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Electrophysiological and Motor Responses
to Chemosensory Stimuli in Isolated Cephalopod Arms

KAITLYN E. FOUKE AND HEATHER J. RHODES
*

The Grass Lab, Marine Biological Laboratory, 7 MBL Street, Woods Hole, Massachusetts 02543;
and Department of Biology, Denison University, 100 West College Street, Granville, Ohio 43023

Abstract. While there is behavioral and anatomical evi-
dence that coleoid cephalopods use their arms to “taste”
substances in the environment, the neurophysiology of chemo-
sensation has been largely unexamined. The range and sensi-
tivity of detectable chemosensory stimuli, and the processing
of chemosensory information, are unknown. To begin to ad-
dress these issues, we developed a technique for recording
neurophysiological responses from isolated arms, allowing
us to test responses to biologically relevant stimuli. We tested
arms from both a pelagic species (Doryteuthis pealeii) and a
benthic species (Octopus bimaculoides) by attaching a suc-
tion electrode to the axial nerve cord to record neural activity
in response to chemical stimuli. Doryteuthis pealeii arms
showed anecdotal responses to some stimuli but generally
did not tolerate the preparation; tissue was nonviable within
minutes ex vivo. Octopus bimaculoides arms were used suc-
cessfully, with tissue remaining healthy and responsive for
several hours. Arms responded strongly to fish skin extract,
glycine, methionine, and conspecific skin extract but not to
cephalopod ink or seawater controls. Motor responses were
also observed in response to detected stimuli. These results
suggest that chemosensory receptor cells on O. bimaculoides
arms were able to detect environmentally relevant chemicals
and drive local motor responses within the arm. Further explo-
ration of potential chemical stimuli for O. bimaculoides arms,
as well as investigations into the neural processing within the
arm, could enhance our understanding of how this species uses
its arms to explore its environment. While not successful in

D. pealeii, this technique could be attempted with other ceph-
alopod species, as comparative questions remain of interest.

Introduction

Coleoid cephalopods, the soft-bodied octopods and deca-
pods that make up the vast majority of extant cephalopods, have
complex nervous systems with remarkable cognitive and sen-
sory abilities that evolved separately from vertebrate nervous
systems (Budelmann, 1995, 1996; Mather and Kuba, 2013;
Hanlon and Messenger, 2018). Their distinct genetics and neu-
ral organization, therefore, make them fascinating organisms
to study (Albertin et al., 2015; Liscovitch-Brauer et al., 2017;
O’Brien et al., 2018). The coleoid cephalopods that have been
examined for chemosensory abilities, including various species
of octopus, squid, and cuttlefish, detect chemical cues in their
environment through multiple chemosensory organs, includ-
ing olfactory pits located near the eye (Woodhams and Mes-
senger, 1974; Gilly and Lucero, 1992; Budelmann, 1996;Mobley
et al., 2008; Polese et al., 2016), chemoreceptors on the lips and
mouth parts (Graziadei, 1965; Emery, 1975), and chemorecep-
tors on the suckers of the arms and tentacles (Graziadei, 1962,
1964b; Santi, 1975).

Chemosensation in the arms and tentacles is particularly in-
teresting because of the organization of the axial nerve cords
that run down the length of each. Unlike vertebrate peripheral
nerves, which consist only of axons, the axial nerve cords that
run down each arm or tentacle consist of a continuous series of
ganglia (apparent from swellings along the nerve cord), with
extensive local circuitry (including sucker ganglia that lie out-
side the nerve cord; for diagrams see Graziadei, 1962; Rowell,
1963), resembling a spinal cord more than a nerve (Graziadei,
1962; Rowell, 1963; Budelmann and Young, 1985; Mather
andKuba, 2013;Hanlon andMessenger, 2018). This underlies
the relative autonomy of arm function, where local sensory in-
formation can evoke motor responses within an arm even
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when disconnected from the brain or other arms (e.g., Rowell,
1963; Nesher et al., 2014). Afferent pathways also send sen-
sory information to the brain, where responses can be coordi-
nated across arms and behavioral patterns altered based on
additional sensory input, such as from the visual system
(Budelmann and Young, 1987; Budelmann, 1995; Hanlon and
Messenger, 2018).

Morphology and function of cephalopod arms and tenta-
cles vary considerably between species (Budelmann, 1996;
Hanlon and Messenger, 2018); thus, the extent and function
of chemosensation in arms and tentacles surely vary as well.
Cephalopods are diverse, occupying many different ecologi-
cal niches within the ocean that place different demands on
their sensory systems (Budelmann, 1996; Nixon and Young,
2003; Hanlon and Messenger, 2018). Benthic octopods, such
as Octopus bimaculoides used in this study, forage for food
by reaching their arms into crevices and under rocks and us-
ing chemosensation and somatosensation to identify prey
(Budelmann, 1996; Hanlon andMessenger, 2018). During for-
aging, cuttlefish are known to manipulate their environment
with their arms, such as moving sand around or jetting water
to expose prey, which requires recognition of their prey and
the associated environment and which could involve chemo-
sensation (Mather and Kuba, 2013). Pelagic squid, such as
Doryteuthis pealeii studied here, use vision as the dominant
sense for hunting; but they use their arms to grasp prey, as well
as in reproductive interactions (Hanlon et al., 2013; Hanlon
andMessenger, 2018). Thus, the density and specificity of che-
moreceptors would be expected to vary between these species.
Indeed, anatomic descriptions of putative chemoreceptive cells
on suckers report higher densities of such cells on the suckers
of benthic octopods than pelagic squid (Graziadei, 1962, 1964a;
Santi, 1975).

When vision is unavailable, octopus foraging behavior is
dependent on arm chemotactile sensation, reaching into dark
crevices and probing other parts of their surroundings (Budel-
mann, 1996; Walderon et al., 2011; Mather and Kuba, 2013).
In behavioral chemosensation studies, octopuses have been
shown to distinguish between hydrochloric acid, quinine, and
sucrose, indicating “taste-by-touch” chemosensory capabilities
(Wells, 1963). Octopuses can also detect and respond to chem-
icals dissolved in seawater, although the anatomic location of
the chemoreceptors is unclear in these studies (Chase and
Wells, 1986; Walderon et al., 2011). Additionally,O. vulgaris
was shown to use chemosensory cues at its suckers to prevent
self-attachment, which is essential for an octopus in order to
avoid self-entanglement (Nesher et al., 2014).

There is also evidence that squid have specialized chemo-
sensory functions in their arms. A protein found onD. pealeii
egg casings has been shown to trigger aggressive behaviors in
D. pealeii males when they touch the eggs with their arms
(Cummins et al., 2011; Hanlon et al., 2013). This pheromonal
signal seems to be mediated by chemosensory receptors on

the arms or suckers of the males, although no receptor or re-
sponse pathway has been identified yet. Squid touch con-
specifics with their arms in aggressive and reproductive con-
texts, as well as touching prey items (Budelmann, 1996; Hanlon
et al., 2013; Hanlon andMessenger, 2018). The possibility that
arm chemoreceptors are used in such interactions has yet to be
explored. Ink, which can act as a conspecific alarm cue in ceph-
alopods (Gilly and Lucero, 1992; Wood et al., 2008; Stau-
dinger et al., 2011; Derby, 2014), has been shown to trigger
responses in chemosensory receptor cells in the olfactory pits
of Doryteuthis opalescens (Lucero et al., 1992); but it is not
known whether it is also detected by chemoreceptors on other
parts of the body.

Despite initial observations of sucker chemoreceptors
decades ago (Graziadei, 1962, 1964b; Santi, 1975), our un-
derstanding of how different cephalopods use sucker chemo-
sensation remains sparse. In contrast to research on mechano-
reception and muscular control (Gutfreund et al., 2006;
Sumbre et al., 2006; Kier, 2016), there is little known about
the physiological coding and neural processing of chemical
information. In this study, the physiological and behavioral
responses to chemical stimuli were recorded from isolated
arms fromD. pealeii (longfin inshore squid) (formerly known
as Loligo pealeii Lesueur, 1821) and O. bimaculoides (Cali-
fornia two-spot octopus) (Pickford andMcConnaughey, 1949).
We tested stimuli inspired by previous studies, including amino
acids, fish skin extract, D. pealeii egg casing extract, O. bima-
culoides skin extract, D. pealeii ink, and O. bimaculoides ink
(Chase and Wells, 1986; Lucero et al., 1992; Mobley et al.,
2008; Wood et al., 2008; Cummins et al., 2011; Walderon
et al., 2011; Hassenklover et al., 2012; Nesher et al., 2014).
We hoped to establish an isolated arm protocol that would en-
able further research, and we hypothesized that both cephalo-
pods would sense and respond to environmentally relevant
chemicals through arm chemoreceptors.

Materials and Methods

Experimental animals

Adult longfin inshore squid (Doryteuthis (Amerigo) pealeii
(Lesueur, 1821)) were collected by trawl from the Vineyard
Sound nearWoods Hole, Massachusetts, by the Marine Biolog-
ical Laboratory (MBL) Gemma vessel between June 12 and
August 9, 2018. Both male and female squid were used, for a
total of 20 individuals. The animals were maintained in large
collection tanks with oxygenated natural seawater that varied
with ambient sea temperature (18–20 7C) andpH (7.5–8.5).Cali-
fornia two-spot octopus (Octopus bimaculoides Pickford&Mc-
Connaughey,1949)were rearedby theCephalopodBreeding Ini-
tiative at the MBL. Nine juveniles aged 40–70 days (0.95–3 g),
sex not determined, were used for experiments. The octopuses
were individually housed in plastic tanks with plastic partitions
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and continuously circulating, oxygenatedfiltered seawater (FSW)
kept at 24 7C, 34 ppt salinity, and pH∼8.1. The octopuses were
maintained in 12h∶12h dark∶light cycles and were fed a diverse
diet of crustaceans, fish, and snails between 10:00 and 16:00.
To ensure the ethical and humane treatment of animals, all an-
imal handling and experimental procedures were conducted at
the MBL, in accordance with MBL regulations, in consultation
with MBL veterinarian Lisa Abbo.

Physiological solutions and chemical stimuli

For all octopus and some squid experiments, arms were
bathed in, and stimuli were createdwith, FSW. For some squid
experiments, artificial seawater (ASW)was created using Crys-
tal Sea Marine Mix (Marine Enterprises International, Balti-
more, MD) and deionized water. Stimuli applied in D. pealeii
experiments included 1 mmol L21

L-methionine in ASW or
FSW; 1∶10 homogenized fish skin extract in FSW; 20 mmol L21

glycine in ASW or FSW; and homogenized D. pealeii egg
casing extract in FSW. Stimuli used in O. bimaculoides exper-
iments included 1∶10 homogenized fish skin extract in FSW;
1 mmol L21

L-methionine in FSW; 20 mmol L21 glycine in
FSW; D. pealeii ink in home tank water (natural seawater);
homogenized O. bimaculoides skin extract in FSW; and O.
bimaculoides ink in home tank water (FSW). Concentrations
of amino acid stimuli were based on a review of related lit-
erature (Chase and Wells, 1986; Mobley et al., 2008; Wood
et al., 2008; Hassenklover et al., 2012) but increased slightly
from reported values to account for the rapid (and uncon-
trolled) dilution of stimuli into the bath. Ink was collected by
carefully pipetting freshly released ink from the home tanks of
D. pealeii and O. bimaculoides when the organisms expelled
ink in response to capture or handling.Octopus bimaculoides
did not ink often, which delayed our ability to collect this stim-
ulus; only later experiments used O. bimaculoides ink, and
D. pealeii ink was used in earlier experiments. Fish skin (spe-
cies unknown, obtained from chopped fish used as food for
marine organisms at the MBL), D. pealeii egg case, and O.
bimaculoides skin (taken from arms used in prior experiments
as well as one euthanized octopus mantle, samples from multi-
ple animals combined) were cut into small pieces and homog-
enized separately into FSW with a manual glass homogenizer.
Because it took time to collect octopus skin, only later ex-
periments used this stimulus. All stimuli, including ASW and
FSW controls, were made in batches, aliquoted, and kept fro-
zen (220 7C) until use. Osmolality of stimuli was tested using
a freezing point osmometer; and samples were found to be
comparable to FSW, with the exception of the fish skin ex-
tract, which had a slightly lower osmolality (∼850 mOsm).
We diluted FSW with deionized water to create a compara-
ble low-osmolality control, which was tested on three octopus
arms and did not evoke a response (similar to FSW controls;
data not shown).

Doryteuthis pealeii arm preparation

To isolate arms from the squid body for experimentation,
squid were euthanized by decapitation between the mantle
and eyes, followed immediately by decerebration (a series of
cuts through the brain between the eyes with surgical scissors).
A segment of one arm was then removed; placed in oxygen-
ated, cooled ASW or FSW for experimentation; and attached
to an electrode. The entire procedure typically took three to
five minutes. The head with attached arms was then transferred
to home tank seawater and kept on ice, and additional arms
were sometimes amputated later for additional trials.

The removed arms were pinned down onto a Sylgard-coated
50-mm petri dish filled with 12–14 mL ASW or FSW. Cold
ASW or FSW was perfused over the arm at 3–4 mL min21.
For some experiments, seawater was oxygenated by bubbling O2

through an air stone in the bath reservoir; different bath tem-
peratures were tried in different experiments, ranging from
6 7C to 22 7C. For most experiments, a plastic suction elec-
trode, containing a silver chloride wire and filled with bath sea-
water, was attached to the nerve cord by drawing the cut end of
the axial nerve into the pipette; a second silver chloride wire
attached to the outside of the pipette served as the reference
electrode. For a subset of experiments, two metal pin electrodes
were pinned through the axial nerve cord about 1 cm apart.

Octopus bimaculoides arm preparation

Nine octopuses were anesthetized, and armswere surgically
removed for experimentation. Animals were anesthetized in
1.5% ethanol in FSW for 8–10 min (L. Abbo, Marine Biologi-
cal Laboratory, pers. comm.).Depth of anesthesiawas assessed
by animal coloration, ventilation rate, and response to armpinch.
Once an animal was adequately anesthetized, one-half to two-
thirds of the arm was removed with surgical scissors and placed
in oxygenated ambient-temperature FSW. One to three arms
were taken from each octopus. One octopus was euthanized
after amputation by incremental increases of 2% ethanol in
FSWevery 2min for 16min total (mantle skin from this animal
was used to generate stimuli; other tissue was used for separate
anatomy experiments). All other anesthetized octopuses were
transferred to FSW immediately after amputation for recovery.
All recovered animals resumed normal ventilation rate, color,
and behavior within 10 minutes and exhibited typical locomo-
tion and feeding behavior after the experiment. Arm regenera-
tion was observed to begin within days after the lesion.

Each arm was transferred to a Sylgard-coated 50-mm petri
dish filled with 12–14 mL FSW. The exposed axial nerve cord
protruded from the surrounding tissue upon amputation of each
arm and was drawn into the tip of a suction electrode (as pre-
viously described for Doryteuthis pealeii arm preparation).
Ambient-temperature (∼22–23 7C) oxygenated FSW was per-
fused over the arm at a rate of 3–4 mLmin21 once the electrode
was successfully attached. If more than one arm was removed
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from an animal, amputated armswere kept in oxygenated FSW
until use. Time from amputation to first stimulus ranged from
6 min to 1 h 40 min.

Electrophysiological recordings and stimulus delivery

For both squid and octopus experiments, differential record-
ings were amplified with anA-MSystems (Sequim,WA) head
stage and 1800 amplifier (gain 5 1000x; filtration: low cut-
off 5 10 Hz, high cutoff 5 1 kHz, notch filter in), digitized
with aDigidataMicro 1401 (CED,Cambridge,UK), and contin-
uously recorded at a rate of 10 kHzwith Spike2 software (CED).

Each experiment beganwith tactile stimulation bymanually
pinching the distal end of the armwith plastic forceps to ensure
that the experimental instrumentation worked and the arm tis-
sue was responsive; the pinch response was used as a positive
control. Chemical stimuliwere administeredmanually by gently
pipetting 5 mL of the stimulus into the bath ∼3–5 mm away
from the suckers (see supplemental video, available online,
for an example of stimulus delivery).

For O. bimaculoides experiments, each trial proceeded as
follows. The bath perfusion was paused, then a FSW stimulus
was applied. Twenty (or more) seconds after the FSW stimu-
lus, a randomly selected test stimulus was applied from the fol-
lowing set of test stimuli:fish skin extract, methionine, glycine,
D. pealeii ink, O. bimaculoides skin extract, and O. bimacu-
loides ink. After 20 s of exposure, the bath perfusion was
resumed at a high rate (15–20 mL min21) for at least 90 s to
wash out the stimulus. During pilot experiments, clearing of
dye “stimuli” (monitored visually) and concentrated saltwater
“stimuli” (monitored with an osmometer) was achieved after
30–60 s of perfusion; we selected a 90-s-minimum wash to
be conservative. This process was repeated, starting with a
FSW control, until all stimuli in the set had been tested, thus
completing the trial. We ran three trials on each arm, random-
izing the order of the stimuli for each trial. Occasionally during
an experiment, we noted an error in stimulus delivery or a spon-
taneous burst of activity in the nerve just before stimulus appli-
cation (often associated with a spontaneous armmovement). In
those cases, the single affected stimulus exposure was disre-
garded in further analyses. The stimulus was repeated later in
the trial if time allowed. This occurred in about 3% of stimulus
applications.

For experiments with D. pealeii, trial structure was not sys-
tematic because of the lack of a reliable preparation. Six octo-
pus arm preparations were used for pilot experiments during
which we developed our procedures; they did not follow this
exact protocol and are not included in analyses.

Electrophysiological analyses

Nerve recordings inO. bimaculoides experiments measured
the activity of a large population of axons in the axial nerve
cord.While single units were occasionally discernible in spon-
taneous activity, evoked responses clearly reflected the sum of

activity of a large population. To quantify the neural activity,
the mean and standard deviation (SD) for each full trial were
calculated; since the vast majority of the trial was made up
of wash and rest periods between stimuli, the mean accurately
represented the baseline, and SD approximated background
noise. Thresholds at ±3 SDwere then applied to the recordings.
Each time the trace crossed the threshold it was counted as an
event. Events were binned by seconds post-stimulus and aver-
aged across trials of the same stimulus within each arm to ex-
amine the time course of the response. Then the total number of
events in the first 10 seconds after each stimulus was analyzed
statistically to compare test stimuli to the FSW control.

Stimuli that were used in all 15 experiments (FSW, pinch,
amino acids, and fish skin extract) were analyzed using a
repeated-measures design to account for variation in excitabil-
ity or quality of recordings between arms. Specifically, a series
of pairwise Wilcoxon tests (JMP Pro14, SAS Institute, Cary,
NC) was conducted to analyze the number of events in the first
10 seconds, comparing each test stimulus (pinch, methionine,
glycine, or fish skin extract) to FSW. A Bonferroni correction
was applied to account for multiple comparisons, a5 0.0125.
In this and other analyses, non-parametric tests were selected
because of relatively low sample sizes.

Cephalopod ink and skin stimuli were not tested in all
15 arms, so these data were analyzed with a Kruskal-Wallis
test followed by Dunn’s control test (JMP Pro14) to compare
the responses to these stimuli with the responses to FSW from
the same subset of experiments.

Video recording and analyses

A webcam was mounted adjacent to the bath used for phys-
iological recordings and was used to record video of stimulus
administration and arm response for most (9 of 15) octopus ex-
periments. Video resolutionwas 640� 480, 30 frames s21, and
video was synchronized to the electrophysiological recording by
using the multimedia feature in Spike2 software (CED). Video
was used to confirm stimulus application timing when needed,
as well as to observe any gross motor responses by the arm.

Motor responses were quantified during the 10 seconds im-
mediately following stimulus administration by a practiced ob-
server, blinded to stimulus identification. The movement was
scored on a 0 to 4 scale according to the following criteria: 0,
no movement; 1, a discrete twitch; 2, some region of the arm
tightened or contracted, but the arm stayed in the same basic coil
or orientation; 3, the whole or a large portion of the arm con-
tracted and wriggled or changed shape or orientation; 4, the
whole arm dramatically flipped, extended, or whipped about
(for examples of movements scored as 0 and 3, see supplemen-
tal video, available online). This scale was meant to capture
both the intensity and the complexity of themotion, considering
the entire 10-second window; the maximal movement during
the 10 seconds is reflected in the score. Mean movement scores
for each stimulus type were calculated for each arm; and then
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scores for test stimuli were compared to scores for FSW and
pinch controls with aKruskal-Wallis test, followed by aDunn’s
post hoc control test (JMPPro14). This non-parametric analysis
was selected because of small sample sizes and non-normal dis-
tribution of movement score data.

The timing and duration of motion were recorded by noting
whether the arm was moving or stationary during each of five
two-second bins following stimulus application. For this quan-
tification, any movement (small or large) resulted in a score of
1 (moving), while no visible movement resulted in a score of
0 (stationary). For each two-second time bin in which move-
ment was assessed, the percent of trials with movement was
calculated for each experiment. These data were then used to
create a heat map of responses over time and stimulus type.

To assess whether armmovement in response to stimuli was
correlated with the electrophysiological response to stimuli,
movement scores and movement “duration” (the number of
two-second bins that showed visible movement) for individual
trials were compared with the number of events generated in
the physiological recordings of those same trials. The Kendall
rank correlation test (a non-parametric test suitable for ordinal
data) was used to determine correlation coefficients (Kendall’s
tau) between each movement variable and the number of elec-
trophysiological events, as well as between the two movement
variables (JMP Pro14).

Results

Doryteuthis pealeii experiments

Squid arms did not remain viable over the course of the ex-
periment, as indicated by a rapid decline in both spontaneous
and evoked activity in nerve recordings across the first few
minutes of the experiment (Fig. 1). The deterioration of arm
physiology was further apparent in gross observations of the
arms, with arm movement stopping within the first 10 minutes
and the tissue becoming opaque shortly thereafter. Numerous
adjustments were made to the experimental procedures, in-
cluding selecting only the healthiest-looking squid, changing
the bath temperature (temperatures from 6 7C to 22 7C were
tried), oxygenating the bath, changing the type of electrodes
(suction or pin electrodes), and changing the source of the bath
water (FSW or ASW); no change produced any significant im-
provement in the preparation. Of the 20 squid used, only 5 ex-
periments showed notable responses to pinch and chemical
stimuli. In some of these experiments, fish skin extract or amino
acids did elicit a response that appeared to be greater than the
seawater control stimuli (e.g., Fig. 1). Yet, even in the most
responsive arms, recordings were unsuccessful after a short
amount of time post-amputation (Fig. 1). Thus, no systematic
analyses could be performed.

Octopus bimaculoides experiments

Octopus arms were generally healthy, showing both spon-
taneous and evoked motor activity, as well as electrophysio-

logical responses to various stimuli, for several hours after
amputation (Fig. 2; supplemental video, available online). It
was common to see arms and suckers move after stimuli
were applied; sometimes they showed very small movements
(twitches) and other times large movements that involved the
full arm bending or extending. Suckers were also observed to
extend toward stimuli on some trials.

The time course of responses varied between stimuli
(Fig. 3A). Pinch stimuli evoked a strong but short-lived re-
sponse, with most events occurring in the first one to three sec-
onds. Amino acids also evoked a rapid response, with the high-
est average rates of events in the early time bins but a slightly
longer time course, with responses consistently lasting for three
to five seconds. Fish skin and octopus skin extracts evoked the

Figure 1. Doryteuthis pealeii arms did respond to stimuli in some cases,
but responsiveness did not persist. Sample recordings from the axial nerve
cord in oneD. pealeii arm show activity (mV) over time (s). Arrows indicate
start time of stimulus administration, 0.5 s into each trace. (A) Response to
pinch stimulation at 3.1 min post-amputation. (B) No response to control
(filtered seawater [FSW]) stimulus at 3.4 min post-amputation. (C) Re-
sponse to fish skin at 4.1 min post-amputation. (D) Little to no response
to pinch stimulation at 14 min post-amputation.
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most prolonged responses, typically lasting six to eight sec-
onds. FSW and cephalopod inks evoked little to no response.

Armmovement timingwas quantified in 2-s bins across the
first 10 s after stimulus exposure for a subset of experiments,
and we found a similar time course of response to the various
stimuli (Fig. 3B). Filtered seawater and cephalopod ink evoked
few movements, while pinch reliably evoked rapid movements
that were not typically sustained. Fish skin extract evoked
movement that was both reliable and lasting, while the amino
acids produced a response that was still robust but slightly less
consistent and shorter lived. The sample sizes for octopus skin
and cephalopod ink stimuli were small ( just three experiments),
but octopus skin data suggest a somewhat delayed or pro-
longed response.

Collapsing electrophysiological events across the first 10 sec-
onds after stimulus delivery, we found that pinch, methionine,
glycine, and fish skin extract produced significantly greater re-
sponses than FSW (pairwiseWilcoxon tests, n5 15, Bonferroni
correction, P < 0.0125; Fig. 4A). Octopus bimaculoides skin
extract also evoked responses that were significantly greater
than FSW (Kruskal-Wallis, P < 0.0001, followed by Dunn
post hoc, n 5 9, P < 0.05; Fig. 4B). Both D. pealeii and
O. bimaculoides ink samples were not statistically different
from FSW.

Degree of movement intensity was quantified using a 0 to
4 scale (0 representing no movement and 4 representing dra-
matic, whip-like motion; see Materials and Methods for more
detail). Similar patterns were seen, with average movement

Figure 2. Axial nerve recordings show considerable activity in response to chemosensory stimuli and pinch in
a representative Octopus bimaculoides arm. Electrical nerve cord activity (mV) was measured over time (s). Ar-
rows indicate the time of stimulus administration, 0.5 s into each trace. Representative recordings are all from a
single arm. Test stimuli were (A) filtered seawater (FSW), (B) pinch, (C) fish skin extract, (D) glycine, (E) methi-
onine, (F) O. bimaculoides skin extract, and (G) O. bimaculoides ink.
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scores for fish skin extract, pinch, glycine, and methionine sig-
nificantly greater than for FSW (Kruskal-Wallis, P < 0.0001,
Dunn post hoc, n 5 9, P < 0.05; Fig. 4C). Octopus ink
generated mean movement scores between 2 and 3, while
cephalopod inks produced movement scores between 0 and
1 (Fig. 4C); but with only n 5 3 for each stimulus, they were
not included in the statistical analysis.

Given the apparent relationship between electrophysiolog-
ical events and arm movement, the number of events, move-
ment score, and movement duration (quantified as the number
of 2-s bins that showed movement) were compared on a trial-
by-trial basis. Greater numbers of electrophysiological events
were indeed correlated with greater movement score (Kendall’s
tau 5 0.5364, P < 0.0001; Fig. 5A) and greater movement
duration (Kendall’s tau5 0.5436, P < 0.0001; Fig. 5B).Move-
ment scores and duration were also positively correlated (Ken-
dall’s tau 5 0.874, P < 0.0001; Fig. 5C). Despite the clear
association between arm movement and electrophysiology,
the correlation coefficients and the scatter apparent on the
graphs indicate that the number of electrophysiological events
could not be predicted reliably from the duration or degree of
movement alone.

Discussion

The physiological responses recorded in this study suggest
that chemosensory receptor cells on isolated cephalopod arms

were able to detect ecologically relevant chemicals in the wa-
ter, leading to neural signals sent toward the animal’s brain, as
well as local motor responses, evoked without input from the
brain. These conclusions are largely drawn from experiments
using juvenile Octopus bimaculoides, although anecdotal evi-
dence suggests that Doryteuthis pealeii arms may also show
chemosensory responses. We also found that O. bimaculoides
arms are well suited to an ex vivo electrophysiological prepara-
tion, unlikeD. pealeii arms, which wewere unable to maintain
after amputation. An additional advantage of usingO. bimacu-
loides is that animals are easily anesthetized and recover well
after amputation. We feel it would be worthwhile to attempt
this technique in other cephalopod species that have estab-
lished anesthesia protocols, including other species of octopus
and cuttlefish, such as Sepia bandensis (Lewbart and Mosley,
2012; Gleadall, 2013; Butler-Struben et al., 2018). This would
allow comparative studies of the use of chemosensation in
arms across the coleoid cephalopods. We had hoped to com-
pare a benthic species and a pelagic species, and we remain in-
terested in how arm chemosensory systems may have adapted
in animals that use their arms differently.

In chemosensory research, a distinction has often beenmade
between taste (contact chemosensation, where stimuli are often
solid or liquid) and olfaction (distance chemosensation, where
stimuli are often volatile compounds) (Caprio, 1977). It is not
yet clear how this distinction might be applied to cephalopods,

Figure 3. Both electrophysiological and movement responses were prolonged in Octopus bimaculoides for
more complex stimuli. The number of arms (n) is listed in parentheses for each stimulus. (A) The mean number
of events per second was calculated for each arm tested for the first 10 s after stimulus administration. Peak re-
sponses to pinch, glycine, and methionine occurred in the first 1–3 s, while responses to fish skin extract and
O. bimaculoides skin extract continued for more than twice as long. Filtered seawater (FSW) and ink stimuli
evoked little to no response at any time. (B) Movement was assessed with a binary metric (movement or no move-
ment) in 2-s time bins for 10 s after stimulus administration. The percentage of trials with movement for each stim-
ulus and time bin was calculated for each arm tested. Then the average percentage of trials with movement was
plotted on the heat map. FSW and cephalopod ink evoked little movement at any time (two experiments using
Doryteuthis pealeii ink and one experiment using O. bimaculoides ink were combined because of small n and sim-
ilar results). Pinch evoked reliable movement that tended to be short-lived, while fish skin extract evoked move-
ment that tended to last throughout the 10 s measured.
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Figure 4. Most test stimuli evoked significant levels of neural activity and arm movement in Octopus
bimaculoides arms. Boxplots show the median and quartiles, whiskers are tenth and ninetieth percentiles, and
black dots show the mean. The number of arms examined for each stimulus is indicated in parentheses.
(A) The number of events during the first 10 s after stimulus administration was significantly greater for pinch,
fish skin extract, glycine, and methionine than for filtered seawater (FSW) (*P < 0.0125 for stimulus compared
with FSW, pairwise Wilcoxon tests with Bonferroni correction). These stimuli were tested on all 15 arms.
(B) The number of events during the first 10 s after stimulus administration was significantly greater for O.
bimaculoides skin and pinch than for FSW (*P < 0.05, Kruskal-Wallis, Dunn post hoc). Doryteuthis pealeii
ink and O. bimaculoides ink were not significantly different from FSW. These stimuli were tested on subsets
of arms. (C) Movement was assessed on a scale of 0 (no arm movement) to 4 (large-scale movement) for each
stimulus on a subset of arms. Pinch, fish skin extract, glycine, and methionine induced significantly greater move-
ment scores than FSW (*P < 0.05, Kruskal-Wallis, Dunn post hoc). Octopus bimaculoides skin and cephalopod
ink (two experiments using D. pealeii ink and one experiment using O. bimaculoides ink were combined here)
were not included in statistical analyses because of the small sample size of each, but they are graphed here to
show that data do follow the expected trend.



where the same receptors may serve to detect chemicals with
both local and distant sources; and concentration, rather than
state, may be the critical factor in detection. An alternative or-

ganizing principle might be based on the function of the body
part that contains the chemoreceptors rather than the distance
or state of the stimulus source. Thus, we think it will be impor-
tant to consider cephalopod behavior and ecology in exploring
chemosensation (Derby and Zimmer, 2012).

The response of O. bimaculoides arms and suckers to our
amino acid and fish skin extract stimuli was consistent with
previous literature describing that octopuses are able to detect
waterborne chemical cues, particularly those associated with
prey (Wells, 1963; Chase and Wells, 1986; Walderon et al.,
2011). Amino acids and compounds in the fish skin extract
are likely important for prey identification (Chase and Wells,
1986; Mobley et al., 2008; Hassenklover et al., 2012; Mather
and Kuba, 2013). A chemosensory system located in the arms
allows octopuses to reach into dark areas to search, sample,
and collect prey items based on stimuli encountered by an
arm alone (Mather and Kuba, 2013; Hanlon and Messenger,
2018). Future studies could explore a broader range of stimuli
derived from different prey sources and could test specific
chemicals that may signal the presence or quality of food, such
as additional amino acids, lipids, and their metabolites.

Octopus bimaculoides skin extract also elicited robust affer-
ent nerve activity and motor responses. This stimulus was in-
spired by Nesher et al. (2014), who found that amputated oc-
topus armswould not reflexively suck onto objects coatedwith
self or conspecific skin extract (they found no difference be-
tween self and conspecific extracts); but they would readily at-
tach to control objects or objects coated with fish skin extract.
While we cannot assess any valence difference in the signals
we recorded, we believe our study is consistent with Nesher
et al. (2014), because to inhibit the sucker reflex, octopus skin
must be first detected, likely resulting in afferent signal. Con-
specific recognition is needed to avoid self-entanglement, as
well as for social or reproductive encounters. While O. bima-
culoides individuals are often solitary, they do fight conspecifics
with arm contact (Hanlon and Messenger, 2018). Detection of
conspecific chemical cues may allow for identification of sex
and reproductive status as well (Walderon et al., 2011). For this
studywe combined skin samples frommultiple animals to create
our extract. The isolated arm preparation could be used to test
whether therewere differences in response to self versus conspe-
cific and to test specific compounds of interest that may underlie
conspecific- and self-recognition mechanisms.

Interestingly, the arms ofO. bimaculoides did not show any
significant response to eitherD. pealeii orO. bimaculoides ink
samples. Inking is used by cephalopods to confuse predators
and provide an alarm call for conspecifics (Boal and Golden,
1999;Wood et al., 2008; Staudinger et al., 2011; Derby, 2014;
Hanlon and Messenger, 2018). Ink may be detected through
other sensory pathways, such as the olfactory pits located on
the head (Gilly and Lucero, 1992; Lucero et al., 1992) and
the visual system (Wood et al., 2008), but not by arm chemo-
receptors. Evolutionary history, specialized function of the
various chemosensory organs, and receptor sensitivity could

Figure 5. Movement variables correlate with electrophysiological re-
sults in Octopus bimaculoides. Duration of arm movement (defined as the
number of 2-s bins that showed any type of motion), movement score,
and number of electrophysiological events were compared, trial by trial,
for nine O. bimaculoides arms; and correlations between pairs of variables
were assessed. (A) Duration showed a significant, positive relationship with
number of events (Kendall’s tau5 0.5436, P < 0.001). (B) Movement score
also showed a significant, positive relationship with the number of events
(Kendall’s tau 5 0.5364, P < 0.001). (C) The two movement variables
showed a strong positive correlation (Kendall’s tau 5 0.874, P < 0.001).
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play a role in observed lack of response to ink in the arms. This
should be tested in additional species that are more social and
that use ink more frequently thanO. bimaculoides, in order to
determine whether this finding is typical of other cephalopods
as well.

We observed responses (both electrophysiological and be-
havioral) to our stimuli that persisted for 10 seconds ormore in
some instances. During that time period, the stimulus (vol-
ume: 5 mL) rapidly diluted from its original concentration as
it diffused through the bath (volume: 12–14 mL), sometimes
facilitated by the movement of the arm itself. The continued
response may represent persistent firing of the same receptors
or recruitment of additional receptors as the stimulus spread
through the bath. The more chemically complex stimuli often
led to longer responses, which may also suggest an additive
effect of multiple chemical stimuli. More experiments are
needed to better understand the dynamics of these chemosen-
sory responses. It would be useful to test the sensitivity of arm
chemoreceptors to various stimuli by using controlled dilu-
tions. Likewise, the time course of the responses to various
stimuli, including adaptation or habituation, would be inter-
esting to know.

Observed gross movements of the arm were correlated
with afferent nerve activity, but there was significant scatter
in the trial-by-trial comparison. In general, trials with little to
no movement had little to no events recorded on the nerve.
But trials with movement showed tremendous variation in the
number of electrophysiological events. This variability likely
reflects the complexity of neural processing within the arm
that occurs between the point of stimulation and the two dis-
tinct end points of nerve cord recording and motor output. The
signals we recorded are not simple receptor potentials or ac-
tion potentials from primary sensory axons; rather, they in-
clude some or all of the following: afferent sensory information
(chemosensory and somatosensory), efferent copies of motor
commands, sensory and motor signals being sent to the prox-
imal segments of the amputated arm, and local activity within
the arm ganglia adjacent to the electrode. Thus, while more
refined electrophysiological techniques will be needed to un-
derstand the nature of the signals being recorded and the pro-
cessing of chemosensory information within the arm, these
nerve recordings are well suited to initial explorations of the
chemosensory stimulus space (i.e., asking the arm, “Do
you taste this?”) in O. bimaculoides and, potentially, other
cephalopods.
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