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Evaluating Performance of OpenMP Tasks in a
Seismic Stencil Application

Eric Raut1, Jie Meng2, Mauricio Araya-Polo2, and Barbara Chapman1
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{eric.raut,barbara.chapman}@stonybrook.edu

2 Total EP R&T, Houston TX 77002, USA

Abstract. Simulations based on stencil computations (widely used in
geosciences) have been dominated by the MPI+OpenMP programming
model paradigm. Little effort has been devoted to experimenting with
task-based parallelism in this context. We address this by introduc-
ing OpenMP task parallelism into the kernel of an industrial seismic
modeling code, Minimod. We observe that even for these highly regular
stencil computations, taskified kernels are competitive with traditional
OpenMP-augmented loops, and in some experiments tasks even outper-
form loop parallelism.
This promising result sets the stage for more complex computational pat-
terns. Simulations involve more than just the stencil calculation: a collec-
tion of kernels is often needed to accomplish the scientific objective (e.g.,
I/O, boundary conditions). These kernels can often be computed simul-
taneously; however, implementing this simultaneous computation with
traditional programming models is not trivial. The presented approach
will be extended to cover simultaneous execution of several kernels, where
we expect to fully exploit the benefits of task-based programming.

Keywords: OpenMP · task parallelism · stencil computation · loop
scheduling

1 Introduction

Many industrial and scientific applications use stencil computation for solving
PDEs discretized with Finite Difference (FD) or Finite Volume (FV) methods.
These can range from geophysics to weather forecasting models [32]. Improving
performance is of utmost interest since this facilitates faster decision making as
well as more opportunities to explore further scientific questions. Optimization
of stencil computation has been addressed in the past aplenty (see Section 2)
from many different angles, e.g. low-level optimization, parallelism at different
levels, and DSLs.

In this work, we create OpenMP task-based versions of an industrial stencil-
based seismic modeling code and compare performance of the task-based ver-
sions to traditional loop-parallelized versions of the code. The motivation of this
work is to explore how task-based programming models and task parallelism can
support the stencil computaion pattern in practice.

https://orcid.org/0000-0001-8091-2066
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OpenMP [26] is the de-facto standard programming model for shared-memory
parallelism. OpenMP introduced tasks in version 3.0. OpenMP 4.0 added auto-
matic dependency analysis to tasks, such that the compiler can automatically
determine the order of task execution based on user-supplied data dependences.

In task-based OpenMP programming, an application is written as a set of
units of work called tasks. Each task is executed sequentially, but multiple tasks
can be run simultaneously subject to the availability of resources and dependen-
cies between the tasks. The set of tasks and dependencies between them can be
represented as a directed acyclic graph (DAG).

Our main contributions are the following: (1) we introduce task parallelism
to a stencil code in a proxy for an industrial application; (2) we test our task-
based stencil code on several architectures and compilers; and (3) we analyze
its behavior and compare results of the task-based stencil with several variants
written using parallel loops.

The paper is organized as follows: Section 2 describes relevant literature
works and contributions. Section 3 describes the target application. Section 4
detailes the application code structure and how it was ported to task parallelism.
In Section 5, the experimental environment and results are presented. Section 6
and 7 provide discussion and conclusions.

2 Related Work

A great amount of research effort has been devoted to optimizing stencil com-
putations to achieve higher performance. For example, Nguyen et al. [24] in-
troduced higher dimension cache optimizations, and de la Cruz et al. proposed
the semi-stencil algorithm [8] which offers an improved memory access pattern
and efficiently reuses accessed data by dividing the computation into several
updates. In 2012, Ghosh et al. [13] analyzed the performance and programma-
bility of three high-level directive-based GPU programming models (PGI, CAPS,
and OpenACC) on an NVIDIA GPU against isotropic and tilted transversely
isotropic finite difference kernels in reverse time migration (RTM), which is a
widely used method in exploration geophysics. In 2017, Qawasmeh et al. [28] im-
plemented an MPI + OpenACC approach for seismic modeling and RTM. Also,
from a programming language perspective, domain-specific languages (DSLs)
for stencils have been proposed (e.g., [19]). Even performance models have been
developed for this computing pattern (see [9]).

In recent years, task-based parallel programming has been recognized as a
promising approach to improve performance in scientific applications such as
stencil-based algorithms. For example, in [22], Moustafa et al. illustrated the
design and implementation of a FD method-based seismic wave propagation
simulator using PaRSEC.

Researchers have been working on exploring the advantages of tasking in
OpenMP since tasks were introduced in version 3.0. Right after its release, Vi-
rouleau et al. [34] evaluated OpenMP tasks and dependencies with the KAS-
TORS benchmark suite. Duran et al. [12] evaluated different OpenMP task
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scheduling strategies with several applications. Rico et al. [30] provided insights
on the benefits of tasking over the work-sharing loop model by introducing task-
ing to an adaptive mesh refinement proxy application. Atkinson et al. [2] opti-
mized the performance of an irregular algorithm for the fast multipole method
with the use of tasks in OpenMP. Vidal et al. [33] evaluated the task features of
OpenMP 4.0 extensions with the OmpSs programming model.

Several programming systems supporting tasks have been proposed, some
of which (e.g., OpenMP) focus on shared-memory systems. Cilk [6] is an early
programming API supporting tasks using spawn keyword. Intel Thread Building
Blocks [29] also supports shared-memory task parallelism. StarSs [27] is a task-
based framework for multi/many-core systems using a pragma syntax. OmpSs
[11] is an attempt to extend OpenMP with tasking features using StarSs runtime.

Distributed-memory task-based systems have been explored as well, in which
the runtime automatically schedules tasks among the available nodes and takes
care of communication and data transfer. Charm++ [1] is a C++ framework
supporting distributed task parallelism. Legion [4], and its DSL, Regent [31], are
data-centric task-based programming systems developed at Stanford. PaRSEC
[7] enables an application to be expressed as a “parameterized task graph” which
is problem-size-independent and therefore highly scalable. HPX [15] is a task-
based framework which uses a global address space to distibute computations
across nodes. XcalableMP [18] is a PGAS language with elementary support
for task parallelism. YML [10,14] allows the user to specify a computation as a
graph of large-scale tasks; it can be combined with XcalableMP. StarPU [3] sup-
ports OpenMP-style pragmas and provides a runtime for distributed execution.
Klinkenberg et al. [16] propose a framework for distributing tasks across MPI
ranks in MPI+OpenMP hybrid applications.

3 Minimod Description

Minimod is a proxy application that simulates the propagation of waves through
the Earth models, by solving a Finite Difference (FD) discretized form of the
wave equation. It is designed and developed by Total Exploration and Produc-
tion Research and Technologies [21]. Minimod is self-contained and designed to
be portable across multiple compilers. The application suite provides both non-
optimized and optimized versions of computational kernels for targeted plat-
forms. The main purpose is benchmarking of emerging new hardware and pro-
gramming technologies. Non-optimized versions are provided to allow analysis
of pure compiler-based optimizations. Minimod is currently not publicly avail-
able; however, the plan is to eventually make it available to the community as
open-source software.

In this work, we study one of the kernels contained in Minimod, the isotropic
propagator in a constant-density domain [28]. For this propagator, the wave
equation PDE has the following form:

1

V2

∂2u

∂t2
−∇2u = f , (1)
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where u = u(x, y, z) is the wavefield, V is the Earth model (with velocity as rock
property), and f is the source perturbation. The equation is discretized in time
using a second-order centered stencil, resulting in the semi-discritized equation:

un+1 −Qun + un−1 =
(
∆t2

)
V2fn,with Q = 2 +∆t2V2∇2. (2)

Finally, the equation is discretized in space using a 25-point stencil in 3D space,
with four points in each direction as well as the centre point:

∇2u(x, y, z) ≈
4∑

m=0

cxm [u(i+m, j, k) + u(i−m, j, k)] +

cym [u(i, j +m, k) + u(i, j −m, k)] +

czm [u(i, j, k +m) + u(i, j, k −m)]

where cxm, cym, czm are discretization parameters.
A simulation in Minimod consists of solving the wave equation at each

timestep for some number of timesteps. Pseudocode of the algorithm is shown
in algorithm 1. We apply a Perfectly Matched Layer (PML) [5] boundary condi-
tion to the boundary regions. The resulting domain consists of an “inner” region
where Equation 2 is applied, and the outer “boundary” region where a PML
calculation is applied, as shown in Figure 1.

Data: f : source
Result: un: wavefield at timestep n, for n← 1 to T

1 u0 := 0;
2 for n← 1 to T do
3 for each point in wavefield un do
4 Solve Eq. 2 (left hand side) for wavefield un;
5 end
6 un = un + fn (Eq. 2 right hand side);
7 end

Algorithm 1: Minimod high-level description

We note that the stencil does not have a uniform computational intensity
across the domain: the PML regions require more calculations than the inner
regions. This suggests an inherent load imbalance that may be amenable to im-
provement with tasks. Furthermore, a full simulation includes additional kernels,
such as I/O and compression. These additional kernels are not evaluated in this
study but will be added in the future.

4 Code Structure and Taskification of Minimod
In this section, we describe the code structure of Minimod and explain how it
has been ported to a version that makes use of OpenMP tasks. The most com-
putationally expensive component of Minimod (algorithm 1) is the computation
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Fig. 1. (left) x-y plane view of domain; (right) xy blocking scheme.

of the wavefield for each point. The (original) serial version of the code has the
structure shown in algorithm 2.

Data: un−1, un−2: wavefields at previous two timsteps
Result: un: wavefield at current timestep

1 for i← xmin to xmax do
2 if i ≥ x3 and i ≤ x4 then
3 for j ← ymin to ymax do
4 if j ≥ y3 and j ≤ y4 then
5 // Bottom Damping (i, j, z1...z2)
6 // Inner Computation (i, j, z3...z4)
7 // Top Damping (i, j, z5...z6)
8 else
9 // Back and Front Damping (i, j, zmin...zmax)

10 end
11 end
12 else
13 // Left and Right Damping (i, ymin...ymax, zmin...zmax)
14 end
15 end

Algorithm 2: Wavefield solution step

We evaluate several different configurations for the parallelization of this
code, using both OpenMP parallel loops and tasks. In the x-loop versions, we sim-
ply apply an omp parallel for directive to the x-loop on line 1 of algorithm 2.
The OpenMP schedule is selected at runtime; we test the static, dynamic, and
guided OpenMP schedules in this study.
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In addition to simply looping over the x-dimension, we also evaluate the
effect of loop blocking in the x-y plane. See Figure 1. In the blocked version, we
apply OpenMP loop parallelism to the 2-D loop nest over x-y blocks. Again, we
evaluate the static, dynamic, and guided schedules.

In the task-based configurations, we insert a omp parallel master region
surrounding the entire timestep loop (before line 2 in algorithm 1). Then, in the
wavefield solution step we generate tasks representing parallel units of work. The
OpenMP depend clause is used to manage dependencies between timesteps. In
this stencil computation, the computation of each block depends on its neighbors
from the previous timestep.

The OpenMP depend clause does not support overlapping array sections
as dependencies. The most natural way to express dependencies between the
regions is to list, in array section form, the specific array elements that each
block depends on. However, this would result in overlapping dependency regions
and is therefore not supported. Instead, in our implementation we simply choose
one element of each neighboring block to include in the dependency list. This
workaround, however, is limited to simple dependence patterns. For example,
it is not possible to use more blocks (smaller block size) in the PML regions
than in the inner region, because each inner block would depend on multiple
PML blocks. OpenMP 5.0 supports using iterators in the depend clause, which
provides some additional flexibility; however, iterators are not supported in any
compilers we tested.

We evaluate the following configurations in this paper:

– Loop x static/dynamic/guided: an OpenMP parallel for loop is applied to the
x loop in line 1 of Algorithm 2. A static/dynamic/guided schedule is used.

– Loop xy static/dynamic/guided: Uses blocking in the x and y dimensions. A
OpenMP parallel for loop is applied to the 2-D loop nest over x-y blocks. (A
collapse(2) is used to combine the two loops). A static/dynamic/guided
schedule is used. Several different block sizes are evaluated.

– Tasks xy: Each x-y block is a task. OpenMP’s depend clause is used to
manage dependencies between timesteps.

– Tasks xy nodep: Same as above, but OpenMP dependencies are not used.
In order to prevent a race condition, an explicit task synchronization point
(taskwait) is added at the end of the timestep (i.e., before line 7 of Algo-
rithm 1).

An alternative approach, not evaluated here, would be to appy a taskloop
construct to the loops, generating one task for each chunk of iterations (with
configurable size). Currently, the taskloop construct does not support depen-
dencies, so an explicit task synchronization would be required, as in Tasks xy
nodep.

Our application is not currently NUMA-aware, which hurts performance on
NUMA architectures, including the nodes used in this study. The conventional
NUMA awareness for OpenMP tasks can be achieved with the affinity clause
of OpenMP 5.0 [17]; however, to the best of our knowledge, this clause is not
supported on any publicly available compilers as of the time of writing. (In [17],
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an LLVM runtime with preliminary support of task affinity is implemented. We
are currently evaluating our application with this runtime.) In our application,
all data is allocated and initialized by a single thread and so will likely reside on
a single NUMA domain.

5 Evaluation

The different versions of Minimod are evaluated on Summit (a supercomputer
with IBM POWER9 architecture) and Cori and SeaWulf (supercomputers with
an Intel architecture).

5.1 Experimental Setup

Computer Hardware Software
Summit CPUs 2x IBM Power9 LLVM 9.0

CPU cores 44 (22 per CPU)
Memory 512 GB
L3 10 MB (per two cores)
L2 512 KB (per two cores)
L1 32+32 KB
Device fabrication 14nm

Cori CPUs 2x Intel Xeon E5-2698v3 LLVM 10.0
CPU cores 32 (16 per CPU)
Memory 128 GB
L3 40 MB (per socket)
L2 256 KB
L1 32+32 KB
Device fabrication 22nm

SeaWulf CPUs 2x Intel Xeon Gold 6148 LLVM 11.0 (git 3cd13c4)
CPU cores 40 (20 per CPU)
Memory 192 GB
L3 28 MB (per socket)
L2 1024 KB
L1 32+32 KB
Device fabrication 14nm

Table 1. Hardware and software configuration of the experimental platforms.

Summit [25] is a computing system at the Oak Ridge Leadership Computing
Facility (see Table 1 top panel). Each node also has 6 NVIDIA V100 GPUs;
however, we do not use GPUs in this study. We use 42 OpenMP threads in all
experiments with each thread bound to a physical core.

Cori [23] is a computing system at the National Energy Research Scientific
Computing Center (NERSC) (see Table 1 middle panel). We perform exper-
iments on Haswell nodes of Cori. 32 OpenMP threads on the Haswell nodes
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were used, each thread bound to a physical core (using OMP_PLACES=cores and
OMP_PROC_BIND=true).

SeaWulf is a computing system at Stony Brook University. Details are given
in Table 1 (bottom panel). In each run, we use 40 OpenMP threads (one per
physical core) with each thread bound to a physical core.

Each simulation is run with grid sizes between 64^3 (64 in each of the three
dimensions) and 1024^3. Sizes 512^3 and 1024^3 are reported in this paper.
Results with the LLVM compiler on each computer are reported in this paper.
Cache statistics were collected using the Perf and HPCToolkit [20] profilers.
Execution times are averaged over three trials on Summit and SeaWulf. We
were unable to compute a three-run average on Cori due to lack of availability;
however, the application shows little variation in run time on the other machines,
so it likely would make little difference.

5.2 Results

Execution times for each configuration from Section 4 on all three platforms are
shown in Figure 2. For each of the xy-blocked configurations, the time shown
is for the block size that gives the lowest execution time for each configuration.
On Cori, poor performance is seen from “Loop x static” as compared to other
configurations. Performance among the xy-blocked configurations are generally
quite similar.

To understand the relative performance and how it relates to the architecture
used, we gathered cache use statistics for each configuration. Table 2 shows the
L3 miss rate for each configuration on Summit, Cori, and SeaWulf, respectively.
On Summit, the miss rate is significantly lower for static configurations than for
the other configurations. On Cori and SeaWulf, the L3 miss rate is highest for
“Loop x static”, and relatively similar among all xy-blocked configurations.

Grid size 5123 Grid size 10243

Summit Cori SeaWulf Summit Cori Seawulf
Loop x static 16 19 49 12 16 50
Loop x dynamic 42 10 27 35 9 28
Loop x guided 45 15 41 36 15 47
Loop xy static 9 11 47 7 12 43
Loop xy dynamic 26 11 45 27 11 43
Loop xy guided 26 12 47 22 12 44
Tasks xy 27 12 45 27 11 43
Tasks xy nodep 27 11 45 26 11 43
Average 27.3 12.6 43.3 24.0 12.1 42.6
Table 2. L3 miss rate [%] on each computer for each configuration.

Figure 3 shows the effect of block size on execution time for each of the
xy-blocked configurations. The given block size is the size of both the x and y
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Fig. 2. Execution time (in seconds), top panel Summit, mid panel Cori and bottom
panel SeaWulf.
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dimensions of each block/task. We frequently see that at a small block size of 42,
“Tasks xy” does significantly worse than other configurations. Also noteworthy
is that at larger block sizes, “Tasks xy” usually outperforms “Tasks xy nodep”,
showing the benefit of fine-grained synchronization.

We also ran experiments with other compilers (IBM XL 16.1.1 on Summit,
and Intel 19 on Cori and SeaWulf). The general trends discussed here (for the
LLVM compiler) also apply to other compilers, indicating that these conclusions
are intrinsic to the code and architecture. Due to space constraints, results with
the other compilers are not shown here.

6 Discussion

As shown in Table 2, the L3 miss rate on Summit (POWER9 architecture) is
lower for static-schedule configurations than other configurations, while for Cori
and SeaWulf (Intel architectures) this relationship does not hold. To under-
stand why, we must examine the cache hierarchies of these architectures. On the
POWER9 architecture (Summit), the L3 cache is shared between each pair of
cores only (Table 1). With a static schedule, the assignment of domain regions
to threads does not change between timesteps, and data resident in the L3 cache
will be reused at subsequent timesteps. With non-static schedules (including
tasks), the assignment of domain regions to threads is arbitrary and can change
at each timestep, introducing L3 cache misses (and an expensive fallback to main
memory) when a region moves to a different pair of physical cores. On Intel ar-
chitectures (Cori and SeaWulf), the L3 cache is shared on the entire socket, so
movement of regions between timesteps does not cause L3 cache misses unless
the movement is between sockets.

A notable trend in the block size plots (Figure 3) is that for very small block
sizes (i.e., 4^2), there is a large overhead seen in “Tasks xy”. This sensitivity is
usually not seen in the other configurations (although on SeaWulf a similar time
increase occurs in the “Tasks xy nodep” configuration). This indicates that the
LLVM OpenMP runtime has a significant overhead associated with scheduling
small tasks. The difference between “Tasks xy” and “Tasks xy nodep” suggests
that there is also a significant overhead associated with handling the dependen-
cies between tasks for fine-grained synchronization. The bulk synchronization of
“Tasks xy nodep” (task synchronization at the end of each timestep) has less
overhead.

Most of the block size experiments in Figure 3 show that there is a “mini-
mum point”, usually around a square block size of 16-32, where the execution
time is minimized. In general, there is a trade-off with respect to choosing a
block size. Small block sizes expose more parallelism to the runtime, resulting
in more opportunities for load balancing. However, as each block is a task that
must be scheduled for execution, small block sizes incur increased runtime task
scheduling overhead. It is interesting to see that the minimum point for block
size is relatively similar across computers in Figure 3.
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Especially at larger block sizes, we see a significant improvement of “Tasks
xy” over “Tasks xy nodep”. This shows potential for improvement of the fine-
grained synchronization provided by task dependencies. However, this improve-
ment is diminished at smaller block sizes. If the overheads of task dependency
resolution could be reduced, this approach might also benefit smaller block sizes.

7 Conclusions

In this paper, the Minimod application was ported to use OpenMP tasks. Even
for this relatively regular stencil application, task-based parallelism is competi-
tive with traditional loop-based parallelism, and is even better in some experi-
ments. This is a promising result for the effectiveness of OpenMP tasking.

A key finding of this paper is that the movement of domain region com-
putations between timesteps is more expensive on the POWER9 architecture
than on Intel architectures due to the difference in L3 cache hierarchy between
them (Section 6). This stresses the importance of locality-aware task scheduling
and suggests that the optimal policies for such a scheduler may be architecture-
dependent. The affinity clause introduced in OpenMP 5.0 may help improve
the locality of tasks, increasing performance. The OpenMP metadirective, also
introduced in version 5.0, could potentially help set scheduling parameters for
different target platforms.

As discussed in Section 6, our results indicate the potential for decreasing
the overhead associated with handling task dependencies. However, task depen-
dencies currently also have a lack of expressivity (see Section 4). Increasing the
expressivity without increasing overhead may prove difficult.

More research is needed to pinpoint the causes of these performance charac-
teristics. For example, we plan to use a profiler to continue to explore OpenMP
overheads and barriers for each configuration. We would also like to better un-
derstand the extent to which tasks move between threads over the simulation.
We hope to see better support for tasks from performance tools.

In future work, this code will be ported to GPUs using OpenMP 4.0+ of-
floading features, including using tasks to coordinate the work of multiple GPUs.
We would also like to extend the code to run on multiple nodes. One possibility
is to use MPI to coordinate OpenMP tasks between nodes. We will also add
more kernels to Minimod to form a more complete seismic imaging application;
in doing so, we expect to further exploit the benefits of task-based parallelism.
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