonic sensors by measur-
ing the flight times of a pulse emitted by the transducer and reflected by the snow surface.
However, the low acoustic reflectance of the first layer, in particular, in the case of fresh
snow with a high air content, is very small, generating noisy signals. In addition, achieving
good accuracy requires compensation of the propagation speed with the temperature,
which greatly complicates achieving high accuracy.

The use of an FMCW radar at 120 GHz and a bandwidth of 6 GHz, based on Silicon
Radar MMIC TRX_120_001 IC, at a normal incidence toward the snow allowed us to obtain
sufficient accuracy to verify the height measurement of the SFCW radar. As we have
already seen in the examples calculated with the matrix method, the reflectance of the first
snow layer in the 1–6 GHz band was very small. This is a consequence of the slight change
in the refractive index between the air and the first surface of the snow cover, especially for
low-density, fresh snow. However, at frequencies of 120 GHz, there is a low penetration of
waves in the snowpack, as the relative permittivity models foresee; nevertheless, there is
a strong surface reflectance dominated by diffusion rather than optical reflection by the
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refractive index change. This effect is a consequence of the use of wavelengths comparable
to the surface grain of the snowpack. In Figure 14, we can see the implementation of this
auxiliary system.
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5. Results

In this section, we describe the main results obtained during the winter period from 1
November 2019 to the 1 May 2020.

Figure 15 shows two examples of range profiles made on the 1 and 20 of March 2020.
The orange curve represents the reflectance of the metal sheet registered before the winter
period. This is the reference reflectance for the measurement of the geometric height, H,
as well as the SWE of the snowpack. Figure 15a clearly shows the profile of a signal as
predicted by the matrix model of the snowpack: an important reflectance of the snow–
metal interface and a smaller one corresponding to the air–snow interface, as well as the
secondary reflection close to 3.5 m of the electromagnetic path. This measure corresponds
to a period with low night temperatures, which implies that at the LWC of the snow was
small, which justifies the appearance of the secondary reflection.

We observe a lower height of the reflectance of first peak compared to the snow–metal
one, as predicted by the matrix model (see Figure 5a). Figure 15b shows the measure made
in the early morning of the 20 March, after a period of high temperatures even at night.
In this case, we see a more intense reflectance peak than in the previous case associated
with air–snow reflection, the disappearance of the snow–metal interface reflection, and, of
course, the secondary reflection. This situation corresponds to the one shown in Figure 6a,
but with a LWC greater than 4%. In this situation, it is not possible to measure the SWE;
however, it is possible to measure the geometric height.

In these figures and the following ones, it is not possible to see the transitions between
layers as seen in Figure 5b of the model. These internal reflections are very small and, to
see them, we would need to improve the signal-to-noise ratio of the radar. However, it is
also possible that the strong transformations produced in the snowpack in the Pyrenees,
with wide thermal fluctuations and strong solar irradiations can produce smoothing of
these interfaces and transform the multilayer structure to a single-layer structure, from an
electromagnetic point of view, in a short time.
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Figure 15. Spatial reflectances of two measurements compared with the metal sheet without snow cover case (orange):
(a) 1 March 2020, 1:18 AM; (b) 20 March 2020, 3:24 AM.

In Figure 16a, we depict the measured range profile from 8 March, after a significant
snowfall, and an elevation of temperatures with an increase of the LWC, also produced
a very wet surface layer magnifying the air–snow reflectance even more (see Figure 6a).
However, in Figure 16b, just a few hours later, in the early morning of 9 March, we
observed the refreezing of the structure, with a decrease in the air–snow reflectance, due
to the reduction of the LWC, and the appearance of the displaced snow–metal reflection,
2.92 m − 2.54 m with respect to the reference reflectance, indicating about 0.44 m of SWE
according to expression 25.
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Figure 16. Spatial reflectances of two measurements compared with the metal sheet without snow cover case (orange):
(a) 8 March 2020, 4:46 PM; (b) 9 March 2020, 1:45 AM.

In Figure 17, we can compare the profiles of reflections of a cold period (20 January)
that was somewhat sunny, where dry and little-transformed snow predominates, with a
warmer period (1 April) with a high content of liquid water. In the first case (Figure 17a),
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the lower air–snow reflection was lower than that of the snow–metal, which moved to the
right. In Figure 17b, we only see a reflection on the upper face of the snow cover.
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Figure 17. Spatial reflectance of two measurements compared with the metal sheet without snow cover case (orange): (a) 20
January 2020, 7:02 AM; (b) 1 April 2020, 3:53 PM.

Figure 18 shows a summary of the conditions under which the experiment was devel-
oped. The upper graph shows the temperatures recorded throughout the measurement
period. This information is important since the snowpack is exposed to periods with
temperatures higher than 0 ◦C, even at night.

The central chart represents an image of the space-time profiles recorded over the
measurement period. In this image, it is possible to appreciate the time intervals in which
the reflections of the air–snow interface or the snow–metal interface predominate.

In the lower image, the measured depths of snow cover and the SWE are represented.
Depths measured with an ultrasonic sensor located in the position of the CRN probe,
are compared with the measurements carried out with the mmWave sensor described in
Section 4.4. Finally, the comparison between the SWE measured by the CRN probe and that
obtained from the spatial profiles by measuring the displacement of snow–metal reflection
in accordance with the expression 25 is shown.

We observed in the central image that, toward the end of the winter period, the
reflection on the metal sheet was weaker due to the greater LWC compared with in the
early part of winter. However, it was possible to find areas where the reflection was
recovered, and it was, therefore, still possible to obtain the SWE. In the central chart, it is
not possible to see them; however, a detailed analysis of the profiles allows one to locate
those reflections. We have represented them by points in the graph below in Figure 18.
This effect focuses on the periods located in the second half of April and the first fortnight
of May, in which only some useful points can be recovered.

In the center chart, a reference line was plotted at the 2.54 m position, and the mag-
nitudes of interest provided by this chart are indicated. First is the geometric height, H,
which is the distance between the reference line and the upper reflection (air–snow). The
maximum height reached in early March is also noted. Secondly is the electromagnetic path,
D. Finally, the displacement of the reflection of the snow–metal interface, ∆D, represents
the variation of the electromagnetic path from that in the air. This distance directly contains
information about the SWE of the snowpack, regardless of the height of it.
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The lower graph depicts the depth of the snow cover measured by the ultrasonic
sensor located in the position of the CHE tower N014 (blue) and the one measured by the
mmWave sensor (black), located about 10 m from the previous one, and which became
operational in January 2020. We can see differences of about 20 cm that were proven to
correspond to the irregularity of the terrain.

However, several manual depth measurements were also made in the SFCW measure-
ment area, and the correct height measurement was checked. Manual depth measurements
are represented with triangles. The first measurement, with a portable depth rod, took
place on 8 December 2019, when the mmWave sensor was not yet installed; however, the
information can be checked with that provided by the SFCW, being coincident with the
manual testing. This comparison is possible for other points, being correct as well.

The two lower curves represent the SWE provided by the CRN gauge (blue) and the
SWE obtained by the SFCW radar (black), which was slightly lower than the previous
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one. Again, the terrain irregularities between the two measurement points would justify
this difference. The presence of the metal sheet can modify the drainage properties of the
natural soil, retaining more liquid water. This effect would explain that, in some periods,
there was the same accumulated water with less snow height. This situation must be
corrected in the future, replacing the opaque sheet metal with a semi-buried wired metallic
mesh that modifies the properties of the natural soil as little as possible. As the minimum
wavelength in the vacuum used by the radar SFCW is 5 cm, a wired mesh with centimeter-
order openings would remain effective as a reflector and would not significantly modify
the natural soil drainage.

In the second half of April, there was a mismatch between the height and SWE
measurements for both the radar SFCW and SAIH-CHE’s N014 system. This is because the
height sensors are closer to the towers than the measurement position of the SWE. This fact
is not significant for thicknesses greater than 20 cm, but for lower thicknesses, the tower
carrying all the elements acts as a hot spot making the snow layer disappear more quickly
in its vicinity than in the measurement area of the SWE.

On the black curve, there is a period between 4 and 17 December in which the SFCW
system was not operational.

6. Conclusions

This work shows the validation of the proposed SFCW radar technique, based in a
RDS system, and an electromagnetic model of snowpack, to obtain its SWE and depth, in
real time, for hydrological purposes. The RDS technology has been shown to be adequate
for this application.

We conclude that the electromagnetic matrix model proposed, well-known in optics,
was suitable for this application and reproduce the fundamental features of the reflectances
measured by the SFCW, allowing an adequate interpretation of the reflection coefficients
based, mainly, on the thickness, the density, and the LWC of layers of the snow cover.

The application of the proposed electromagnetic model of the snowpack has allowed
us to derive a simple expression, under the assumption of dry snow, for SWE determination.
The SWE can be obtained from the displacement of the position associated with snow–
metal reflection, with respect to the position of metal reflection without snow cover. This
measurement is independent of the snow height and indicates that the SWE of the snow-
pack is linearly related to that displacement. In other words, the increase of “time-of-flight”
into snowpack, with respect to vacuum, is directly proportional to SWE. The application of
the SWE model to the data captured by SFCW radar during winter 2019–2020 has shown
that the agreement with the SWE CRN gauge from Automatic Hydrologic Information
System of the Ebro River Basin (SAIH-CHE) was reasonable.

The height of the snowpack can be measured as the first air-snow reflection position
with respect to the measurement of the position of the metal sheet in the soil. Therefore,
the SFCW technique can be, also, used for measurement of the snow height without an
auxiliary sensor.

The new snow depth measurement probe based on a 120 GHz FMCW radar sensor
was operational even in freshly fallen snow situations with low density.

The hardware, software, and communications infrastructure are operational and
reliable in a harsh environment, providing an operative platform for future experiments.

It was not possible to observe the internal structure of the snowpack. This possibility
would require an improvement in the measurement system. Future work must continue
with a precise estimation of the error by comparison with gravimetric measurements of
SWE. Further improvements of the SFCW hardware and software are necessary to increase
the signal-to-noise ratio, improve the ‘ghost’ peak detection algorithms, and increase the
resolution to measure the snowpack stratigraphy. The main improvement in the hardware
system will be the design and construction of new ultra-wide band antennas, with linear
polarization and good directionality to minimize direct coupling between the transmitting
and detecting antennas. The starting design will be a dual ridge horn antenna (DRHA).
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Improving the drainage properties of the metal plate, as outlined in Section 5, will also
be necessary.

The improvement of the system sensitivity could even allow for removal of the metal
plate, using the reflectance of the natural soil as a reference with the advantages that
this could have both from a totally non-perturbative analysis of the snowpack and the
possibility of making a portable instrument without the need for infrastructure under the
snow cover.
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