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ABSTRACT 

As of 2020, more than a thousand CubeSats have been launched into space. The nanosatellite 

standard allowed launch providers to utilize empty spaces in their rockets while giving educational 

institutions, research facilities and commercial start-up companies the chance to build, test and 

operate satellites in orbit. This exponential rise in the number of CubeSats has led to an increasing 

number of diverse missions. Missions on astrobiology, state-of-art technology demonstration, high 

revisit-time earth observation and space weather have been implemented. In 2018, NASA’s JPL 

demonstrated CubeSat’s first use in deep space by launching MarCO A and MarCO B. The CubeSats 

successfully relayed information received from InSight Mars Lander in Mars to Earth. 

Increasing complexity in missions, however, require increased access to data. Most 

CubeSats still rely on extremely low data rates for data transfer. Size, Weight and Power (SWaP) 

requirements for 1U are stringent and rely on VHF/UHF bands for data transmission. Kyushu 

Institute of Technology’s BIRDS-3 Project has downlink rate of 4800bps and takes about 2-3 days 

to reconstruct a 640x480 (VGA) image on the ground. Not only is this process extremely time 

consuming and manual but it also does not guarantee that the image downlinked is usable. There is 

a need for automatic selection of quality data and improve the work process. 

The purpose of this research is to design a state-of-art, novel Convolutional Neural Network 

(CNN) for automated onboard image classification on CubeSats. The CNN is extremely small, 

efficient, accurate, and versatile. The CNN is trained on a completely new CubeSat image dataset. 

The CNN is designed to fulfill SWaP requirements of 1U CubeSat so that it can be scaled to fit in 

bigger satellites in the future. The CNN is tested on never-before-seen BIRDS-3 CubeSat test dataset 

and is benchmarked against SVM, AE and DBN. The CNN automatizes images selection on-orbit, 

prioritizes quality data, and cuts down operation time significantly.  
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 Introduction 

1.1 CubeSat Technology and Access to Space 

Nanosatellites are defined as satellites that weigh between 1-10kg. CubeSat is a nanosatellite 

standard first designed and proposed in 1999 by Prof. Jordi Puig-Suari, then professor at California 

Polytechnic State University (CalPoly), and Prof. Bob Twiggs, then professor at Stanford 

Univeristy’s Space Systems Development Laboratory (SSDL) [1]. The standard defines a base unit 

(1U) as weighing up to 1.33kg with a volume of 10x10x10 cm3. 1U can be stacked to allocate more 

size, weight, and power (SWaP). The standardization allowed both launch providers to utilize 

unallocated space inside the rocket while giving educational, research and commercial startups the 

opportunity to build and launch low-cost space systems. To keep costs low and make space 

affordable, CubeSat utilizes Commercial-off-the-Shelf (COTS) technology and amateur band for 

communication. As of 2020, specialized products aiming at CubeSat developers are available from 

an array of vendors [2] and communications have shifted to other bands as technology has matured 

[3][4]. 

 

Figure 1. Switzerland’s first satellite, SwissCube is a 1U CubeSat [5]  

With over a thousand CubeSats launched [6], CubeSats have democratized access to space. Not only 

has the platform provided the opportunity for educational institutions to work on space systems, but 

it has also allowed nations to put their first satellites into orbit. Since launch of SwissCube, 

Switzerland’s first 1U satellite in 2009 [5] shown in Fig. 1, several other countries have taken the 

same initiative too. Hungary, Poland, and Romina had all built their first satellites by 2012 [7]. The 

Joint Global Multination BIRDS Satellite Project (BIRDS) of Kyushu institute of Technology 

(Kyutech) led by Prof. Mengu Cho took a step further by empowering nations with limited adequate 

resources to build, test and launch their first satellites. As of 2020, Mongolia, Bangladesh, Ghana, 

Bhutan, Sri Lanka, Nepal, and Paraguay have built their first satellites in collaboration with Kyutech. 

All satellites are 1U. 
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1.2 CubeSat Missions  

Democratization of space has led to diversifying space missions as well. Planet Inc. has so far 

deployed major chunk of CubeSats that have been deployed in orbit -351 as of April 2020. At any 

given time, the earth imaging company has over 100 active 3U CubeSats collecting 250 million 

square km of imagery every day [8]. For context, the earth’s surface area is roughly 500 million 

square km. Spire Global, Inc. has launched over 100 3U CubeSats [9] for maritime tracking and 

safety and uses GPS occulation to collect data which can be used for weather forecasting and 

atmospheric research [10]. Besides these, CubeSats have been used for astrobiology, technology 

demonstration and space weather [11]. Until 2018, all satellites had been placed on LEO. National 

Aeronautics and Space Administration (NASA)’s Jet Propulsion Laboratory (JPL) demonstrated 

CubeSats deep space capability by launching twin 6U CubeSat, Mars Cube One A and B (MarCO). 

MarCO successfully relayed information from NASA’s InSight Mars lander to Earth using high gain 

X-band antenna [12]. The CubeSats conducted a flyby, managing to take images of Mars for the first 

time [13]. Artist’s rendering of the two satellites in space is shown in Fig. 2.  

 

Figure 2. Artist’s rendering of  NASA’s deep space CubeSat MarCo A and B [14] 

Increasing complexity in missions require increased access to data. While comparatively “few efforts 

have been made to offer communication solutions using CubeSats” [4], NASA’s 2018 report on State 

of the Art of Small Spacecraft Technology shows mature use of Very High Frequency (VHF), Ultra 

High Frequency (UHF) and S-band for data transmission and communication. Bigger data require 

faster data rate which in-turn require higher frequency bands. Planet Inc. uses proprietary X-band 

tuned to achieve an average of 160 Mbps [15] to downlink large volume of earth imaging data. Astro 

Digital’s 16U remote sensing Landmapper-HD downlinks at 300 Mbps in Ka-band. CubeSats, 

however, normally operate in the amateur VHF and UHF [4] . DICE mission has achieved a 

downlink rate of 3 Mbps using UHF. 3U CSSWE and RAX-2, which used the 9600bps amateur UHF 

band, downloaded 60 and 242MB of data respectively [16]. Unfortunately, “CubeSats do not get 

more than a few MB over the course of a mission” [16]. This was true in 2012, and is true in 2020 

as Kyutech’s BIRDS-3 1U satellite case will illustrate. 
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1.3 Problem Statement: 1U Data Rate Bottleneck 

 

Figure 3. BIRDS-3 CubeSats just after deployment from ISS on June 17, 2019 [17] 

This thesis uses BIRDS-3 1U CubeSats to study limitations imposed by CubeSat’s smallest standard, 

a 1U CubeSat, on conducting data intensive missions such as taking images from space. The project 

has a constellation of three 1U CubeSats; NepaliSat-1 from Nepal, Raavana-1 from Sri Lanka and 

UGUISU from Japan. The satellites were launched on April 17, 2019 and deployed from ISS on June 

17, 2019 as shown in Fig 3. All satellites have since been operational and missions have been 

successfully conducted. Operations are conducted daily. Given that each satellite has been 

operational for a year, the project has clocked in three years of cumulative operation time. This 

experience provides a good understanding on the difference between theorical and practical estimates 

to downlink data rates. This thesis assumes that the information taken from BIRDS-3 can be applied 

generally for 1U CubeSats. 

Each of the three satellites is equipped with an RGB camera. The camera is placed primarily for 

outreach and media purposes. The COM is limited to 4800bps in the amateur UHF band. There is a 

35 to 45 minute communication window per satellite per GS per day. The camera has a hardware 

capability to take 5MP images. However, the software design has limited the camera to take 

maximum VGA (640x480) resolution. The resolution has the optimum size for social media 

distribution while being small enough to downlink in short amount of time. The Ground Sampling 

Distance (GSD) is 1.2km for International Space Station (ISS) orbit of 400km.  

The camera is placed primarily for outreach and media purposes. Since it is the first satellite for Sri 

Lanka and Nepal, taking images of their home countries provides proof to the public that the satellites 

exist and are functional. This generates awareness and excitement. Not all images, however, are 

deemed fit for public consumption. BIRDS-3 has active stabilization but no pointing. The images 

are therefore categorized as either “good” or “bad.”  The “bad” images include saturated, space-

faced, very cloudy and sunburnt images. The “good” are images that face towards the earth. The 

“good” images are processed and released every Friday through the official website and social media 

channels. The selection is done by the team. 
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The challenge has been to obtain “good” images. In the first three months of operations, 30 images 

were downlinked. Of that, 12 images were “good” shown at the left of Fig. 4 and the rest were 

classified as “bad” as shown at the right. Majority of data that were being downlinked was not being 

used. Improvements must be made to increase the number of “good” data. For that, an understanding 

of bottlenecks for the system must be made. 

  

Figure 4. Two images each that are classified "good" (left) and classified bad (right) 

BIRDS-3 satellites have downlinked about 150 images using UHF band in the first year of operation 

from three different satellites. That is roughly twelve images per month. Ideal calculations show that 

much more data could have been downlinked. Factors such as bad weather, sharing of resources in 

ground station (GS) between projects and repairs must be taken into consideration. This reduces the 

amount of data that can be accessed from the theoretical value. Additionally, there is a loss of 10%-

15% of data for every set 50 packets of data downlinked. Each set must be downlinked 2 to 3 times 

to complete the set. Completing the packets is important when downlinking image data as missing 

data does not allow the images to be fully constructed. In combination of all these factors, BIRDS-3 

completes one image every 2-3 days. 

The downlink rate must improve to increase the amount of downlinked data. Higher downlink rate 

consumes larger power. BIRDS-3 uses amateur UHF with an uplink/downlink bandwidth of 4800bps. 

During downlink, the communication subsystem (COM) transmits at 0.8W. Given that COM has 

transmitting efficiency of 17.5%, the COM consumes 4.56W. This calculates to 0.95mJ (equivalent 

to 26x10-5mWh) per bit for 4800bps downlink. Table 1 summarizes the COM parameters for all 

BIRDS-3 satellites.  

Table 1. BIRDS-3 power (PWR) and COM characteristics 

Parameters Details 

Energy Generation per orbit 1480mWh 

Transmission PWR 0.8W 

Supply Voltage 3.8V 

Transmission Efficiency 17.5% 

Over Current Protection 4A 

 

BIRDS-3 has NiMH batteries placed at three parallel, two series (3P2S) and has a total capacity of 

3800mAh rated at 3.8V. The solar panel can generate an average of 1480mWh per orbit. Since the 
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capacity is more, the limitation is on the power generation. Not all generated power is utilized as 

loses can be expected while supplying. With 26x10-5mWh per bit, 1480mWh can downlink 5.6Mbit 

or 700kB per orbit at maximum. In a day, the theoretical limit of the amount of data downlink is 

equivalent to 10MB assuming continuous communication with GS, full usage of the packet (i.e. no 

header and footer) and 100% power usage for communication. The maximum amount, therefore, is 

probably 1MB or less. Practically though, BIRDS-3 downlinks 25-30kB of real data per day per 

satellite using the GSN. This is far less than the theoretical limit. 

1.4 Exploring Solutions and their Challenges 

There are two ways to tackle the bottleneck for 1U CubeSats. The quantity or the quality of the data 

can be increased. To increase quantity of data, one straight forward solution is to increase the bitrate. 

Table 2 shows ideal power calculations and total communication time for an orbit if BIRDS-3 

satellites were to increase the bitrate using commercially available COM. The calculations are based 

on EnduroSat’s UHF [18], S-band [19] and X-band [20] COM modules. EnduroSat is used for 

reference. Table 2 shows that, in theory, it is still possible to increase bitrate up to 20 Mbps if S-band 

is implemented. Goliat [21] has shown that it is feasible for a 1U CubeSat to transmit in S-band.  

Table 2. Power consumption and ideal data downlink per orbit on BIRDS-3 bus 

Frequency Bitrate  PWR 

consumption (W) 

Energy/bit (mWh) Ideal 

data/orbit 

UHF (BIRDS-3) 4.8kbps 4.56 0.00026 700kB 

UHF 19.2kbps 11.4 0.00017 1.12MB 

S-band 20 Mbps  11.4 1.6x10-7 1.17GB 

X-band 120 Mbps 68.6 1.6x10-7 1.17GB 

 

While placing a higher bitrate and frequency COM board into the bus system is an option, it is not 

as straight forward. The BIRDS satellites should have better attitude control for S-band patch antenna 

pointing. License needs to be applied where necessary and may extend the project time. Rigorous 

testing on both anechoic chamber, space environment and long-range testing (LRT) need to be 

additional done to accommodate BUS design changes. These could elongate project time and 

subsequent costs.  

Instead of changing the BUS system, the focus can shift to GS. Increase in GS increases ground 

visibility time for satellites and therefore, increases data that can be accessed. The BIRDS Ground 

Station Network (BGSN) has GS in fourteen countries spread around Asia, Africa and Americas. 

Through the Cross-Boarder Collaborative Satellite Operation Demonstration (CCSOD), image data 

has been downlinked from different parts to support the operations done from a single GS at Kyutech. 
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CCSSOD is ongoing and the process for data downlink collaboration is improving. Fig. 5 shows 

some of the results from CCSSOD. However, there are significant challenges that remain. Not all 

GS are operational as some have technical issue and some have lack resources. Systems and 

processes still need to be improved to communicate which packets need to be downlinked, when and 

where that data should be stored. At the time of writing, Kyutech GS is the only GS that operates 

daily. 

   

(a) (b) (c) 

Figure 5. BIRDS-3 image data support from a) Bhutan b) Mongolia and c) Ghana GS 

Image processing by data compression is a proven tool that reduces the size of the onboard data. 

BIRDS-3 uses JPEG compression algorithm to convert an eight-bit RAW RGB image. A 640x480 

RAW RGB has 307.2kB of data. Depending on what the scene the image has, JPEG reduces to 7kB 

to 74kB. That is 2.3% to 24.1% of the original image which is a significant reduction in size. 

Instead of increasing the data quantity, a better approach is to focus on the data quality. BIRDS-3 

satellite has active attitude stabilization but no pointing. Currently, the team is unaware of which 

direction the satellite is pointing at when image command is sent. Taking image of the earth is left 

to chance. Observing this, BIRDS-4 team have implemented active pointing on their 1U system. The 

satellites are scheduled to launch in 2020.  

 

Figure 6. Processes to decreases data size and increase quality of downlinked image 
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Data can be classified “good” or “bad” even before the image is completed. BIRDS-3 downlinks 

data in set of 50 packets. The GS operator observes the first set and makes an educated guess as to 

what direction image is facing towards. If the part-reconstructed image is earth-facing, the downlink 

is proceeded to the next set. If not, the operator begins with the next image. This technique has shown 

to be effective when combined with burst or semi-burst imaging mode. Command is sent to take 

multiple images in short period of time. The GS operator then downlinks the first set and checks. 

Empirically, at least one image is shown to be “good” out of five burst image commands.  

Thumbnails provide an alternative to first-set downlink approach. A thumbnail image is generated 

from each image. The thumbnail is easier to downlink and provides complete information on the 

image. The GS operator can then decide whether the image is “good” and proceed. Otherwise the 

operator can skip to the next image. The methods are illustrated in Fig. 6. 

While these methods improve quality of image, they are also incredibly manual. The images need to 

downlinked first and observed, before proceeding to downlink further. Intervention from the GS 

operator reduces eventual data waste, however, consumes time and effort. A better approach would 

be to automatically select what is “good” and what is “bad” onboard the CubeSat. That way, the 

operator can simply downlink the data without having to make any decisions from ground.  

1.5 Machine Learning (ML) Solution 

The solution thus shifts towards automation through software implementation. Classification of an 

image takes place in two steps. Firstly, features must be identified. Each object in the image has a 

unique feature. The feature is extracted through a feature extractor. The algorithm then understands 

what specific features to look for. After that, the image is classified. The portion of the algorithm 

that classifies the image is called the image classifier. While this thesis is limited to classifying the 

whole image, objects in an image can be independently classified as well. This is called segmentation. 

Each object in the image is classified with a boundary. The portion of the algorithm that classifies 

the image is called the classifier.  

In classical image processing, a programmer would hard-code both the feature and extraction 

algorithm. This strongly depended on the general understanding of the image, depth in knowledge 

of the programmer and the quality of the code to create a general enough model that could classify 

images. However, with the advancement of Machine Learning (ML) techniques, the hard-coded 

feature learning and extraction is modelled by the learning model instead. This creates a more general 

model and has shown to improve classifications.  

ML is a type of Artificial Intelligence (AI) where computers are trained on input data to create models 

that represent an output as accurately as possible through statistical analysis. As stated before, this 

is different from traditional fields of computer science where models are programmed explicitly 

through a set of instructions written by a programmer. In ML, the models are trained instead. 
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Training is a process in which a range of input data is shown. The model learns features and 

classification information allowing it to statistically predict on new set of data. Image Classification 

(IC) is one of the most common prediction tasks in ML. 

A ML model can carry out IC by unsupervised and supervised learning. Unsupervised learning is a 

learning method where a model extracts information from unlabeled input data during training. The 

advantage is that training takes less time and is simpler to deploy but takes time to create appropriate 

dataset. Supervised learning is a learning method where the model extracts information from labelled 

input data. Labels assign the images into categories. The trained model predicts new images as 

labelled output.  

1.5.1 ML Solution for Image Classification (IC) 

There are a couple of ML techniques for IC that can be effective; Random Forest (RF), Support 

Vector Machines (SVM), and a special type of Neural Network (NN) called Convolutional Neural 

Network (CNN). RF and SVM have the advantage of using less computational power, smaller size, 

and training dataset. RF is used while doing multiclass classification and is even less computationally 

complex than SVM. RF and SVM are ideal for constraints imposed by a 1U CubeSat.  

On-orbit demonstration of RF along with SVM has been conducted on-board IPEX 1U CubeSat [22]. 

IPEX’s RF classifier ran on AT91SAM9 and could segment a 3MP image into cloudy, clear, 

planetary limb or outer space [23]. The paper states that it is the first case of RF implementation in 

space.  Such on-board image analysis in space would prioritize quality data to be downlinked. 

Quality can be controlled by stating predefined rules for downlink. For instance, an image which has 

the greatest percentage classified as clear can be downlinked first.  

Kyushu Institute of Technology’s BIRDS-4 has completed their Flight Model (FM) and is awaiting 

launch. Many missions have been implemented including a 5MP OV5642 ArduCam imaging module 

to take images from space. One of the improvements from previous BIRDS project is that it has 

Image Classification Unit (ICU) mission in place. The mission uses a trained SVM model to classify 

images taken onboard into earth, space, and sunburn. The SVM model runs on a STM32F29VI MCU 

and classifies images of 320x240 (QQVGA). The model is 75% accurate. Fig. 7 shows ICU 

classifying earth and sunburn correctly. 

 

Figure 7. BIRDS-4's Image Classification Unit classifies satellite images 
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1.5.2 Neural Networks (NN) and Space 

NN are built upon building blocks of neurons which takes in input and produces an output based on 

the mathematical function that defines the neuron. A NN is created through the interconnection 

between layers of neurons where the input is the input layer, inner layers are the hidden layer and 

the desired prediction exits from the output layer. The network is trained by a training dataset that is 

fed into the network and based on the output, the function in the neurons are recalibrated to minimize 

the loss. NN has applications in broad range of fields including robotics, social media, medicine, 

finance, marketing and now space.  

 

Figure 8. Proceedings published in 1989 by NASA's Goddard Space Flight Center [24] 

The idea of using NN for space applications is not new. The proceedings from 1989 Goddard 

Conference on Space Application of Artificial Intelligence, shown in Fig. 8 has papers where use of 

NN has been conceptualized and in some cases implemented [24]. In the proceedings, Gaspin 

outlines the use of NN for a hybrid approach to mission scheduling. The paper presents OSCAR, a 

hybrid automated intelligent reasoning system, built for tackling such problems. In the proceedings, 

Bouret and Reggia present a method for satellite failure diagnosis by using two layers of NN. The 

paper states that the model will become better when the NN size becomes larger. In the proceedings, 

Campbell et al. explores the use of NN to categorize undefined objects and generate satellite imagery 

database to high-level data objects. The paper stresses the importance of NN as the data rate of Earth 

Observation (EO) missions increase over time.  

While NN showed promise, researchers had difficulty working with NN as “the time and effort 

required to develop neural network architectures and training is very high” [25]. That has changed 

with the recent advances in parallel computing, high-level open source ML libraries and big data 

through plethora of interconnected devices. NN is now being applied for nanosatellite interplanetary 

autonomy [26] and attitude control [27].  
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1.5.3 State of Art: Convolutional Neural Network (CNN) 

CNN is a subclass of NN where one or more convolutional layers are present besides the fully 

connected layer (FCL). CNN was first presented in 1988 by Fukushima [28] and later improved by 

LeCunn et al. [29] in the late 90s by training a CNN model on the MNIST handwritten dataset shown 

in Fig. 9. The way CNN interprets 2D and 3D images is thought to be like how our brain processes 

images and is therefore, optimized for problems regarding feature recognition and image processing. 

CNN’s performance improved over the years, but it was only after the 2012’s annual ImageNet Large 

Scale Visual Recognition Challenge (ILSVRC) that researchers began to have a strong renewed 

interest in CNN.  

 

Figure 9. MNIST handwritten dataset designed for letter recognition [29] 

Papers comparing SVM to CNN on classification problems in different fields show that CNN has 

performed better in the field of leaf identification [30] shown in Fig. 10, lung cancer classification 

[31], facial recognition [32] and ship detection in satellite imagery [33]. While traditional ML 

algorithms such as SVM rely on hand crafted feature extraction, CNN’s convolution layers (CL) 

automatically extracts features during training and creates an optimized feature map for that problem.  

 

 

Figure 10. Hedjazi et al. [30] showed that CNN had better results to SVM in leaf identification. 

In the field of remote sensing, feature extraction from hyperspectral images shows “supervised 

techniques provide better accuracy than their unsupervised techniques” [34]. CNN is the most 

popular algorithm in deep learning for remote sensing [35][36]. Other algorithms include supervised 

and unsupervised methods such as Autoecoders (AE), Deep Belief Network (DBN), Recursive 
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Neural Network (RNN) and Generative Adversarial Networks (GAN) [35]. CNN has higher overall 

accuracy and kappa values for the University of Pavia dataset as compared to Deep Belief Network 

(DBN), Autoencoder (AE) and Residual Net (ResNET) [37]. Example of classification and 

segmentation is shown in Fig 11. The downside of CNN is that the training requires a very large 

dataset, is computationally expensive and has larger memory footprint. 

 

Figure 11. Classification example on University of Pavia remote sensed dataset [38] 

1.5.4 CNN Image Application for Small Satellites 

These challenges have not prevented researchers to explore the possibility of using CNN on small 

satellites. Buonaiuto et al. [39] presented a paper to create an intelligent CubeSat system that uses 

Nvidia Tegra X1 (TX1) for on-orbit CubeSat recognition, classification and segmentation as shown 

in Fig. 12. The paper demonstrated the potential to use GPU to process images by showing ground-

based test results on an original dataset. The paper aimed to explore the use of TX1 as a primary 

instrument aboard a CubeSat. The challenges described on the paper are 1) CubeSat’s fast movement 

makes it difficult to track 2) larger database needed to improve accuracy. 

 

Figure 12. Buonaiuto el al.[39] tested CNN to identify CubeSats that are in orbit 
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Arechiga et al. in [40] used a mix of traditional machine vision techniques and CNN to identify ships 

in an image on Planet Inc.’s open California RGB dataset of 3m Ground Sampling Distance (GSD). 

The results are shown in Fig. 13. The CNN architecture is implemented on Nvidia Jetson TX2. The 

model is trained using high level Keras API to access Tensorflow library. The CNN is inspired by 

the design of VGGNet. The paper aimed at demonstrating the use of TX2 as the authors believe the 

System on Chip (SoC) fulfils the Size, Weight and Power (SWAP) requirements of a CubeSat.  

 
Figure 13. Arechiga et al.[40] used CNN to identify ships on Planet data. 

Manning et al. [41] transfer trained four CNN models and used it on Xilinix Zynq7020, a FPGA with 

flight heritage. In the paper, MobileNet V1, MobileNet V2, Inception-ResNet V2 and NASNet 

Mobile CNN are selected for testing. Accuracy, execution time and run time are used for 

benchmarking. Original dataset of 8000 images, each of 489x400 resolution, are acquired from STP-

HS/CSP aboard the International Space Station (ISS). Some examples are shown in Fig 14. The 

dataset is used to train the models. The paper selects MobileNet V1 and states that Tensorflow Lite 

is an appropriate tool for deploying CNN models on existing hardware. The paper further claims 

such hardware could be deployed on small satellite platform such as CubeSats.  

 

Figure 14. Manning et al. [41] created an original database of 8000 images taken from ISS 

The images were classified as a) black b) cloud/water c) distorted d) land e) white (not shown). 
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Greenland et al. [42] used the same Zynq7020 FPGA to classify clouds for small satellite on-board 

applications as shown in Fig 15. In the paper, CNN model is created by transfer learning of VGG19 

architecture. Machine learning libraries of Keras and Caffe are utilized through Python to train. 

LandSat-7 images are used for the purpose of demonstration. Proof of concept is shown by system 

in a loop simulation. A python based modular system acts as the simulator where images are fed into 

the FPGA and results are obtained. The paper states an accuracy of 98% for cloud detection. 

 

Figure 15. Greenland et al.[42] implementation on LandSat-7 data 

Monirul Islam et al. [43] proposed to use “onboard deep neural computing and machine learning 

model to analyse and process multispectral images” for a 3U CubeSat.  The authors do not explicitly 

state what type of CNN had been implemented but write that “Intel Movidius Neural Compute Stick 

seems like a good choice for early trials” because “it features Myriad 2 Visual Processing Unit 

(VPU).” The paper designed a payload with two cameras; a hyperspectral (VNIR) camera and LWIR 

thermal camera for capturing spectral images. The paper planned on deploying the CNN on the 

payload.  

Braun [44], in his thesis, investigated ML hardware that can run CNN models for CubeSats. The 

thesis states that Nvidia Jetson TX2 and Movidius Neural Compute Stick are being used for ground 

based AI applications. Since CubeSats use Commercial off-the-shelf (COTS) for space and follow 

embedded system development that happens on the ground, his thesis argues that deploying Deep 

NN such as CNN can be possible in aforementioned Embedded AI hardware.  

 

 

Figure 16. Zhang et al. [45] presented about CNN that could segment cloud as shown in d. Red and 
pink are misclassifications. a) is the image taken by LandSat-8 b) ground truth c) compressed image 
d) CNN segmented image. 
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Zhang et al. [45] used CNN model deployed on ARM9 MCU to detect and segment cloud for 

CubeSat applications. In the paper, U-Net, MobU-Net, Deconv-Net and MobDecov-Net are used to 

create four different transfer learned CNN. Publicly available LandSat-8 data is used to both train 

and test the model. The paper recommends using MobU-Net as the CNN showed highest accuracy. 

Cloud classification by the CNN is shown in Fig. 16. Similarly, Giuffrida et al. [46] proposed 

CloudScout CNN deployed on a Myriad 2 Visual VPU for on-board cloud detection on hyperspectral 

images. The payload is called HyperScout-2 and is designed for Φ-SAT-2 challenge from European 

Space Agency (ESA). 

1.5.5 Limitations of Current Research 

In reviewing the papers that has experimented and implemented CNN on hardware that can be placed 

on CubeSats, several limitations can be observed. Most papers have either implemented their model 

on FPGA, Nvidia’s TX1/TX2 or dedicated VPU hardware. Only Zhang et al. have implemented their 

model on an MCU. MCUs consume a fraction of power compared to FPGA, TX1/TX2 or VPUs and 

are ideal for 1U CubeSats. The argument is that if a model can be deployed on a 1U CubeSat, it can 

be implemented on any bigger satellite. 

Only Manning et al. had a dedicated image database of 8000 images to train CNN. Other papers 

relied on data from Planet or LandSat. CNN’s accuracy scales with larger dataset, therefore a bigger 

dataset is required to achieve higher accuracy. As stated in the paper, Manning et al. have accepted 

that 8000 images are not enough for training a good CNN model. The database is also not open 

which prohibits other researchers to use and expand the database.  

All papers have resorted in using transfer learning instead of building a lean CNN architecture that 

ensures small size and better performance. CNN designs are small such as MobileNet are popular. 

The CNN is customized to run on mobile platforms. However, it is not small enough to be able to fit 

inside an MCU. 

Furthermore, the CubeSat community has yet to explore deep learning models used frequently for 

IC in remote sensed data. While CNN is still widely popular technique, supervised and unsupervised 

techniques such as AE, DBN, RNN, GAN and ResNET are gaining traction. Therefore, comparative 

results between different deep learning models have not been explored yet.  

1.5.6 Dedicated CNN for CubeSat 

This thesis is intended to address these limitations. Firstly, since no dedicated dataset for CubeSat is 

available. A large enough dataset is created for ML training. There is no dedicated CNN designed 

for CubeSats. SWAP requirements impose severe restrictions on the size and power consumption. A 

CNN small enough to fit in an MCU but high enough accuracy and F1 score to classify images is 

designed from scratch and documented. CNN is then compared to SVM, AE and DBN. CNN shows 

highest accuracy and F1 score used on dedicated test dataset created from images from BIRDS-3.  
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 Convolutional Neural Networks 
 

CNN dominant rise in the past decade as the one the most explored, implemented, and practical 

algorithms in the field of ML is a testament to years of thoughtful design, iterative improvements, 

and eventual explosion of big data. This chapter explores CNN’s history and rise, dissects the design 

process, and explores how models are trained and optimized. 

2.1 History in Brief: ANN to DNN to CNN 

McCulloch and Pitts paper [47] in 1943 is considered as one of the first recorded document that 

attempted to model neural networks in brain. The paper had major influence when in 1945, John von 

Neuman used the neural model in discussions to design future of computers [48]. In 1958, 

psychologist Rosenblatt’s paper [49] put forth the concept of perceptron. Perceptron is a 

mathematical model that replicates how a neuron in brain behaves. Perceptron is the basis for modern 

ANN. The concept was inspired by McCulloch-Water’s paper. The limitations of the model, however, 

were highlighted by Minsky and Papert in 1969 in their book [50]. The book outlined that perceptron 

model could only solve linear separable problems but struggled in XOR problem [51].  

 

Figure 17. A perceptron is based on biological neurons. Structuring is similar [52] 

By 1980s, the limitations posed by a single positron (shown in Fig. 17) were solved by combining 

two or more perceptrons. Placing two or more perceptrons developed the concept of Multi-later 

Perceptron (MLP) where layers of perceptron would be stacked on top of another to develop a model. 

Information is fed into the model and an outcome is predicted in the output layer of perceptron. This 

is known as the feed-forward technique. To improve predictions,  Rumelhart [53] published a paper 

in Nature in 1986 introduced and derived backpropagation. Some literature state that Monro and 

Sutton[54] first introduced backpropagation as stochastic approximation method in 1951. Werbos 

specified backpropagation for NN in his dissertation in 1974 [55]. However, Rumelhart is credited 

to implement it on NN. Yann LeCun, who currently leads Facebook’s AI division [56], proposed an 

alternative derivation to backpropagation in 1986 [57]. Feedforward and backpropagation methods 
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allowed MLP models to calibrate internal parameters and improve the model. The process of 

calibration is called training. In 1988, Fukushima [28] took a step further and introduced hierarchical 

network called Neocognitron. The hierarchical network is based on work done by Hubel and 

Wiesel’s [58] findings on visual cortex. Neocognitron later became the basis for modern Deep Neural 

Network (DNN), more specifically CNN. 

The 1990s saw ANN take a back seat with SVM proposed by Boser et al.[59] driving ML technology 

forward. However, the emergence of DNN through CNN proposed by Yan LeCun et al. in their paper 

[29] in 1998 revived interest in ANN as an active ML research field. The paper brought forth the 

idea of scaling the hidden layers. In 2000s, researchers rebranded ANN to DNN. Hinton et al. 

published a breakthrough paper on Deep Belief Network (DBN) in 2006 [60] which showed tangible 

evidence that training NN is not as expensive as previously assumed. The paper created enough 

excitement for researchers to focus on DNN. This paved the way for rise of CNN in the next decade.  

In hindsight, the development of DNN was ahead of its time. The exponential growth through 

innovation in silicon technology put millions of handheld devices on people’s hands by late 2000s. 

Access to internet, sharing of data and processing power on CPUs and GPUs became more affordable 

due to economies of scale. DNN, most notably CNN, leveraged sudden influx of data by labelling 

them and using GPUs to train deeper networks. Fig. 18 shows a Google Trends search on CNN. Y-

axis is normalized axis while X is the time. A steady rise in search is seen after 2012.    

 

Figure 18. Google Trends [61] shows a steady rise in interest in CNN (green) after 2012 

At ImageNet Large Scale Visual Recognition Competition (ILSVRC) 2012, Alex Krizhevsky et al. 

proposed a CNN model called AlexNet that achieved state-of-art results in object recognition and 

classification tasks. AlexNet received a top 5 error of 15.3% while the second received 26.2% error 

[62]. With such huge difference in performance, AlexNet stole the limelight which led to rapid 
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interest and subsequent improvements in CNN. CNN has won every ILSVRC since. ILSVRC ended 

in 2017. After 2017, the competition moved on to classifying 3D objects using natural language [63]. 

2.2 CNN Structure 

There are no specified rules that govern the way CNN is designed. However, modern CNN have a 

common structure. These networks are composed of convolutional layers together with pooling 

layers (CL) first and fully connected layers (FCL) after. More recently, global average pooling layers 

(GAPL) are used to reduce the number of parameters instead of FCL. In a 2D classification problem 

that the thesis is attempting to solve, 2D image feature extraction takes place in the CL and PL while 

the classification takes place at the FCL or GAPL. The basis for DNN is a perceptron. Stacking and 

interconnecting perceptrons make up multi-layer perceptron (MLP). As more layers are stacked, the 

design becomes deeper, increasing the depth. So forth, the name “Deep” is given in DNN. FCL is 

type of feedforward MLP. CL is a special type of FCL. Details are provided in this subsection.  

2.2.1 Multi-Layered Perceptron 

 

Figure 19. Model of a perceptron which forms the basis for DNN [64] 

A perceptron is the most basic form of DNN. A perceptron is a mathematical representation of a 

neuron. In ML, perceptron, neuron or nodes are used interchangeably. Fig. 19 breaks down a 

perceptron into functional mathematical blocks. A perceptron maps a set of inputs 𝒙𝑙 to 𝒚𝐿. This 

means that a perceptron is a simple function approximator that provides some desired output based 

on inputs. The process firstly involves input 𝑥𝑗 multiplied to some corresponding weight 𝑤𝑗. Weights 

𝑤 are a set of parameters that changes the behavior of the function. The resulting weighted input is 

summed and bias 𝑏 is added for affine transformation. Until this stage, the function is linear. The 

sum is placed in an activation function 𝑓(𝑥) such as ReLU or sigmoid (details in Section 2.3.1.1). 

𝑓(𝑥) brings non-linearity to the equation and is responsible to activate the perceptron. The output 

𝑦(𝑤, 𝑥) can be represented mathematically as Eq. 2.1 and simplified to Eq. 2.2 taking 𝑏 = 𝑤0. 
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𝑦(𝑤, 𝑥) = 𝑓 (∑𝑤𝑗

𝑛

𝑗=1

𝑥𝑗 + 𝑏) (2.1) 

𝑦(𝑤, 𝑥) = 𝑓 (∑𝑤𝑗

𝑛

𝑗=0

𝑥𝑗) (2.2) 

 

Eq. 2.2 shows a basic example of a process called feedforward. Inputs move from left to right to 

provide an output. The inputs are “fed” and “forwarded” through the perceptron. A perceptron helps 

to estimate simple functions, however, complex function require combination of perceptrons. A 

multi-layered implementation of a perceptron with input, hidden and output layer is called a multi-

layered perceptron (MLP).  

In MLP, inputs go through the input layer. Each node (perceptron) of a layer is connected to all the 

nodes of the next layer. Each node is staked to form multi-layered structure where the output of one 

layer is the input to the other. A web of connections is thus formed. The connection repeats until the 

final layer where desired outputs exit.  

 

Figure 20 Nodes (perceptrons) form layers to create a multi-layered perceptron (MLP) [65] 

Fig. 20 shows a simple four-input (𝑥1, … , 𝑥4) feedforward-MLP with one hidden layer and three 

outputs (𝑦1, … , 𝑦3). In 𝑙𝑖2 the superscript 2 represents the layer number. 𝑙𝑖1 is the input layer and 𝑙𝑖2 is 

the hidden layer. The output layer is simply 𝐿 in the superscript. The subscript 𝑖 represents the node 

in layer 𝑙. Using the concept from Eq. 2.2, the equation can be expanded for MLP shown in Fig. 20. 

The equation is given in Eq. 2.3 and Eq. 2.4.  
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Input layer 𝑥𝑗  

 

Hidden layer 𝑙𝑖
2 = 𝑓2 (∑𝑤𝑖𝑗

2𝑥𝑗 + 𝑏𝑖
𝑙

4

𝑗=1

)  (2.3) 

 

Output layer 𝑦𝑖 = 𝑓
𝐿 (∑𝑤𝑖𝑗

𝐿 𝑙𝑗
2 + 𝑏𝑖

𝐿

5

𝑗=1

) (2.4) 

 

In Eq. 2.4, 𝑓𝐿 is an output function (details in Section 2.3.1.1 along with activation functions) instead 

of an activation function. 𝑓𝐿 can be a softmax which will give probability for each 𝑦𝑖 output. This 

way, MLP maps each input 𝑥𝑗 to an output 𝑦𝑖. The quality of the mapping depends on each layer 𝑙’s 

weights 𝑤 . The challenge now will be to find the weights as accurately as possible so that 

approximated function maps input 𝑥𝑗 as accurately as possible to output 𝑦𝑖. This process of finding 

appropriate weights 𝑤 is called training (details in Section 2.3). 

2.2.2 Convolution Layer 

Input of the first CL is an RGB image. An RGB image has three channels thus making the input a 

3D tensor. Given the height of the image is 𝐻, width of the image as 𝑊 and depth or channel as 𝐷, 

the 3D tensor is represented by input 𝒙1 ∈ ℝ𝐻1×𝑊1×𝐷1  where the superscript for 𝒙 represents first 

CL 𝑙 = 1. The input of one layer is the output of the other. Generalizing this, inputs for each 𝑙 CL 

will be 𝒙𝑙 ∈ ℝ𝐻𝑙×𝑊𝑙×𝐷𝑙 . Correspondingly, location of a specific input in 𝒙𝑙  will be shown by indexed 

set by 𝑖𝑙 , 𝑗𝑙, 𝑑𝑙.  

In one CL, three operations occur. Firstly, the general input 𝒙𝑙 undergoes feature extraction through 

kernels 𝒌𝑙. The kernel 𝒌𝑙  has a predetermined height  𝐻𝑘 and own width 𝑊𝑘. For a 3D tensor input 

𝒙𝑙 , kernel 𝒌𝑙  is a 4D tensor as the operation also takes place on 𝐷𝑙  and multiple features 𝐷 are 

extracted in a single layer. Therefore, the kernel is 𝒌𝑙 ∈ ℝ𝐻𝑘×𝑊𝑘×𝐷𝑙×𝐷 for any given layer 𝑙. 

A kernel 𝒌𝑙 convolves part of the 𝒙𝑙 and shifts until all spatial location is covered. The amount kernel 

𝒌𝑙 shifts is called stride 𝑠. For 𝒌𝑙 to go through every spatial location without skipping, the stride 𝑠 

is set at 1. In such circumstance, the convolution result will have the dimension given by Eq. 2.6. 

 

(𝐻𝑙 − 𝐻𝑘 + 1) × (𝑊𝑙 −𝑊𝑘 + 1) × 𝐷 (2.6) 

 

If the stride 𝑠 =1, Eq. 2.6 shows that the convolution operation reduces the dimension. Each 𝒙𝑙 can 

be padded if spatial dimension is to be maintained. The padding increases 𝐻𝑙 and 𝑊𝑙 in such a way 

that 𝐻𝑙 = 𝐻𝑙+1  and 𝑊𝑙 = 𝑊𝑙+1 . In the framework that this thesis uses, such padding is called 
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“SAME” padding (zero-padding) as the input and output spatial dimensions are the same. The other 

option is “VALID” padding (no padding) if dimension reduction is intended.  

In a simple case where stride 𝑠 =1 and no padding are used, the convolution can be represented as 

shown in Eq. 2.7 [66]. 

 

𝑦𝑖𝑙+1,𝑗𝑙+1,𝑑 = ∑ ∑∑ 𝑘𝑖,𝑗,𝑑𝑙,𝑑 × 𝑥𝑖𝑙+1+𝑖,𝑗𝑙+1+𝑗,𝑑𝑙
𝑙

𝐷𝑙−1

𝑑𝑙=0

𝑊−1

𝑗=0

𝐻−1

𝑖=0

 (2.7) 

 

The second operation is pooling. The calculated output of Eq. 2.7 is now the input to the pooling 

layer (PL). To simplify and keep notations the same, let 𝒙𝑙  be the input to the PL. The pooling 

operator 𝑝  is a 2D tensor with 𝐻𝑝 ×𝑊𝑝  and moves with stride 𝑠 . Operator 𝑝  operates in each 

channel by channel independently. Operator 𝑝 maps the overlapping region into a single number. In 

such circumstance, the output after application of pooling will have the dimension given by Eq. 2.8. 

 

𝐻𝑙+1 =
𝐻𝑙

𝐻𝑝
, 𝑊𝑙+1 =

𝑊𝑙

𝑊𝑝
, 𝐷𝑙+1 = 𝐷𝑙  (2.8) 

 

pooling can either be average pooling or maximum (max) pooling. In average pooling, the values in 

the overlapping region are averaged into a single number. In max pooling, the maximum value in 

the overlapping region is selected as the single number. A common PL operator 𝑝 is max pooling 

and has the following properties as shown in Eq. 2.9 and Eq. 2.10 [66]. 

 

𝐻𝑝 = 2, 𝑊𝑝 = 2, 𝑠 = 2       (2 × 2 , 2) (2.9) 

𝑦𝑖𝑙+1,𝑗𝑙+1,𝑑 = max 𝑥𝑖𝑙+1 × 𝐻𝑝+𝑖,𝑗𝑙+1 × 𝑊𝑝+𝑗,𝑑
𝑙  (2.10) 

 

The final operation in a CL is the application of activation function 𝑓(𝑥) that increases non-linearity. 

ReLU, softmax or sigmoid can be applied as 𝑓(𝑥) (details in Section 3.2.1.1). The result of the 

operation is the actual output from the CL and will be the input for the next CL, FCL or GAPL.   

2.3 Training 

Training of a CNN is done in two phases: forward propagation in the first phase, error calculation 

and backward propagation in the second. Forward propagation in CNN works the same way as 

described in previous chapter (Section 2.2.1). The input data 𝒙𝑙 is fed into the network where 𝒚𝐿 in 

the output layer provided probabilistic outcome. However, during training, the outcome is fed back 
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from the output layer towards the input in a process called backpropagation. In a supervised training 

that this thesis is conducting, error is calculated based on labelled targets 𝒕. This error is used to 

optimize weights based on advanced stochastic gradient descent (SDG) techniques (details in Section 

2.3.2). 

2.3.1 Hyperparameters 

The result of the training depends on the selection of “built-in” hyperparameters such as cost function 

and optimizers. Better hyperparameter selection and regularization leads to better weight tuning 

which leads to better function approximation.  Detailed description of the second phase is provided 

in this section. 

2.3.1.1 Activation Function 𝑓(𝑥) 

One of the most critical hyper-parameters is the activation function 𝑓(𝑥). The boundaries of objects 

in an image is not linear and requires non-linear equations to generalize data better. Activation 

function 𝑓(𝑥) adds non-linearity to the model. Activation function 𝑓(𝑥) takes in a weighted sum of 

input and biases, computes and decides whether a neuron should be fired on or not. CL also have 

activation function after pooling operation. During training, selection of activation functions 𝑓(𝑥) 

play an important role. Common problems in gradients documented in literature are vanishing and 

exploding gradients [67]. To tackle the problem, activation function must be selected properly. 

Common activation functions 𝑓(𝑥) have been discussed in this subsection. 

 

1) Sigmoid Function 

The Sigmoid Function is mathematically represented by Eq 2.11.  

 

𝑓(𝑥) = (
1

1 + 𝑒𝑥𝑝−𝑥
) (2.11) 

 

Sigmoid is differentiable real function, defined for real input values, with positive derivatives 

everywhere [67]. Sigmoid is mostly used in the output layer of CNN and is useful in producing 

probabilistic outputs for binary classification tasks. Sigmoid is also used in the inner layers, however, 

they suffer from sharp damp gradients, gradient saturation, slow convergence and non-zero centered 

output which does not provide correct gradients for parameter tuning during backpropagation [67]. 

There are variants to Sigmoid. Hard Sigmoid Function offers lesser computation cost to standard 

Sigmoid.  Sigmoid-Weighted Linear Units is only used for reinforcement learning.  Derivative of 

Sigmoid-Weighted Linear Units improves standard sigmoid significantly in performance. 

 

 



 
 

29 
 

2) Hyperbolic Tangent Function (Tanh)  

The Hyperbolic Tangent Function, also known as the Tanh function, is mathematically represented 

in Eq 2.12. 

 

𝑓(𝑥) = (
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
) (2.12) 

 

Tanh output lies between -1 and 1 and is zero-centered. Tanh provides better performance for multi-

layer neural networks to sigmoid. However, the function still suffers from vanishing gradient 

problem and produces dead neurons during computation. Tanh is primarily used for recurrent neural 

networks for natural image processing and speech recognition. Hard Hyperbolic Function is variant 

that is computationally cheaper to standard Tanh. [67]  

 

3)  Softmax Function 

Softmax function is mathematically represented in Eq. 2.13. Subscript 𝑗 represents number of class.  

 

𝑓(𝑥𝑖) =
exp (𝑥𝑖)

∑ exp (𝑥𝑗)𝑗
 (2.13) 

 

Softmax takes in a real number vector input and produces a probability distribution ranging from 0 

to 1. The sum of all the probabilities will equal to 1. Classification is done by looking at the highest 

probability for a class. Softmax is normally placed on the output layer.  

This thesis uses Softmax function in CNN’s output layer.   

4) Softsign Function 

Softsign function is mathematically represented in Eq. 2.14.  

 

𝑓(𝑥) = (
𝑥

|𝑥| + 1
) (2.14) 

 

Softsign is primarily used on regression and speech systems.  

 

5) Rectified Linear Unit (ReLU) 

Rectified Linear Unit (ReLU) is mathematically represented in the Eq. 2.15.  

 

𝑓(𝑥) = {
𝑥𝑖 , 𝑥𝑖 > 0
0, 𝑥𝑖 ≤ 0

 (2.15) 
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ReLU is the most widely applied activation function and is the current state-of-art [67]. ReLU 

performs better than Sigmoid and tanh. ReLU is also less computationally intensive as linear 

elements are present. ReLU operates in a way that any value above zero is identity while any value 

below is equaled to zero. ReLU is applied in both output and inner layers of CNN.  

This thesis uses ReLu as activation function in CL of CNN.  

2.3.1.2 Cost Function 𝐶(𝑥) 

Keeping notations consistent, 𝒙𝑙 is the input data, 𝒕 is ground truth (labeled) information and 𝒚𝑳 is 

the output from the final layer (output layer). To update the weights such that the function 

approximation is accurate as possible, error must be calculated. In supervised learning, 𝒕 provides 

labeled information of the training dataset. Since 𝒚𝑳 is the predicted outcome, a function has to be 

in place such that error can be calculated between what the model thinks 𝒙𝑙 is which is 𝒚𝑳 and what 

the model should actually think as 𝒕. Cost function (also called error or loss function) 𝐶(𝑥) calculates 

how far off the model is from approximating a given task properly. Cost function 𝐶(𝑥) is only used 

in training and is only applied after the activation function 𝑓(𝑥) of the final or output later. 

There are two popular Cost functions 𝐶(𝑥). First is the mean squared error (MSE). Given that there 

are  𝑁 number of training samples, the MSE 𝐶𝑀𝑆𝐸(𝑥) is mathematically expressed as in Eq. 2.16. 

 

𝐶𝑀𝑆𝐸(𝑥𝑖) =
1

𝑁
∑(𝑡𝑖 − 𝑓(𝑥𝑖))

2

𝑁

𝑖=1

 (2.16) 

 

Second is the cross-entropy function 𝐶𝐶𝐸(𝑥) and is mathematically expressed as  

 

𝐶𝐶𝐸(𝑥𝑖) = −∑𝑡𝑖 log(𝑓
𝑠𝑚𝑎𝑥(𝑥𝑖))

𝑁

𝑖=1

 (2.17) 

 

This thesis uses Cross-Entropy Loss function 𝐶𝐶𝐸(𝑥) after applying softmax 𝑓𝑠𝑚𝑎𝑥(𝑥) activation in 

the output layer.   

2.3.2 Optimizer 

Cost function 𝐶  finds the error between input ground truth 𝒕  and final output 𝒚𝑳 . 𝐶  must be 

minimized to create a more accurate model. Optimizers are responsible to change the parameters to 

minimize 𝐶. Parameters are weights 𝒘𝒍 in case of FCL or GAPL and kernel 𝒌𝒍 in case of CL for any 

layer 𝒍 (for simplicity, the parameters will all be represented by 𝒘𝒍). Optimizers help to determine 

the direction and amount of change 𝒘𝒍 that need undergo to find an optimized solution to a model.  
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Modern optimizers are an extended form of gradient descent (GD) method. In GD, the parameters 

𝒘𝒍 are updated iteratively towards the opposite direction of the gradient of 𝐶. The process continues 

until 𝒘𝒍 converges to a point where 𝐶  is minimized. Eq. 2.18 repeats based on the number of 

iterations. The speed at which GD converges is the learning rate 𝜂 (details in Section 2.3.5). 

 

𝑤′𝑖
𝑙 = 𝑤𝑖

𝑙 + 𝜂. (−
𝜕𝐶

𝜕𝑤𝑖
𝑙) (2.18) 

 

A widely applied technique is the SGD where a sample is randomly chosen among total sample 𝑁. 

The gradient of that random sample is used to update rather than using the complete batch. This 

accelerates calculation and has shown to achieve optimal convergence speed [68]. SGD has a 

variation where a mini-batch is used. Total sample 𝑁 is a single batch. 𝑁 is divided and fed in mini-

batches. A random sample from that mini-batch is used to calculate the gradient. Mini-batch SGD 

has been the standard practice when selecting SGD.  

SGD has issues in learning rate 𝜂 selection and with saddle points where optimization reaches local 

minima instead of global. Nestrov Accelerated Gradient Descent (NAG) uses speed 𝑣 and 

momentum 𝑚𝑡𝑚 to escape local minima. The parameters 𝒘𝒍 are updated as shown in Eq. 2.19 [68]. 

 

{

�̃� = 𝑤 + 𝑣𝑜𝑙𝑑 . 𝑚𝑡𝑚

𝑣 = 𝑣𝑜𝑙𝑑 . 𝑚𝑡𝑚 + 𝜂. (−
𝜕𝐶

𝜕𝑤
)

𝑤′ = �̃� + 𝑣

   (2.19) 

 

The challenge of learning rate 𝜂 selection persisted. AdaGrad, an adaptive learning rate method, 

adjusts learning rate 𝜂 automatically, converges faster and achieves better results to SGD.  The 

parameters 𝒘𝒍 are updated by AdaGrad using historical gradient 𝑉𝑠𝑡𝑝 at each iterative step 𝑠𝑡𝑝 . Eq. 

2.20 shows how learning rate 𝜂 and parameters 𝒘𝒍 updates. 

 

{
  
 

  
 

𝑉𝑠𝑡𝑝 = √∑(
𝜕𝐶

𝜕𝑤
)
2

𝑠𝑡𝑝

𝑖=1

+  𝜖

𝑤𝑠𝑡𝑝+1 = 𝑤𝑠𝑡𝑝 −
𝜂

𝑉𝑠𝑡𝑝
. (−

𝜕𝐶

𝜕𝑤
)

   (2.20) 

 

Eq. 2.20 shows that increasing training time would increase iterative step 𝑠𝑡𝑝 which would then 

increase historical gradient 𝑉𝑠𝑡𝑝 . If 𝑉𝑠𝑡𝑝  is large, AdaGrad can no longer update 𝒘𝒍  because of 

vanishing learning rates 𝜂  . RMSProp and AdaDelta improved AdaGrad. However, Adaptive 
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Moment Estimation (Adam) has become popular. Adam uses adaptive learning and momentum. 

Adam improves on RMSProp and AdaDelta by introducing exponential decaying average of past 

gradients 𝑚𝑠𝑡𝑝. Eq 2.21-2.24 shows Adam’s step by step process. 

 

𝑆𝑢𝑝𝑝𝑜𝑠𝑖𝑛𝑔:    𝑔𝑠𝑡𝑝 =
𝜕𝐶

𝜕𝑤
 (2.21) 

𝑚𝑠𝑡𝑝 = 𝛽1𝑚𝑠𝑡𝑝−1 + (1 − 𝛽1)𝑔𝑠𝑡𝑝 (2.22) 

𝑉𝑠𝑡𝑝 = √𝛽2𝑉𝑠𝑡𝑝−1 + (1 − 𝛽2)𝑔𝑠𝑡𝑝
2   (2.23) 

𝑤𝑠𝑡𝑝+1 = 𝑚𝑠𝑡𝑝 − 𝜂 
√(1 − 𝛽2)𝑚𝑠𝑡𝑝

(1 − 𝛽1)(𝑉𝑠𝑡𝑝 + 𝜖)
 (2.24) 

 

Adam’s original paper [69] recommends using default values of decays 𝛽1, 𝛽2 and ϵ as 0.9, 0.999 

and 10-8 respectively. Adam works well in practice and compares favorably to other adaptive learning 

rate algorithms [68]. 

This thesis uses Adam as its optimizer with default values. 

2.3.3 Backpropagation 

Cost function 𝐶  calculates the error based on the output from the final layer 𝐿 . The optimizer 

calculates gradients 𝜕𝐶
𝜕𝑤

 for layer 𝐿  and tunes parameters 𝒘  (and bias 𝒃)  . The error is then 

propagated backwards towards the inner layers by calculating gradients for each parameter 𝒘 in 

subsequent layers. This process of feeding back the error and using the optimizer to tune the 

parameters 𝒘 is called backpropagation.  

To explain backpropagation, Eq. 2.3 is represented in vectorized form as shown in Eq. 2.25. 

 

𝒚𝑙 = 𝑓 (𝒘𝑙𝒙𝑙 + 𝒃𝑙) (2.25) 

 

The expression for weighted output 𝒘𝑙𝒙𝑙 + 𝒃𝑙  can be represented by 𝒛𝑙  as shown in equation 2.26. 

 

𝒚𝑙 = 𝑓 (𝒛𝑙) (2.26) 

 

Initially the gradient is calculated w.r.t 𝒙 i.e. 𝜕𝐶
𝜕𝑥

. Let 𝜕𝐶
𝜕𝑥
 be represented by ∇𝑥𝐶 . To tune parameters 

𝒘 based on the output error calculation, the gradient must be calculated w.r.t 𝒘 i.e. 𝜕𝐶
𝜕𝑤

. Through the 

chain rule, backpropagation allows gradient calculation for each weight. There are four fundamental 
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equations for backpropagation [70]. Given that  𝛿 = 𝜕𝐶

𝜕𝑧
 and operator ⨀ is the Hadamard product,  𝜹𝑳 

can be calculated using Eq. 2.27. 

 

𝜹𝑳 = ∇𝑥𝐶 ⨀ 𝑓′(𝒛
𝑳) (2.27) 

 

Backpropagation moves from the output layer 𝐿  to the inner layers. For any layer 𝑙 , the 𝜹𝒍  is 

calculated based on the calculation from 𝑙 + 1. The mathematical expression is given in Eq. 2.28.  

 

𝜹𝒍 = ((𝒘𝒍+𝟏)
𝑇
𝜹𝒍+𝟏 ⨀ 𝑓′(𝒛𝒍) (2.28) 

 

Thus calculating 𝜕𝐶
𝜕𝑏

 for bias 𝒃 and 𝜕𝐶
𝜕𝑤

 for weight 𝒘 for each neuron in layer 𝑙 using Eq. 2.29-2.30. 

 

𝜕𝐶

𝜕𝑏𝑖
𝑙 = 𝛿𝑖

𝑙 (2.29) 

𝜕𝐶

𝜕𝑤𝑖𝑗
𝑙 = 𝑥

𝑙−1𝛿𝑖
𝑙 (2.30) 

 

In section 2.2.2, a CL with input 𝒙𝑙 ∈ ℝ𝐻𝑙×𝑊𝑙×𝐷𝑙  convolved by 𝒌𝑙 ∈ ℝ𝐻𝑘×𝑊𝑘×𝐷𝑙×𝐷 is described. To 

simplify notations to explain backpropagation in CL, the calculations are only included for a single 

channel input, i.e. 𝐷 = 1 (furthermore, 𝒌𝑙 will be referred to as 𝒘𝑙 to keep notations consistent with 

backpropagation equations 2.27-2.30). Thus, the dimension of the convolutional result will be 

(𝐻𝑙 − 𝐻𝑘 + 1) × (𝑊𝑙 −𝑊𝑘 + 1). Gradients for each individual weight can be calculated using Eq. 

2.31-2.32 [70]. Operator ∗ is the convolutional operation.  

 

𝜕𝐶

𝜕𝑤𝑚,𝑛
𝑙 = {∇𝑥𝐶𝑖,𝑗

𝑙 }
𝑟𝑜𝑡180

∘ ∗  𝑦𝑚,𝑛 
𝑙−1  (2.31) 

𝑤ℎ𝑒𝑟𝑒: ∇𝑥𝐶𝑖,𝑗
𝑙 = ∇𝑥𝐶𝑖,𝑗

𝑙+1  ∗   {𝑤𝑚,𝑛
𝑙+1}

𝑟𝑜𝑡180
∘𝑓′(𝑥𝑖,𝑗

𝑙 ) (2.32) 

 

2.3.4 Regularization  

A designed CNN model is a function approximator. The function is approximated based on the test 

dataset and the structure of the CNN. The function provides information on a never-seen-before test 

dataset. The ability of the function to provide accurate information on a general problem like a test 

dataset is called generalization. There are two cases where generalization is not achieved. A model 
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does not perform well on both the training and test dataset. This type of model is known as an underfit 

model. A model performs extremely well on training but fails to emulate the results on a test dataset. 

This type of model is known as an overfit model. The aim of model training is to perform “just-

right” where performance in test is high and can generalize a test dataset well.  

The technique applied to regularize the process of generalization is called regularization. 

Regularization is used either to change the structure or value of the weights. When a model is 

underfit, a simple solution is to increase the size of the model. This increases the number of 

parameters and the model learns better. However, the challenge is not when underfit but when 

overfit. This is where regularization plays an important role in improving a model.  

Data augmentation is one of the regularization techniques that decreases invariance and helps a 

model to generalize better. Data augmentation artificially increases dataset by introducing noise such 

as skewing, distorting and rotating. DNN models such as CNN has shown to improve accuracy when 

dataset is increased. The model performs better when real-world “noise” is applied to the training 

dataset.  

Dropout regularization is a technique where a portion of the neurons in FCL or GAPL temporary 

shut off. This creates a transient structure that is different from the original architecture. In any given 

layer 𝑙, depending on the global dropout setting, 10%-50% of the neurons are deactivated randomly. 

The remaining active neurons are forced to learn during a mini-batch training. The process repeats 

in the next batch with 10%-50% of neurons in any given layer 𝑙 deactivated again randomly. The 

technique was first demonstrated by Krizhevsky et al. in 2012 [62]. 

Early stopping is another common technique. The test dataset is divided into test and validation. A 

learning curve is simultaneously plotted against epoch. An epoch is completed when the complete 

dataset (or all mini-batch) is used for training once. Normally, as epoch increases, test and validation 

accuracies increase. At some point, the learning curve diverges. After that, any more training leads 

to the model overfitting. Early stopping terminates the training at the divergent point.  

This thesis uses data augmentation, dropout and early stopping regularization (details in Section 

3.1.4) to improve model performance.  

2.3.5 Note on Searchable Hyperparameters 

Section 2.3.1. Hyperparameters detailed “built-in” hyperparameters of a CNN. However, there are 

parameters inside hyperparameters. This thesis calls these hyperparameters as “searchable” 

hyperparameters. Optimizers such as Adam, an advanced mini-batch SGD, require user to set the 

initial learning rate 𝜂𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and size of the mini-batch called 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒. A learning rate 𝜂𝑖𝑛𝑖𝑡𝑖𝑎𝑙 set 

too high or too low will affect training time and accuracy. So does the size of the 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒. For 

regularization techniques, searchable hyperparameters such as dropout percentage 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 and the 

number of epoch 𝑒𝑝𝑜𝑐ℎ𝑠 must be set by user. The details of the search are given in Section 3.2.4.  
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 Methodology 
 

This chapter outlines the methodology used in designing and training a dedicated, ultralight CubeSat 

CNN called CubeSatNet. The components for CubeSatNet design and development is illustrated in 

Fig. 21. CubeSatNet is designed to classify images into “good” or “bad.”  Section 3.1 shows how a 

CubeSat imagery is sourced, conditioned, and augmented to create a dedicated dataset from scratch. 

Section 3.1 outlines training platform (framework) and library used. Section 3.2.2 derives the size 

requirement for model architecture through the selection of MCU. Section 3.2.3 shows the steps 

towards building an ultralight CNN while Section 3.2.4 shows how the network is optimized.  

 

 

Figure 21. Breakdown of research components for building a CNN from scratch  

3.1 Dataset Creation 

Dataset is divided into training and test dataset. The training dataset is further divided into training 

and validation dataset. Test dataset must be created independent to the training dataset and should 

represent image taken from space as close to reality as possible. For this reason, all the images taken 

by BIRDS-3 CubeSat are used for test. All the other data is used for training. This section describes 

the end to end process steps to create a CubeSat database from scratch.  

3.1.1 Dataset Mining  

3.1.1.1 Real CubeSat Imagery 

Since the end goal is to deploy a trained model on orbit, using real CubeSat imagery to train the CNN 

model is essential. An extensive search on CubeSats with imaging missions is conducted through the 

internet. The website nanosat.eu has created a list of nanosatellites with cameras. The first phase of 

data mining was done by going through each link and extracting all images from their official 
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website. The second phase was focused on tracking images that have been posted on social media 

such as Facebook and Twitter and downloading them. Educational CubeSats which take images from 

space tend to reach out to a wider audience by using such platforms. After exhausting the source, the 

third phase used a direct contact approach. Emails were sent out to projects and teams requesting the 

data. The three phases of data collection supplemented internal image database of Kyutech. The 

internal image database has images from HORYU-4 and BIRDS-3 (only used for test dataset) 

project. Fig. 22 shows examples of some of images collected.  

 

   

Figure 22. Images from CP9 [71], MySat-1 [72] and Xiaoxiang 1-08 [73] 

3.1.1.2 ISS Imagery 

CubeSat have limited downlink capacity. Teams downlink data but not all are published online. The 

image collected from on-orbit data is not enough to train CNN. To tackle the bottleneck, images 

from International Space Station (ISS) are used to supplement the dataset. ISS has high resolution 

cameras onboard that take images from Low Earth Orbit (LEO). LEO images taken aboard ISS are 

like CubeSats taking horizon images. NASA’s website [74] uploads them on a regular basis. 

Users on the video platform YouTube have created time-lapse videos by stitching together ISS 

images. Videos are useful because they have at least 30 frames per each second that can be extracted. 

Section 3.1.2.1 shows how videos are downloaded and images are extracted. Initially the process 

involved capturing the screen manually. A code written in python automated the entire process and 

helped to build a large database of ISS earth horizon imagery. Fig. 23 shows examples of some of 

images collected. 

 

   

Figure 23. Shows images extracted from videos taken aboard the ISS 
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3.1.1.3 Sentinel 3A Imagery 

Images generated from ISS are horizon images. The images must be balanced using nadir pointed 

images. Sentinel 3A is a LEO earth observation satellite by European Space Agency (ESA). The 

images taken are in R,G,B and are about 300m in GSD. The images look like CubeSat nadir pointed 

images. A JavaScript code explained in Section 3.1.2.3 shows how 150x150 thumbnails are 

generated using the browser-based Google Earth Engine (GEE).  The same section also documents 

how browser-based Sentinel-hub Graphical User Interface (GUI) can also be used to download 

useful data. Fig. 24 shows examples of some of images collected. 

 

    

Figure 24. Images extracted from Sentinel 3A satellite 

3.1.1.4 High Altitude Balloon (HAB) Images 

Images generated from CubeSat are usually “good” images. CubeSat teams usually release good 

images. Images collected from ISS look “good” as well. A selective process in Sentinel 3A can 

generate bad images but since the process is still manual, generating large data takes time. 

Additionally, images that are classified as “bad”; sunburn, space, moon, or sun cannot be generated 

from previous sources.  

A large number of High Altitude Balloon (HAB) projects have are documented in video on YouTube. 

These videos are good source for bad images as 1) the images are stored on SD card and have 

extremely long runtime 2) some cameras are pointed up to document the balloon bursting and so 

forth, frequently have footage of the sun, space and sunburn and 3) near space images look similar 

to images taken aboard CubeSats. By going through image extraction process as explained in Section 

3.1.2.1. Fig. 25 shows examples of some of images collected. 

 

    

Figure 25. HAB images extracted from videos uploaded on YouTube using python 
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3.1.1.5 Amateur Rocket Images 

Like HAB, action cameras like GoPro attached to amateur rockets provide additional source of data. 

The rockets reach altitudes above the Karmen line. Images extracted from videos taken aboard are 

like CubeSat images. A similar process of finding videos on YouTube, downlinking them, and 

extracting frames is conducted. Explanation is provided in Section 3.1.2.1. Fig. 26 shows examples 

of some of images collected. 

    

Figure 26. Images taken aboard amatuer rockets can also be useful for creating dataset 

3.1.2 Extraction Process 

3.1.2.1 Extracting Images from YouTube 

Depending on the target, the keywords are placed on YouTube’s search engine. Keywords such as 

ISS images, ISS timelapse, high altitude balloon burst or amateur rocket footage results in an array 

of videos. Pytube3 [75] is a python library that is used to download the target video first. Google 

Collaboratory (Colab) [76] is based on Jupiter notebook and is used to run the code. Colab runs on 

any internet browser and removes the need to install python on the computer. Colab also allows users 

to link personal Google Drive (GD) to access cloud storage. The platform provides over 100GB of 

storage during runtime. By using target video’s YouTube address, Pytube3 directly downlinks the 

video on to Colab’s cloud storage. If necessary, the videos can also be stored on the GD. For this 

thesis, mp4 videos at 320p with 30fps are downlinked.  

FrameExtractor Class based on [77] using OpenCV library is then applied to extract frames. Frame 

extraction depends on how many images the user wants to extract per certain number of frames. For 

example, if the video is short, all the frames are extracted. If the video is long, one frame from every 

three are downlinked. The data is directly placed on the pre-determined folder on the GD. GD has a 

windows application that allows users to sync GD on the cloud directly to the hard drive. This way, 

as the images are being extracted on Colab and stored on GD, a real time transfer of the data to the 

hard drive is also taking place for data conditioning and augmentation. This saves a lot of time as 

there is no need to manually downlink the images from the cloud.  

3.1.2.2 Bulk Download from Websites 

CubeSat team place their images on their personal websites, social media pages and third-party 

image sharing portals. Firstly, a list of nanosatellites with imaging missions are collected. Free 
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internet satellite database like nansats.eu and space.skyrocket.de are used in the process. Most of the 

images are shared on 1) twitter 2) project website and 3) Facebook. A chrome extension called 

“Download All Images” (DAI) is used after accessing each page. Clicking the activation button that 

comes with it, a zip file is created with all the images. The file is unzipped, unwanted images deleted, 

and necessary data extracted.  

DAI is also useful when downloading image from search engine like Google Image Search (GIS). 

Placing keywords like ISS and image from cubesat, GIS shows a host of images that could be used 

for creating dataset. Clicking one image at a time and downloading it takes time and is a manual 

process. Using DAI, all images shown in the page are zipped and downloaded automatically. The 

file is then unzipped and images that are useful are kept.  

3.1.2.3 Accessing Sentinel-3A Imagery 

Google Earth Engine (GEE) is an open online platform where users can access large datasets of 

publicly released remote sensing data including Landsat, Sentinel and MODIS data through their 

Application Programming Interface (API). An online Integrated Development Environment (IDE) 

allows users to rapidly select, visualize and analyze data using a Javascript API. Furthermore, the 

IDE’s console can generate thumbnails of 150x150 based on the satellite, time, location, and region 

of interest (ROI). This feature helps to generate a wide variety of nadir-pointed imagery data for ML. 

For this thesis, 300m Ground Sampling Distance (GSD) images from Sentinel 3A’s Ocean and Land 

Color Instrument (OLCI) is used. BIRDS-3 1U CubeSats have a 5MP RGB camera on board with a 

maximum theoretical GSD of 300m calculated from 400km ISS orbit. Sentinel 3A’s GSD is selected 

because 1) matches the resolution 2) bands 8,6,4 represent R,G,B 3) volume of data (available since 

18 November, 2016.) Fig. 27 shows some of the examples of data generated from GEE. 

 

Figure 27. 150x150 thumbnails Sentinel 3A images extracted from Google Earth Engine 
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By changing ROI, data for clouds, land, ice, and water bodies can be created. By changing the 

saturation, bright images can be created. This is useful when ML model must be trained to identify 

overly light exposed pictures and classify them. All the images are nadir pointed.  

Another way to access Sentinel 3A data is through Sentinel Hub Earth Observation (EO) Brower 

[78]. By searching data for a specific time and selecting true color images, 1468x644 Sentinel 3A 

images can be downloaded for a location. One generated image is large enough to split and create 

additional images. Splitting can be done in two ways. The first method is browser based GUI 

software called ImageSplitter by Postcron [79]. The software is originally designed to split images 

for Instagram. Each 1468x644 satellite image can generate 55 cropped images each of 128x129 

pixels as shown in Fig. 28. The second method uses Image Slicer [80] python library. Using Image 

Slicer, each 1468x644 satellite image can generate 42 cropped images each of 209x107 pixels. The 

first method provides more control over how the image is cropped.  

 

Figure 28. Sentinel 3A downloaded from Sentinel Hub EO Browser can be split using ImageSplitter 

3.1.3 Data Conditioning: Cleaning 

 

Figure 29. Objects and letters on the images have to be cleaned before augmentation 
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Data must be clean and uniform before it is augmented. Imagery could have watermarks, writings, 

spots, and objects that could reduce the overall quality. Removal of these noise from images is a 

critical step in creating a clean ML database. Adobe Lightroom’s (AL) spot removal provides a 

simple, GUI based method to recreate the pixels lost while deleting unwanted parts. Results are 

shown in Fig. 29. AL has batch image processing which allows multiple images to be edited. 

However, AL is a paid software. A free alternative to AL is GIMP, an image editor that has similar 

spot removal feature called healing. The bottom half of Fig. 29 shows how objects and 

watermarking/writings have been removed from image using AL.  

3.1.4 Data Augmentation 

 

Figure 30. Data is augmented by combined flipping, rotation, distortion and skewing.  

Data augmentation is a widely applied technique not only to increase the dataset but to improve a 

ML model through invariance and regularization. Invariance is a property where a ML can classify 

input data better in different image orientations. This simulates conditions where a CubeSat takes 

images when ADCS is either passive or is absent. Augmentation also helps to increase regularization. 

Overfitting is a common problem in ML models. Overfitting occurs when model has high accuracy 

on the training dataset but low on the validation. Overfitting is reduced by regularization through 

data augmentation.  

This thesis uses Augmentor [81] python library for augmenting the data. The package has specific 

features designed for biomedical imaging but is general enough to be used as an image processing 

library for generating dataset for CubeSat images as well. A random combined effect of flipping, 

rotation, distortion, and skewing is placed on the images to extend the data. The values of each effect 

along with example results are shown in Fig. 30.  
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3.1.5 Data Conditioning: Uniformity 

 

Figure 31. All images are resized to 100x100 pixels and compressed in .jpg 

OpenCV library in python is applied on these images to create uniform size and format. The size 

will depend on input of the ML architecture. For demonstration purposes, the paper has resized all 

the images to 100x100 pixels and changed the format to .jpg as shown in Fig. 31. 

3.2 Training  

3.2.1 Training Library and Platform 

 

Figure 32. Browser platform Google Colab allows researchers to build and train models for free  

In 2019, Pytorch library overtook Tensorflow as the most popular library for researchers to do ML 

[82]. Pytorch is an open source ML library developed by Facebook. The API is simple to use and 

can run on python. Tensorflow is an open source ML library developed by Google. Tensorflow (TF) 

has a high level Keras API which simplifies library execution and coding. The coding is done in 

python. While Pytorch is popular with researchers, the industry relies on TF [82] as TF has options 
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for embedded systems through TF Lite (TFlite). Trained TF models can be changed to TFlite models 

and deployed on mobile phones and now microcontrollers (MCU).  

The research in the thesis is done on TF with Keras API. Fig. 32 shows how Google Colab is used 

while training the model on the browser. When the research began, TF was the most popular ML 

library [83]. In 2020, Google released TF 2.0. The latest version is faster and more resource efficient 

[84]. TF models can be converted to TFlite for mobile phone/Raspberry Pi (Rpi) deployment or 

further changed to quantized TFlite (qTFlite) to MCU applications. Running TF models on a 

resource constraint MCU began experimentally in 2018 and improved in 2019. Additionally, 

Google’s Colab is a free Jupiter notebook platform that allows researchers to train ML models on a 

dedicated GPU on the cloud. This research is building a model to deploy on an MCU and has a 

minimal approach to resource use. Therefore, TF library is used on Colab to train the model. 

3.2.2 MCU and Module Selection 

 

Figure 33. Performance vs Cost for different embedded and processing platform for ML [85] 

SWaP requirements of 1U CubeSats mean that only low powered CPUs like Rpi zero or MCUs can 

be used for running ML models. Fig 33 shows that MCU has the least performance, takes most time 

for inference but is least costly to operate. MCU also fulfills the stringent SWaP requirements for a 

1U CubeSat. If a model can be designed in such a way that it can fit on an MCU, the same model 

can fit on any processor. MCU is selected as it is the worst-case hardware to run the model.  

Before 2019, running a ML model on an MCU was extremely labor-intensive process. However, due 

to availability of new ML tools and improvements in MCU architecture, ML inference can be done 

on MCUs as well. MCUs from ARM Cortex-M STM32 series developed by STMicroelectronics are 

high-performance, low-powered 32-bit controllers. According to ASPENCORE 2017 Embedded 
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Market Study published in April 2017, 2/3rd of the individuals surveyed were considering using 

STM32 for their next embedded project [86]. Survey in 2015 had the same trend before [87]. STM32 

MCUs are known for its performance, fast clock speed, larger internal memory, and low power 

consumption. Table 3 shows some of CubeSats which have used STM32 in either their bus or 

subsystem. STM32 have just enough memory and processing speed to run a qTFlite model.  

 

Figure 34 Show OpenMV Cam with STM32 ARM Cortex-M MCU which can load TFlite models 

OpenMV produces machine vision camera modules that are based on STM32 chips. Fig. 34 shows 

the module. The camera modules can be programmed using their user-friendly Integrated 

Development Environment (IDE) in MicroPython, has TFlite support and has active customer 

support in their forum if issues arise. This thesis uses OpenMV Cam H7 with 400MHz 

STM32H743VI ARM Cortex M7 processor. The module consumes 170mA at 3.3V and can load 

model of about 100kB in size. Furthermore, MCU has been used in space. In April 1, 2019, 

Nanoavionic’s M6P mission in LEO had SatBus 3C2 carried the same 400MHz STM32H7 ARM 

Cortex M7 processor into orbit [88]. 

Table 3. CubeSats that have used ARM Cortex M STM32 MCUs in their system design 

CubeSat Type Developer Launch Year MCU 

EstCube-1 1U University of Tartu 2013 STM32F1 

SNUSAT-1/1b 2U Seoul National University 2017 STM32F4 

FOX-1C 1U AMSAT 2018 STM32L1 

PW-Sat2 2U Warsaw University of Tech. 2018 STM32F1 

SNUSAT-2 3U Seoul National University 2018 STM32F4 

PicSat 3U Observatoire de Paris 2018 STM32F3 

KrakSat 1U AGH Uni. of Sci. and Tech., 

SatRevolution S.A. 

2019 STM32xx 

M6P 6U Nanoavionics 2019 STM32H7 
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3.2.3 CNN Architecture Design 

 

Figure 35 CNN architecture of CubeSatNet v1.0 

Two CNN models are named as CubeSatNet v1.0 and CubeSatNet v2.0. Fig. 35 shows that 

CubeSatNet v1.0 architecture has four Convolutional Layers (CL), a Flattening Layer (FL), a Fully 

Connected Layer (FCL) and an Output Layer (OL). CL has kernel of 3x3, same padding and ReLu 

activation layer. After each CL, a max-pooling layer of matrix 2x2 and stride 2 is applied. 16, 32, 64 

and 128 features are extracted as the image passes through each subsequent CL. Feature size is 

reduced by the pooling layer to 50x50, 25x25, 12x12 and 6x6 respectively. Dropouts are imposed 

after FL and FCL. Softmax function is implemented in OL to provide probabilities for each class. 

During training, categorical cross-entropy calculates the loss and Adam optimizes during 

backpropagation. Table 4 summarizes each layer and its parameters. Table 4 also enlists properties 

for each convolutional layer.  

Table 4. Layer definition and CL parameter properties for CubeSatNet v1.0 

Layer Type Shape Param #  CL Type Padding  Stride 

CL1 Conv (100,100,16) 448 Kernel 3x3 Same 1 

CL2 Conv (50,50,32) 4,640 Activation ReLu - - 

CL3 Conv (25,25,64) 18,496 Pooling Max (2x2) - 2 

CL4 Conv (12,12,128) 73,856     

FL Flattening 4608 0     

FCL Dense 512 2,359,808     

OL Output 2 1,026     

Total Parameters 2,458,274     
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Table 4 shows that there are almost 2.5 million parameters that need to be trained in CubeSatNet_v1. 

The network size is proportional to the number of parameters. To reduce the number of trainable 

parameters, CubeSatNet v2.0 has Global Average Pooling Layer (GAPL) instead of FCL. The total 

number of parameters is now under 100,000.  Fig. 36 shows the CNN architecture and Table 5 enlists 

the layers of CubeSatNet v2.0.  

 

Figure 36 CNN architecture of CubeSatNet v2.0 

Table 5. Layer definition for CubeSatNet_v2. FL has been replaced by GAPL 

Layer Type Shape Param # 

CL1 Conv (100,100,16) 448 

CL2 Conv (50,50,32) 4,640 

CL3 Conv (25,25,64) 18,496 

CL4 Conv (12,12,128) 73,856 

GAPL Global Avg. 128 0 

FL Flattening 128 0 

OL Output 2 258 

Total Parameters 97,698 

 

3.2.4 Training and Optimization 

The training dataset is further divided into training and validation dataset in 80:20 ratio. 48,000 

images are used for training while 12,000 is used for validation.  Three key hyper-parameters are 

selected for optimization; dropout 𝑑𝑟𝑜𝑝𝑜𝑢𝑡  before OL, batch size 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒  of images during 

training and Adam’s learning rate 𝜂𝑖𝑛𝑖𝑡𝑖𝑎𝑙 for backpropagation. Table 6 shows the number of search 

parameters for 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 , 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒  and 𝜂𝑖𝑛𝑖𝑡𝑖𝑎𝑙 are 4, 7 and 5 respectively. The total number 
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parameters in the search space is 140. Liashchynskyi and Liashchynskyi [89] states that grid search 

is a better approach than genetic algorithm when search space is small. For 𝑑𝑟𝑜𝑝𝑜𝑢𝑡, 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 

and 𝜂𝑖𝑛𝑖𝑡𝑖𝑎𝑙, the optimum values through grid search are 64, 0.0001 and 0.3 respectively. The values 

have been bolded in Table 6.  Each training took about an hour using the platform explained in 3.1.3. 

TF model is generated in the process.   

Table 6. Summary of the total number of parameters for hyper-parameter tuning 

Hyper-parameter Values  No. 

Batch Size  𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 32, 64, 128, 512, 1024, 2048 7 

Learning Rate 𝜂𝑖𝑛𝑖𝑡𝑖𝑎𝑙 0.1, 0.01, 0.001, 0.0001, 0.00001 5 

Dropout 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 0.2, 0.3, 0.4, 0.5 4 

Total Search Space BS*LR*DO 140 

 

Fig. 37 shows that the model achieved a final accuracy of 90.47% at 43 epochs. After 43 epochs, the 

plots for training and validation diverge. A red line is marked on Fig. 37 to illustrate the diverging 

point which is the optimum value. The divergence after the red line in training and validation losses 

is because of overfitting. Bigger fluctuations are observed as the overfit model is sensitive to minor 

changes in the training data.  

 

Figure 37. Training and Validation Accuracy on the left and Loss on the right. 
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3.2.5 Optimized Model Comparison 

Table 7. Test accuracy for different variations (layers, input size) of models 

CNN Model Layer Selection Input Size Parameters  Test Accuracy 

CubeSatNet_v1 CLx4, FCL 100x100 2,458,274 90.12% 

CubeSatNet_v2 CLx4, GAPL 100x100 97,698 90.47% 

CubeSatNet_v3 CLx4, GAPL 75x75 97,698 88.06% 

CubeSatNet_v4 CLx4, GAPL 50x50 97,698 88.04% 

CubeSatNet_v5 CLx3, GAPL 50x50 23,714 86.92% 

CubeSatNet_v6 CLx2, GAPL 25x25 5,154 85.05% 

 

Table 7 shows a comparison of CubeSatNet_v2 with different versions of CNN model. 

CubeSatNet_v1 took 100x100 input with 3 channels (RGB). CubeSatNet_v2 reduced the number of 

parameters significantly while improving accuracy when FCL is replaced by GAPL. However, with 

progressive removal of CL and reduction of input size showed accuracy to reduce.  Table 8 shows 

how original selection of base reference values of 16, 32, 64, 128 feature extraction for subsequent 

CL in CubeSatNet_v2 showed highest accuracy. Reducing depth of CL showed lower accuracies as 

documented in Type A and Type B where 4, 8, 16, 32 and 8, 16, 32, 64 respectively are selected as 

the depth of CL. The optimum model CubeSatNet_v2 is about 104kB.  

Table 8. Test accuracy for different variations (convolutional depth) of models 

CubeSatNet_v2 CL1 CL2 CL3 CL4 Parameters Test Accuracy 

Type A 4 8 16 32 6,282 89.88% 

Type B 8 16 32 64 24,658 89.47% 

Original 16 32 64 128 97,698 90.47% 
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 Results 

4.1 Test Dataset 

 

Figure 38 shows 30 images taken by BIRDS-3 satellites which are used as a test dataset 

To find how CubeSatNet would perform in space, the CNN should be tested on a completely new 

dataset that is as close to the real satellite image as possible. BIRDS-3 CubeSats have been taking 

images from 380km ISS orbit since June 2019. A test dataset of first thirty images taken by BIRDS-

3 are used to create a test dataset for CubeSatNet. None of these images were used for training or 

validation. Fig 38 shows all the images used for test dataset.  

4.2 Quantization and Model Performance 

The testing has been done on three different TF models; the original generated from training, a 

Tensorflow lite (TFlite) model and an 8-bit quantized Tensorflow lite (qTFlite) model through post-

training quantization process. TFlite is designed for inference on embedded systems. The 8-bit 

qTFlite is the actual model that is deployed on the MCU of the CubeSat. The TFlite conversion and 

the quantization process is done following the documentation provided by Google.  

 

Figure 39. CubeSatNet_v2 TF and TFlite model’s performance on BIRDS-3 images. Red shows 
images that are incorrectly classified. The accuracies for both models are equal at 86.67%. 
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Figure 40. CubeSatNet_v2 TFlite and qTFlite model’s performance on BIRDS-3 images. Red 
shows changes in classification. TFlite’s accuracy is 86.67% while qTFlite’s accuracy  

increased to 90% which is unexpected 

The visual representation of the image classification are shown in Fig. 39 and 40. Fig. 39 shows the 

difference in the inference between TF and TFlite models. Fig. 39 shows that there is no change in 

accuracy when TF is converted to TFlite. Both have a test accuracy of 86.67% and is about 4% lower 

than the validation accuracy during training. Interestingly, qTFlite model performs better than TFlite 

and TF with 90% accuracy (see Fig.40). This is unexpected as factorial reduction in size should have 

maintained or reduced the accuracy. Table 9 shows how the probability calculation from output layer 

(confidence values) changed for the image boxed in Fig. 40. The model’s prediction for “bad” and 

“good” for the image is borderline.  Initially, the model is slightly more confident that the image is 

“bad.” Post-training quantization changed the value in such a way that qTFlite is slightly more 

confident that the same image is “good.” Since the original classification was incorrect, the qTFlite 

classified it as correct. This explains the increase in accuracy. 

Table 9. Confidence value of the image that flipped classification while changing models 

Bad Good 

TF TFlite qTFlite TF TFlite qTFlite 

0.543 0.543 0.497 0.456 0.456 0.502 

 

Table 10 outlines all the models discussed so far, their size and their respective accuracies. The final 

model of CubeSatNet_v2 is in bold. qTFlite is 10x smaller than TF model that was trained and has 

almost equal accuracy of 90%. Performance comparison between SVM, AE and DBN are given in 

section 4.3.  
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Table 10. Summary of changes of size and accuracy of different models 

Model Model Size Image Type Training Test 

CubeSatNet_v1 TF 28MB RGB 89.76% - 

CubeSatNet_v2 
 

TF 1MB RGB 90.47% 86.67% 

TFlite 387kB RGB - 86.67% 

qTFlite 104kB RGB - 90% 

 

Table 11. Confusion matrix for CubeSatNet_v2 qTFlite along with F1 score 

n=30 Actual 

Predicted Bad  Good   

Bad  17[TP]  2 [FP] Recall (R) 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 0.94 

Good 1 [FN] 10[TN] Precision (P) 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 0.90 

 F1 Score 
𝟐 ∗

𝑷 ∗ 𝑹

𝑷 + 𝑹
 0.92 

 

The confusion matrix is presented on Table 11. The total number (n) of images classified is 30. 

Among them, 17 are True Positives (TP) where CubeSatNet_v2 qTFlite correctly classified “bad” 

images. Likewise, 1 is False Negative (FN) where the CNN incorrectly classified as “good” image. 

The CNN has 2 False Positives (FP) image where “good” images are classified as “bad” and 10 True 

Negative (TN) where images are correctly classified as “good.” F1 score is calculated to be 0.92. 

The maximum achievable score is 1.  

 

Figure 41. Shows images that were classified as good 
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Fig. 41 shows the images that would have been downlinked if hypothetically the CNN is applied on 

BIRDS-3 from deployment. All 18 images classified as “bad” would have been deleted. In that 2 

actually “good” images would have been lost. The remaining 11 images would have been taken about 

a month to downlink cutting down the operation time to by 2/3rd. Out of the 11 images downlinked, 

1 would have been incorrectly classified as good. The CNN has the potential to save operation time 

and manual work while significantly improving the quality of image downlinked.  

4.3 Model Comparative Performance 

Table 12. CNN is compared to SVM, DBN and AE 

Model  Framework Size Input 

SVM Matlab 500kB B&W 

CNN Tensorflow 104kB RGB 

DBN Tensorflow 324kB B&W 

AE Tensorflow 621kB RGB 

 

For simplicity, CubeSatNet_v2 qTFlite is referred to as CNN in this section. The CNN performance 

must be compared to other machine learning classification methods. The CNN model is compared 

to SVM, DBN and AE trained on the same dataset summarized in Table 12. SVM is built by 

Kyutech’s BIRDS-4 team. The model is currently part of the ICU on-board BIRDS-4’s 1U CubeSat 

constellation which is scheduled to launch late 2020. The size is 500kB, takes grayscale input and is 

trained in Matlab. DBN consists of two hidden layers and is based on the DBN classification library 

designed by DBNAlbert [90]. To minimize size, the DBN takes grayscale input, is limited to 325kB 

and uses TF framework.  AE is unsupervised and the design algorithm is based on Ardamavi [91]. 

The size is 621kB, takes RGB input and is trained using high level Keras API to access TF framework.  

Table 13. CNN shows highest performance as compared to SVM, DBN and AE 

 Confusion Matrix Values Performance on BIRDS-3 Test Dataset 

Model TP FP FN TN Total A R P F1 

SVM 15 5 3 7 30 73.33% 0.83 0.75 0.79 

CNN 17 2 1 10 30 90% 0.94 0.90 0.92 

DBN 14 3 4 9 30 76.67% 0.78 0.82 0.80 

AE 14 6 4 6 30 66.67% 0.78 0.70 0.74 

 

Table 13 lists out the results on BIRDS-3 test dataset. Among the four models, CNN has the smallest 

size with 104KB. CNN also takes RGB input like AE but opposed to grayscale inputs of SVM and 

DBN. CNN shows highest test accuracy (A) with 90% followed by DBN, SVM and AE with 76.67%, 
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73.33% and 66.67% respectively. CNN displayed the highest recall (R) and precision (P). The F1 

score for CNN is 0.92. DBN, SVM and AE have F1 score of 0.80, 0.74 and 0.79 respectively. The 

results show that CNN outperforms DBN, SVM and AE for CubeSat image classification. 
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 Conclusion 
 

This thesis presented an innovative method to tackle the limited data downlink capability of a 1U 

CubeSat. An ultralight CNN architecture called CubeSatNet is proposed and trained on a novel 

CubeSat image database of 60,000 augmented images to prioritize quality image data for downlink. 

The final model is just over 100kB in size and is small enough to load on an ARM Cortex MCU and 

has an accuracy of 90%. Test is done on first thirty on-orbit images from Kyutech’s BIRDS-3 

CubeSats. The results showed that, if implemented, operation time could be cut by about 2/3 while 

significantly improving on quality of image received. The CNN outperformed SVM, DBN and AE 

tested on the same BIRDS-3 test dataset. 

5.1 Future Potential 

 

Figure 42. Images taken in space can be segmented into different classifications 

The CNN model proposed in this thesis classifies the whole image. The next step would be to train 

the model to segment the image into sections and classify the parts individually. This is called image 

segmentation. Image segmentation is achieved by placing a small classification window over the 

image, classifying the small portion, shifting the window to the next group of pixels, and classifying 

again. The process is repeated until all the image is covered. Similar classifications are grouped 

together to create a boundary. An example is shown in Fig 42. The image is segmented into cloud, 

sea, land and space. A practical use would be to calculate cloud percentage cover in an image. Based 

on that, the ground operator can decide to download the image or skip it.  

There is also the potential to merge CubeSatNet with other NN. Like combining convolutional layers 

to extract features from an image, CNN can be combined with Recursive Neural Network (RNN) to 

generate text from the image. RNN is used for generating content for speech recognition, translation, 

natural language processing and image description. Natural language descriptions can be placed to 

caption an image by first extracting features using CNN. Using RNN, the features are then digested 
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to form a sentence long description of that image. Fig. 43 shows a hybrid NN that is used to describe 

an image taken by a CubeSat.  

 

Figure 43. CNN models can be combined with RNN to describe the images taken by CubeSats 

Hybrid NN could be used on CubeSats to generate a separate text file that has all the information 

about each image the satellite has taken. While operating, the ground operator sends a command to 

downlink the file. The operator can then select which image to downlink based on the individual 

image descriptions. This provides more freedom of choice; for instance, depending on what the 

operator needs, he/she could select an image that is an island, land partly surrounded by sea, image 

of sea or just land.  

This can further improve to identify landmass if enough labelled dataset is created. In Fig. 43, the 

image is described as “Land surrounded by sea with partial clouds.” The word “land” can be replaced 

by “Sri Lanka” or “Kyushu” or “Korean Peninsula.” The ground operator can then select the image 

based on the geographical description. 
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 Appendix 
 

Complete Training/Testing code on google colab: 

https://colab.research.google.com/drive/1W5VH_s1-3cHYi541XxoZABZstu4JkhaK?usp=sharing 

 

Complete 60,000 Training dataset with 30 Test dataset: 

https://data.mendeley.com/datasets/47vtp22vs7/1 

 

 

  

https://colab.research.google.com/drive/1W5VH_s1-3cHYi541XxoZABZstu4JkhaK?usp=sharing
https://data.mendeley.com/datasets/47vtp22vs7/1


 
 

57 
 

 References 
 

[1] H. Heidt, J. Puig-Suari, A. Moore, S. Nakasuka, and R. Twiggs, “CubeSat: A new generation 
of picosatellite for education and industry low-cost space experimentation,” 2000. 

[2] “Suppliers — CubeSat.” https://www.cubesat.org/new-index (accessed Jun. 18, 2020). 

[3] S. S. Technology, “State of the Art Small Spacecraft Technology,” 2018. Accessed: Jun. 18, 
2020. [Online]. Available: http://www.sti.nasa.gov. 

[4] N. Saeed, A. Elzanaty, H. Almorad, H. Dahrouj, T. Y. Al-Naffouri, and M.-S. Alouini, 
“CubeSat Communications: Recent Advances and Future Challenges,” IEEE Commun. Surv. 
Tutorials, pp. 1–1, Aug. 2019, Accessed: Jun. 18, 2020. [Online]. Available: 
http://arxiv.org/abs/1908.09501. 

[5] “SwissCube - eoPortal Directory - Satellite Missions.” 
https://directory.eoportal.org/web/eoportal/satellite-missions/s/swisscube (accessed Jun. 18, 
2020). 

[6] “Nanosats Database | Constellations, companies, technologies and more.” 
https://www.nanosats.eu/ (accessed Jun. 18, 2020). 

[7] “Timeline of first artificial satellites by country - Wikipedia.” 
https://en.wikipedia.org/wiki/Timeline_of_first_artificial_satellites_by_country (accessed 
Jun. 18, 2020). 

[8] “Planet | Insights - Our Constellations.” https://storage.googleapis.com/planet-ditl/day-in-
the-life/index.html (accessed Jun. 18, 2020). 

[9] “Spire @ Nanosats Database.” https://www.nanosats.eu/org/spire (accessed Jun. 18, 2020). 

[10] O. Koudelka, R. Kuschnig, M. Wenger, and P. Romano, “Nanosatellite missions-the future.” 

[11] A. Poghosyan and A. Golkar, “CubeSat evolution: Analyzing CubeSat capabilities for 
conducting science missions,” Progress in Aerospace Sciences, vol. 88. Elsevier Ltd, pp. 59–
83, Jan. 01, 2017, doi: 10.1016/j.paerosci.2016.11.002. 

[12] S. Asmar and S. Matousek, “Mars cube one (MarCO) shifting the paradigm in relay deep 
space operations,” 2016, doi: 10.2514/6.2016-2483. 

[13] “MarCO - Satellite Missions - eoPortal Directory.” 
https://directory.eoportal.org/web/eoportal/satellite-missions/content/-/article/marco 
(accessed Jun. 18, 2020). 

[14] “JPL | Cubesat | MarCO.” https://www.jpl.nasa.gov/cubesat/missions/marco.php (accessed 
Jun. 18, 2020). 

[15] K. Devaraj, R. Kingsbury, M. Ligon, J. Breu, V. Vittaldev, and B. Klofas, “Dove High Speed 
Downlink System.” 

[16] S. Palo, D. O. Connor, E. Devito, and R. Kohnert, “SSC14-IX-1 Expanding CubeSat 
Capabilities with a Low Cost Transceiver,” 2012. 

[17] “Watch 3 ‘BIRDS’ Take Flight from the International Space Station | Space.” 
https://www.space.com/space-station-deploys-birds-3-cubesats-video.html (accessed Jun. 18, 
2020). 

[18] EnduroSat, “UHF Transceiver II CubeSat Communication | CubeSat by EnduroSat.” 
https://www.endurosat.com/cubesat-store/cubesat-communication-modules/uhf-transceiver-
ii/ (accessed Dec. 20, 2019). 



 
 

58 
 

[19] EnduroSat, “S-Band Transmitter - CubeSat Communication Module | EnduroSat.” 
https://www.endurosat.com/cubesat-store/cubesat-communication-modules/s-band-
transmitter/ (accessed Oct. 12, 2019). 

[20] EnduroSat, “X-Band Transmitter CubeSat Communication Module | EnduroSat.” 
https://www.endurosat.com/cubesat-store/cubesat-communication-modules/x-band-
transmitter/ (accessed Dec. 20, 2019). 

[21] O. Cristea, P. Dolea, and P. V. Dascăl, “S-band ground station prototype for low-earth orbit 
nanosatellite missions,” Telecomunicatii, no. 2, pp. 64–71, 2009. 

[22] S. Chien et al., “Onboard autonomy on the intelligent payload experiment CubeSat mission,” 
J. Aerosp. Inf. Syst., vol. 14, no. 6, pp. 307–315, 2017, doi: 10.2514/1.I010386. 

[23] D. R. Thompson et al., “Onboard machine learning classification of images by a cubesat in 
Earth orbit,” AI Matters, vol. 1, no. 4, pp. 38–40, 2015, doi: 10.1145/2757001.2757010. 

[24] J. L. Rash and C. P. Dent, “Space applications of artificial intelligence; Proceedings of the 
Annual Goddard Conference, Greenbelt, MD, May 16, 17, 1989,” 1989. 

[25] C.-C. Lee, “Intelligent control based on fuzzy logic and neural net theory,” 1991. 

[26] L. Feruglio and S. Corpino, “Neural networks to increase the autonomy of interplanetary 
nanosatellite missions,” Rob. Auton. Syst., vol. 93, pp. 52–60, 2017. 

[27] M. A. C. Silva, M. Shan, A. Cervone, and E. Gill, “Fuzzy control allocation of microthrusters 
for space debris removal using CubeSats,” Eng. Appl. Artif. Intell., vol. 81, pp. 145–156, 
2019. 

[28] K. Fukushima, “Neocognitron: A Hierarchical Neural Network Capable of Visual Pattern 
Recognition,” 1988. 

[29] Y. Lecun, L. Eon Bottou, Y. Bengio, and P. H. Abstract|, “Gradient-Based Learning Applied 
to Document Recognition.” 

[30] M. A. Hedjazi, I. Kourbane, and Y. Genc, “On identifying leaves: A comparison of CNN 
with classical ML methods,” in 2017 25th Signal Processing and Communications 
Applications Conference (SIU), 2017, pp. 1–4. 

[31] H. Wang et al., “Comparison of machine learning methods for classifying mediastinal lymph 
node metastasis of non-small cell lung cancer from 18F-FDG PET/CT images,” EJNMMI 
Res., vol. 7, no. 1, 2017, doi: 10.1186/s13550-017-0260-9. 

[32] K. T. Islam, R. G. Raj, and A. Al-Murad, “Performance of SVM, CNN, and ANN with BoW, 
HOG, and Image Pixels in Face Recognition,” 2nd Int. Conf. Electr. Electron. Eng. ICEEE 
2017, no. December, pp. 1–4, 2018, doi: 10.1109/CEEE.2017.8412925. 

[33] N. J. L. Marfu’ah and A. Kurniawardhani, “Comparison of CNN and SVM for Ship Detection 
in Satellite Imagery,” AUTOMATA, vol. 1, no. 1, Jan. 2020, Accessed: Jul. 22, 2020. [Online]. 
Available: https://journal.uii.ac.id/AUTOMATA/article/view/13973. 

[34] B. Kumar, O. Dikshit, A. Gupta, and M. K. Singh, “Feature extraction for hyperspectral 
image classification: a review,” Int. J. Remote Sens., vol. 41, no. 16, pp. 6248–6287, Aug. 
2020, doi: 10.1080/01431161.2020.1736732. 

[35] L. Ma, Y. Liu, X. Zhang, Y. Ye, G. Yin, and B. A. Johnson, “Deep learning in remote sensing 
applications: A meta-analysis and review,” ISPRS J. Photogramm. Remote Sens., vol. 152, 
pp. 166–177, Jun. 2019, doi: 10.1016/j.isprsjprs.2019.04.015. 

[36] H. Parikh, S. Patel, and V. Patel, “Classification of SAR and PolSAR images using deep 
learning: a review,” Int. J. Image Data Fusion, vol. 11, no. 1, pp. 1–32, Jan. 2020, doi: 



 
 

59 
 

10.1080/19479832.2019.1655489. 

[37] A. Ozdemir and K. Polat, “Deep Learning Applications for Hyperspectral Imaging: A 
Systematic Review,” J. Inst. Electron. Comput., vol. 2, no. 1, pp. 39–56, Feb. 2020, doi: 
10.33969/jiec.2020.21004. 

[38] Y. Zhang and S. Prasad, “Locality Preserving Composite Kernel Feature Extraction for Multi-
Source Geospatial Image Analysis,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 8, 
no. 3, pp. 1385–1392, Mar. 2015, doi: 10.1109/JSTARS.2014.2348537. 

[39] N. Buonaiuto et al., “SSC17-WK-56 Satellite Identification Imaging for Small Satellites 
Using NVIDIA,” Small Satell. Conf., 2017. 

[40] A. P. Arechiga, A. J. Michaels, and J. T. Black, “Onboard Image Processing for Small 
Satellites,” in Proceedings of the IEEE National Aerospace Electronics Conference, 
NAECON, 2018, vol. 2018-July, pp. 234–240, doi: 10.1109/NAECON.2018.8556744. 

[41] J. Manning et al., “Machine-Learning Space Applications on SmallSat Platforms with 
TensorFlow,” 32nd Annu. AIAA/USU Conf. Small Satell., pp. 1–8, 2018, [Online]. Available: 
https://adeshpande3.github.io/A-Beginner%27s-Guide-. 

[42] S. Greenland, M. Ireland, C. Kobayashi, P. Mendham, M. Post, and D. White, “Design & 
Prototyping of a Minaturised Forwards Looking Imager using Deep Learning for Responsive 
Onboard Operations,” in The 4S Symposium, 2018, pp. 1–9. 

[43] M. I. Bappy and S. Siddique, “AI-OBC : Conceptual Design of a Deep Neural Network based 
Next Generation Onboard Computing Architecture for Satellite Systems,” no. March, 2019. 

[44] A. D. Braun, “Investigation of Deep Neural Network Image Processing for Cubesat Size 
Satellites,” 2018. 

[45] Z. Zhang, G. Xu, and J. Song, “CubeSat cloud detection based on JPEG2000 compression 
and deep learning,” Adv. Mech. Eng., vol. 10, no. 10, pp. 1–10, 2018, doi: 
10.1177/1687814018808178. 

[46] G. Giuffrida et al., “CloudScout: A Deep Neural Network for On-Board Cloud Detection on 
Hyperspectral Images,” Remote Sens., vol. 12, no. 14, p. 2205, Jul. 2020, doi: 
10.3390/rs12142205. 

[47] W. S. Mcculloch and W. Pitts, “A Logical Calculus of the Ideas Immanent in Nervous 
Activity.,” 1943. 

[48] “Handbook of Neural Computation - 1st Edition.” 
https://www.elsevier.com/books/handbook-of-neural-computation/samui/978-0-12-811318-
9 (accessed Jun. 18, 2020). 

[49] F. Rosenblatt, “The Perceptron: A Probabilistic Model for Information Storage and 
Organization in the Brain,” 1958. 

[50] M. Minsky and S. Papert, Perceptrons; an introduction to computational geometry. MIT 
Press, 1969. 

[51] O. Zapletal, “Image Recognition by Convolutional Neural Networks - Basic Concepts,” 2016. 

[52] “The Perceptron - Jonty Sinai.” https://jontysinai.github.io/jekyll/update/2017/11/11/the-
perceptron.html (accessed Jun. 18, 2020). 

[53] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-
propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986, doi: 10.1038/323533a0. 

[54] H. Robbins and S. Monro, “A Stochastic Approximation Method,” Ann. Math. Stat., vol. 22, 



 
 

60 
 

no. 3, pp. 400–407, Sep. 1951, doi: 10.1214/aoms/1177729586. 

[55] P. J. Werbos, “Beyond regression: new tools for prediction and analysis in the behavioral 
sciences,” 1974. 

[56] “Yann LeCun’s Home Page.” http://yann.lecun.com/ (accessed Jun. 18, 2020). 

[57] Yann LeCun, “A Theoretical Framework for Back-Propagation,” in Proceedings of 1998 
Connectionist Models Summer School, 1988, pp. 21–28. 

[58] D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional 
architecture in the cat’s visual cortex,” J. Physiol., vol. 160, no. 1, pp. 106–154, Jan. 1962, 
doi: 10.1113/jphysiol.1962.sp006837. 

[59] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “Training algorithm for optimal margin 
classifiers,” in Proceedings of the Fifth Annual ACM Workshop on Computational Learning 
Theory, 1992, pp. 144–152, doi: 10.1145/130385.130401. 

[60] G. E. Hinton, S. Osindero, and Y. W. Teh, “A fast learning algorithm for deep belief nets,” 
Neural Comput., vol. 18, no. 7, pp. 1527–1554, May 2006, doi: 10.1162/neco.2006.18.7.1527. 

[61] “Google Trends.” https://trends.google.com/trends/ (accessed Jun. 18, 2020). 

[62] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep 
convolutional neural networks,” in Advances in neural information processing systems, 2012, 
pp. 1097–1105. 

[63] “ImageNet - Wikipedia.” https://en.wikipedia.org/wiki/ImageNet (accessed Jun. 18, 2020). 

[64] “From Fiction to Reality: A Beginner’s Guide to Artificial Neural Networks.” 
https://towardsdatascience.com/from-fiction-to-reality-a-beginners-guide-to-artificial-
neural-networks-d0411777571b (accessed Jun. 19, 2020). 

[65] Anna Gummeson, “Prostate Cancer Classification using Convolutional Neural Networks,” 
Lund University, Lund, 2016. 

[66] J. Wu, “Convolutional Neural Networks.” https://cs.nju.edu.cn/wujx/teaching/15_CNN.pdf 
(accessed Aug. 26, 2020). 

[67] C. Enyinna Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation Functions: 
Comparison of Trends in Practice and Research for Deep Learning.” 

[68] S. Sun, Z. Cao, H. Zhu, and J. Zhao, “A Survey of Optimization Methods from a Machine 
Learning Perspective,” IEEE Trans. Cybern., pp. 1–14, Jun. 2019, Accessed: Jun. 19, 2020. 
[Online]. Available: http://arxiv.org/abs/1906.06821. 

[69] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” Dec. 2015. 

[70] “Backpropagation In Convolutional Neural Networks | DeepGrid.” 
https://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-
networks/ (accessed Sep. 25, 2020). 

[71] “PolySat (@PolySat) / Twitter.” https://twitter.com/polysat (accessed Jun. 18, 2020). 

[72] “Profile / Twitter.” https://twitter.com/MYSAT_1 (accessed Jun. 18, 2020). 

[73] “Chinese smartphone camera photographs Earth from space | Space.” 
https://www.space.com/chinese-smartphone-camera-images-earth-from-space.html 
(accessed Jun. 18, 2020). 

[74] “Space Station Videos | NASA.” 
https://www.nasa.gov/mission_pages/station/videos/index.html (accessed Jun. 18, 2020). 



 
 

61 
 

[75] “pytube3 — pytube3 9.6.4 documentation.” https://python-pytube.readthedocs.io/en/latest/ 
(accessed Jun. 18, 2020). 

[76] “Welcome To Colaboratory - Colaboratory.” https://colab.research.google.com/ (accessed 
Jun. 18, 2020). 

[77] “youtube_python_3.py.” 
https://gist.github.com/erykml/6a1fe38763664567e6052e78e047ebb5 (accessed Jun. 18, 
2020). 

[78] “Sentinel Hub EO Browser.” https://apps.sentinel-hub.com/eo-browser/ (accessed Jun. 18, 
2020). 

[79] “Resize, convert, split, crop your images online - ImageSplitter.” https://postcron.com/image-
splitter/en/ (accessed Jun. 18, 2020). 

[80] “image-slicer · PyPI.” https://pypi.org/project/image-slicer/ (accessed Jun. 18, 2020). 

[81] M. D. Bloice, P. M. Roth, and A. Holzinger, “Biomedical image augmentation using 
Augmentor,” Bioinformatics, 2019. 

[82] “The State of Machine Learning Frameworks in 2019.” https://thegradient.pub/state-of-ml-
frameworks-2019-pytorch-dominates-research-tensorflow-dominates-industry/ (accessed 
Jun. 18, 2020). 

[83] “5 Most Popular Machine Learning Libraries in Python.” https://yourstory.com/mystory/5-
most-popular-machine-learning-libraries-in-pytho-ws215d0wec (accessed Jun. 18, 2020). 

[84] “Effective TensorFlow 2  |  TensorFlow Core.” 
https://www.tensorflow.org/guide/effective_tf2 (accessed Jun. 18, 2020). 

[85] “O’Reilly AI Conf.” https://www.slideshare.net/neiltan2/oreilly-ai-conf (accessed Jun. 18, 
2020). 

[86] AspenCore Global Media, “2017 Embedded Markets Study,” 2017. [Online]. Available: 
http://m.eet.com/media/1246048/2017-embedded-market-study.pdf. 

[87] R. Quinnell, “Embedded Markets Study: Changes in Today’s Design, Development & 
Processing Environments,” 2015. 

[88] NanoAvionics, “High-performance Multi-purpose 6U nano-satellite Platform,” 2018. 
[Online]. Available: https://nanoavionics.com/wp-content/uploads/2018/08/NanoAvionics-
M6P-Platform-Brochure-Website.pdf. 

[89] P. Liashchynskyi and P. Liashchynskyi, “Grid Search, Random Search, Genetic Algorithm: 
A Big Comparison for NAS,” arXiv Prepr. arXiv1912.06059, 2019. 

[90] albertbup, “A Python implementation of Deep Belief Networks built upon NumPy and 
TensorFlow with scikit-learn compatibility,” 2017. https://github.com/albertbup/deep-belief-
network (accessed Jul. 22, 2020). 

[91] ardamavi, “Using Autoencoders for classification as unsupervised machine learning 
algorithms with Deep Learning.,” 2018. https://github.com/ardamavi/Unsupervised-
Classification-with-Autoencoder (accessed Jul. 22, 2020). 

 


