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Implication for health policy/practice/research/medical education:
Metformin can be used in patients with significant chronic kidney disease, while inhibiting CKD-MBD (chronic kidney disease-
mineral and bone disorder) due to its osteogenic effects.
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Chronic kidney disease-mineral and bone disorder (CKD-MBD) is a disorder of mineral and bone 
metabolism due to chronic kidney disease (CKD). Bone disease and mortality are more common 
in patients with CKD. In addition of antidiabetic properties of metformin (MET), it possesses anti-
inflammatory, anti-fibrotic properties and increases the markers of osteogenic effects. Therefore, 
it improves bone quality and decreases the risk of fractures in patients with type 2 diabetes. 
Metformin can also inhibit arterial calcification, maintain calcium-phosphorus balance, decrease 
cellular infiltration, fibrosis, and inflammation in kidney. Based on evidence, the prevalence of 
lactic acidosis due to metformin in patients with type 2 diabetes (T2D) and renal dysfunction 
is lower compared to other oral antidiabetic agents. Metformin decreases all-cause mortality in 
patients with diabetic nephropathy. The administration of metformin showed no difference in the 
prevalence of lactic acidosis in patients with T2D who had normal, mild, moderate, or severe renal 
dysfunction. Therefore, metformin can be used in patients with significant CKD to inhibit CKD-
MBD due to its osteogenic effects.
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Calcium homeostasis and chronic kidney disease
Renal physiological functions can influence bone strength 
through the regulation of calcium excretion. More than 
95% of filtered calcium is reabsorbed through the renal 
tubules and 60% of that reabsorption happens by diffusion 
transport. Calcium homeostasis is a very important process 
for human survival.  Although calcium is a main element 
of the bony skeleton, it is also involved in many intra and 
extracellular pathways such as neuronal network, immune 
response, muscle contractions and hormone secretion. 
Total body calcium in an adult human is approximately 
1-2 kg with 99% of it accumulates in the bone. 

Less than 1% of total body calcium is in the extracellular 
space. Almost half of the extracellular calcium is in an 
ionized form, 40% protein-bound and 10% in a complex 
with anions such as phosphate, sulfate, citrate and so on. 
The ionized calcium is strongly regulated by parathyroid 

hormone (PTH), 1,25-dihydroxyvitamin D3, calcitonin 
and even calcium. All the mechanisms are regulating to 
keep the serum calcium concentration within a range of 
8.5-10.5 mg/dL (1,2). 

The kidney is the target organ of numerous regulatory 
hormones such as PTH and fibroblast growth factor-23 
(FGF-23), and is the key organ to synthesize vitamin D. 
Chronic kidney disease is associated with bone fractures 
and significant reduction of bone mineral density as 
well as a significant increase in morbidity and mortality 
(3). The prevalence of MBD among patients on chronic 
hemodialysis is 85% based on abnormal PTH levels and 
around 64% based on symptoms (4). 

It has been confirmed that decreased bone mineral 
density (BMD) is a powerful predictor of fracture risk in 
chronic kidney disease (CKD) patients. Identifying the 
causes of bone fracture such as hyperparathyroidism, 
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adynamic bone disease or biological aging osteoporosis 
is a difficult task based on bone densitometry results.  In 
addition to bone disease related to the aging-kidney, renal 
diseases such as diabetic nephropathy can cause mineral 
bone diseases unrelated to aging. Therefore, CKD is a 
strong risk factor for augmented fracture (5). 

Chronic kidney disease-mineral and bone disorder 
(CKD-MBD)
CKD-MBD is a disorder of mineral and bone metabolism 
caused by CKD that consists of either one or all of the 
following disorders: alteration of calcium, phosphorus, 
PTH or vitamin D metabolism, alteration of bone turnover, 
mineralization, volume, linear growth or strength, vascular 
or other soft-tissue calcification (5). CKD-MBD may lead 
to cardiovascular diseases, left ventricular hypertrophy, 
hypertension, immune dysfunction, inflammation and 
iron deficiency anemia (6).

It is estimated that 70%-90% of CKD patients in stages 
III-IV progress to developing abnormalities in bone and 
mineral homeostasis. Data from the National Health and 
Nutrition Examination Survey (NHANES) proposes that 
bone diseases are more prevalent in people with estimated 
glomerular filtration rates (eGFR)<60 mL/min/1.73 m2 
compared to those with eGFR >60 mL/min/1.73 m2 (7).

Therefore, early diagnosis and therapeutic intervention 
may prevent bone and mineral disorders and change the 
outcomes (8-10).

A wide range of bone disorders has been identified 
in patients with chronic renal failure. Two main types 
of bone abnormalities observed in patients with end-
stage renal disease (ESRD) are high-turnover and low-
turnover osteodystrophy. High-turnover bone disease 
is characterized by the development of secondary 
hyperparathyroidism and eventually osteitis fibrosa. 
Low turnover or adynamic bone disease is characterized 
by a low number of osteoblasts with normal or reduced 
osteoclasts and osteomalacia. Over the past two decades, 
the incidence of high-turnover renal osteodystrophy 
has reduced as compared to low-turnover renal 
osteodystrophy. 

The purpose of the treatment of renal bone disease is to 
reduce the prevalence of uremic bone disease in addition 
to decreasing cardiovascular morbidity and mortality 
caused by high levels of PTH in blood and calcium × 
phosphorus product (11,12).

Diabetes and bone diseases
It has been shown that patients with type 2 diabetes (T2D) 
have fewer bone formation markers,  and less quality 
bone than non-diabetic individuals. Those differences 
are due to the role of hyperglycemia and toxic effects of 
advanced glycosylation end-products on bone tissue and 
reduced bone microvascular system (13). The patients 
with diabetes have higher risk of bone fracture, even in the 
presence of normal or high BMD or high body mass index 

(14). Several factors may increase fractures in diabetic 
patients including; renal failure, antidiabetic drugs and 
higher incidence of falls (15). Osteoporosis is a common 
metabolic bone disease in patients with T2D. It has been 
shown that hyperglycemic conditions lead to adipogenic 
differentiation, impaired growth and enhanced apoptosis 
in osteoblasts instead of osteogenesis  (16). Furthermore, 
it has been reported that control of glycemic status can 
contribute to normalizing high bone resorption in poorly 
controlled T2D  (17). Therefore, appropriate control of 
glycemia in T2D patients is essential for bone health. 
The relationship between diabetes and bone diseases 
provides an opportunity for certain antidiabetic therapies, 
including Metformin, to affect bone function (18). 

Metformin and bone metabolism  
Metformin, a common antidiabetic drug, improves bone 
quality and decreases the risk of fractures in patients 
with T2D. The beneficial effects of metformin, especially 
its osteogenic effect, on bone metabolism have been 
confirmed (19). It has been shown that AMP-activated 
protein kinase (AMPK), as the main molecule in the 
antidiabetic mechanism of metformin, is effective in 
signaling pathways involved in bone physiology (20,21). 
Inflammation and fibrosis have direct effects on 
osteoporosis. Several inflammatory diseases such as 
arthritis, lupus, and cystic fibrosis are associated with 
bone resorption. Metformin has anti-inflammatory and 
anti-fibrotic properties and increases the markers of 
osteogenic differentiation (22). Moreover, metformin 
stimulates osteoprotegerin expression and differentiation 
in osteoblasts and suppresses bone loss in ovariectomized 
rats. It can reduce the receptor activation of nuclear 
factor-kB ligand and inhibit osteoclast differentiation in 
vitro (23). Metformin exerts the antidiabetic effects by 
stimulating AMPK via obstructing the mitochondrial 
respiratory chain and improving AMP/ATP ratio. The 
AMPK subunit α1 expresses in bone tissue, primary 
osteoblasts, and osteoclasts in addition to some bone 
cell lines (24). Thus, activation of AMPK by metformin 
can directly affect bone metabolism. Studies have also 
exhibited that metformin inhibits arterial calcification 
via the AMPK/ endothelial nitric oxide synthase (eNOS) 
pathway either  directly or indirectly and can control 
vascular calcification. However, the exploration of other 
signaling mechanisms of metformin may contribute to 
the treatment of macrovascular disease and diabetes-
related complications (11, 25). Metformin also stimulates 
osteoblast differentiation through inhibiting peroxisome 
proliferator-activated receptor-γ (PPARγ) (26). MET has 
direct osteogenic effects on bone via AMPK/Runt related 
transcription factor 2 (Runx2) and is indirectly effected 
by glycemic control (27,28). Recently, some studies have 
demonstrated that osteogenesis can be mediated by 
metformin (20,22,29). It has been shown that, glycogen 
synthase kinase 3 beta (GSK3β) and Wnt/β-catenin 
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signaling pathway is related to metformin -induced 
osteogenic differentiation of human bone marrow-derived 
mesenchymal stem cells (hBMSCs) (22). Kanazawa et al 
demonstrated that metformin induces the differentiation 
and mineralization of osteoblastic MC3T3-E1 via 
activating the AMPK signaling pathway and increasing 
expression of eNOS and bone morphogenetic protein-2 
(30). In addition, Zhen et al investigated whether or not 
metformin can suppress the adverse effects simulated 
by hyperglycemia in primary osteoblast cell cultures. 
They found that treatment with metformin considerably 
reduced intracellular reactive oxidative species formation 
and osteoblast apoptosis, suggesting the beneficial effect 
of metformin is on the bone (31,32).

It is suggested that metformin stimulates adipose-
derived human mesenchymal stem cells (Ad- hMSCs) 
in rats with osteoarthritis by increasing antinociceptive 
activity, anti-inflammatory and chondroprotective 
effects. Therefore, metformin can be a hopeful choice for 
the clinical application of Ad-hMSCs, as a cell therapy 
for osteoarthritis (33). Metformin can be beneficial in 
the protection of bone, particularly in the first stages 
of rheumatoid arthritis- reducing inflammation, 
cardiovascular disease and cancer. Therefore, metformin 
can be beneficial in enhancing quality of life for rheumatoid 
arthritis patients (34). Araújo et al showed that metformin 
decreases osteoporosis, inflammation and oxidative stress 
in ligature-induced periodontitis in rats (35).

Metformin, chronic kidney disease and lactic acidosis 
Metformin can prevent the progression of severe CKD. 
Metformin protects renal tubular cells by blocking 
urinary crystal deposits and through its anti-oxidative 
effects (36). According to a recent study, metformin 
reduced hyperphosphatemia and hypocalcemia, inhibited 
vascular calcification, maintained calcium-phosphorus 
balance, decreased cellular infiltration, and fibrosis and 
inflammation in the kidneys of rats (11). 

Metformin-associated lactic acidosis (MALA) is known 
as one of the adverse effects of metformin. However, 
MALA is rare in clinical cases of pre-existing CKD or 
progressive heart disease. Recently, there is strong evidence 
of metformin safety in patients with advanced stages of 
CKD, whereas previously, treatment with metformin was 
often withdrawn before iodinated contrast. It has been 
detected that, the prevalence of lactic acidosis under 
treatment with other oral anti-hyperglycemia (4.8 cases 
on 100 000 patient-years), is significantly higher than with 
metformin (3.3 cases on 100 000 patient-years) (37). 

Metabolic acidosis may affect bone material directly by 
simulating dissolution of bone, bone resorption, preventing 
bone formation induced by osteoblast and changing the 
serum concentrations or activity of PTH and vitamin D. 
As a result, in some patients with normal renal function, 
osteoporosis and osteomalacia have been reported to 
be partly related to metabolic acidosis. In addition, the 

severity of metabolic acidosis, before and after the start 
of dialysis, can affect the degree of hyperparathyroidism, 
osteodystrophia fibrosa and osteomalacia in patients with 
CKD (38).

Furthermore, no incidence or significant increases have 
been observed in lactate levels in the Cochrane analysis 
of 347 controlled trials with more than 70 490 patient-
years (39). An analysis of more than 50 000 patients with 
T2D showed that metformin treatment is safe, even in 
patients with eGFR rate less than 30 ml/min/1.73 m2 
(40,41). A prospective cohort study in patients with 
diabetes and CKD stage 4 illustrated that treatment with 
low-dose metformin for one month is not associated with 
adverse effects, which supports safe administration of 
metformin in progressed stages of CKD (42). Moreover, 
a trial by Duong et al involved 22 patients with creatinine 
clearance of 15- 40 mL/min, and 2 patients undergoing 
dialysis with low daily doses of metformin (250–500 mg) 
displayed no symptoms of lactic acidosis (43). 

Ekström et al indicated that the administration of 
metformin decreases the risk of all-cause mortality, 
acidosis, serious infection, or cardiovascular disease in 
patients with T2D and renal impairment (40). Based on 
a study by Richy et al, the administration of metformin 
showed no difference in the prevalence of lactic acidosis 
in patients with T2D who had normal, mild, moderate, 
or severe renal dysfunction (44). Recently, a retrospective 
observational cohort study by Lee et al, reported that 
metformin users probably develop ESRD and CKD more 
than non-metformin users (45). While Lalau et al reported 
no adverse effects for the use of metformin in different 
CKD stages (46).

Conclusion
Metformin, in addition to its antidiabetic properties, 
possesses anti-inflammatory and anti-fibrotic properties 
and increases the markers of osteogenic effects. Based on 
evidence, the administration of metformin does not cause 
lactic acidosis in T2D patients with renal dysfunction 
including CKD. Therefore, metformin can be used in 
patients with significant CKD and inhibit CKD-MBD due 
to its osteogenic effects. However, few studies have been 
conducted in this field and further trials are needed.
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