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Abstract: Despite the introduction of non-invasive techniques in the study of peripheral neuropathies,
sural nerve biopsy remains the gold standard for the diagnosis of several neuropathies, including
vasculitic neuropathy and neurolymphomatosis. Besides its diagnostic role, sural nerve biopsy has
helped to shed light on the pathogenic mechanisms of different neuropathies. In the present review,
we discuss how pathological findings helped understand the mechanisms of polyneuropathies
complicating hematological diseases.

Keywords: peripheral neuropathy; sural nerve biopsy; neurolymphomatosis; lymphoma; mono-
clonal gammopathy

1. Introduction

Sural nerve biopsy has long been a valuable diagnostic tool for the study of peripheral
neuropathies [1], although the recent introduction of non-invasive techniques (e.g., neu-
roimaging techniques, skin biopsy) [2] and advanced molecular testing has changed the
diagnostic workup of peripheral nervous system diseases.

Recently, it has been shown that serum neurofilament light chain (NfL), a biomarker of
axonal nerve damage, correlates with axonal loss from sural nerve biopsies, thus providing
pathological evidence of the validity of NfL in quantifying axonal damage in peripheral
neuropathies [3].

In hematological diseases, sural nerve biopsy remains the gold standard for the
diagnosis of vasculitis, neurolymphomatosis, and light chain amyloidosis. Whole sural
nerve biopsy is required to assess these pathologies frequently characterized by epineurial
lesions and are processed according to routine procedures [4]. Besides its diagnostic
role, sural nerve biopsy has helped understand the pathogenesis of several neuropathies,
first of all, the most common immune-mediated neuropathy, that is the neuropathy with
antibodies to the myelin-associated glycoprotein (anti-MAG neuropathy).

In the present review, we discuss what we have learned from nerve biopsies on the
mechanisms of nerve damage in neuropathies associated with hematological diseases. The
results are described in detail in Supplementary Materials Table S1.

2. Polyneuropathy with Antibody to Myelin-Associated Glycoprotein (MAG)

Anti-myelin-associated glycoprotein (anti-MAG) neuropathy is a chronic demyelinat-
ing sensorimotor polyneuropathy associated with IgM monoclonal gammopathy and is
the most common paraproteinemic neuropathy. In anti-MAG antibody neuropathy, the
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paraprotein is associated with monoclonal gammopathy of undetermined significance
(MGUS) in approximately 80% of patients, and with Waldenström macroglobulinemia
(WM) in the remaining 20% [5]. Slowly progressive sensory ataxia, upper limb tremor, and
decrease in vibration perception are the characteristic clinical symptoms, with findings of a
large fiber, symmetric sensorimotor neuropathy with markedly increased distal latencies
on nerve conductions studies. Clinically, however, motor involvement occurs only late in
the course of the disease, if ever present [6].

The neuropathy was first described by Latov in 1980 as a neuropathy caused by an IgM
monoclonal peak reacting against peripheral nerve myelin [7], with MAG later identified
as the molecular target [8]. MAG is a 100 kDa glycoprotein, made of five extracellular
Ig-like domains, a transmembrane and a cytoplasmic domain, localized on the membranes
of Schwann cells and oligodendrocytes [9]. The protein mediates axoglial interactions
through the binding to an axolemma receptor, conditioning the myelination maintenance
and tropism of the axon. Indeed, MAG-deficient mice, although showing a normal myeli-
nation process, later develop a peripheral neuropathy with myelin degeneration and neural
cytoskeleton alteration with consequent reduction in axon caliber [10,11]. The IgM para-
protein attacks MAG in a glucidic epitope, namely the carbohydrate CD57/HNK-1, as
purified human MAG no longer shows anti-MAG reactivity after deglycosylation [12].
Sulfoglucuronyl paragloboside (SGPG), a glycolipid found only in peripheral nerves and
sharing the CD57/HNK-1 epitope observed in MAG, is a possible alternative target [13,14].
The binding of IgM antibodies to MAG/SGPG causes a complement-mediated widening of
external myelin lamellae, and consequent nerve demyelination [15]. Pathological studies of
sural nerves show mild loss of myelinated fibers, segmental demyelination, and occasional
focal intramyelin edema on teased nerve fibers, with deposits of IgM and complement in
myelin sheets on immunofluorescence studies. Intraperiodic line splitting and widening of
myelin lamellae are reported in ultrastructural studies [16,17]. Endoneurial immunoglobu-
lin deposits were observed not only in anti-MAG antibody neuropathy but also in some
cases of neuropathy with MGUS or hematologic malignancies and it is likely that the inci-
dence of peripheral neuropathy is associated with endoneurial immunoglobulin deposits
is underestimated [18].

There is strong evidence supporting the pathogenetic role of anti-MAG/SGPG antibodies:

• pathological studies of sural nerves show deposits of IgM and complement in myelin
sheets, suggesting the need for complement activation in the demyelination pro-
cess [19];

• IgM recognize NCAM (Neural Cell Adhesion Molecules) and are seen in correspon-
dence of MAG in demyelinated areas [13]; in skin biopsies of the same patients there is
a concurrent localization of IgM, C3d complement, and MAG in the dermal myelinated
fibers, leading to the loss of nerve fibers [20];

• feline nerves injected with the serum of patients with anti-MAG/SGPG IgM supple-
mented with additional complement, develop complement-mediated demyelination
and conduction block within 2–9 days [21];

• systemic transfusion of chickens with anti-MAG IgM produces segmental demyelina-
tion with IgM deposits on external myelin sheets and consequent widening of myelin
lamellae as observed in human pathology [22];

• cats immunized with purified SGPG develop an ataxic neuropathy with the involve-
ment of dorsal root ganglia, similar to anti-MAG antibody neuropathy [23];

• patients with anti-MAG antibody neuropathy respond to immunomodulant therapies,
especially monoclonal antibodies (i.e., rituximab, obinutuzumab, ibrutinib) [24–26],
and therapy response seems to correlate with the reduction of anti-MAG antibodies
titers [27–29].

Pathological findings from sural nerve biopsies of anti-MAG antibody neuropathy are
represented in Figure 1.
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Figure 1. Sural nerve biopsy from anti-MAG antibody neuropathy. (A) Slight reduction of myelinated fibers is observed; 
rare fibers are surrounded by disproportionately thin myelin sheaths compared to axonal diameter and a few fibers show 
axonal degeneration. A myelinated fiber with intramyelinic oedema is evident. (semithin section, toluidine blue; original 
magnification 20×; bar 50 μm); (B) Teased fiber showing a focal pale swelling in the remyelinating internode (original 
magnification 40×; bar 25 μm); (C) Direct Immunofluorescent studies on frozen sections shows the presence of IgM depo-
sition on the myelin sheaths of several fibers (original magnification 20×; bar 50 μm); (D) Electron micrograph of a trans-
verse section through a nerve fiber with widening of myelin lamellae as a result of separation along intraperiod line. 
(original magnification 12,000×; bar 1 μm). 

3. Cryoglobulinemic Neuropathies 
A rare cause of axonal neuropathy is cryoglobulinemia, which is an inflammation of 

small blood vessels caused by peculiar immunocomplexes called cryoglobulins. Cryo-
globulins usually clump together below 37 °C, activate the complement cascade, and re-
cruit acute phase blood cells inflating and damaging capillaries of the extremities but also 
of the skin, the glomerulum and vasa nervorum. In the context of hematological diseases, 
both type I (monoclonal IgMs or IgGs, rarely IgA) and type II cryoglobulinemia (mixed 
forms, usually associated with HCV infections or connective tissue diseases occur in 
MGUS, or B cells malignancies (WM, chronic lymphocytic leukemia, CLL), with a pre-
dominance of type II cryoglobulinemia in WM [29,30]. Type III cryoglobulinemia caused 
by polyclonal IgM and IgG is seen predominantly in chronic infections (mainly hepatitis 
C virus, HCV) and also connective tissue diseases (in particular Sjogren syndrome) [31–
33]. In both Type II and III the IgM antibodies expressing activity against the Fc portion 
of IgG are called rheumatoid factor. Monoclonal IgMs cryoglobulins cause a severe pain-
ful neuropathy, that may present with multifocal distribution also involving cranial 
nerves. Cryoglobulinemia may be associated with arthralgia, glomerulonephritis, and 
dermatological findings such as skin ulceration or purpura. On sural nerve biopsy, peri-

Figure 1. Sural nerve biopsy from anti-MAG antibody neuropathy. (A) Slight reduction of myelinated fibers is observed;
rare fibers are surrounded by disproportionately thin myelin sheaths compared to axonal diameter and a few fibers show
axonal degeneration. A myelinated fiber with intramyelinic oedema is evident. (semithin section, toluidine blue; original
magnification 20×; bar 50 µm); (B) Teased fiber showing a focal pale swelling in the remyelinating internode (original
magnification 40×; bar 25 µm); (C) Direct Immunofluorescent studies on frozen sections shows the presence of IgM
deposition on the myelin sheaths of several fibers (original magnification 20×; bar 50 µm); (D) Electron micrograph of a
transverse section through a nerve fiber with widening of myelin lamellae as a result of separation along intraperiod line.
(original magnification 12,000×; bar 1 µm).

3. Cryoglobulinemic Neuropathies

A rare cause of axonal neuropathy is cryoglobulinemia, which is an inflammation of
small blood vessels caused by peculiar immunocomplexes called cryoglobulins. Cryoglob-
ulins usually clump together below 37 ◦C, activate the complement cascade, and recruit
acute phase blood cells inflating and damaging capillaries of the extremities but also of the
skin, the glomerulum and vasa nervorum. In the context of hematological diseases, both
type I (monoclonal IgMs or IgGs, rarely IgA) and type II cryoglobulinemia (mixed forms,
usually associated with HCV infections or connective tissue diseases occur in MGUS, or
B cells malignancies (WM, chronic lymphocytic leukemia, CLL), with a predominance of
type II cryoglobulinemia in WM [29,30]. Type III cryoglobulinemia caused by polyclonal
IgM and IgG is seen predominantly in chronic infections (mainly hepatitis C virus, HCV)
and also connective tissue diseases (in particular Sjogren syndrome) [31–33]. In both Type
II and III the IgM antibodies expressing activity against the Fc portion of IgG are called
rheumatoid factor. Monoclonal IgMs cryoglobulins cause a severe painful neuropathy, that
may present with multifocal distribution also involving cranial nerves. Cryoglobulinemia
may be associated with arthralgia, glomerulonephritis, and dermatological findings such
as skin ulceration or purpura. On sural nerve biopsy, perivascular lymphomonocytic
infiltration is associated with tunaca media necrosis, characteristic for vasculitis, petechiae,
focal loss of myelinated and unmyelinated fibers often with active axonal degeneration or
regeneration depending on the stage of the disease.

Cryoglobulin-associated neuropathy also benefits from rituximab, as well as from
steroids and plasma-exchange in case of life-threatening manifestations [31].

Pathological findings from sural nerve biopsies of patients with cryoglobulinemic
neuropathy are represented in Figure 2.
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bar 50 μm). 

4. Neurolymphomatosis 
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lymphomatous or leukemic cells. Rarely, neurolymphomatosis is the primary manifesta-
tion of non-Hodgkin lymphomas (NHL), while more commonly, neoplastic cells dissem-
inate into the peripheral nervous system from systemic sites or central nervous system 
[30]. Neurolymphomatosis may be also the first manifestation of the relapse of the under-
lying lymphoma. Diffuse large B-cell lymphoma (DLBCL) is the leading cause of neuro-
lymphomatosis, but any lymphoma may be because of neurolymphomatosis. 

In a case series by Grisariu et al., neurolymphomatosis was associated with NHL in 
90% of 50 patients [36], with the remaining patients presenting with an underlying B-cell 
acute leukemia. Among NHL, almost 3 out of 4 cases were DLBCL, 9% were follicular 
lymphoma whereas peripheral T-cell lymphoma and mantle cell lymphoma were ob-
served rarely. Neurolymphomatosis was primary in almost one-third of cases in the same 
series, while another study by Baehring et al. reported more than 80% of patients without 

Figure 2. Sural nerve biopsy from cryoglobulinemic neuropathy. (A) Asymmetric focal loss of myelin
fibers and epineurial perivascular inflammatory infiltration are evident. (semithin section, toluidine
blue, original magnification, 10×; bar 100 µm). (B) A perivascular infiltrate of lympho-monocytes
is recognizable in epineurium. (paraffin section, H&E, original magnification 20×; bar 50 µm). (C)
Active axonal degeneration characterizes the pathological process together with endoneurial and
subperineurial petechiae (*) (semithin section, toluidine blue, original magnification 40×; bar 50 µm).
(D) Haemorrhagic suffusions (petechiae) are also present in epineurium (paraffin section, H&E,
original magnification 10×; bar 50 µm).

4. Neurolymphomatosis

The term “peripheral lymphomatosis” was firstly proposed by Lhermitte and Trelles
to describe a 67-year-old woman with malignant neuropathy and lymphoid nerve infil-
trates but no systemic or brain involvement [30,34,35]. Neurolymphomatosis is, therefore,
a pathological definition and represents a rare neurologic manifestation of hematological
malignancies in which cranial or peripheral nerve roots, plexi, or nerves are infiltrated
by lymphomatous or leukemic cells. Rarely, neurolymphomatosis is the primary man-
ifestation of non-Hodgkin lymphomas (NHL), while more commonly, neoplastic cells
disseminate into the peripheral nervous system from systemic sites or central nervous
system [30]. Neurolymphomatosis may be also the first manifestation of the relapse of the
underlying lymphoma. Diffuse large B-cell lymphoma (DLBCL) is the leading cause of
neurolymphomatosis, but any lymphoma may be because of neurolymphomatosis.

In a case series by Grisariu et al., neurolymphomatosis was associated with NHL in
90% of 50 patients [36], with the remaining patients presenting with an underlying B-cell
acute leukemia. Among NHL, almost 3 out of 4 cases were DLBCL, 9% were follicular
lymphoma whereas peripheral T-cell lymphoma and mantle cell lymphoma were observed
rarely. Neurolymphomatosis was primary in almost one-third of cases in the same series,
while another study by Baehring et al. reported more than 80% of patients without prior
history of lymphoma [34]. Primary neurolymphomatosis at onset in CLL and, rarely, in
natural killer cell lymphoma [37–40] has also been reported. The rarity of the disease as well
as the heterogeneity of the clinical presentation (depending on the location of the malignant
cells in the peripheral nervous system) together with the technical difficulties to establish
a definitive diagnosis justify the delay between onset of symptoms and diagnosis, which
requires nerve biopsy. In a study by Tomita et al. [41], the most frequent misdiagnosis was
chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) due to the presence
of demyelinating features [42]. Neurolymphomatosis should therefore be considered in
any patient with unexplained peripheral nervous system manifestations. Neurophysiology
is needed to define the type of nerve damage and to identify the best candidate nerve
for biopsy. Although magnetic resonance imaging (MRI), Positron emission tomography
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with computed tomography (PET-CT) and PET-MRI neuroimaging advances [37,43,44] the
histological examination of the nerve remains the gold standard for the diagnosis, showing
malignant lymphocytes infiltrate which may be located in the perineurium, epineurium,
and endoneurium [45]. In our experience, asymmetric axonal loss is secondary to a focal
monomorphic lymphocytic infiltration, predominantly epineurial, that is monoclonal
on immunohistochemical cell typing [30,35,37]. Flow cytometry on cerebrospinal fluid
also emerged as a possible diagnostic investigation, useful for the characterization of the
malignant clonal lymphocytes [30,45]. Detection of a clonal B or T-cell receptor gene may
help confirm lymphomatous infiltration in the nerve biopsy. This is commonly performed
by standard PCR techniques designed to assess the diversity of the junctional regions in Ig
or T-cell receptor genes [46].

Pathological findings from sural nerve biopsies of patients with neurolymphomatosis
are represented in Figure 3.
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Figure 3. Sural nerve biopsy from patients with neurolymphomatosis. (A) Epineurial monomorphic
perivascular infiltrate of lympho-monocytes and mild loss of myelin fibers in nerve fascicles are observed
(semithin section, toluidine blue, original magnification 20×; bar 100 µm). (B) Diffuse lymphomatous
infiltration involves the epineurium and perineurium (semithin section, toluidine blue, original magnifi-
cation 40×; bar 50 µm). (C) The epineurium is infiltrated by a voluminous monomorphic lymphoid
cell accumulation; minor infiltrates are also observed in perivascular sites (arrows) (paraffin section,
H&E, original magnification 10×; bar 100 µm). (D,E) Immunocytochemistry with anti-CD20 anti-
bodies demonstrates a prevalence of B lymphocytes in epineurial infiltrates in two different cases of
neurolymphomatosis (paraffin sections, original magnification 20×; bar 100 µm).

5. Amyloidosis

Nerve biopsy represents the gold standard to demonstrate amyloid deposits in pa-
tients with amyloid neuropathy, both in immunoglobulin light-chain (AL) amyloidosis
and transthyretin (TTR)-related amyloid neuropathy [47]. After the demonstration of
amyloid deposits by Congo red staining, amyloid typing with immunocytochemistry and
identification of amyloid fibrils on electron microscopy should be used to formulate the
correct diagnosis and start proper therapy. Sometimes, when the coexistence of the two
conditions cannot be excluded a priori electron microscopy or immunohistochemistry are
mandatory to identify the fibrils’ composition [47,48].

Asymmetric loss of nerve fibers parallels clinical symptoms, being extreme in ad-
vanced cases, and tend to affect unmyelinated and small myelinated fibers earlier [49].
Active axonal degeneration is often observed, together with concomitant signs of axonal
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regeneration. Segmental demyelination is sometimes observed on teased fibers in TTR-
related amyloid neuropathy and leads to the speculation of a Schwann cell involvement in
the pathogenesis of amyloid neuropathy. Amyloid deposits are typically stained by Congo
red and show the characteristic apple-green birefringence under polarized light. In early
forms, the deposition is localized mainly in small vessel walls but extends to subperineural
and epineural regions in advanced cases [50]. Immunohistochemistry with antibodies
against lambda or kappa chains, transthyretin, or other amyloidogenic proteins could then
be used to characterize the disease.

The neuropathological findings in a large cohort of transthyretin (TTR)-related amy-
loid neuropathy have been recently reported [51]. Data from 60 sural nerve biopsies
showed evidence of axonal loss, which was severe in the majority of cases (70%). Congo
red staining was positive in 72.5% of the patients, mostly in Val30Met cases. When per-
formed, immunohistochemistry with anti-TTR was positive in all patients, with four cases
also cross-reacting with anti-light chains (in two of them, an MGUS was found) [45].

Nerve biopsy also helped shed light on the pathophysiology of TTR amyloidosis. The
finding of C-terminal fragments TTR besides full-length TTR in ATTRv specimens led to
differentiate two types of amyloid with different phenotype and likely therapy response [51,52].
Moreover, data from experimental models helped understand the physiological role of TTR in
neuroprotection [53].

Pathological findings from sural nerve biopsies of patients with AL amyloidosis are
represented in Figure 4.
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thy, Skin changes) syndrome is a rare disorder associated with plasma cell dyscrasia. The 
hematological disorder (IgG or IgA paraprotein, lambda-restricted, with elevated serum 
free light chains but conserved κ/λ ratio), together with the polyneuropathy constitutes 
the mandatory criteria for diagnosis [54]. High serum or plasma levels of Vascular Endo-
thelial Growth Factor (VEGF), which acts as a modulator of angiogenesis and vascular 
permeability, are detected in POEMS patients [55,56]. Moreover, VEGF is a reliable bi-
omarker that can contribute to differentiate POEMS syndrome from other conditions with 
plasma cell dyscrasias and peripheral neuropathy, namely immunoglobulin AL amyloi-
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Figure 4. Sural nerve biopsy from patients with light chain amyloidosis (AL). (A) Axonal neuropathy
with loss of myelinated nerve fibers and endoneurial perivascular accumulation of amorphous mate-
rial (arrow) is observed (semithin section, toluidine blue, original magnification 20×; bar 100 mm).
(B) Congo-red staining shows amyloid deposits in nerve fascicles (B), green birefringency is char-
acteristically observed on cross polarizing filters (C) (paraffin section, original magnification 40×;
bar 50 mm). (D) Direct immunofluorescence on frozen sections shows perivascular deposits of light
chains (original magnification 40×; bar 50 µm). (E) Electron micrograph of endoneurial amyloid
deposit composed of a dense aggregate of straight fibrils (original magnification 7000×, bar 1 µm).
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6. POEMS Syndrome

POEMS (Polyneuropathy, Organomegaly, Endocrinopathy, Monoclonal gammopathy,
Skin changes) syndrome is a rare disorder associated with plasma cell dyscrasia. The
hematological disorder (IgG or IgA paraprotein, lambda-restricted, with elevated serum
free light chains but conserved κ/λ ratio), together with the polyneuropathy constitutes the
mandatory criteria for diagnosis [54]. High serum or plasma levels of Vascular Endothelial
Growth Factor (VEGF), which acts as a modulator of angiogenesis and vascular perme-
ability, are detected in POEMS patients [55,56]. Moreover, VEGF is a reliable biomarker
that can contribute to differentiate POEMS syndrome from other conditions with plasma
cell dyscrasias and peripheral neuropathy, namely immunoglobulin AL amyloidosis or
multiple myeloma [57].

One of the clinical hallmarks of the disease is the subacute sensory-motor polyneu-
ropathy with prominent neuropathic pain, that can rapidly progress towards a significant
motor impairment [58–60]. Neurophysiology commonly discloses mixed axonal and de-
myelinating pattern, that can favor the misdiagnosis with CIDP, despite the availability of
reliable diagnostic criteria [61,62]. In line with this, nerve biopsies reveal prominent axonal
degeneration as the main feature, with myelinated fiber loss and increased epineurial
blood vessels [60,63], together with uncompacted myelin lamellae indicating demyelina-
tion. Moreover, abnormal findings in the blood–nerve barrier including the proliferation
of endothelial cells, increased basal lamina thickness, and narrowed endoneurial vessels,
were associated with higher values of serum VEGF and with increased VEGF expres-
sion in blood vessels, supporting its major role in the development of neuropathy [29,56].
Pachymeningeal non-inflammatory involvement has been reported in POEMS patients
undergoing brain magnetic resonance. Histopathological studies disclosed hyperplasia of
meningothelial cells, obstructive vessel disease due to endothelial proliferation, and signs
of neovascularization, all features supporting a possible role of VEGF in the context of
meningeal involvement [64,65].

Pathological findings from sural nerve biopsies of POEMS syndrome are represented
in Figure 5.
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Figure 5. Sural nerve biopsy from a patient with POEMS syndrome. (A) Severe loss of myelinated
fibers and occasional early remyelinating fibers (*) are observed (semithin section, toluidine blue,
original magnification 20×; bar 100 µm). (B) Epineurial capillaries are surrounded by slight lym-
phomonocytic infiltrates (semithin section, toluidine blue, original magnification 40×; bar 100 µm).
(C) Endothelial proliferation of endoneurial vessels is evident (arrows) (semithin section, toluidine
blue, original magnification 40×; bar 100 µm).
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7. Chemotherapy-Induced Neurotoxicity (CIPN)

Chemotherapy-induced peripheral nerve involvement, a dose-limiting effect pos-
sibly leading to treatment discontinuation, is common in the context of hematological
disorders with an overall incidence of 60%. Clinical and neurophysiological examination
disclose predominant sensory damage, presenting either as a length-dependent distal
axonal neuropathy (involving large myelinated Aß fibers) or as a ganglionopathy with
prominent dorsal root ganglia dysfunction (likely due to their anatomical structure with a
less developed blood-nerve barrier) [30,66].

Several potentially neurotoxic drugs, such as vinca alkaloids, thalidomide, lenalido-
mide, proteasome inhibitors, and brentuximab vedotin are included in chemotherapy
regimens for the treatment of different hematological conditions. Moreover, a new class of
compounds, namely the immune checkpoint inhibitors monoclonal antibodies nivolumab
and pembrolizumab, approved for the treatment of relapsed/refractory Hodgkin’s lym-
phomas, have been reported to potentially trigger an immune-mediated reaction involving
the peripheral nervous system [30,66–68].

Sural nerve biopsies can provide information on possible pathogenic mechanisms of
CIPN [30].

Vinka alkaloids (vincristine, vinblastine, vinorelbine, vindesine) are widely used in
several chemotherapy protocols both in the adult and pediatric population. Through
their ability to bind tubulin, they block microtubule formation and induce cell apoptosis,
with subsequent impairment of axonal transport and secondary large fiber degeneration,
resulting in a length-dependent axonal sensory-motor peripheral neuropathy. Cranial
nerve neuropathies have also been reported, together with small fiber dysfunction with
neuropathic pain and autonomic symptoms [69–72]. In addition to the main mechanism of
damage, peripheral nerve involvement may be sustained also by mitochondrial dysfunction
and abnormal calcium homeostasis [73]. A limited number of pathological studies were
performed in animal models [74–76] confirming that vinka alkaloids determine severe
axonal degeneration in peripheral nerves.

Thalidomide, a glutamic acid derivative, is employed in hematological conditions includ-
ing multiple myeloma for its anti-angiogenic, immunomodulatory, and anti-inflammatory
properties [77]. The mechanisms of thalidomide-induced neuropathy are still unclear,
but different hypothesis have been suggested, including microvascular damage due to
the anti-angiogenic properties of the drug, direct toxic effect [78], or inhibition of NF-
kB, an essential regulator in the nerve growth factor-mediated effects on the survival of
sensory neurons [79]. Histopathological studies on sural nerve biopsies from patients
with thalidomide-induced neuropathy disclose heterogeneous findings, including selec-
tive loss of large fibers without segmental demyelination or inflammation, and signs of
regeneration [80,81].

Lenalidomide, a thalidomide analog with immune-modulating and anti-angiogenetic
activities employed in patients with multiple myeloma, has shown a more satisfying safety
profile, especially regarding neurotoxicity when compared with its analog or with other
drugs such as bortezomib [82]. In support of this, lenalidomide has also successfully been
used in patients with POEMS syndrome [83], where neurotoxicity should be avoided since
it can worsen the underlying peripheral neuropathy, which is often the main symptom in
this condition.

Proteasome inhibitors bortezomib and carfilzomib are currently included in the
treatment protocols for multiple myeloma, WM, and mantle cell lymphoma. Moreover,
bortezomib-based regimens are an effective and safe treatment option also in patients with
POEMS syndrome [77,84]. Bortezomib bears a severe neurotoxicity potential, with the
vast majority of patients presenting with an axonal sensory-motor peripheral neuropathy
and prominent neuropathic pain [85], and only a minority showing a predominant motor
involvement and demyelinating features at neurophysiology and nerve biopsy [86]. Pe-
ripheral neuropathy has been suggested to develop due to bortezomib’s interference on
transcriptional programs in neurons of the dorsal root ganglia with subsequent activation
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of neuroinflammatory pathways and secondary central sensitization [87]. In addition to
that, the contribution of altered calcium intracellular homeostasis due to mitochondrial
dysfunction and for altered sodium/potassium conductance secondary to Na+-K+-ATPase
dysfunction has also been confirmed [88,89]. Carfilzomib, a second-generation proteasome
inhibitor approved for multiple myeloma treatment, substantially mirrors the bortezomib
toxicity profile although it has been reported to have overall less neurotoxicity [77].

Brentuximab vedotin is an anti-CD30 monoclonal antibody conjugated with monomethyl
auristatin E (a tubulin polymerization inhibitor leading to cell apoptosis), included in ther-
apeutic protocols for both B and T cell lymphomas. Besides the reports of an early sensory-
motor axonal peripheral neuropathy, brentuximab may be associated with severe and
rapidly progressing motor neuropathies, with histopathological studies disclosing diffuse
depletion of axonal microtubules and the detection of misaligned neurofilaments [90–92]
(Figure 6).
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Figure 6. Sural nerve biopsy from a patient with brentuximab vedotin-related neuropathy. (A) axonal
neuropathy is characterized by very mild loss of myelinated fibers; rare wallerian degenerations
are present (arrow) (semithin section, toluidine blue, original magnification 40×; bar 50 mm). (B)
A myelinated fiber shows an altered composition of cytoskeleton constitutes: is evident a relative
preservation of neurofilaments and a significative depletion of microtubules (original magnification
30,000×; bar 300 nm).
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The immune checkpoint inhibitors (i.e., nivolumab and pembrolizumab), approved for
relapsed/refractory Hodgkin’s lymphomas, act by targeting programmed cell death protein
1 (PD-1), a cell surface receptor with a crucial modulatory role on the immune system.
Given their more recent introduction among the therapeutic options for hematological
disorders, the incidence, clinical characteristics, and timing of possible iatrogenic peripheral
neuropathy are still being defined [93,94]. However, a recent paper by Psimaras et al.
showed that these drugs are considered relatively safe with regards to peripheral nerve
involvement with a reported overall incidence of around 1.2–1.3% [95]. An immune-
mediated demyelinating polyradiculoneuropathy has been reported in some patients
undergoing treatment with immune checkpoint inhibitors but epidemiological data are
still unreliable due to significant differences across studies. To date, few pathological
studies have been performed on these patients, with evidence of epineurial perivascular
inflammatory deposits (T lymphocytes) [96,97].

8. Conclusions

Despite the availability of less invasive techniques, sural nerve biopsy constitutes
an important diagnostic tool in the work-up of peripheral neuropathies, especially when
associated with hematological conditions (Figure 7). In a few of them, namely neurolym-
phomatosis or vasculitis, nerve biopsies remain the gold standard. Moreover, neuropatho-
logical studies may help to clarify the pathogenic mechanisms in these disorders, possibly
suggesting potential therapeutic approaches.
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