
Stony Brook University Stony Brook University 

Academic Commons Academic Commons 

Department of Applied Mathematics & 
Statistics Faculty Publications 

Department of Applied Mathematics & 
Statistics 

9-2020 

Evaluating Performance of OpenMP Tasks in a Seismic Stencil Evaluating Performance of OpenMP Tasks in a Seismic Stencil 

Application Application 

Eric Raut 
Stony Brook University, eric.raut@stonybrook.edu 

Jie Meng 
Total EP R&T 

Mauricio Araya-Polo 
Total EP R&T 

Barbara Chapman 
Stony Brook University, barbara.chapman@stonybrook.edu 

Follow this and additional works at: https://commons.library.stonybrook.edu/ams-articles 

 Part of the Applied Mathematics Commons, Geophysics and Seismology Commons, and the 

Programming Languages and Compilers Commons 

Recommended Citation Recommended Citation 
Raut, Eric; Meng, Jie; Araya-Polo, Mauricio; and Chapman, Barbara, "Evaluating Performance of OpenMP 
Tasks in a Seismic Stencil Application" (2020). Department of Applied Mathematics & Statistics Faculty 
Publications. 2. 
https://commons.library.stonybrook.edu/ams-articles/2 

This Conference Proceeding is brought to you for free and open access by the Department of Applied Mathematics 
& Statistics at Academic Commons. It has been accepted for inclusion in Department of Applied Mathematics & 
Statistics Faculty Publications by an authorized administrator of Academic Commons. For more information, 
please contact mona.ramonetti@stonybrook.edu, hu.wang.2@stonybrook.edu. 

https://commons.library.stonybrook.edu/
https://commons.library.stonybrook.edu/ams-articles
https://commons.library.stonybrook.edu/ams-articles
https://commons.library.stonybrook.edu/ams
https://commons.library.stonybrook.edu/ams
https://commons.library.stonybrook.edu/ams-articles?utm_source=commons.library.stonybrook.edu%2Fams-articles%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/115?utm_source=commons.library.stonybrook.edu%2Fams-articles%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/158?utm_source=commons.library.stonybrook.edu%2Fams-articles%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=commons.library.stonybrook.edu%2Fams-articles%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.library.stonybrook.edu/ams-articles/2?utm_source=commons.library.stonybrook.edu%2Fams-articles%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mona.ramonetti@stonybrook.edu,%20hu.wang.2@stonybrook.edu


Evaluating Performance of OpenMP Tasks in a
Seismic Stencil Application

Eric Raut1, Jie Meng2, Mauricio Araya-Polo2, and Barbara Chapman1

1 Stony Brook University, Stony Brook NY 11794, USA
{eric.raut,barbara.chapman}@stonybrook.edu

2 Total EP R&T, Houston TX 77002, USA

Abstract. Simulations based on stencil computations (widely used in
geosciences) have been dominated by the MPI+OpenMP programming
model paradigm. Little effort has been devoted to experimenting with
task-based parallelism in this context. We address this by introduc-
ing OpenMP task parallelism into the kernel of an industrial seismic
modeling code, Minimod. We observe that even for these highly regular
stencil computations, taskified kernels are competitive with traditional
OpenMP-augmented loops, and in some experiments tasks even outper-
form loop parallelism.
This promising result sets the stage for more complex computational pat-
terns. Simulations involve more than just the stencil calculation: a collec-
tion of kernels is often needed to accomplish the scientific objective (e.g.,
I/O, boundary conditions). These kernels can often be computed simul-
taneously; however, implementing this simultaneous computation with
traditional programming models is not trivial. The presented approach
will be extended to cover simultaneous execution of several kernels, where
we expect to fully exploit the benefits of task-based programming.

Keywords: OpenMP · task parallelism · stencil computation · loop
scheduling

1 Introduction

Many industrial and scientific applications use stencil computation for solving
PDEs discretized with Finite Difference (FD) or Finite Volume (FV) methods.
These can range from geophysics to weather forecasting models [32]. Improving
performance is of utmost interest since this facilitates faster decision making as
well as more opportunities to explore further scientific questions. Optimization
of stencil computation has been addressed in the past aplenty (see Section 2)
from many different angles, e.g. low-level optimization, parallelism at different
levels, and DSLs.

In this work, we create OpenMP task-based versions of an industrial stencil-
based seismic modeling code and compare performance of the task-based ver-
sions to traditional loop-parallelized versions of the code. The motivation of this
work is to explore how task-based programming models and task parallelism can
support the stencil computaion pattern in practice.

https://orcid.org/0000-0001-8091-2066


2 E. Raut et al.

OpenMP [26] is the de-facto standard programming model for shared-memory
parallelism. OpenMP introduced tasks in version 3.0. OpenMP 4.0 added auto-
matic dependency analysis to tasks, such that the compiler can automatically
determine the order of task execution based on user-supplied data dependences.

In task-based OpenMP programming, an application is written as a set of
units of work called tasks. Each task is executed sequentially, but multiple tasks
can be run simultaneously subject to the availability of resources and dependen-
cies between the tasks. The set of tasks and dependencies between them can be
represented as a directed acyclic graph (DAG).

Our main contributions are the following: (1) we introduce task parallelism
to a stencil code in a proxy for an industrial application; (2) we test our task-
based stencil code on several architectures and compilers; and (3) we analyze
its behavior and compare results of the task-based stencil with several variants
written using parallel loops.

The paper is organized as follows: Section 2 describes relevant literature
works and contributions. Section 3 describes the target application. Section 4
detailes the application code structure and how it was ported to task parallelism.
In Section 5, the experimental environment and results are presented. Section 6
and 7 provide discussion and conclusions.

2 Related Work

A great amount of research effort has been devoted to optimizing stencil com-
putations to achieve higher performance. For example, Nguyen et al. [24] in-
troduced higher dimension cache optimizations, and de la Cruz et al. proposed
the semi-stencil algorithm [8] which offers an improved memory access pattern
and efficiently reuses accessed data by dividing the computation into several
updates. In 2012, Ghosh et al. [13] analyzed the performance and programma-
bility of three high-level directive-based GPU programming models (PGI, CAPS,
and OpenACC) on an NVIDIA GPU against isotropic and tilted transversely
isotropic finite difference kernels in reverse time migration (RTM), which is a
widely used method in exploration geophysics. In 2017, Qawasmeh et al. [28] im-
plemented an MPI + OpenACC approach for seismic modeling and RTM. Also,
from a programming language perspective, domain-specific languages (DSLs)
for stencils have been proposed (e.g., [19]). Even performance models have been
developed for this computing pattern (see [9]).

In recent years, task-based parallel programming has been recognized as a
promising approach to improve performance in scientific applications such as
stencil-based algorithms. For example, in [22], Moustafa et al. illustrated the
design and implementation of a FD method-based seismic wave propagation
simulator using PaRSEC.

Researchers have been working on exploring the advantages of tasking in
OpenMP since tasks were introduced in version 3.0. Right after its release, Vi-
rouleau et al. [34] evaluated OpenMP tasks and dependencies with the KAS-
TORS benchmark suite. Duran et al. [12] evaluated different OpenMP task



Evaluating Performance of OpenMP Tasks in a Seismic Stencil Application 3

scheduling strategies with several applications. Rico et al. [30] provided insights
on the benefits of tasking over the work-sharing loop model by introducing task-
ing to an adaptive mesh refinement proxy application. Atkinson et al. [2] opti-
mized the performance of an irregular algorithm for the fast multipole method
with the use of tasks in OpenMP. Vidal et al. [33] evaluated the task features of
OpenMP 4.0 extensions with the OmpSs programming model.

Several programming systems supporting tasks have been proposed, some
of which (e.g., OpenMP) focus on shared-memory systems. Cilk [6] is an early
programming API supporting tasks using spawn keyword. Intel Thread Building
Blocks [29] also supports shared-memory task parallelism. StarSs [27] is a task-
based framework for multi/many-core systems using a pragma syntax. OmpSs
[11] is an attempt to extend OpenMP with tasking features using StarSs runtime.

Distributed-memory task-based systems have been explored as well, in which
the runtime automatically schedules tasks among the available nodes and takes
care of communication and data transfer. Charm++ [1] is a C++ framework
supporting distributed task parallelism. Legion [4], and its DSL, Regent [31], are
data-centric task-based programming systems developed at Stanford. PaRSEC
[7] enables an application to be expressed as a “parameterized task graph” which
is problem-size-independent and therefore highly scalable. HPX [15] is a task-
based framework which uses a global address space to distibute computations
across nodes. XcalableMP [18] is a PGAS language with elementary support
for task parallelism. YML [10,14] allows the user to specify a computation as a
graph of large-scale tasks; it can be combined with XcalableMP. StarPU [3] sup-
ports OpenMP-style pragmas and provides a runtime for distributed execution.
Klinkenberg et al. [16] propose a framework for distributing tasks across MPI
ranks in MPI+OpenMP hybrid applications.

3 Minimod Description

Minimod is a proxy application that simulates the propagation of waves through
the Earth models, by solving a Finite Difference (FD) discretized form of the
wave equation. It is designed and developed by Total Exploration and Produc-
tion Research and Technologies [21]. Minimod is self-contained and designed to
be portable across multiple compilers. The application suite provides both non-
optimized and optimized versions of computational kernels for targeted plat-
forms. The main purpose is benchmarking of emerging new hardware and pro-
gramming technologies. Non-optimized versions are provided to allow analysis
of pure compiler-based optimizations. Minimod is currently not publicly avail-
able; however, the plan is to eventually make it available to the community as
open-source software.

In this work, we study one of the kernels contained in Minimod, the isotropic
propagator in a constant-density domain [28]. For this propagator, the wave
equation PDE has the following form:

1

V2

∂2u

∂t2
−∇2u = f , (1)



4 E. Raut et al.

where u = u(x, y, z) is the wavefield, V is the Earth model (with velocity as rock
property), and f is the source perturbation. The equation is discretized in time
using a second-order centered stencil, resulting in the semi-discritized equation:

un+1 −Qun + un−1 =
(
∆t2

)
V2fn,with Q = 2 +∆t2V2∇2. (2)

Finally, the equation is discretized in space using a 25-point stencil in 3D space,
with four points in each direction as well as the centre point:

∇2u(x, y, z) ≈
4∑

m=0

cxm [u(i+m, j, k) + u(i−m, j, k)] +

cym [u(i, j +m, k) + u(i, j −m, k)] +

czm [u(i, j, k +m) + u(i, j, k −m)]

where cxm, cym, czm are discretization parameters.
A simulation in Minimod consists of solving the wave equation at each

timestep for some number of timesteps. Pseudocode of the algorithm is shown
in algorithm 1. We apply a Perfectly Matched Layer (PML) [5] boundary condi-
tion to the boundary regions. The resulting domain consists of an “inner” region
where Equation 2 is applied, and the outer “boundary” region where a PML
calculation is applied, as shown in Figure 1.

Data: f : source
Result: un: wavefield at timestep n, for n← 1 to T

1 u0 := 0;
2 for n← 1 to T do
3 for each point in wavefield un do
4 Solve Eq. 2 (left hand side) for wavefield un;
5 end
6 un = un + fn (Eq. 2 right hand side);
7 end

Algorithm 1: Minimod high-level description

We note that the stencil does not have a uniform computational intensity
across the domain: the PML regions require more calculations than the inner
regions. This suggests an inherent load imbalance that may be amenable to im-
provement with tasks. Furthermore, a full simulation includes additional kernels,
such as I/O and compression. These additional kernels are not evaluated in this
study but will be added in the future.

4 Code Structure and Taskification of Minimod
In this section, we describe the code structure of Minimod and explain how it
has been ported to a version that makes use of OpenMP tasks. The most com-
putationally expensive component of Minimod (algorithm 1) is the computation



Evaluating Performance of OpenMP Tasks in a Seismic Stencil Application 5

Inner

Front

Back

Left Right Inner

Front

Back

Left Right

x

y

Fig. 1. (left) x-y plane view of domain; (right) xy blocking scheme.

of the wavefield for each point. The (original) serial version of the code has the
structure shown in algorithm 2.

Data: un−1, un−2: wavefields at previous two timsteps
Result: un: wavefield at current timestep

1 for i← xmin to xmax do
2 if i ≥ x3 and i ≤ x4 then
3 for j ← ymin to ymax do
4 if j ≥ y3 and j ≤ y4 then
5 // Bottom Damping (i, j, z1...z2)
6 // Inner Computation (i, j, z3...z4)
7 // Top Damping (i, j, z5...z6)
8 else
9 // Back and Front Damping (i, j, zmin...zmax)

10 end
11 end
12 else
13 // Left and Right Damping (i, ymin...ymax, zmin...zmax)
14 end
15 end

Algorithm 2: Wavefield solution step

We evaluate several different configurations for the parallelization of this
code, using both OpenMP parallel loops and tasks. In the x-loop versions, we sim-
ply apply an omp parallel for directive to the x-loop on line 1 of algorithm 2.
The OpenMP schedule is selected at runtime; we test the static, dynamic, and
guided OpenMP schedules in this study.



6 E. Raut et al.

In addition to simply looping over the x-dimension, we also evaluate the
effect of loop blocking in the x-y plane. See Figure 1. In the blocked version, we
apply OpenMP loop parallelism to the 2-D loop nest over x-y blocks. Again, we
evaluate the static, dynamic, and guided schedules.

In the task-based configurations, we insert a omp parallel master region
surrounding the entire timestep loop (before line 2 in algorithm 1). Then, in the
wavefield solution step we generate tasks representing parallel units of work. The
OpenMP depend clause is used to manage dependencies between timesteps. In
this stencil computation, the computation of each block depends on its neighbors
from the previous timestep.

The OpenMP depend clause does not support overlapping array sections
as dependencies. The most natural way to express dependencies between the
regions is to list, in array section form, the specific array elements that each
block depends on. However, this would result in overlapping dependency regions
and is therefore not supported. Instead, in our implementation we simply choose
one element of each neighboring block to include in the dependency list. This
workaround, however, is limited to simple dependence patterns. For example,
it is not possible to use more blocks (smaller block size) in the PML regions
than in the inner region, because each inner block would depend on multiple
PML blocks. OpenMP 5.0 supports using iterators in the depend clause, which
provides some additional flexibility; however, iterators are not supported in any
compilers we tested.

We evaluate the following configurations in this paper:

– Loop x static/dynamic/guided: an OpenMP parallel for loop is applied to the
x loop in line 1 of Algorithm 2. A static/dynamic/guided schedule is used.

– Loop xy static/dynamic/guided: Uses blocking in the x and y dimensions. A
OpenMP parallel for loop is applied to the 2-D loop nest over x-y blocks. (A
collapse(2) is used to combine the two loops). A static/dynamic/guided
schedule is used. Several different block sizes are evaluated.

– Tasks xy: Each x-y block is a task. OpenMP’s depend clause is used to
manage dependencies between timesteps.

– Tasks xy nodep: Same as above, but OpenMP dependencies are not used.
In order to prevent a race condition, an explicit task synchronization point
(taskwait) is added at the end of the timestep (i.e., before line 7 of Algo-
rithm 1).

An alternative approach, not evaluated here, would be to appy a taskloop
construct to the loops, generating one task for each chunk of iterations (with
configurable size). Currently, the taskloop construct does not support depen-
dencies, so an explicit task synchronization would be required, as in Tasks xy
nodep.

Our application is not currently NUMA-aware, which hurts performance on
NUMA architectures, including the nodes used in this study. The conventional
NUMA awareness for OpenMP tasks can be achieved with the affinity clause
of OpenMP 5.0 [17]; however, to the best of our knowledge, this clause is not
supported on any publicly available compilers as of the time of writing. (In [17],



Evaluating Performance of OpenMP Tasks in a Seismic Stencil Application 7

an LLVM runtime with preliminary support of task affinity is implemented. We
are currently evaluating our application with this runtime.) In our application,
all data is allocated and initialized by a single thread and so will likely reside on
a single NUMA domain.

5 Evaluation

The different versions of Minimod are evaluated on Summit (a supercomputer
with IBM POWER9 architecture) and Cori and SeaWulf (supercomputers with
an Intel architecture).

5.1 Experimental Setup

Computer Hardware Software
Summit CPUs 2x IBM Power9 LLVM 9.0

CPU cores 44 (22 per CPU)
Memory 512 GB
L3 10 MB (per two cores)
L2 512 KB (per two cores)
L1 32+32 KB
Device fabrication 14nm

Cori CPUs 2x Intel Xeon E5-2698v3 LLVM 10.0
CPU cores 32 (16 per CPU)
Memory 128 GB
L3 40 MB (per socket)
L2 256 KB
L1 32+32 KB
Device fabrication 22nm

SeaWulf CPUs 2x Intel Xeon Gold 6148 LLVM 11.0 (git 3cd13c4)
CPU cores 40 (20 per CPU)
Memory 192 GB
L3 28 MB (per socket)
L2 1024 KB
L1 32+32 KB
Device fabrication 14nm

Table 1. Hardware and software configuration of the experimental platforms.

Summit [25] is a computing system at the Oak Ridge Leadership Computing
Facility (see Table 1 top panel). Each node also has 6 NVIDIA V100 GPUs;
however, we do not use GPUs in this study. We use 42 OpenMP threads in all
experiments with each thread bound to a physical core.

Cori [23] is a computing system at the National Energy Research Scientific
Computing Center (NERSC) (see Table 1 middle panel). We perform exper-
iments on Haswell nodes of Cori. 32 OpenMP threads on the Haswell nodes



8 E. Raut et al.

were used, each thread bound to a physical core (using OMP_PLACES=cores and
OMP_PROC_BIND=true).

SeaWulf is a computing system at Stony Brook University. Details are given
in Table 1 (bottom panel). In each run, we use 40 OpenMP threads (one per
physical core) with each thread bound to a physical core.

Each simulation is run with grid sizes between 64^3 (64 in each of the three
dimensions) and 1024^3. Sizes 512^3 and 1024^3 are reported in this paper.
Results with the LLVM compiler on each computer are reported in this paper.
Cache statistics were collected using the Perf and HPCToolkit [20] profilers.
Execution times are averaged over three trials on Summit and SeaWulf. We
were unable to compute a three-run average on Cori due to lack of availability;
however, the application shows little variation in run time on the other machines,
so it likely would make little difference.

5.2 Results

Execution times for each configuration from Section 4 on all three platforms are
shown in Figure 2. For each of the xy-blocked configurations, the time shown
is for the block size that gives the lowest execution time for each configuration.
On Cori, poor performance is seen from “Loop x static” as compared to other
configurations. Performance among the xy-blocked configurations are generally
quite similar.

To understand the relative performance and how it relates to the architecture
used, we gathered cache use statistics for each configuration. Table 2 shows the
L3 miss rate for each configuration on Summit, Cori, and SeaWulf, respectively.
On Summit, the miss rate is significantly lower for static configurations than for
the other configurations. On Cori and SeaWulf, the L3 miss rate is highest for
“Loop x static”, and relatively similar among all xy-blocked configurations.

Grid size 5123 Grid size 10243

Summit Cori SeaWulf Summit Cori Seawulf
Loop x static 16 19 49 12 16 50
Loop x dynamic 42 10 27 35 9 28
Loop x guided 45 15 41 36 15 47
Loop xy static 9 11 47 7 12 43
Loop xy dynamic 26 11 45 27 11 43
Loop xy guided 26 12 47 22 12 44
Tasks xy 27 12 45 27 11 43
Tasks xy nodep 27 11 45 26 11 43
Average 27.3 12.6 43.3 24.0 12.1 42.6
Table 2. L3 miss rate [%] on each computer for each configuration.

Figure 3 shows the effect of block size on execution time for each of the
xy-blocked configurations. The given block size is the size of both the x and y



Evaluating Performance of OpenMP Tasks in a Seismic Stencil Application 9

0 20 40 60 80 100 120 140
Time [s]

Loop x static

Loop x dynamic

Loop x guided

Loop xy static

Loop xy dynamic

Loop xy guided

Tasks xy

Tasks xy nodep

Grid size 512^3

0 200 400 600 800 1000
Time [s]

Grid size 1024^3

0 20 40 60 80 100 120 140
Time [s]

Loop x static

Loop x dynamic

Loop x guided

Loop xy static

Loop xy dynamic

Loop xy guided

Tasks xy

Tasks xy nodep

Grid size 512^3

0 200 400 600 800 1000
Time [s]

Grid size 1024^3

0 20 40 60 80 100 120 140
Time [s]

Loop x static

Loop x dynamic

Loop x guided

Loop xy static

Loop xy dynamic

Loop xy guided

Tasks xy

Tasks xy nodep

Grid size 512^3

0 200 400 600 800 1000
Time [s]

Grid size 1024^3

Fig. 2. Execution time (in seconds), top panel Summit, mid panel Cori and bottom
panel SeaWulf.



10 E. Raut et al.

dimensions of each block/task. We frequently see that at a small block size of 42,
“Tasks xy” does significantly worse than other configurations. Also noteworthy
is that at larger block sizes, “Tasks xy” usually outperforms “Tasks xy nodep”,
showing the benefit of fine-grained synchronization.

We also ran experiments with other compilers (IBM XL 16.1.1 on Summit,
and Intel 19 on Cori and SeaWulf). The general trends discussed here (for the
LLVM compiler) also apply to other compilers, indicating that these conclusions
are intrinsic to the code and architecture. Due to space constraints, results with
the other compilers are not shown here.

6 Discussion

As shown in Table 2, the L3 miss rate on Summit (POWER9 architecture) is
lower for static-schedule configurations than other configurations, while for Cori
and SeaWulf (Intel architectures) this relationship does not hold. To under-
stand why, we must examine the cache hierarchies of these architectures. On the
POWER9 architecture (Summit), the L3 cache is shared between each pair of
cores only (Table 1). With a static schedule, the assignment of domain regions
to threads does not change between timesteps, and data resident in the L3 cache
will be reused at subsequent timesteps. With non-static schedules (including
tasks), the assignment of domain regions to threads is arbitrary and can change
at each timestep, introducing L3 cache misses (and an expensive fallback to main
memory) when a region moves to a different pair of physical cores. On Intel ar-
chitectures (Cori and SeaWulf), the L3 cache is shared on the entire socket, so
movement of regions between timesteps does not cause L3 cache misses unless
the movement is between sockets.

A notable trend in the block size plots (Figure 3) is that for very small block
sizes (i.e., 4^2), there is a large overhead seen in “Tasks xy”. This sensitivity is
usually not seen in the other configurations (although on SeaWulf a similar time
increase occurs in the “Tasks xy nodep” configuration). This indicates that the
LLVM OpenMP runtime has a significant overhead associated with scheduling
small tasks. The difference between “Tasks xy” and “Tasks xy nodep” suggests
that there is also a significant overhead associated with handling the dependen-
cies between tasks for fine-grained synchronization. The bulk synchronization of
“Tasks xy nodep” (task synchronization at the end of each timestep) has less
overhead.

Most of the block size experiments in Figure 3 show that there is a “mini-
mum point”, usually around a square block size of 16-32, where the execution
time is minimized. In general, there is a trade-off with respect to choosing a
block size. Small block sizes expose more parallelism to the runtime, resulting
in more opportunities for load balancing. However, as each block is a task that
must be scheduled for execution, small block sizes incur increased runtime task
scheduling overhead. It is interesting to see that the minimum point for block
size is relatively similar across computers in Figure 3.



Evaluating Performance of OpenMP Tasks in a Seismic Stencil Application 11

4 8 16 32 64
Block size (^2)

40

50

60

70

80

Ti
m

e 
[s

]

Grid size 512^3

8 16 32 64 128
Block size (^2)

275

300

325

350

375

400

425

Grid size 1024^3
Loop xy static Loop xy dynamic Loop xy guided Tasks xy Tasks xy nodep

4 8 16 32 64
Block size (^2)

60

70

80

90

100

Ti
m

e 
[s

]

Grid size 512^3

8 16 32 64 128
Block size (^2)

400

500

600

700

800

900

1000

Grid size 1024^3
Loop xy static Loop xy dynamic Loop xy guided Tasks xy Tasks xy nodep

4 8 16 32 64
Block size (^2)

35

40

45

50

55

60

Ti
m

e 
[s

]

Grid size 512^3

8 16 32 64 128
Block size (^2)

200

250

300

350

400

450

500

Grid size 1024^3
Loop xy static Loop xy dynamic Loop xy guided Tasks xy Tasks xy nodep

Fig. 3. Effect of block size on execution time using the LLVM compiler on Summit
(top), Cori (middle), and SeaWulf (bottom).



12 E. Raut et al.

Especially at larger block sizes, we see a significant improvement of “Tasks
xy” over “Tasks xy nodep”. This shows potential for improvement of the fine-
grained synchronization provided by task dependencies. However, this improve-
ment is diminished at smaller block sizes. If the overheads of task dependency
resolution could be reduced, this approach might also benefit smaller block sizes.

7 Conclusions

In this paper, the Minimod application was ported to use OpenMP tasks. Even
for this relatively regular stencil application, task-based parallelism is competi-
tive with traditional loop-based parallelism, and is even better in some experi-
ments. This is a promising result for the effectiveness of OpenMP tasking.

A key finding of this paper is that the movement of domain region com-
putations between timesteps is more expensive on the POWER9 architecture
than on Intel architectures due to the difference in L3 cache hierarchy between
them (Section 6). This stresses the importance of locality-aware task scheduling
and suggests that the optimal policies for such a scheduler may be architecture-
dependent. The affinity clause introduced in OpenMP 5.0 may help improve
the locality of tasks, increasing performance. The OpenMP metadirective, also
introduced in version 5.0, could potentially help set scheduling parameters for
different target platforms.

As discussed in Section 6, our results indicate the potential for decreasing
the overhead associated with handling task dependencies. However, task depen-
dencies currently also have a lack of expressivity (see Section 4). Increasing the
expressivity without increasing overhead may prove difficult.

More research is needed to pinpoint the causes of these performance charac-
teristics. For example, we plan to use a profiler to continue to explore OpenMP
overheads and barriers for each configuration. We would also like to better un-
derstand the extent to which tasks move between threads over the simulation.
We hope to see better support for tasks from performance tools.

In future work, this code will be ported to GPUs using OpenMP 4.0+ of-
floading features, including using tasks to coordinate the work of multiple GPUs.
We would also like to extend the code to run on multiple nodes. One possibility
is to use MPI to coordinate OpenMP tasks between nodes. We will also add
more kernels to Minimod to form a more complete seismic imaging application;
in doing so, we expect to further exploit the benefits of task-based parallelism.

Acknowledgements

We would like to thank Total Exploration and Production Research and Tech-
nologies for their support of this work. We also thank Vivek Kale at Brookhaven
National Laboratory for his help in guiding the experiments in this paper. We
used resources of the National Energy Research Scientific Computing Center
(NERSC), a U.S. Department of Energy Office of Science User Facility operated
under Contract No. DE-AC02-05CH11231. We also used resources of the Oak



Evaluating Performance of OpenMP Tasks in a Seismic Stencil Application 13

Ridge Leadership Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725. Furthermore, we would like to thank
Stony Brook Research Computing and Cyberinfrastructure, and the Institute
for Advanced Computational Science at Stony Brook University for access to
the SeaWulf computing system, which was made possible by a 1.4M National
Science Foundation grant (#1531492).

References

1. Acun, B., Gupta, A., Jain, N., Langer, A., Menon, H., Mikida, E., Ni, X., Rob-
son, M., Sun, Y., Totoni, E., Wesolowski, L., Kale, L.: Parallel programming with
migratable objects: Charm++ in practice. In: SC ’14: Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis. pp. 647–658 (2014). https://doi.org/10.1109/SC.2014.58

2. Atkinson, P., McIntosh-Smith, S.: On the performance of parallel tasking runtimes
for an irregular fast multipole method application. In: de Supinski, B.R., Olivier,
S.L., Terboven, C., Chapman, B.M., Müller, M.S. (eds.) Scaling OpenMP for Ex-
ascale Performance and Portability. pp. 92–106. Springer International Publishing,
Cham (2017). https://doi.org/10.1007/978-3-319-65578-9_7

3. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.A.: Starpu: a unified
platform for task scheduling on heterogeneous multicore architectures. Con-
currency and Computation: Practice and Experience 23(2), 187–198 (2011).
https://doi.org/10.1002/cpe.1631

4. Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: Expressing locality and
independence with logical regions. In: SC ’12: Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis.
pp. 1–11 (Nov 2012). https://doi.org/10.1109/SC.2012.71

5. Berenger, J.P.: A perfectly matched layer for the absorption of electromag-
netic waves. Journal of Computational Physics 114(2), 185 – 200 (1994).
https://doi.org/10.1006/jcph.1994.1159

6. Blumofe, R.D., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., Randall, K.H., Zhou,
Y.: Cilk: An efficient multithreaded runtime system. SIGPLAN Not. 30(8), 207–
216 (Aug 1995). https://doi.org/10.1145/209937.209958

7. Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Herault, T., Dongarra, J.J.:
Parsec: Exploiting heterogeneity to enhance scalability. Computing in Science En-
gineering 15(6), 36–45 (2013). https://doi.org/10.1109/MCSE.2013.98

8. de la Cruz, R., Araya-Polo, M.: Algorithm 942: Semi-stencil. ACM Trans. Math.
Softw. 40(3) (Apr 2014). https://doi.org/10.1145/2591006

9. de la Cruz, R., Araya-Polo, M.: Towards a multi-level cache performance model
for 3d stencil computation. Procedia Computer Science 4, 2146 – 2155 (2011).
https://doi.org/10.1016/j.procs.2011.04.235, proceedings of the International Con-
ference on Computational Science, ICCS 2011

10. Delannoy, O., Petiton, S.: A peer to peer computing framework: design and per-
formance evaluation of yml. In: Third International Symposium on Parallel and
Distributed Computing/Third International Workshop on Algorithms, Models and
Tools for Parallel Computing on Heterogeneous Networks. pp. 362–369 (2004).
https://doi.org/10.1109/ISPDC.2004.7

https://doi.org/10.1109/SC.2014.58
https://doi.org/10.1007/978-3-319-65578-9_7
https://doi.org/10.1002/cpe.1631
https://doi.org/10.1109/SC.2012.71
https://doi.org/10.1006/jcph.1994.1159
https://doi.org/10.1145/209937.209958
https://doi.org/10.1109/MCSE.2013.98
https://doi.org/10.1145/2591006
https://doi.org/10.1016/j.procs.2011.04.235
https://doi.org/10.1109/ISPDC.2004.7


14 E. Raut et al.

11. Duran, A., Ayguadé, E., Badia, R.M., Labarta, J., Martinell, L., Mar-
torell, X., Planas, J.: Ompss: a proposal for programming heterogeneous
multi-core architectures. Parallel processing letters 21(02), 173–193 (2011).
https://doi.org/10.1142/S0129626411000151

12. Duran, A., Corbalán, J., Ayguadé, E.: Evaluation of openmp task scheduling
strategies. In: Eigenmann, R., de Supinski, B.R. (eds.) OpenMP in a New Era
of Parallelism. pp. 100–110. Springer Berlin Heidelberg, Berlin, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-79561-2_9

13. Ghosh, S., Liao, T., Calandra, H., Chapman, B.M.: Experiences with openmp, pgi,
hmpp and openacc directives on iso/tti kernels. In: 2012 SC Companion: High Per-
formance Computing, Networking Storage and Analysis. pp. 691–700 (Nov 2012).
https://doi.org/10.1109/SC.Companion.2012.95

14. Gurhem, J., Tsuji, M., Petiton, S.G., Sato, M.: Distributed and parallel program-
ming paradigms on the k computer and a cluster. In: Proceedings of the Inter-
national Conference on High Performance Computing in Asia-Pacific Region. p.
9–17. HPC Asia 2019, Association for Computing Machinery, New York, NY, USA
(2019). https://doi.org/10.1145/3293320.3293330

15. Kaiser, H., Heller, T., Adelstein-Lelbach, B., Serio, A., Fey, D.: Hpx: A task based
programming model in a global address space. In: Proceedings of the 8th Inter-
national Conference on Partitioned Global Address Space Programming Models.
PGAS ’14, Association for Computing Machinery, New York, NY, USA (2014).
https://doi.org/10.1145/2676870.2676883

16. Klinkenberg, J., Samfass, P., Bader, M., Terboven, C., Müller, M.S.: Chameleon:
Reactive load balancing for hybrid mpi+openmp task-parallel applications.
Journal of Parallel and Distributed Computing 138, 55 – 64 (2020).
https://doi.org/10.1016/j.jpdc.2019.12.005

17. Klinkenberg, J., Samfass, P., Terboven, C., Duran, A., Klemm, M., Teruel,
X., Mateo, S., Olivier, S.L., Müller, M.S.: Assessing task-to-data affinity in
the llvm openmp runtime. In: de Supinski, B.R., Valero-Lara, P., Martorell,
X., Mateo Bellido, S., Labarta, J. (eds.) Evolving OpenMP for Evolving
Architectures. pp. 236–251. Springer International Publishing, Cham (2018).
https://doi.org/10.1007/978-3-319-98521-3_16

18. Lee, J., Sato, M.: Implementation and performance evaluation of xcalablemp: A
parallel programming language for distributed memory systems. In: 2010 39th
International Conference on Parallel Processing Workshops. pp. 413–420 (2010).
https://doi.org/10.1109/ICPPW.2010.62

19. Louboutin, M., Lange, M., Luporini, F., Kukreja, N., Witte, P.A., Herrmann, F.J.,
Velesko, P., Gorman, G.J.: Devito (v3.1.0): an embedded domain-specific language
for finite differences and geophysical exploration. Geoscientific Model Development
12(3), 1165–1187 (2019). https://doi.org/10.5194/gmd-12-1165-2019

20. Mellor-Crummey, J., Fowler, R., Whalley, D.: Tools for application-oriented per-
formance tuning. In: Proceedings of the 15th International Conference on Super-
computing. p. 154–165. ICS ’01, Association for Computing Machinery, New York,
NY, USA (2001). https://doi.org/10.1145/377792.377826

21. Meng, J., Atle, A., Calandra, H., Araya-Polo, M.: Minimod: A finite difference
solver for seismic modeling. arXiv (2020), https://arxiv.org/abs/2007.06048

22. Moustafa, S., Kirschenmann, W., Dupros, F., Aochi, H.: Task-based program-
ming on emerging parallel architectures for finite-differences seismic numerical
kernel. In: Aldinucci, M., Padovani, L., Torquati, M. (eds.) Euro-Par 2018: Par-
allel Processing. pp. 764–777. Springer International Publishing, Cham (2018).
https://doi.org/10.1007/978-3-319-96983-1_54

https://doi.org/10.1142/S0129626411000151
https://doi.org/10.1007/978-3-540-79561-2_9
https://doi.org/10.1109/SC.Companion.2012.95
https://doi.org/10.1145/3293320.3293330
https://doi.org/10.1145/2676870.2676883
https://doi.org/10.1016/j.jpdc.2019.12.005
https://doi.org/10.1007/978-3-319-98521-3_16
https://doi.org/10.1109/ICPPW.2010.62
https://doi.org/10.5194/gmd-12-1165-2019
https://doi.org/10.1145/377792.377826
https://arxiv.org/abs/2007.06048
https://doi.org/10.1007/978-3-319-96983-1_54


Evaluating Performance of OpenMP Tasks in a Seismic Stencil Application 15

23. NERSC: Cori, https://docs.nersc.gov/systems/cori/
24. Nguyen, A., Satish, N., Chhugani, J., Kim, C., Dubey, P.: 3.5-d blocking optimiza-

tion for stencil computations on modern cpus and gpus. In: SC ’10: Proceedings of
the 2010 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis. pp. 1–13 (2010)

25. Oak Ridge Leadership Computing Facility: Summit, https://www.olcf.ornl.gov/
olcf-resources/compute-systems/summit/

26. OpenMP Architecture Review Board: OpenMP Application Program-
ming Interface (Nov 2018), https://www.openmp.org/wp-content/uploads/
OpenMP-API-Specification-5.0.pdf, version 5.0

27. Planas, J., Badia, R.M., Ayguadé, E., Labarta, J.: Hierarchical task-based pro-
gramming with starss. The International Journal of High Performance Computing
Applications 23(3), 284–299 (2009). https://doi.org/10.1177/1094342009106195

28. Qawasmeh, A., Hugues, M.R., Calandra, H., Chapman, B.M.: Performance porta-
bility in reverse time migration and seismic modelling via openacc. The Inter-
national Journal of High Performance Computing Applications 31(5), 422–440
(2017). https://doi.org/10.1177/1094342016675678

29. Reinders, J.: Intel Threading Building Blocks: Outfitting C++ for Multi-core Pro-
cessor Parallelism. O’Reilly Media (2007)

30. Rico, A., Sánchez Barrera, I., Joao, J.A., Randall, J., Casas, M., Moretó, M.: On
the benefits of tasking with openmp. In: Fan, X., de Supinski, B.R., Sinnen, O.,
Giacaman, N. (eds.) OpenMP: Conquering the Full Hardware Spectrum. pp. 217–
230. Springer International Publishing, Cham (2019). https://doi.org/10.1007/978-
3-030-28596-8_15

31. Slaughter, E., Lee, W., Treichler, S., Bauer, M., Aiken, A.: Regent: A high-
productivity programming language for hpc with logical regions. In: Proceedings of
the International Conference for High Performance Computing, Networking, Stor-
age and Analysis. SC ’15, Association for Computing Machinery, New York, NY,
USA (2015). https://doi.org/10.1145/2807591.2807629

32. Thaler, F., Moosbrugger, S., Osuna, C., Bianco, M., Vogt, H., Afanasyev, A.,
Mosimann, L., Fuhrer, O., Schulthess, T.C., Hoefler, T.: Porting the cosmo weather
model to manycore cpus. In: Proceedings of the Platform for Advanced Scientific
Computing Conference. PASC ’19, Association for Computing Machinery, New
York, NY, USA (2019). https://doi.org/10.1145/3324989.3325723

33. Vidal, R., Casas, M., Moretó, M., Chasapis, D., Ferrer, R., Martorell, X., Ayguadé,
E., Labarta, J., Valero, M.: Evaluating the impact of openmp 4.0 extensions
on relevant parallel workloads. In: Terboven, C., de Supinski, B.R., Reble, P.,
Chapman, B.M., Müller, M.S. (eds.) OpenMP: Heterogenous Execution and
Data Movements. pp. 60–72. Springer International Publishing, Cham (2015).
https://doi.org/10.1007/978-3-319-24595-9_5

34. Virouleau, P., Brunet, P., Broquedis, F., Furmento, N., Thibault, S., Aumage, O.,
Gautier, T.: Evaluation of openmp dependent tasks with the kastors benchmark
suite. In: DeRose, L., de Supinski, B.R., Olivier, S.L., Chapman, B.M., Müller,
M.S. (eds.) Using and Improving OpenMP for Devices, Tasks, and More. pp. 16–
29. Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-
3-319-11454-5_2

https://docs.nersc.gov/systems/cori/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://doi.org/10.1177/1094342009106195
https://doi.org/10.1177/1094342016675678
https://doi.org/10.1007/978-3-030-28596-8_15
https://doi.org/10.1007/978-3-030-28596-8_15
https://doi.org/10.1145/2807591.2807629
https://doi.org/10.1145/3324989.3325723
https://doi.org/10.1007/978-3-319-24595-9_5
https://doi.org/10.1007/978-3-319-11454-5_2
https://doi.org/10.1007/978-3-319-11454-5_2

	Evaluating Performance of OpenMP Tasks in a Seismic Stencil Application
	Recommended Citation

	Evaluating Performance of OpenMP Tasks in a Seismic Stencil Application

