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ABSTRACT

Spectral graph theory, which is the use of eigenvalues of matrices associated with

graphs, is a modern technique that has expanded our understanding of graphs and their

structure. A particularly useful tool in spectral graph theory is the Expander Mixing

Lemma, also known as the discrepancy inequality, which bounds the edge distribution

between two sets based on the spectral gap. More specifically, it states that a small spectral

gap of a graph implies that the edge distribution is close to random. This dissertation uses

this tool to study two problems in extremal graph theory, then produces similar discrep-

ancy inequalities based not on the spectral gap of a graph, but rather a different tool with

motivations in Riemannian geometry.

The first problem explored in this dissertation is motivated by parallel computing and

other communication networks. Consider a connected graph G, with a pebble placed on

each vertex ofG. The routing number, rt(G), ofG is the minimum number of steps needed

to route any permutation on the vertices of G, where a step consists of selecting a matching

in the graph and swapping the pebbles on the endpoints of each edge. Alon, Chung, and

Graham introduced this parameter, and (among other results) gave a bound based on the

spectral gap for general graphs. The bound they obtain is polylogarithmic for graphs with a

sufficiently strong spectral gap. In this dissertation, we use the Expander Mixing Lemma,

the probablistic method, and other extremal tools to investigate when this upper bound can

be improved to be constant depending on the gap and the vertex degrees.

The second problem examined in this dissertation has motivations in a question of

Erdős and Pósa, who conjectured that every sufficiently dense graph on n vertices, where
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n is divisible by 3, decomposes into triangles. While Corradi and Hajnal proved this result

true for graphs with minimum degree at least 2
3
n, their result spawned a series of similar

questions about the number of vertex-disjoint subgraphs of a certain class that a graph with

some degree condition must contain. While this problem is well-studied for dense graphs,

many results give significantly worse bounds for less dense graphs. Using spectral graph

theory, we show that every graph with some weak density and spectral conditions contains

O(
√
nd) vertex-disjoint cycles. Furthermore, even if we require these cycles to contain

a certain number of chords, a graph satisfying these conditions will still contain O(
√
nd)

such vertex-disjoint cycles. In both cases, we show this bound to be best possible.

Finally, we conclude by obtaining local version of a discrepancy inequality. An over-

simplification of the Expander Mixing Lemma states that a graph with a strong spectral

condition must have nice edge distribution. We seek to mimic that idea, but by using

discrete curvature instead of a spectral condition. Discrete curvature, inspired by its coun-

terpart in Riemannian geometry, measures the local volume growth at a vertex. Thus, given

a vertex x, our result uses curvature to quantify the edge distribution between vertices that

are a distance one from x and vertices that are a distance two from x. In doing this, we are

able to study the number of 3-cycles and 4-cycles containing a particular edge.
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Chapter 1: Introduction

A graph is a structure consisting of a set of vertices and a set of edges, where each

edge joins of a pair of vertices. Graphs can be used to model any construct consisting of a

set of objects with pairwise relationships between those objects. The study of graph theory

increased in prominence with the rise of communication networks. As these networks

grew in size and quantity, questions about these networks emerged. Thus, mathematicians

began to study structural properties of these networks such as the greatest distance between

two objects, the connectedness of the network, and how quickly information could travel

through the network. With the advent of computers and the internet, applications of graph

theory exploded even further. Today, graph theory is used to study clustering on social

networks, in data analysis, and in computer chip design, among many other applications.

An extremely well-studied area of graph theory is extremal graph theory, which broadly

is the study of relationships between various graph parameters. In other terms, how does

one graph parameter control another? Problems of this type are often phrased in the fol-

lowing way: for a graph with parameter X , what is the minimum or maximum value of

parameter Y ? One classical problem of this type is the Ramsey number of a graph. The

Ramsey number R(k, l) is the smallest integer n such that in any two-coloring of the edges

in a complete graph on n vertices with colors red and blue, there is either a red copy of Kk

or a blue copy of Kl. Another classical problem is given a graph, what sort of substructures

exist or do not exist? For example, how many vertex-disjoint triangles must exist within a

graph having some given property?

A fundamental result in extremal graph theory is Hall’s theorem [23]. This theorem is a

result about bipartite graphs, which are graphs for which the vertex set V can be partitioned

1



into subsets A,B ⊆ V where each edge has one endpoint in A and the other endpoint in B.

A matching in a graph is a set of vertex-disjoint edges. Hall’s theorem characterizes when

a matching of maximum size exists in a bipartite graph.

Theorem 1. Given a bipartite graph G with parts A and B, where |A| ≤ |B|, G contains a

matching of size |A| if and only if for every set S ⊆ A, there are at least |S| vertices in B

that are adjacent to vertices in S.

We highlight this result in particular as we will use a more complicated version of this

theorem for hypergraphs in Chapter 2.

In the search to answer these extremal questions, tools have been adapted from other

areas of mathematics. Random objects play a crucial role in computer science and statis-

tical physics, so the use of probability in graph theory has exploded over the last 50 years.

Pioneered by Paul Erdős, the probabilistic method proves the existence of a structure by

showing that a random object in some appropriate probability space has the desired prop-

erties with positive probability. This technique has proven fruitful in various areas of graph

theory. For example, the best known lower bound for R(k, k), the diagonal version of the

aforementioned Ramsey number, is proven using the probabilistic method [48]. The use of

concentration inequalities, which measure the probability that a graph property is close to

its expectation in some probability space, has proven to be critical in this method and will

be used later in this dissertation.

A second tool inspired by other areas of mathematics is spectral graph theory. Spectral

graph theory is the application of linear algebraic techniques to graph theory. Since results

from spectral graph theory motivate all of our work and are central to our results, it will be

given a more complete treatment in the next section. The study of spectral graph theory is

motivated in part by its counterpart in Riemannian geometry. In fact, Cheeger’s inequality

on graphs, which we will state later in this chapter, is a direct parallel to a theorem on
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manifolds. This connection between the application of spectral techniques in graph the-

ory and Riemannian geometry has inspired research that has established other connections

between the two fields, including curvature, which is the focus of the final chapter of this

dissertation.

Before doing so, we must introduce a few terms that are used throughout this disser-

tation. The distance d(u, v) between vertices u and v is the length of the shortest path

between u and v. The diameter of a graph G is the maximum of d(u, v) over all pairs u, v

of vertices. The degree deg(v) of a vertex v is the number of edges that v is incident to.

The volume Vol(S) of a set of vertices S ⊆ V is given by

Vol(S) =
∑
v∈S

deg(v).

The volume, therefore, can be thought of as the edge-weighted size of a set S.

The structure of this dissertation is as follows. The next section of this introductory

chapter details the foundation of multiple later results: spectral graph theory. In this section,

we introduce the concept of spectral graph theory and give two seminal results. One of

these results, the Expander Mixing Lemma, is the discrepancy inequality that gives this

dissertation its title and is a key tool in Chapters 2 and 3.

Chapter 2 examines a problem inspired by the aforementioned communication net-

works. In parallel computing, computations are carried out simultaneously and information

must be shared and transfered between processors. Thus, it is important to know efficient

algorithms and maximum times for this transfer of information. Motivated by this concept,

Alon, Chung, and Graham [3] introduced the notion of the routing number of a graph.

Suppose that a pebble is placed on every vertex of a connected graph. The routing num-

ber of the graph is the maximum number of steps required to route the pebbles according

to any given permutation, where a step consists of selecting a matching and exchanging

3



the pebbles on the endpoints of each edge in the matching. In this inaugural paper, Alon,

Chung, and Graham establish a bound based on the spectral gap that is polylogarithmic

in the number of vertices. Our main result takes a similar approach, but improves this

polylogarithmic bound to constant in many cases by using a combination of spectral and

probabilistic arguments.

Chapter 3 studies an extremal problem that explores the existence of certain substruc-

tures based on the size and degree conditions of a graph. Many historical results regarding

the existence of vertex-disjoint cycles in a graph determine a linear relationship between

the number of disjoint cycles and the minimum degree of a graph. However, these results

are weaker in the case of sparse graphs or break down for graphs with even a few vertices

of small degree. Using the Expander Mixing Lemma, we prove that for a graph satisfying

a weak spectral condition and an average degree condition, the number of disjoint cycles

grows with both the average degree and the number of vertices. Thus, this result is more

effective on sparse graphs and graphs with some low-degree vertices.

Chapter 4 concludes with a local version of a discrepancy inequality. Discrete curva-

ture, a tool adapted from its continuous counterpart on manifolds, describes the behavior

of a graph within the first two neighborhoods of any vertex. Consequently, for any vertex

x, we use curvature to describe the edge distribution between vertices that are distance one

from x and those vertices that are distance two from x. Furthermore, we are able to use a

similar result focusing on one neighbor of x to give a lower bound for the number of 3- and

4-cycles containing a particular edge.

A common theme throughout this dissertation is the reliance on discrepancy inequali-

ties to find structures in graphs. In Chapters 2 and 3, the discrepancy inequality used is the

Expander Mixing Lemma, based on the spectral gap. In Chapter 4, we show that curvature

can be used instead of the spectrum to find discrepancy inequalities. Due to the definition

of curvature only involving vertices that are a distance two from some fixed vertex, the
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discrepancy inequalities derived from curvature are necessarily localized in nature. Using

these curvature-based discrepancy inequalities we can identify local structures in a graph.

1.1 Spectral Graph Theory

Determining various graph parameters is often not achievable in polynomial time.

Thus, finding a way to study these and many other properties while avoiding exhaustive

methods has been a central focus of modern graph theory. One avenue for such exploration

is by representing the graph as a matrix. When written as matrices, graphs can be studied

using the vast array of tools developed in linear algebra. More specifically, the eigenvalues

of these matrices can reveal valuable information about the underlying structure of a graph.

The study of this relationship between graph structure and matrix eigenvalues is known as

spectral graph theory.

The most common matrix associated with a graph is the adjacency matrix. Given a

graphG, the adjacency matrixA is an n×nmatrix where each row and column corresponds

to a vertex in V (G). Then the entry Auv is 1 if vertices u and v are adjacent and is 0

otherwise. The adjacency matrix is symmetric, which implies that it has n real eigenvalues.

Immediately from these eigenvalues, we can determine the number of edges in the graph

and whether or not the graph is bipartite, for example. For many other graph properties,

however, this matrix is best applied for regular graphs, as we will see later in this section.

Another matrix that can be associated with a graph is the Laplacian matrix. The Lapla-

cian matrix, denoted by L, is an n × n matrix where the entry Luv = −1 if vertices u and

v are adjacent, Luv = deg(v) if u = v, and Luv = 0 otherwise. The Laplacian can be

written as a simple transformation of the adjacency matrix, as L = D − A, where D is

the diagonal degree matrix of the graph. As an example of the utility of the Laplacian, we

present the Matrix Tree Theorem, which characterizes the number of spanning trees in a

graph. A spanning tree of G is a connected subgraph of G that includes every vertex and

contains no cycles.
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Theorem 2. For a graph G, if L∗ is a matrix obtained by deleting row s and column t of

L, then the number of spanning trees in G is (−1)s+t det(L∗).

This matrix L is important due to its relationship with the Laplace-Beltrami operator

in Riemannian geometry. In this setting, the Laplace-Beltrami operator measures how

a function acts locally on a manifold. Moving to the discrete setting, we can also gain

valuable local information about a graph by considering the Laplacian as an operator. As

such, we will later look at the operator ∆ = −L, which acts on a vector f by ∆(f)(x) =∑
y∼x(f(y)−f(x)). The sign reversal here is due to conventions in Riemannian geometry.

This operator is one of a broad class of similar Laplace operators that can be used to study

the local behavior of a graph, as we will do later in this dissertation.

While there are numerous well-studied matrices that are derived from graphs, this dis-

sertation will primarily use the normalized Laplacian, as defined in [12]. The normalized

Laplacian L is an n × n matrix where again each row and column correspond to a vertex

in V (G), and is defined by

L(u, v) =



1, if u = v

− 1√
deg(u) deg(v)

, if u ∼ v

0, otherwise.

Equivalently, the normalized Laplacian can be defined as the matrixL = I−D−1/2AD−1/2,

where once again D is the diagonal degree matrix of G and A is the adjacency matrix of

G defined above. Like the adjacency matrix, the normalized Laplacian is a real symmetric

matrix and therefore has n real eigenvalues. Furthermore, when written in non-decreasing

order, these eigenvalues can be written as 0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2. Like with the

adjacency matrix, these eigenvalues can give us instant information about the structure of

the underlying graph. For example, the multiplicity of 0 as an eigenvalue equals the number
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of connected components in the graph. Also, λn = 2 if and only if one of the components

of G is bipartite. While the adjacency matrix can give us a vast array of information about

regular graphs, the normalized Laplacian can do the same for irregular graphs, since nor-

malization allows many results for regular graphs to be generalized to irregular graphs.

Additionally, these two matrices give the same information for regular graphs, as if ρ is an

eigenvalue of the adjacency matrix of a d-regular graph, then 1− ρ
d

is an eigenvalue of the

normalized Laplacian. Because it applies equally well to regular and irregular graphs, we

use the normalized Laplacian for all spectral analysis in this dissertation.

In addition to the above immediate structural conclusions that can be derived from the

spectrum of the normalized Laplacian, deeper information about the structure of a graph

can be obtained from these eigenvalues. In applications such as computer networks and the

heat equation on graphs, a crucial component to many questions is identifying bottlenecks

in such graphs. In other words, are there partitions of the vertices into two parts where

there are few edges between the parts? To state this more precisely, we need to properly

measure the weight of a set of vertices, taking into account their degrees.

For a set of vertices S, let

hG(S) =
|e(S, S)|

min{Vol(S),Vol(S)}
,

where S = V \ S, the set of vertices not in S and e(S, S) is the number of edges with one

endpoint in S and the other endpoint in S. The Cheeger constant hG of a graph, then, is

hG = min
S
hG(S).

Therefore, the Cheeger constant is a measure of the sparsest cut of a graph relative to

the size of the vertex sets that it partitions. We can relate this Cheeger constant to the

eigenvalues of the normalized Laplacian in the following way.
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Theorem 3 (Cheeger’s Inequality [2]). For a connected graph G,

h2
G

2
≤ λ2 ≤ 2hG.

This theorem is extremely useful when trying to control the edge expansion of a graph.

However, it does not help determine where these edges go. In other words, Cheeger’s

inequality only controls the edges leaving a set. If we want to use spectral information to

control the edges between two sets, we will need information about the entire spectrum,

not just λ2.

For this reason, we define the spectral gap of L to be

σ = max{|1− λ2|, |1− λn|}.

The spectral gap, in a sense, measures the randomness of the edge distribution in a graph.

To make this precise, we introduce the following fundamental result.

Theorem 4 (Expander Mixing Lemma, [12]). For any two sets of vertices X, Y ⊆ V (G),

∣∣∣∣e(X, Y )− Vol(X)Vol(Y )

Vol(G)

∣∣∣∣ ≤ σ
√

Vol(X)Vol(Y )

and ∣∣∣∣e(X, Y )− Vol(X)Vol(Y )

Vol(G)

∣∣∣∣ ≤ σ

√
Vol(X)Vol(Y ).

The term Vol(X)Vol(Y )
Vol(G)

is important here because it is the expectation of the number of

edges betweenX and Y in the following sense. The configuration model is a random graph

model that uniformly randomly generates a multigraph with a given degree sequence. Let

G′ be such a random graph with degree sequence matching that of G. Let X ′ and Y ′ be

the sets in this random graph with degree sequences corresponding to those of X and Y

8



in G. Fix an edge with one endpoint in X ′. Then the probability that the other endpoint

lands in Y ′ is Vol(Y )
Vol(G)

. Thus, since there are Vol(X) endpoints of edges in X ′, we expect

there to be Vol(X)Vol(Y )
Vol(G)

edges between X ′ and Y ′. It is in this sense that we consider the

Expander Mixing Lemma a discrepancy inequality: it bounds the difference between the

edge distribution of a graph and the expectation of the edge distribution in a random graph.

Due to the importance of this theorem in our work, we show a proof below. Many

proofs of this theorem can be found in the literature.

Proof. Recall that the eigenvalues of L can be written as 0 = λ1 ≤ λ2 ≤ · · · ≤ λn ≤ 2.

We will denote their respective orthonormal eigenvectors by φ1, φ2, . . . , φn. Then φ1 =

D1/2
1√

Vol(G)
, where 1 is the vector with every entry as 1.

Let 1X be the vector such that 1X(v) = 1 if v ∈ X and 1X(v) = 0 otherwise. Define

1Y similarly. We have that

e(X, Y ) = 1XA1
T
Y ,

where A is the adjacency matrix. Let a1, . . . , an ∈ R and b1, . . . , bn ∈ R such that

D1/2
1
T
X =

n∑
i=1

aiφ
T
i

and

D1/2
1
T
Y =

n∑
i=1

biφ
T
i .

We can use the fact that φi are eigenvalues to determine that

a1 =
〈
φ1, D

1/2
1X

〉
=
∑
v∈V

φ1(v) ·D1/2
1X(v)

=
∑
v∈X

√
deg(v)√
Vol(G)

√
deg(v)

9



=
1√

Vol(G)

∑
v∈X

deg(v)

=
Vol(X)√

Vol(G)
.

Similarly, b1 = Vol(Y )√
Vol(G)

.

As a result,

e(X, Y ) = 1XA1Y

= 1XD
1/2(I − L)D1/2

1Y

=

(
n∑
i=1

aiφi

)(
n∑
i=1

(1− λi)φTi φi

)(
n∑
i=1

biφi

)

=
n∑
i=1

aibi(1− λi)

=
n∑
i=2

aibi(1− λi) + a1b1

=
n∑
i=2

aibi(1− λi) +
Vol(X)Vol(Y )

Vol(G)
.

Using this, we have that

∣∣∣∣e(X, Y )− Vol(X)Vol(Y )

Vol(G)

∣∣∣∣ =

∣∣∣∣∣
n∑
i=2

aibi(1− λi)

∣∣∣∣∣
≤ σ

n∑
i=2

|aibi|

≤ σ

√√√√ n∑
i=2

a2
i

n∑
i=2

b2
i ,

where the last inequality is an application of Cauchy-Schwarz.
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To determine
∑n

i=2 a
2
i , first calculate that

n∑
i=1

a2
i = ‖D1/2

1X‖2

=

(√∑
v∈X

(√
deg(v)

)2
)2

=
∑
v∈X

deg(v)

= Vol(X).

This implies that

n∑
i=2

a2
i = Vol(X)− (Vol(X))2

Vol(G)

=
Vol(X)(Vol(G)− Vol(X)

Vol(G)

=
Vol(X)Vol(X)

Vol(G)
.

Similarly, we also get that
n∑
i=2

b2
i =

Vol(Y )Vol(Y )

Vol(G)
.

Thus, we have that

∣∣∣∣e(X, Y )− Vol(X)Vol(Y )

Vol(G)

∣∣∣∣ ≤ σ

√
Vol(X)Vol(X)Vol(Y )Vol(Y )

Vol(G)
.

Now, note that Vol(X) ≤ Vol(G) and Vol(Y ) ≤ Vol(G). Hence,
√

Vol(X)Vol(Y ) ≤

Vol(G) and in turn,
√

Vol(X)Vol(Y )

Vol(G)
≤ 1. Therefore,

∣∣∣∣e(X, Y )− Vol(X)Vol(Y )

Vol(G)

∣∣∣∣ ≤ σ
√

Vol(X)Vol(Y ).
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We can obtain the second version of the conclusion with a similar last step.

Observe that the first eigenvalue, 0, and its corresponding eigenvector, D1/2
1√

Vol(G)
, play a

crucial role in this proof. This first eigenvalue and eigenvector are always known for the

normalized Laplacian, regardless of the underlying graph. However, the first eigenvalue

and eigenvector of the adjacency matrix are only this clear when the graph is regular. Thus,

this theorem can be proven using the adjacency matrix, but only in the case of regular

graphs. In the case of regular graphs, this theorem can be stated using either matrix, and

has a slightly simpler combinatorial interpretation.

Corollary 5. Let G be a d-regular graph. For any two sets of vertices X, Y ⊆ V (G),

∣∣∣∣e(X, Y )− d

n
|X||Y |

∣∣∣∣ ≤ σd
√
|X||Y |.

In the regular case, the term d
n
|X||Y | can be interpreted as the expectation of the num-

ber of edges between X and Y in a random graph where for every pair of vertices, there is

an edge between them with probability d
n

. Again, it is this comparison of the edge distribu-

tion of the graph to the expectation of a random graph that highlights this as a discrepancy

inequality. We return to this notion later in this dissertation, when we prove a local version

of a discrepancy inequality.

By the Expander Mixing Lemma, therefore, we can view the spectrum of the normal-

ized Laplacian as a measure of randomness. Another way that this relationship between

randomness and the normalized Laplacian manifests itself is in random walks. The tran-

sition probability matrix of the usual random walk on a graph is W = D−1A, which is

similar to L. The matrix W is central to the study of random walks, meaning that L and

its matrix can be used to gain valuable information about the properties of these walks. For

example, Alon, Chung, and Graham use the spectral gap of L to get an upper bound on

the routing number for certain classes of regular graphs by obtaining information about the

12



random walks on the graph through the spectral gap, then constructing paths from these

random walks. Furthermore, this transition probability matrix is often used in the study of

discrete curvature as a weighted version of the aforementioned Laplacian operator ∆.

13



Chapter 2: Routing Number

2.1 Introduction

Let G = (V,E) be a connected simple graph with n vertices. Alon, Chung, and

Graham introduced the notion of the routing number of G, behind which is the following

simple process: imagine a pebble on each vertex of the graph labeled with the vertex it sits

on, and let π be an arbitrary permutation in SV . The goal, then, is to move the pebbles

according to π; that is, to move the pebble labeled v to π(v). In any given step, a (not

necessarily maximal) matching is selected in the graph and the pebbles at the endpoints

are interchanged. The routing number of G for the permutation π, denoted by rt(G, π), is

the minimum number of steps needed to route all of the pebbles to their desired vertex as

determined by π. Finally, the routing number of the graph G is

rt(G) = max
π∈SV

rt(G, π).

Classes of graphs for which the routing number is known include complete graphs,

Kn,n, paths, cycles, and stars (see [3, 34]). In particular, rt(Kn) = 2, rt(Kn,n) = 4, and

rt(Pn) = n, where Pn is an n-vertex path. Additionally, there are a number of other classes

of graphs for which bounds on the routing number are known. In [3], Alon, Chung, and

Graham gave preliminary bounds for trees, general complete bipartite graphs, Cartesian

products, hypercubes, and grids. For any tree T , Zhang showed in [53] that rt(T ) ≤
3n
2

+ O(log n), confirming a conjecture made by Alon, Chung, and Graham. In [34], Li,

Lu, and Yang improved the bounds on general complete bipartite graphs and hypercubes.

Specifically, they showed that for the n-dimensional hypercube Qn, n + 1 ≤ rt(Qn) ≤

14



2n − 2 using a computer search to prove that rt(Q3) = 4, then applying the bound of [3]

for Cartesian products of graphs. Alon, Chung, and Graham conjectured that rt(Qn) ∼ αn,

and while the above bounds show that α ∈ [1, 2], they conjecture that the correct value of α

is closer to 1 than to 2. However, finding more precise asymptotics for the routing number

of the hypercube is still an open and interesting question.

To address different questions in its applications with regards to parallel computing, a

number of variations of this problem have arisen in the literature (see e.g. [7, 8, 42, 43, 33,

46, 49, 51]).

The motivation for our main theorem is the following result of Alon, Chung, and Gra-

ham.

Theorem 6 ([3]). For a d-regular graph G, rt(G) ≤ O
(

1
(1−σ)2

log2 n
)

, where σ is the

spectral gap of the normalized Laplacian.

We briefly note that this result was originally stated in terms of the second eigenvalue

of the adjacency matrix for so-called (n, d, λ)-graphs; that is d-regular graphs with second

adjacency eigenvalue λ, for which σ = λ
d
. We state the result in terms of σ, however, to

give a clearer comparison to our own results that in some cases apply to irregular graphs,

for which the normalized Laplacian is more appropriate.

Our main theorem improves the upper bound of this result of Alon, Chung, Graham in

the case where σ is small. In particular, among other results, we prove the following.

Theorem 7. For all k > 0 and C > 0, there exists Nk,C ∈ N such that for any d-regular

graph on n ≥ Nk,C vertices with degree d ≥ exp
(
C logn
log logn

)
, and σ = kd−1/2 < 1

3
,

log(rt(G)) = O

(
log n

log d

)
.

This theorem improves the Alon, Chung and Graham result throughout its range on d.

However, the improvement is clearest when d is polynomial in n, in which case it gives the
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following constant bound on the routing number and hence improves the Alon, Chung and

Graham result by a factor of log2(n).

Corollary 8. For all k > 0 and ε > 0, there exist Nk,ε ∈ N and Ck,ε ∈ N such that for

any d-regular graph G on n ≥ Nk,ε vertices with degree d = nε and σ = kd−1/2 < 1
3
,

rt(G) ≤ Ck,ε.

At their heart, the strategy of our proofs is similar to that of Alon, Chung, and Graham:

we use the fact that permutations can be written as the product of two permutations of

order two and build disjoint paths between vertices involved in a transposition through

which pebbles can be routed. However, instead of using random walks to find paths, we

will build paths between vertices more directly using information about the spectrum of

the normalized Laplacian. To accomplish this, we will use a random partitioning of the

transpositions to select a collection of transpositions to be routed simultaneously, and Hall’s

theorem for hypergraphs [1] to select disjoint paths. As a result, we will get an upper bound

for the routing number dependent upon the length of the paths and the number of partite

sets.

Before we prove our main result, we begin with an easier case that will demonstrate

the basis of our proof idea.

2.2 Warm-Up: Extremely Dense Graphs

As a starting point, we ask what bounds can one get on the routing number by density

alone? If the minimum degree is at least half of the vertices, then between any two vertices

there is some overlap in the neighborhoods of the vertices. More specifically, if we take

any transposition in the decomposition of a permutation, the neighborhoods of the two

vertices in the transposition share a nonempty intersection, which allows us to route this

transposition through a three-vertex path. The larger this minimum degree, the more of

these transpositions we will be able to route simultaneously because this minimum overlap

will be larger.
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As noted in the introduction, any permutation in Sn can be split into a product of two

permutations of order two; that is, two permutations where the cycle structure consists

entirely of transpositions. This is implicit in the work of Alon, Chung, and Graham in

showing that rt(Kn) = 2. Due to its importance in the proof technique that is commonly

used to explore this problem, we state a proof of this fact here.

Proposition 9 ([3]). Every permutation can be written as a product of two permutations of

order two.

Proof. To show this, it is sufficient to show that any cyclic permutation can be routed in

two steps, as any permutation can be written as the product of disjoint cycles. Thus, for

any m ∈ N, let π = (m,m− 1, . . . , 2, 1).

Consider the following two permutations of order two:

π1 : (1,m+ 1− 1), (2,m+ 1− 2), . . . , (i,m+ 1− i), . . .

and

π2 : (1,m− 1), (2,m− 2), . . . , (j,m− j), . . .

For each i 6= 1, the composition π2π1 sends i tom+1−i and then tom−(m+1−i) = i−1.

Also, for i = 1, the composition π2 ◦ pi1 sends 1 to m via π1 and then π2 does not move

that pebble. Therefore, π = π2π1, where π1 and π2 each have order two.

Note that this proposition directly implies that rt(Kn) = 2. When proving upper

bounds for the routing number of a graph, it is common to use this fact to rewrite the

arbitrary permutation as a product of two permutations of order two.

Theorem 10. Let ε > 0. For a graph G on n ≥ 3
ε

vertices with minimum degree δ(G) =(
1
2

+ ε
)
n,

rt(G) ≤ 3n⌊
εn
3

⌋ .
17



We note here that rt(G) = Ω
(

1
ε

)
is best possible as ε goes to 0. Consider a graph with

vertex set V = A ∪ B ∪ C, where A and B have size
(

1
2
− ε
)
n and C has size 2εn. Let

every vertex in A be adjacent to each vertex in A∪C, every vertex in B be adjacent to each

vertex in B ∪C, and every vertex in C also be adjacent to each other vertex in C. Then the

minimum degree of this graph is
(

1
2

+ ε
)
n. However, if a permutation took each vertex in

A and swapped it with a vertex in B, then at each step only 2εn vertices from A or B could

be moved into C, which is necessary to route them to their target. Thus, Ω
(

1
ε

)
steps are

required to move all vertices in A and B through C and to their respective targets.

Proof. Let G be a graph with minimum degree δ(G) =
(

1
2

+ ε
)
n for some ε > 0 and let

π be a permutation on the vertices. Then π = π2π1 for some permutations π1, π2 ∈ SV

of order 2. To route the vertices according to π1, write π1 as the product of disjoint trans-

positions and order the transpositions arbitrarily. Now, select the first
⌊
εn
3

⌋
≥ 1 of these

transpositions. For each transposition (v, v′), v and v′ have at least εn common neighbors,

meaning that at least εn
3

of these common neighbors are not in any of the transpositions in

this selection. Thus, for each of the selected transpositions (v, v′), we select a middle vertex

x that is adjacent to both v and v′, is not in any of the selected transpositions, and also has

not been selected as the middle vertex for any other transposition in this selection. Hence,

we can simultaneously route each of these
⌊
εn
3

⌋
transpositions through their corresponding

selected vertex x, returning the pebble initially on x back to x, in three steps because vxv′ is

a path on three vertices. Since π1 has at most n
2

disjoint transpositions, we must repeat this

process at most n
2
/
⌊
εn
3

⌋
times to route all of the vertices according to π1. Consequently,

we can route all vertices according to π1 in at most 3n
2
/
⌊
εn
3

⌋
steps. Similarly, all vertices

can be routed according to π2 in at most 3n
2
/
⌊
εn
3

⌋
steps. Therefore,

rt(G) ≤ 3n⌊
εn
3

⌋ .
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This is the best that one can obtain by minimum degree alone. Indeed once δ < n
2
,

then the graph need not even be connected. Thus, such a naive approach is insufficient,

in general, to ensure that the graph has constant routing number. In order to decrease

this minimum degree, we will use techniques from spectral graph theory as introduced in

Chapter 1.

2.3 Graphs with Linear Degree

In order to guarantee a constant routing number for graphs with minimum degree cn,

where c is some constant less than 1
2
, we will need to take a slightly different approach.

Instead of relying on the neighborhoods of two vertices to overlap, we will use the Expander

Mixing Lemma to guarantee that there are many edges between the neighborhoods of any

two vertices. Notice that in the following theorem, in order to compensate for reducing the

minimum degree, we need to add a condition on σ. This is a theme throughout this paper:

in order to weaken the degree condition, we will need to strengthen the condition on σ,

therefore bringing more structure to the graph.

Theorem 11. Fix 0 < c < 1. Let G be a graph with minimum degree δ(G) ≥ cn, with

σ < c2. Then

rt(G) ≤ 12

c2(c2 − σ)
.

Proof. LetG be a graph with minimum degree δ(G) = cn for some c > 0 and with σ < c2.

Let π be a permutation of V (G). Then π = π2π1 for some π1, π2 ∈ SV of order 2, meaning

that each of π1 and π2 can be written as a product of disjoint transpositions. Let (v, v′)

be a transposition in π1 or π2. Let N(v) be the neighborhood of v and let N(v′) be the

neighborhood of v′. Since |N(v)| ≥ cn and |N(v′)| ≥ cn, we have that Vol(N(v)) ≥ (cn)2

and Vol(N(v′)) ≥ (cn)2.
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Let f(x, y) = xy
Vol(G)

− σ√xy. Then

fx(x, y) =
y

Vol(G)
−
σ
√
y

2
√
x

=
√
y

( √
y

Vol(G)
− σ

2
√
x

)
=
√
y

(
2
√
xy − σVol(G)

2
√
xVol(G)

)
≥ cn

(
2c2n2 − c2n2

2cn3

)
> 0

when x ≥ c2n2 and y ≥ c2n2, which is the case in our situation. Thus, by symmetry, f is

increasing in both parameters. Hence, since Vol(N(v)) ≥ (cn)2 and Vol(N(v′)) ≥ (cn)2,

e(N(v), N(v′)) ≥ Vol(N(v))Vol(N(v′))

Vol(G)
− σ

√
Vol(N(v))Vol(N(v′))

≥ (cn)4

Vol(G)
− σ(cn)2

= (cn)2

(
(cn)2

Vol(G)
− σ

)
≥ (cn)2(c2 − σ).

Let

ε =
c2(c2 − σ)

4
.

Order the transpositions of π1 arbitrarily and take a collection of the first εn transpositions

in π1. Then there are 2εn vertices in this collection. We will say that an edge is used

if one of its vertices is either in the collection or is incident to an edge that has already

been assigned. Thus, for the first transposition (v1, v
′
1) of the collection, there are at most

2εn2 ≤ 1
2
(cn)2(c2 − σ) edges between N(v1) and N(v′1) used of the at least (cn)2(c2 − σ)

edges that must be present. Select one of the unused edges to pair with this transposition.
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For the next transposition (v2, v
′
2), there are at most (2εn+ 2)n used edges between N(v2)

and N(v′2). Since (2εn + 2)n < 4εn2 ≤ (cn)2(c2 − σ), an unused edge between N(v2)

and N(v′2) can be selected to pair with this transposition. Proceeding inductively, for each

i ≤ εn, there are at most (2εn + 2i − 2)n < 4εn2 ≤ (cn)2(c2 − σ) used edges between

N(vi) and N(v′i). Thus, an unused edge can be selected to pair with the transposition

(vi, v
′
i). Since the selected paths between each vi and v′i are disjoint, we can route each of

the transpositions (vi, v
′
i) simultaneously in three steps, leaving the two middle vertices in

each path back in their original positions. To see that this can be done in three steps (even

though rt(P4 = 4), consider the path v1, v2, v3, v4. In the first step, swap the pebbles on

the edges v1v2 and v3v4. In the second step, swap the pebbles on the edge v2v3. In the final

step, again swap the pebbles on the edges v1v2 and v3v4. Thus, each of these transpositions

(vi, v
′
i) can be routed simultaneously in three steps.

Since there are at most n
2

transpositions in π1, the above process must be repeated at

most 1
2ε

times to route all of the transpositions in π1. Since each collection of εn transposi-

tions routes in three steps, it will take at most 3
2ε

steps to route all of the vertices according

to π1. By performing the same process on π2, it will also take at most 3
2ε

steps to route all

of the vertices according to π2. Therefore,

rt(G) ≤ 3

ε
=

12

c2(c2 − σ)
.

2.4 Graphs with Sublinear Degree

If we desire a constant routing number, our goal is to route a positive proportion of

the transpositions simultaneously. Unless these transpositions are spread out, this will be

impossible because there could be too much overlap in the neighborhoods of these trans-

positions that we are seeking to route. For example, if we attempted to route a collection
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of transpositions including a vertex and all of its neighbors simultaneously, we would not

be able to. While in the previous proof, we ordered the transpositions arbitrarily, we will

now need to select the collections of transpositions more carefully. In order to do this, we

will require regularity of the graph in order to better control the iterated neighborhoods of

a vertex.

2.4.1 Preliminaries. Instead of partitioning the transpositions arbitrarily, we will parti-

tion the transpositions randomly. To do this, we will use Talagrand’s inequality, which

allows us to quantify the likelihood that a random variable is close to its mean given certain

conditions.

Theorem 12 ([41]). Let c > 0, r ≥ 0, and d be given and let the non-negative measurable

function g on the product space Ω =
∏

i Ωi satisfy the following two conditions, for each

x ∈ Ω: (a) changing any coordinate xj changes the value of g(x) by at most c; and (b)

if g(x) = s then there is a set of at most rs + d coordinates that certify that g(x) ≥ s.

Let X1, . . . , Xn be independent random variables, where Xi takes values in Ωi; let X =

(X1, . . . , Xn) and let g(X) have mean µ. Then for each t ≥ 0,

P(g(X)− µ ≥ t) ≤ exp

(
− t2

2c2(rµ+ d+ rt)

)

and

P(g(X)− µ ≤ −t) ≤ exp

(
− t2

2c2(rµ+ d+ t/3c)

)
.

When we say that there exists a set of at most rs + d coordinates that certify that

g(x) ≥ s, we mean that there exists I ⊆ {1, . . . , n} such that |I| = rs + d and if x′ ∈ Ω

and x′i = xi for each i ∈ I , then g(x) ≥ s.

We use Talagrand’s inequality in the lemma that follows to provide more structure to

the interactions between the neighborhoods of each vertex and the partition of transposi-

tions that is used to route a number of the transpositions simultaneously. Specifically, this
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lemma states that we can partition a collection of disjoint transpositions so that most of the

vertices that have a path of length j from any fixed vertex are not in any single part of the

partition.

Lemma 13. Fix C > 0. There exists NC ∈ N such that for all n ≥ NC , if G is a d-regular

graph on n vertices with d ≥ exp
(
C logn

log logn

)
, T is a collection of disjoint transpositions

of the vertices, and c ≥ exp
(
− C logn

2 log logn

)
, then there exists a partition X1, . . . , X4/c of T

so that both of the following hold.

1. |Xi| ≤ nc
4

for all i ∈ {1, . . . , 4
c
}.

2. Let Nj(v) = {u ∈ V (G) : there is a path of length j from u to v}. For any v ∈

V (G), i ∈
{

1, . . . , 4
c

}
, and j ∈ {1, . . . , n}, at most c|Nj(v)| vertices in Nj(v) are in

transpositions of Xi.

In the regime we care about, c will be significantly larger than the minimum asserted

here – in the (most important) case that the minimum degree is a polynomial in n, for

instance, c is a constant not depending on n. Even when d is of the form exp
(

logn
log logn

)
, c

will be poly-logarithmic in 1/ log n.

Proof. Create a partition X1, . . . , X4/c of T by, for each transposition (τ1, τ2), placing it in

a part from X1, . . . , X4/c uniformly at random. Then E(|Xi|) = |T | · c
4
≤ nc

8
. Since |Xi|

has a binomial distribution with p = c
4
, σ(|Xi|) =

√
n
2
· c

4

(
1− c

4

)
=
√

nc(4−c)
32

. Thus, by

Hoeffding’s inequality [24], if |T | = n
2
,

P
(
|Xi| ≥

nc

4

)
= P

(
|Xi| ≥

( c
4

+
c

4

) n
2

)
≤ exp

(
−2
( c

4

)2

· n
2

)
= exp

(
−c

2n

16

)
.
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If |T | < n
2
, then Hoeffding’s inequality would give a smaller upper bound. Thus,

P
(
|Xi| ≥

nc

4

)
≤ exp

(
−c

2n

16

)

for each i ∈ {1, . . . , 4/c}.

Now, fix j ∈ {1, . . . , n}. Define hj(v,Xi) to be the number of vertices in Nj(v) that

are also in transpositions of Xi. First, note that by changing the placement of a single

transposition, hj(v,Xi) changes by at most 2. Second, hj is 1-certifiable because if part Xi

is selected for s transpositions containing a neighbor of v, hj(v,Xi) ≥ s. Third, note that

E(hj(v,Xi)) ≤ c·|Nj(v)|
4

. Hence, by Talagrand’s inequality,

P (hj(v,Xi) ≤ c · |Nj(v)|) = P
(
hj(v,Xi) ≥

3c|Nj(v)|
4

+
c|Nj(v)|

4

)
≤ P

(
hj(v,Xi)− E(hj(v,Xi) ≥

3c|Nj(v)|
4

)

≤ exp

−
(

3c|Nj(v)|
4

)2

2(2)2
(
E(hj(v,Xi)) +

3c|Nj(v)|
4

)


≤ exp

(
− 9

128
c|Nj(v)|

)
.

Note that |Nj(v)| ≥ d− 1 for any v ∈ V (G) and any j ∈ {1, . . . , n}. The probability

that |Xi| ≥ nc
4

or hj(v,Xi) ≥ c|Nj(v)| for any v ∈ V (G), any i ∈ {1, . . . , 4
c
}, and any

j ∈ {1, . . . , n} is at most

4/c∑
i=1

P
(
|Xi| ≥

nc

4

)
+

∑
v∈V (G)

i∈{1,...,4/c}
j∈{1,...,n}

P(hj(v,Xi) ≥ c|Nj(v)|)

=

4/c∑
i=1

exp

(
c2n

16

)
+

∑
v∈V (G)

i∈{1,...,4/c}
j∈{1,...,q}

exp

(
− 9

128
c|Nj(v)|

)
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≤ 4

c
exp

(
−c

2n

16

)
+

4n2

c
exp

(
− 9

128
c(d− 1)

)
< 1

for sufficiently large n, where here we use the fact that our bounds on c and d to ensure

that the exponent in the second exponential is tending to negative infinity. Therefore, there

exists such a partition X1, . . . , X4/c of T .

Once we have this partition, our goal will be to build paths between the vertices of the

transpositions. For each part of the partition, we want to find a collection of disjoint paths

through which we will be able to route all of the transpositions simultaneously. In order to

do that, we will use Hall’s theorem for hypergraphs, stated below.

Theorem 14 ([1]). LetA be a family of n-uniform hypergraphs. A sufficient condition for

the existence of a system of disjoint representatives of A is that for every B ⊆ A, there

exists a matching in
⋃
B of size greater than n(|B| − 1).

First, we use Lemma 13 to partition the disjoint collection of transpositions that com-

prise π1 into parts (Xi) satisfying the conclusions of the lemma. Our goal is to route the

transpositions of a given part Xi simultaneously. In this direction, we select a positive

integer z sufficiently large to guarantee many paths. For a particular i and for each trans-

position (vj, v
′
j) ∈ Xi, build a hypergraph Γ(vj ,v′j) with vertex set V (G), where there exists

a hyperedge {u1, . . . , uz−2} ∈ E
(

Γ(vj ,v′j)

)
if and only if vj, u1, . . . , uz−2, v

′
j is a path from

vj to v′j and none of u1, . . . , uz−2 are in any transposition of Xi. This yields that Γ(vj ,v′j) is

a (z − 2)-uniform hypergraph for each (vj, v
′
j) ∈ Xi.

Our goal is to find a system of disjoint representatives for A = {Γ(vj ,v′j) : (vj, v
′
j) ∈

Xi}, because this would give us a collection of z-vertex paths through which we can simul-

taneously route each transposition of Xi. By Hall’s theorem for hypergraphs, there exists

such a system if for each B ⊆ A, there exists a matching in
⋃
B of size greater than
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(z − 2)(|B| − 1). Verifying this condition is equivalent to fixing a subset T of transposi-

tions, then finding a collection of (z− 2)(|T | − 1) vertex-disjoint paths joining the vertices

of a transposition in T .

In order to do this, we will need to understand the vertex expansion of a graph. Toward

this end, we present the following corollary of the Expander Mixing Lemma.

Corollary 15. LetG be a graph and letX be a subset of the vertices ofG. IfN(X) denotes

the set of vertices adjacent to at least one vertex of X , then

Vol(N(X)) ≥ min

{
1

2
Vol(G),

1

4σ2
Vol(X)

}
.

Proof. LetG be a graph and letX be a subset of the vertices ofG. By the Expander Mixing

Lemma,

Vol(X) = e(X,N(X)) ≤ Vol(X)Vol(N(X))

Vol(G)
+ σ
√

Vol(X)Vol(N(X)).

Then
1

2
Vol(X) ≤ Vol(X)Vol(N(X))

Vol(G)

or
1

2
Vol(X) ≤ σ

√
Vol(X)Vol(N(X)).

Therefore, Vol(N(X)) ≥ 1
2
Vol(G) or Vol(N(X)) ≥ 1

4σ2 Vol(X). Thus

Vol(N(X)) ≥ min

{
1

2
Vol(G),

1

4σ2
Vol(X)

}
.

2.4.2 Proofs of Results. We begin with a theorem whose proof has a similar flavor to our

main theorem in that it uses the random partition of transpositions and Hall’s theorem for
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hypergraphs described above, but has a stronger degree condition, which in turn will give

us a better bound. This degree condition also allows us to use paths of length four through

which to route the transpositions of our permutation.

Theorem 16. Fix 0 < c < 1
6
. Then there exists an Nc ∈ N so that the following holds: Let

G be a d-regular graph on n ≥ Nc vertices and suppose σ < d(1−6c)2

n
. Then rt(G) ≤ 32

c
.

The c here can technically depend in a mild way on n (as per the statement of Lemma

13), however it cannot be too small – the point is that if σ is too large, then we lose sufficient

control on the (iterated) neighborhoods to apply our techniques. In general, σ being small

yields the best results, and in general σ is of order at least 1√
d
. The requirement in this

result is in terms of σ = O( d
n
) – and this becomes problematic once d = o(n2/3). Hence,

this result is really interesting only for graphs with degree d = nε for some ε ≥ 2
3
.

Proof. Let G be a d-regular graph where d = nε. Consider a permutation π of the vertices.

Then π = π2π1 for some π1, π2 ∈ SV of order two. Thus, π1 and π2 can each be written as

a product of disjoint transpositions.

Let T = {(v, v′) ∈ π1}, the collection of all transpositions in π1. By Lemma 13, there

exists a partition X1, . . . , X4/c in which each part Xi has size at most nc
4

and no vertex v

has more than cd of its neighbors in Xi. To route the transpositions of Xi simultaneously,

we will show that we can find disjoint paths between τ1 and τ2 for each (τ1, τ2) ∈ Xi.

For a particular i and for each transposition (vj, v
′
j) ∈ Xi, build a hypergraph Γ(vj ,v′j)

with vertex set V (G), where there exists a hyperedge {u1, u2} ∈ E
(

Γ(vj ,v′j)

)
if and only if

vj, u1, u2, v
′
j is a path from vj to v′j and neither u1 nor u2 are vertices in transpositions ofXi.

This yields that Γ(vj ,v′j) is a 2-uniform hypergraph for each (vj, v
′
j) ∈ Xi. While a 2-uniform

hypergraph is, of course, simply a graph, we state Γ(vj ,v′j) as a hypergraph to more easily

use Hall’s theorem for hypergraphs. Our goal is to find a system of disjoint representatives

for A = {Γ(vj ,v′j) : (vj, v
′
j) ∈ Xi}, because this would give us a collection of disjoint paths
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of length four (including vj and v′j , the vertices in the transposition) through which we can

simultaneously route each transposition of Xi. By Hall’s theorem for hypergraphs, there

exists such a system if for each B ⊆ A, there exists a matching in
⋃
B of size greater than

2(|B|−1). Verifying this condition is equivalent to fixing a subset T of transpositions, then

finding a collection with size 2(|T | − 1) of vertex-disjoint paths, where each path joins the

vertices of some transposition in T .

Let T ⊆ Xi, let t = |T |, and let N(T ) =
⋃
v∈(v,v′)∈T N(v). Fix a maximum matching

in
⋃

(v,v′)∈T Γ(v,v′). Hall’s condition is satisfied for this T unless this matching has cardinal-

ity less than 2t; we assume, by way of contradiction, that the matching has size less than 2t.

Then this matching saturates fewer than 4t vertices. For convenience when counting, we

will say that a vertex u is used if u is in this maximum matching or if there exists u′ such

that (u, u′) ∈ Xi. Recall that for each vertex v in a transposition of T , there are at most cd

neighbors in Xi, meaning that |N(T ) ∩Xi| ≤ 2tcd. Furthermore, each of the 4t vertices

in the matching is adjacent to at most cd vertices in transpositions of Xi. Hence, the total

number of unused vertices in N(T ) must be at least 2td − 2tcd − 4tcd = 2td − 6tcd.

Consequently, the average number of unused neighbors per transposition of T is at least

2d − 6cd. Hence, there exists some transposition (v, v′) ∈ T such that the total unused

neighbors of v and v′ is at least 2d− 6cd.

Since v has at most d unused vertices in its neighborhood and the sum of unused neigh-

bors of v and the unused neighbors of v′ is at least 2d − 6cd, v′ has at least d − 6cd

unused neighbors. Similarly, v must also have at least d − 6cd unused neighbors. Thus,

if V is the set of unused neighbors of v and V ′ is the set of unused neighbors of v′,

Vol(V ) ≥ d(d− 6cd) and Vol(V ′) ≥ d(d− 6cd). Hence, by the Expander Mixing Lemma,

e(V, V ′) ≥ Vol(V )Vol(V ′)

Vol(G)
− σ

√
Vol(V )Vol(V ′)

≥ d2(d− 6cd)2

nd
− σd2
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= d2

(
d(1− 6c)2

n
− σ

)
.

Now, since σ < d(1−6c)2

n
, e(V, V ′) > 0, which implies that there is an edge between an

unused neighbor of v and an unused neighbor of v′. Consequently, there exists an edge

in Γ(v,v′) that is not in the matching. Therefore, this contradicts the maximality of the

matching.

As a result, there exists a matching of size at least 2t, meaning that by Hall’s theorem

for hypergraphs we can select a collection of disjoint edges {{u1, u2} ∈ E(G)} so that

for each transposition (v, v′) in Xi, there exists an edge {u1, u2} in this collection such that

v, u1, u2, v
′ is a path. This implies we can route all of the transpositions ofXi through these

disjoint paths simultaneously in 4 steps, returning the pebbles on u1 and u2 to their prior

positions.

Since there are 4
c

cells in this partition of T , it will take at most 16
c

steps to route

all transpositions of the permutation π1. By subsequently repeating this process for the

transpositions of π2, it will take at most 32
c

steps to route all of the vertices according to the

permutation π. Therefore, rt(G) ≤ 32
c

.

Notice that in this proof, the paths that we built between v and v′ for a transposition

(v, v′) ∈ Xi only contained four vertices. By extending these paths, we can weaken the

restriction on the degree of the graph. However, this gives us a weaker result on the routing

number, as the paths through which the transpositions are routed will be longer.

Theorem 7. For all k > 0, C > 0, there exists Nk,C ∈ N such that for any regular

graph G on n ≥ Nk,C vertices with degree d ≥ exp
(
C logn
log logn

)
and σ = kd−1/2 < 1

3
,

rt(G) ≤ (8z5 + 8z2)(2k)z, where z is the least even integer such that

z ≥
2 log

(
n

4k2

)
log
(
d

4k2

) + 2.
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In the introduction, this result was stated as log(rt(G)) = O
(

logn
log d

)
. Note that if

rt(G) ≤ (8z5 + 8z2)(2k)z, then for some constant C,

log(rt(G)) = log(8z5 + 8z2) + Cz

= O(z)

= O

(
2 log

(
n

4k2

)
log
(
d

4k2

) + 2

)

= O

(
log n

log d

)
.

Corollary 8. For all k > 0 and ε > 0, there exist Nk,ε ∈ N and Ck,ε ∈ N such that for

any regular graph G on n ≥ Nk,ε vertices with degree d = nε and σ = kd−1/2 < 1
3
,

rt(G) ≤ Ck,ε.

Since log(rt(G)) = O
(

logn
log d

)
by Theorem 7, log(rt(G)) = O

(
1
ε

)
when d = nε.

Proof of Theorem 7. LetG be a d-regular graph where d > exp
(
C logn
log logn

)
and σ = kd−1/2 <

1
3
. Consider a permutation π of the vertices. Then π = π2π1 for some π1, π2 ∈ SV of order

two. Thus, π1 and π2 can each be written as a product of disjoint transpositions. Let z be

the least even integer such that

z ≥
2 log

(
n

4k2

)
log
(
d

4k2

) + 2

and let

c =
1

d(z − 1)(1 + z3)(4k2)z/2e
.

We note that c here is (at least) polylogarithmic in 1
logn

– this follows from the com-

putation in the remark above and our assumption that d ≥ exp
(
C logn
log logn

)
. In particular, it

satisfies the necessary lower bound for c in Lemma 13.
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Let T = {(v, v′) ∈ π1}, the collection of transpositions in π1. Then by Lemma 13,

there exists a partition X1, . . . , X4/c in which each part Xi has size at most nc
4

and for each

j ∈ {1, . . . , z}, no vertex x ∈ V (G) has more than cdj vertices in its jth neighborhood

that are also in transpositions of Xi for any i. Fix i ∈ {1, . . . , 4/c}. For each transposition

(vj, v
′
j) ∈ Xi, build a hypergraph Γ(vj ,v′j) with vertex set V (G), where there exists a hyper-

edge {u1, . . . , uz−2} ∈ E
(

Γ(vj ,v′j)

)
if and only if vj, u1, . . . , uz−2, v

′
j is a path from vj to

v′j and uk is not in a transposition of Xi for all k ∈ {1, . . . , z − 2}. This yields that Γ(vj ,v′j)

is a (z − 2)-uniform hypergraph for each (vj, v
′
j) ∈ Xi.

Our goal is to find a system of disjoint representatives for A = {Γ(vj ,v′j) : vj, v
′
j ∈ Xi},

because this would give us a collection of disjoint z-vertex paths through which we can

simultaneously route each transposition of Xi. By Hall’s theorem for hypergraphs, there

exists such a system if for each B ⊆ A, there exists a matching in
⋃
B of size greater than

(z−2)(|B|−1). Verifying this condition is equivalent to fixing a subset T of transpositions,

then finding a collection of (z − 2)(|T | − 1) vertex-disjoint paths, each of which join the

vertices of a transposition in T .

Let T ⊆ Xi and let t = |T |. Fix a maximum matching in
⋃

(v,v′)∈T Γ(v,v′). Hall’s

condition is satisfied for this T unless this matching has size less than zt; we assume, by

way of contradiction, that the matching has size less than zt. Give each vertex a distance j

away from a vertex in any transposition of T a weight of dz−j . To count the weight used by

the paths in this matching, first note that there are fewer than z2t vertices in the matching.

For each vertex x in the matching and for each j ∈ {1, . . . , z}, there are at most cdj paths of

length j connecting x to a vertex in a transposition of Xi. From each of these paths, x gets

weight cdz−j . Thus, even if all of these paths connected x to a vertex in a transposition in

T , x would get weight at most (cdj)(cdz−j) from being in the jth neighborhood of vertices

in transpositions of T . Thus, summing over all j ∈ {1, . . . , z}, each vertex in the matching

has weight at most zc2dz. Hence, the total weight used by vertices in the matching is at
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most z3tc2dz. Therefore, there exists a transposition (v, v′) ∈ T that uses weight at most

z3c2dz.

For notational purposes, define N(v) to be the neighborhood of v and define N∗(v) ⊆

N(v) to be the set of all unused vertices in N(v). Then, define N2(v) to be the neighbor-

hood of N∗(v) and define N∗2 (v) ⊆ N2(v) to be the set of all unused vertices in N2(v).

Proceed inductively in this way, defining Nm(v) to be the neighborhood of N∗m−1(v) and

defining N∗m(v) ⊆ Nm(v) to be the set of all unused vertices of Nm(v).

To prove that there exists a path of unused vertices joining the vertices of a transposi-

tion in T , thus contradicting the maximality of the matching, we will prove the following

lemma.

Lemma 17. In this case,

Vol(N∗m(v)) ≥ min


dm+1

(
1− (c+ z3c2)

m∑
i=1

(4k2)i−1

)
(4k2)m−1

,

(
1

2
− z2c

8

)
Vol(G)


for all m ≤ z

2
.

We leave the inductive proof of this lemma until after the proof of the main theorem.

The crux of this lemma is that it implies by regularity that |N∗z/2−1(v)| ≥
(

1
2
− z2c

8

)
n or

|N∗z/2−1(v)| ≥
dz/2−1

(
1− (c+ z3c2)

z/2−1∑
i=1

(4k2)i−1

)
(4k2)z/2−2

.

In the latter case, since c < 1
(z−1)(1+z3)(4k2)(z−1)/2 ,

1− (c+ z3c2)

z/2−1∑
i=1

(4k2)i−1 ≥ 1− (c+ z3c2)
(z

2
− 1
)

(4k2)z/2−1 ≥ 1

2
.
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Furthermore, since z ≥ 2 log( n
4k2

)
log( d

4k2
)

+ 2,

z − 2

2
log

(
d

4k2

)
≥ log

( n

4k2

)
,

meaning that (
d

4k2

)z/2−1

≥ n

4k2
,

which finally implies that
dz/2−1

2(4k2)z/2−2
≥ n

2
.

Thus,

|N∗z/2−1(v)| ≥
dz/2−1

(
1− (c+ z3c2)

z/2−1∑
i=1

(4k2)i−1

)
(4k2)z/2−2

≥ dz/2−1

2(4k2)z/2−2

≥ n

2
.

Therefore, in either case |N∗z/2−1(v)| ≥
(

1
2
− z2c

8

)
n. By an identical argument, the

same is true for N∗z/2−1(v′).

Note that this implies that

Vol
(
N∗z/2−1(v)

)
≤
(

1

2
− z2c

8

)
Vol(G) <

1

2
Vol(G)

and

Vol
(
N∗z/2−1(v′)

)
<

1

2
Vol(G).
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By the Expander Mixing Lemma, then,

e
(
N∗z/2−1(v), N∗z/2−1(v′)

)
≥

Vol
(
N∗z/2−1(v)

)
Vol
(
N∗z/2−1(v′)

)
Vol(G)

− σ
√

Vol
(
N∗z/2−1(v)

)
Vol
(
N∗z/2−1(v′)

)
≥ 1

4
Vol(G)− σ

√
1

4
[Vol(G)]2

=

(
1

4
− 1

2
σ

)
Vol(G)

> 0

because σ < 1
3
. This implies that there is an edge between N∗z/2−1(v) and N∗z/2−1(v′).

Since these two sets are constructed by building paths of unused vertices in each iterated

neighborhood of v and v′, respectively, this means that there exists a (z − 2)-vertex path

of unused vertices that can be extended to a path between v and v′, which contradicts the

maximality of the matching on T . Therefore, there exists a matching that saturates Xi.

Since there is a matching that saturates Xi, there exist disjoint z-vertex paths such that

for each transposition (v, v′) ∈ Xi, one of these paths connects v and v′. Because these

paths are all disjoint, each transposition can be routed along these paths simultaneously,

returning all pebbles not on v or v′ to their prior location, in z steps. Since there are 4
c

parts

of the partition, the permutation π1 can be routed in at most 4z
c

steps. By repeating this

process for π2, we can route the permutation π on G in at most 8z
c

steps. Therefore, by the

arbitrary selection of π,

rt(G) ≤ 8z

c

= 8z
⌈
(z − 1)(1 + z3)(4k2)z/2

⌉
≤ (8z5 + 8z2)(4k2)z/2.
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We now return to prove the lemma that we omitted from the main proof.

Lemma 17. For all m ≤ z
2
,

Vol(N∗m(v)) ≥ min


dm+1

(
1− (c+ z3c2)

m∑
i=1

(4k2)i−1

)
(4k2)m−1

,

(
1

2
− z2c

8

)
Vol(G)

 .

Proof. We will prove this by induction. For m = 1, note that |N1(v)| = d. By construction

of Xi, there are at most cd vertices in N(v) that are also in transpositions of Xi. Further-

more, the total used weight of the transposition (v, v′) is at most z3c2dz, meaning that there

must be used weight at most z3c2dz in N(v). However, each vertex in N(v) that has pos-

itive weight must have weight at least dz−1. Thus, there must be at most z3c2d vertices of

N(v) used by the paths already in the matching. Hence, there are at least d(1− (c+ z3c2))

unused vertices in N(v), which implies that Vol(N∗1 (v)) ≥ d2(1− (c+ z3c2)). This proves

the base case.

Now suppose as an induction hypothesis that

Vol(N∗m−1(v)) ≥ min


dm
(

1− (c+ z3c2)
m−1∑
i=1

(4k2)i−1

)
(4k2)m−2

,

(
1

2
− z2c

8

)
Vol(G)

 .

We will prove the induction through the following series of three claims.

Claim 18. If Vol(Nm(v)) ≥ 1
2
Vol(G), then Vol(N∗m(v)) ≥

(
1
2
− z2c

8

)
Vol(G).

Proof of Claim 1. Since each path contains z vertices and the maximum matching in ques-

tion contains less than zt such paths, there are at most z2t vertices in the matching. Thus,

since t = |T |, where T ⊆ Xi and |Xi| ≤ cn
8

, there are at most z2cn
8

used vertices in
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|Xi|. Hence, because Vol(Nm(v)) ≥ 1
2
Vol(G) implies that |Nm(v)| ≥ 1

2
n, we get that

|N∗m(v)| ≥
(

1
2
− z2c

8

)
n. Therefore,

Vol(N∗m(v)) ≥
(

1

2
− z2c

8

)
Vol(G).

Claim 19. If Vol(N∗m−1(v)) ≥
(

1
2
− z2c

8

)
Vol(G), then Vol(Nm(v)) ≥ 1

2
Vol(G).

Proof of Claim 2. By Lemma 15, Vol(Nm(v)) ≥ 1
2
Vol(G) or Vol(Nm(v)) ≥ Vol(N∗m−1(v))

4σ2 .

However, note that since c = 1
d(z−1)(1+z3)(4k2)z/2e <

4−8σ
z2

as σ < 1
3
,

Vol(N∗m−1(v))

4σ2
≥

1
2
− z2c

8

4σ2
Vol(G)

>
1
2
− z2

8
· 4−8σ

z2

4σ2
Vol(G)

=
1

4σ
Vol(G)

>
3

4
Vol(G).

As a result, Vol(Nm(v))) ≥ 1
2
Vol(G) in either case.

Claim 20. If

Vol(N∗m−1(v)) ≥
dm
(

1− (c+ z3c2)
m−1∑
i=1

(4k2)i−1

)
(4k2)m−2

,

then Vol(Nm(v)) ≥ 1
2
Vol(G) or

Vol(N∗m−1(v)) ≥
dm+1

(
1− (c+ z3c2)

m∑
i=1

(4k2)i−1

)
(4k2)m−1
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Proof of Claim 3. By Lemma 15, Vol(Nm(v)) ≥ 1
2
Vol(G) or

Vol(Nm(v)) ≥
Vol(N∗m−1(v1))

4σ2

≥
dm
(

1− (c+ z3c2)
m−1∑
i=1

(4k2)i−1

)
(4k2)m−24σ2

=

dm+1

(
1− (c+ z3c2)

m−1∑
i=1

(4k2)i−1

)
(4k2)m−1

.

By the construction of Xi, there are at most cdm vertices in Nm(v) that are also in

transpositions of Xi. Furthermore, there must be used weight at most z3c2dz in Nm(v).

However, each vertex in Nm(v) that has positive weight must have weight at least dz−m.

Thus, there must be at most z3c2dm vertices of Nm(v) used by paths already in the match-

ing. Hence,

|N∗m(v1)| ≥
dm
(

1− (c+ z3c2)
m−1∑
i=1

(4k2)i−1

)
(4k2)m−1

− z3cdm − cdm

=

dm
(

1− (c+ z3c2)
m∑
i=1

(4k2)i−1

)
(4k2)m−1

.

Therefore,

Vol(N∗m(v)) ≥
dm+1

(
1− (c+ z3c2)

m∑
i=1

(4k2)i−1

)
(4k2)m−1

.
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As a result of these three claims, we have shown that for all m ≤ z
2
,

Vol(N∗m(v)) ≥ min


dm+1

(
1− (c+ z3c2)

m∑
i=1

(4k2)i−1

)
(4k2)m−1

,

(
1

2
− z2c

8

)
Vol(G)

 .

2.5 Graph Blowups

At the heart of this problem is the following question: what classes of graphs have

small routing number? Above we have shown that random-like graphs, as defined by the

spectral gap, are one such class. Another way to show that a class has a small routing

number is to show that the class is constructed in some nice way. For example, Alon,

Chung, and Graham showed that the routing number of a hypercube, which has very nice

structure due to its simple, iterative definition, is logarithmic in the number of vertices.

The spectral gap of the hypercube is approximately 1
logn

, so our result doesn’t apply. The

following result, however, gives an avenue through which an upper bound for the routing

number of a hypercube can be found, and is the motivation for our remaining work.

Theorem 21 ([3]). For graphs G and G′, rt(G×G′) ≤ 2rt(G) + rt(G′).

The general outline of the proof of this theorem is as follows. Let (π(p), π′(p)) be the

target of pebble p. First, route within copies of G so that each copy of G′ contains pebbles

with distinct values of π′(p). This takes at most rt(G) steps. Then, route within copies of

G′ to place each pebble in its target copy of G. This takes at most rt(G′) steps. Finally,

route again within copies of G to place each pebble on its target vertex. This takes at most

rt(G) steps.

We outline the proof of the above theorem because it is similar to our approach, albeit

for a different class of graphs. The t-blowup of a graph G replaces a vertex in G with

38



an independent set of size t. Two vertices in the blowup are adjacent if and only if their

corresponding vertices in G are adjacent. Thus, every edge in G is replaced by Kt,t. For

this upper bound on the routing number of blowups, first route all of the pebbles to their

target part of the blowup. Now that each pebble is in the same part as its final target,

each pebble must be placed on the proper vertex within the part. To do this, we will use

matchings on the underlying graph G to form complete bipartite subgraphs in H . In [3],

Alon, Chung, and Graham show that rt(Kn,n) = 4. Thus, routing the pebbles to their

target vertices through these complete bipartite subgraphs takes only four steps for each

underlying matching in G. However, we may need as many as rt(G) such matchings to

ensure that the pebbles in each part of the blowup are routed in this final step, thus bringing

the total number of steps required to at most 5rt(G).

Theorem 22. For the t-blowup H of a graph G, rt(H) ≤ 5rt(G).

Proof. Let π be a permutation on [tn]. Since H is the t-blowup of G, H is an n-partite

graph in which each part has exactly t vertices. Furthermore, two vertices inH are adjacent

iff their corresponding vertices in G are adjacent.

Label the vertices of G using 1, . . . , n. For each pebble p on H , label p the same

number as the vertex in G corresponding to the part of H containing the final destination

of p according to π. Thus, for each i ∈ {1, . . . , n}, there are t pebbles labeled i. Now, we

will show that we can find t disjoint copies of G within H so that each copy has exactly

one pebble labeled each of 1, . . . , n.

Create a bipartite graphG′ with partsA andB each of size n. Label the vertices of each

part 1, . . . , n. For a pebble p in H , draw an edge between the vertex in A corresponding to

the part ofH in which p starts and the vertex inB corresponding to the part ofH containing

the final destination of p according to π. Since there are t pebbles in each part ofH to begin

with and π dictates that there will be t pebbles in each part of H at the conclusion of the

routing, G′ is a t-regular multigraph. Hence, there is a perfect matching in G′. This perfect
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matching corresponds to an induced copy of G in H in which there is exactly one pebble

labeled each of 1, . . . , n. By induction on t, we can find t such disjoint copies of G within

H .

For each of these t copies of G within H , route the pebbles to the vertex corresponding

to their label. Since each of these copies are disjoint, this can be done simultaneously.

Thus, we can route every pebble to a vertex in the same part as its final destination in rt(G)

steps.

Find the minimum number of matchings M1, . . . ,Ms of G such that every vertex in

G is incident to an edge in some Mi. By considering the permutation (1, 2, . . . , n), it can

be seen that s ≤ rt(G). For each i ∈ {1, . . . , s}, take the complete bipartite components

in H corresponding to the edges in Mi. For each complete bipartite component, perform

the permutation that routes the remaining pebbles to their final destinations according to π.

Note that this can be done within these bipartite components because every pebble is on

a vertex within the same part as their final destination. For each bipartite component, this

can be done in four steps because rt(Kt,t) = 4 by [3]. Since Mi is a matching in G, this

process can be run simultaneously for all bipartite components in H corresponding to an

edge inMi. Thus, for each i ∈ {1, . . . , s}, this process takes four steps, which yields a total

of 4s steps. Since every vertex of G is incident to some edge in M1, . . . ,Ms, this process is

completed for every part of H . Hence, every pebble in H has been routed according to π in

at most rt(G)+4s ≤ 5rt(G) steps. Therefore, by the arbitrary selection of the permutation

π, rt(H) ≤ 5rt(G).

In this proof, we used the fact that the number of matchings required to cover the

vertices is bounded above by rt(G), therefore giving us an upper bound entirely in terms

of rt(G). However, an immediate improvement of the above result says that rt(H) ≤

rt(G) + 4s(G), where s(G) is the minimum number of matchings such that each vertex in

G is incident to an edge in every collection of s(G) matchings.
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Observe that Kt,t is the t-blowup of a single edge. Since the routing number of an edge

is 1, the best possible upper bound for a t-blowup H of a graph G is rt(H) ≤ 4rt(G). This

example giving us a result that is close to sharp is dependent on the fact that for an edge,

rt(G) = s(G). However, the best possible upper bound for the rt(H) entirely in terms of

rt(G) is only slightly better than the above theorem.
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Chapter 3: Disjoint Cycles

3.1 Introduction

A classical problem in extremal graph theory is determining the number of vertex-

disjoint subgraphs of some type within a given graph. In this direction, there are two major

categories of graphs for which this is studied: cycles and complete graphs. For cycles,

Corradi and Hajnal proved the following result, validating a conjecture of Erdős and Pósa.

Theorem 23. For any t ≥ 1, if G is a graph on n ≥ 3t vertices with δ(G) ≥ 2t, then G

contains at least t disjoint cycles.

For n = 3t, this gives a decomposition into triangles, thus also answering the question

for cliques of size 3. For cliques of larger size, Hajnal and Szemerédi gave the following

result for complete graphs.

Theorem 24 ([22]). For integers t, k ≥ 1, if G is a graph on n = t(k + 1) vertices with

δ(G) ≥ tk, then there exist t disjoint copies of Kk+1 in G.

Note that here, Hajnal and Szemerédi obtain a decomposition ofG into copies ofKk+1.

While the result of Hajnal and Corradi doesn’t give a decomposition in most cases, it does

apply when n � δ(G), thus telling us something about the structure of a graph without

such strong degree conditions as required in the clique case.

Both of these results have been generalized in various ways. For example, Finkel

proved a result similar to that of Corradi and Hajnal for chorded cycles.

Theorem 25 ([15]). For any t ≥ 1, if G is a graph on n ≥ 4t vertices with δ(G) ≥ 3t, then

G contains t disjoint chorded cycles.
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Once again, Finkel’s result holds for sufficiently large sparse graphs. For sparse graphs,

we cannot guarantee the existence of any complete graphs with at least three vertices

(consider Kn,n, for example). Instead, we must loosen the notion of a complete graph

in the following sense. We can consider the graph Kk+1 as a cycle of size k + 1 with

f(k) = (k+1)(k−2)
2

chords. Thus, in an effort to encapsulate the general notion of Hajnal

and Szemerédi for sparse graphs, we will say that a multiply chorded cycle is a cycle of

any size with f(k) chords, as a relaxation of Kk+1. We call this value f(k) because Kk+1

is the complete graph with minimum degree k.

This generalization was introduced by Gould, Horn, and Magnant, who proved the

following result to parallel the work of Hajnal and Szemerédi, while allowing for the pos-

sibility of sparse graphs.

Theorem 26 ([20]). There exist t0 and k0 such that if t ≥ t0 and k ≥ k0, then there exists

n0(t, k) such that for every graph G on n ≥ n0 vertices with minimum degree δ(G) ≥ tk,

G contains t disjoint cycles, each with f(k) chords.

While we only introduce here those theorems that we will seek to improve on, this

work is part of a broad class of problems that attempt to find vertex-disjoint copies of some

subgraph under some minimum degree or related conditions. Especially for cycles, this

problem has been well studied (see e.g. [4, 9, 10, 11, 18, 19, 30, 40, 44, 52]).

The results of Corradi and Hajnal on cycles and of Hajnal and Szemerédi on cliques

both yield that if G is a graph on n = 3t vertices with minimum degree δ(G) ≥ 2
3
n, then

G can be decomposed into triangles. In [32], Krivelevich, Sudakov, and Szabó weaken

the degree condition required to guarantee a decomposition into triangles by introducing a

spectral condition. While this theorem is originally stated in terms of the adjacency matrix,

we convert it here to the normalized Laplacian, as our results will apply to irregular graphs,

for which the normalized Laplacian is more appropriate.
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Theorem 27 ([32]). Let G be a d-regular graph on n vertices such that n is divisible by

3. If the spectral gap of the normalized Laplacian matrix is σ = o
(

d2

n2 logn

)
, then G has a

decomposition into triangles.

Even though there is no explicit minimum degree condition in this theorem, the spec-

tral condition given can only be satisfied on graphs with degree d ≥ n4/5 log2/5 n. It

is this approach of introducing a spectral condition in order to weaken the degree con-

dition that motivates our work. Instead of seeking a full decomposition into triangles,

however, our goal is to find a large collection of disjoint cycles, chorded cycles, or mul-

tiply chorded cycles. In many cases, particularly for sparse graphs, our result will give

significant improvements on the bounds given by Corradi and Hajnal for cycles, Finkel for

chorded cycles, and Gould, Horn, and Magnant for multiply chorded cycles.

In Section 2, we define the notion of an admissible class. A class is admissible if it

satisfies a linear Turán condition and a structural condition. Cycles, chorded cycles, and

f(k)-chorded cycles are all admissible classes, as shown in Section 3.

Theorem 28. Let H be an admissible class of graphs. Then there exists d0 = d0(H) > 0

such that if G is a graph on n vertices with average degree d ≥ d0 and σ < 1
10

, then G

contains at least Ω(
√
nd) vertex-disjoint members ofH.

There are many results that guarantee disjoint cycles for every graph satisfying some

degree condition, only some of which are listed above. Our framework improves many

of these results in the following ways. While earlier results depend only on the degree of

the graph, our results depend both on the number of vertices and the degree. Thus, for

graph with low minimum degree, our results are asymptotically much better. Furthermore,

our result depends on an average degree condition instead of a minimum degree condition

or regularity. For this reason, our result will apply to graphs with some vertices of low

degree, whereas the earlier results will not. We explore these comparisons more explicitly
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for specific classes of graphs later, but these general trends are true for each class of cycles

that we consider.

The remainder of this chapter is as follows. In Section 3.2, we prove the main theo-

rem as it appears above for a general class of graphs. In Section 3.3, we prove that cycles,

chorded cycles, and f(k)-chorded cycles each independently satisfy the conditions required

of H, detail the interpretation of the main theorem in each context, and give brief compar-

isons to the previously known results stated in this introduction. Finally, in Section 3.4, we

give an example showing that this Ω(
√
nd) lower bound is best possible.

3.2 Proof of Main Theorem

Let H be a class of graphs. A minimal H-system is a maximum collection of vertex-

disjoint members of H that is also minimal with respect to the number of vertices in the

system. A classH is defined to be admissible if the following two properties hold:

• For a collection of vertices X , there exists π(H) > 0 such that if e(X,X) ≥ π(H)n,

then X contains a member ofH.

• There exist c(H) > c′(H) > 0 such that for any H1 and H2 in a minimal H-system,

if e(H1, H2) ≥ c(H), then there exists a single vertex in Hi, for i ∈ {1, 2} of degree

at least e(H1, H2)− c′(H) to Hj , where j ∈ {1, 2} and j 6= i. Furthermore, there are

only t− 1 such vertices within the system with degree at least e(H1, H2)− c′(H) to

another member of the system, where t is the number of members ofH in the system.

We call these high-degree vertices.

While these conditions are dense when presented in full generality, we prove in Section

3 that the classes of cycles, chorded cycles, and f(k)-chorded cycles each satisfy these two

conditions and we find the corresponding constants for each class.
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Theorem 28. Let H be an admissible class of graphs. If G is a graph on n vertices with

average degree d ≥ max{37, 4π(H)} and σ < 1
10

, then G contains at least

√√√√√ 2

c(H)

1

4

1−
σ +

√
σ2 + 4π(H)

d

2

1−
σ +

√
σ2 + 4π(H)

d

2
− 2σ

− 1

d

nd
vertex-disjoint members ofH.

Proof. Let H1, . . . , Ht be a maximum collection of vertex-disjoint members of H that is

also minimal with respect to the number of vertices in C =
⋃t
i=1 V (Hi). Let X = G \ C.

By the maximality of t, X contains no member of H. By assumption, this implies that

e(X,X) < π(H)n. Let α ∈ [0, 1] such that Vol(X) = αVol(G). By the expander mixing

lemma, then,

e(X,X) ≥ Vol(X)2

Vol(G)
− σVol(X)

=
α2Vol(G)2

Vol(G)
− σαVol(G)

= α2Vol(G)− σαVol(G)

= (α2 − σα)Vol(G).

Hence,

α2 − σα− e(X,X)

Vol(G)
≤ 0.

The roots of this quadratic are

α =
σ ±

√
σ2 + 4e(X,X)

Vol(G)

2
.
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Since 1
2

(
σ −

√
σ2 + 4e(X,X)

Vol(G)

)
< 0, we get that

α ≤
σ +

√
σ2 + 4e(X,X)

Vol(G)

2
≤
σ +

√
σ2 + 4π(H)

d

2
≤ σ +

√
π(H)

d
<

3

5
,

because σ < 1
10

and d ≥ 4π(H).

Let S be the set of high-degree vertices in C. By assumption, there are at most t − 1

such vertices. Let ε = 1
2
. We make all of the following calculations using ε instead of 1

2

to illustrate that a more careful selection of ε improves the constant, even though ε = 1
2

has been chosen for clarity. Suppose first that Vol(S) ≥ ε(1 − α)Vol(G). Since σ < 1
10

implies that σ < ε(1− α), we get that 2Vol(S)
Vol(G)

− σ ≥ 0, meaning that Vol(S)2

Vol(G)
− σVol(S) is

an increasing function in Vol(S). Hence, by the Expander Mixing Lemma,

|S|2 ≥ e(S, S)

≥ Vol(S)2

Vol(G)
− σVol(S)

≥ ε2(1− α)2Vol(G)− σε(1− α)Vol(G)

=
[
ε2(1− α)2 − σε(1− α)

]
nd

= ε(1− α)[ε(1− α)− σ]nd.

Thus,

t ≥ |S| ≥
√
ε(1− α)(ε(1− α)− σ)nd.

Conversely, suppose that Vol(S) ≤ ε(1 − α)Vol(G). Then Vol(C \ S) ≥ (1 − ε)(1 −

α)Vol(G). As before, σ < 1
10

implies that Vol(C\S)
Vol(G)

− σVol(C \ S) is an increasing function

in Vol(C \ S). Hence, by the Expander Mixing Lemma,

e(C \ S, C \ S) ≥ Vol(C \ S)

Vol(G)
− σVol(C \ S)
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≥ (1− ε)2(1− α)2Vol(G)− σ(1− ε)(1− α)Vol(G)

= [(1− ε)2(1− α)2 − σ(1− ε)(1− α)]nd

= (1− ε)(1− α)((1− ε)(1− α)− σ)nd.

Furthermore, we have that any pair Hi and Hj either has e(Hi, Hj) < c(H) or there is

a vertex v in Hi, without loss of generality, with at least e(Hi, Hj)− c′(H) edges to Hj . In

the latter case, the pairHi andHj contributes at most c′(H) ≤ c(H) edges to e(C\S, C\S).

Additionally, each cycle Hi contains |V (Hi)| edges. Thus,

e(C \ S, C \ S) ≤ c(H)

(
t

2

)
+ |C| ≤ c(H)

2
t2 + n.

By combining this edge count with the inequality derived from the Expander Mixing

Lemma, we get that

t ≥

√
2

c(H)

[
(1− ε)(1− α)((1− ε)(1− α)− σ)− 1

d

]
nd.

Therefore, from the two bounds on t we get that

t ≥ min
{√

ε(1− α)(ε(1− α)− σ)nd,√
2

c(H)

[
(1− ε)(1− α)((1− ε)(1− α)− σ)− 1

d

]
nd

}
.

Note again here that while we chose ε = 1
2

earlier, we could optimize ε to give us a

better minimum by making these two terms of the minimum equal. If we did optimize ε, it

would change the bounds required on d and σ, but they would remain constant. However,

for readability purposes, we chose ε = 1
2
. As a result, we get that the second term of this
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minimum is less than the first for any σ, d, and n. Therefore,

t ≥

√√√√√ 2

c(H)

1

4

1−
σ +

√
σ2 + 4π(H)

d

2

1−
σ +

√
σ2 + 4π(H)

d

2
− 2σ

− 1

d

nd.
Note that this value is decreasing in σ and increasing in d. Furthermore, for σ = 1

10

and d = 37, the coefficient on nd is positive, which implies that this coefficient is positive

for all σ < 1
10

and d > 37.

In the next section, we will prove that the class of cycles, the class of chorded cycles,

and the class of f(k)-chorded cycles, for any fixed k ≥ 3, are each an admissible class.

We then interpret this result for these classes of graphs and compare our results to previous

work.

3.3 Main Result on Classes of Graphs

3.3.1 Cycles. Note first that if a graph G has average degree d ≥ 2, then G contains a

cycle. Thus, in the terminology of our main theorem, we have that for the classH of cycles,

π(H) = 2.

To establish the existence of high-degree vertices within a minimal cycle system, define

the graph G(a, b, c, d) to be the disjoint union of two cycles C1 and C2 of order a and b

respectively, with two vertices v1 and v2 at distance d lying on the cycle Cc specified. The

vertex v1 is adjacent to all vertices in the other cycle and the vertex v2 is adjacent to a single

vertex of the other cycle. No other edges exist between the cycles. To satisfy the second

condition on H in our main theorem, we will use the following result of Gould, Hirohata,

and Horn [17] to prove the subsequent lemma.

Lemma 29 ([17]). Suppose C1 and C2 are two cycles with e(C1, C2) edges between them.

If e(C1, C2) ≥ 10, then either C1 ∪ C2 ⊆ G(|C1|, |C2|, c, d) for some parameters c and d,

or there exist two shorter disjoint cycles.
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As a result, we get that if e(C1, C2) ≥ 10, then there exists one vertex that is incident to

all but one of the edges between them. In the terminology of our main theorem, this lemma

states that c(H) = 10 and c′(H) = 1. We now use the above lemma to show that there are

at most t− 1 of these high-degree vertices in a minimal cycle system containing t cycles.

Lemma 30. If C1, . . . , Ct is a minimal cycle system, then there are at most t − 1 vertices

with at least 9 edges to some other cycle.

Proof. Let C1, . . . , Ct be a minimal cycle system. By Lemma 29, for any i, j ∈ {1, . . . , t},

if e(Ci, Cj) ≥ 10, then Ci∪Cj ⊆ G(|C1|, |C2|, c, d) for some parameters c, d. Specifically,

this implies that there exists vi,j ∈ V (Ci) (without loss of generality) such that e(vi,j, Cj) ≥

e(Ci, Cj)− 1 ≥ 9. We will refer to each such vertex vi,j as a vertex of high degree.

Suppose by way of contradiction that there are at least t of these high-degree vertices.

Create an auxiliary graph G′ with vertex set {v1, . . . , vt} where vi corresponds to the cycle

Ci. For each vertex of high degree in Ci, choose a single cycle Cj to which this vertex has

at least 9 edges and add the edge vivj to G′. Since there are at least t high-degree vertices,

there exists a cycle in G′. From this cycle in G′, we can construct a replacement set of

cycles using fewer vertices in the following way.

Order the vertices of this cycle in G′ as v′1, . . . , v
′
l. These vertices correspond to cycles

C ′1, . . . , C
′
l inG. For each i ∈ {1, . . . , l}, there exists a vertex inC ′i orC ′i+1 (where for i = l,

we have i + 1 = 1) with at least 9 edges to the other cycle. We will call this vertex vi,i+1.

Suppose without loss of generality that v1,2 ∈ C ′1 (if not, the algorithm described below

will simply work in the opposite direction around the cycle in G′). We will temporarily call

v1,2 the primary vertex and v2,3 the secondary vertex. The vertex v1,2 must have 9 edges to

C ′2.

If v2,3 ∈ C ′3, select two vertices x1,2, y1,2 ∈ C ′2 that are adjacent to v1,2 and that have a

path through C ′2 that excludes at least 4 neighbors of v2,3. This is possible as even if x1,2

and y1,2 are adjacent to v2,3, there are still 7 other neighbors of v2,3 in C ′2. In this case, v1,2
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Figure 3.1

and this path including x1,2 and y1,2 excluding these 4 neighbors through C ′2 forms a new

cycle. Then, let x2,3, y2,3 ∈ C ′2 be the two excluded neighbors of v2,3 that are closest when

excluding the newly-formed cycle. Thus, v2,3 and this shortest path including x2,3 and y2,3

through C ′2 also forms a new cycle, excluding two neighbors of v2,3.

C ′1 C ′2 C ′3v1,2

...

...
v2,3

...

...

x1,2

y1,2

x2,3

y2,3

Figure 3.2

If v2,3 ∈ C ′2, select two vertices x1,2, y1,2 ∈ C ′2 that are adjacent to v1,2 and whose path

through C ′2 that excludes v2,3 is shortest. Then v1,2 and this path between x1,2 and y1,2 that

travels through C ′2 forms a new cycle that excludes all other neighbors of v1,2 in C ′2.

In the latter case, proceed with the same decision process, considering v2,3 as the

primary vertex and v3,4 as the secondary vertex. In the former case, proceed with the
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C ′1 C ′2 C ′3v1,2

...

...
v2,3

...
x1,2

y1,2

Figure 3.3

same decision process, considering v3,4 as the primary vertex (since v2,3 has already been

included in a cycle) and v4,5 as the secondary vertex. Continue this process until vi,i+1 has

been included in a new cycle for all i ∈ {1, . . . , t}. Since there are l such vertices, we have

created a replacement set of l cycles that is smaller than the set C ′1, . . . , C
′
l .

Therefore, by minimality, there must be at most t− 1 high-degree vertices.

Due to these results, the classH consisting of cycles satisfies the two conditions of our

main theorem. Therefore, we get the following result.

Theorem 31. If G is a graph on n vertices with average degree d ≥ 37 and σ < 1
10

, then G

contains at least .113
√
nd disjoint cycles.

To compare this to the previous work of Corradi and Hajnal on disjoint cycles, our

result is much better for sparse graphs. First, note that our degree condition is on the aver-

age degree, which allows for low-degree vertices, whereas the result of Corradi and Hajnal

requires a minimum degree condition. Even if we consider regular graphs to mitigate this

difference, our result gives more disjoint cycles in most cases. For a regular graph with

constant degree as n approaches infinity, the work of Corradi and Hajnal only guarantees

a constant number of disjoint cycles, whereas our result will give Ω(
√
n) disjoint cycles

asymptotically. In fact, for the result of Corradi and Hajnal to guarantee at least
√
nd

disjoint cycles, a graph must have degree linear in n. While our result will never give a

triangle decomposition as Corradi and Hajnal can under certain conditions, our result still

will guarantee that the number of disjoint cycles is on the order of n with these conditions.
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Similarly, the result of Krivelevich, Sudakov, and Szabó has the strength to guarantee

a triangle decomposition that we cannot. However, our result has two distinct advantages

over theirs. First, Krivelevich, Sudokov, and Szabó require regularity, which we avoided

by using the normalized Laplacian matrix instead of the adjacency matrix. Second, since

we are not seeking the strength of a triangle decomposition, our spectral condition is sig-

nificantly weaker than theirs. In fact, the condition that σ = o
(

d2

n2 logn

)
guarantees that

the degree must asymptotically be at least d ≥ n4/5 log2/5 n [32]. Therefore, the class of

graphs for which our result applies is significantly larger than the class of graphs to which

Theorem 27 applies, which is natural since our result does not guarantee as many cycles.

3.3.2 Chorded Cycles. As stated in the introduction, Finkel proved in 2008 that if G is

a graph on n ≥ 4t vertices and δ(G) ≥ 3t, then G contains t disjoint chorded cycles.

Note, however, that if the average degree of G is at least 2r, then G has a subgraph H of

minimum degree at least δ(H) ≥ r+ 1. Thus, Finkel’s result gives the following corollary.

Corollary 32. If G is a graph with average degree d ≥ 4, then G contains a chorded cycle.

This means that the class of chorded cycles satisfies the first condition of an admissible

class with π(H) = 4.

Lemma 33. If C1 and C2 are chorded cycles in a minimal cycle system with e(C1, C2) ≥

31, then there exists a vertex in one of these cycles with at least e(C1, C2)− 9 edges to the

other cycle.

Before we prove the lemma, we need the following claim.

Claim 34. If P and Q are two paths with at least five edges between them, then there exists

a chorded cycle in P ∪Q.

Proof. Let P = p1, . . . , pn and let Q = q1, . . . , qm. Without loss of generality, assume

that the vertex incident to the most amount of these chords is in P and name that vertex
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p. If p is incident to at least three edges between paths, then this will yield a chorded

cycle immediately. If p is incident to only one edge between paths, then all of the chords

are pairwise disjoint. Then, by Erdős-Szekeres, there exists a collection pi < pj < pk of

vertices in P with neighbors qi′ < qj′ < qk′ or qi′ > qj′ > qk′ . In either case, the cycle

pi, . . . , pk, qk′ , . . . , qi′ has chord pj, qj′ .

Finally, suppose that p is incident to exactly two edges between paths. Let q and q∗

be the neighbors of p on Q with q < q∗. If there exists an edge p′q′ such that p′ < p and

q′ < q, then the cycle p′, . . . , p, q∗, . . . , q has chord pq. Similarly, if there exists an edge

p′q′ such that p′ > p and q′ > q∗, then the cycle p, . . . , p′, q′, . . . , q has chord pq∗.

Otherwise, there must be two edges p′q′ and p′′q′′ with p′′ ≥ p′ > p or p′ ≤ p′′ < p.

Suppose the former without loss of generality. Then q′, q′′ ≤ q∗. If q′ ≤ q or q′′ ≤ q,

then the cycle p, . . . p′, (or p′′) q′, (or q′′) . . . , q∗ contains chord pq. Otherwise, if q′′ ≤ q′,

then p, . . . , p′′, q′′, . . . , q∗ contains chord p′q′. Similarly, if q′ ≤ q′′, then p, . . . , p′′, q′′, . . . , q

contains chord p′q′.

We now prove the existence of a high-degree vertex between two chorded cycles with

sufficiently many edges between them.

Proof of Lemma 33. For the sake of clarity, orient the cycles C1 and C2 clockwise. For a

vertex v ∈ C1, we will denote the vertex prior to v in the cycle by v− and we will denote the

vertex subsequent to v in the cycle by v+. For distinct vertices u1 and u2, the path u1C1u2

will be the path starting at u1, moving clockwise through C1, and ending at u2.

Let v be the vertex with the greatest number of edges to the opposite cycle. Without loss

of generality, assume that v lies in C1 and say that e(v, C2) = M . By way of contradiction,

assume that 8 ≤M < e(C1, C2)−9. Then there are at least 9 edges between C1 and C2 not

incident to v. Let x1, x2 ∈ C2 be neighbors of v such that there are at least three neighbors

of v on each of the paths x+
1 C2x

−
2 and x+

2 C2x
−
1 .
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Consider the paths x+
1 C2x2 and x+

2 C2x1. Since there are at least 9 edges between C1

and C2 not incident to v, one of these paths, say x+
1 C2x2, has five edges to C1 \ {v}. Thus,

by the above claim, there is a chorded cycle between vertices on the path x+
1 C2x2 and

C1 \ {v}. Furthermore, there is a chorded cycle in x+
2 C2x

−
1 ∪ {v}, as v has at least three

neighbors on x+
2 C2x

−
1 . Therefore, these two cycles contradict the minimality of the initial

cycle system.

Now, if M < 8, label the vertices of C1 in order as x1, . . . , xn and label the vertices

of C2 in order as y1, . . . , ym. Let xi be the first vertex of C1 such that x2C1xi has at least

9 edges to C2. Since M < 8, we know that x2C1xi has at most 15 edges to C2, as no one

vertex in C1 has more than 7 edges to C2. Thus, since x1 also has at most 7 edges to C2 and

e(C1, C2) ≥ 31, xi+1C1xn has at least 9 edges to C2. Similarly, let yj be the first vertex on

C2 such that y1C2yj has at least 9 edges going to C1 \ {x1}. Then y1C2yj has at most 15

edges to C1 \ {x1} and in turn, yj+1C2ym has at least 9 edges to C1 \ {x1}.

Suppose first that there are at most 4 edges between x2C1xi and y1C2yj . This implies

that there are at least 5 edges between x2C1xi and yj+1C2ym and there are at least 5

edges between xi+1C1xn and y1C2yj . If there are at most 4 edges between xi+1C1xn and

yj+1C2ym, then there are at least 5 edges between xi+1C1xn and y1C2yj and there are at

least 5 edges between x2C1xn and yj+1C2ym. Finally, in the case that neither assumption

holds, we have at least 5 edges between x2C1xi and y1C2yj and there are at least 5 edges

between xi+1C1xn and yj+1C2ym. In any case, there are two disjoint pairs of paths, one in

C1 and one in C2, where within each pair, one path is in C1 and one path is in C2 and for

each pair of paths, there are at least 5 edges between the paths. By Claim 34, there exist

two chorded cycles that avoid x1 by construction, which contradicts the minimality of the

cycle system.

Lemma 35. If C1, . . . , Ct is a minimal chorded cycle system, then there are at most t − 1

vertices with at least 22 edges another cycle.
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Proof. Let C1, . . . , Ct be a minimal chorded cycle system. We will refer to any vertex

with at least 22 edges to another chorded cycle as a high-degree vertex. Suppose by way

of contradiction that there are at least t of these high-degree vertices. Create an auxiliary

graph G′ with vertex set {v1, . . . , vt} where vi corresponds to the cycle Ci. For each high-

degree vertex in Ci, choose a single cycle Cj to which this vertex has at least 22 edges and

add the edge vivj to G′. Since there are at least t high-degree vertices by assumption, there

exists a cycle in G′. From this cycle in G′, we can construct a replacement set of chorded

cycles using fewer vertices in the following way.

Figure 3.4

Order the vertices of this cycle inG′ as v′1, . . . , v
′
l. These vertices correspond to chorded

cycles C ′1, . . . , C
′
l in the minimal system of G. For each i ∈ {1, . . . , l}, there exists a vertex

in C ′i or C ′i+1 with at least 22 edges to the other chorded cycle. We will call this vertex

vi,i+1 (where i + 1 = 1 when i = l). Suppose without loss of generality that v1,2 ∈ C ′1 (if

not, the algorithm described below will simply work in the opposite direction around the

cycle in G′). The vertex v1,2 must have at least 22 edges to C ′2. We will again temporarily

call v1,2 the primary vertex and v2,3 the secondary vertex.
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If v2,3 ∈ C ′3, select three consecutive neighbors x1,2, y1,2, z1,2 ∈ C ′2 of v1,2. There are

at least 19 neighbors of v2,3 on C ′2, exclusive of x1,2, y1,2, z1,2. There are three paths, one

between x1,2 and y1,2, one between y1,2 and z1,2, and one between z1,2 and x1,2, on which

these other 19 vertices can fall. Thus, there exists one of these paths that must contain

at least 7 neighbors of v2,3. Say this path is the one between x1,2 and z1,2. Then there

exists a cycle v1,2, x1,2, C
′
2, z1,2, where the path x1,2, C

′
2, z1,2 contains y1,2 and excludes 7

neighbors of v2,3. This cycle has chord v1,2, y1,2. Furthermore, select three consecutive

of the excluded neighbors of v2,3. The path in C ′2 between these three neighbors forms a

chorded cycle with v2,3. This chorded cycle is disjoint from the new cycle containing v1,2

and both cycles exclude at least 4 neighbors of v2,3.

C ′1 C ′2 C ′3v1,2

...

...

v2,3

...

...

Figure 3.5

If v2,3 ∈ C ′2, select three consecutive neighbors x1,2, y1,2, z1,2 ∈ C ′2 of v1,2 such that

v2,3 is on the path between x1,2 and z1,2 that excludes y1,2. Then v1,2 and the path between

x1,2 and z1,2 that excludes v2,3 forms a new cycle with chord v1,2, y1,2 that excludes all other

neighbors of v1,2 in C ′2.

C ′1 C ′2 C ′3v1,2

...

...

v2,3
...

Figure 3.6
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In the latter case, proceed with the same decision process, considering v2,3 as the

primary vertex and v3,4 as the secondary vertex. In the former case, proceed with the

same decision process, considering v3,4 as the primary vertex (since v2,3 has already been

included in a new cycle) and v4,5 as the secondary vertex. Continue this process until vi,i+1

has been included in a new chorded cycle. Since there are l such vertices, we have created

a replacement set of l chorded cycles that is smaller than the set C ′1, . . . , C
′
l .

Therefore, by minimality of the chorded cycle system, there must be at most t − 1

high-degree vertices.

Therefore, the class of chorded cycles satisfies the second condition of an admissible

class with c(H) = 31 and c′(H) = 9.

Theorem 36. If G is a graph on n vertices with average degree d ≥ 124 and σ < 1
10

, then

G contains at least

.0792
√
nd

disjoint chorded cycles.

The comparison between our result for chorded cycles and the previous work of Finkel

is quite similar between the comparison between our result on cycles and the result of

Corradi and Hajnal. Again, our work gives a much stronger result for sparse graphs, as the

result of Finkel would only match the Ω(
√
nd) disjoint chorded cycles that we guarantee

when the minimum degree is linear in n. In this case, the constant that Finkel produces

beats our constant, but our result still grows linearly with n.

3.3.3 Multiply Chorded Cycles. Fix an integer k ≥ 3. Let f(k) = (k+1)(k−2)
2

, the num-

ber of chords in Kk+1.

Theorem 37 ([20]). Let α denote the positive root of g(x) = x(x−2)−(k+1)(k−2). Let

b =

⌈√
k(k−1)

2

⌉
denote the largest integer strictly greater than α. If G has average degree

at least 2b, then G contains a (k+1)(k−2)
2

-chorded cycle.
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This theorem implies that the first condition of an admissible class holds for the class of

f(k)-chorded cycles with π(H) = 2

⌈√
k(k−1)

2

⌉
. Furthermore, the following lemma tells

us that between any two f(k)-chorded cycles in a minimal system, if there are sufficiently

many edges, then there exists a vertex in one of the cycles that is incident to most of the

edges between these two cycles.

Lemma 38 ([20]). Suppose C1 and C2 are two f(k)-chorded cycles in a minimal cycle set

with e(C1, C2) ≥ 28f(k) + 20. Then there exists a single vertex in one of these cycles, say

C1, with at least e(C1, C2)− (12f(k) + 3) edges to C2. We call this a high-degree vertex.

In our terminology, this lemma states that c(H) = 28f(k)+20 and c′(H) = 12f(k)+3.

Furthermore, this yields the following corollary, which states (within a stronger result) that

there are at most t−1 high-degree vertices within any minimal f(k)-chorded cycle system.

Corollary 39 ([20]). IfC1, . . . , Ct is a minimal collection of cycles, each of which contains

at least f(k) chords, then there are at most t− 1 high-degree vertices, as defined in Lemma

38.

This isn’t the exact statement of the corollary given in [20], but is implicit in its proof.

With this result, the class H consisting of f(k)-chorded cycles satisfies the two conditions

of an admissible class, yielding the following result.

Theorem 40. For k ≥ 3, if G is a graph on n vertices with average degree at least d ≥

max

{
37, 8

⌈√
k(k−1)

2

⌉}
and σ < 1

10
, then there exists K = K(k) > 0 such that G

contains K
√
nd disjoint f(k)-chorded cycles in G.

For k ≥ 7, K(k) =

√√√√ 1
14f(k)+10

(
.02679− 1

8

⌈√
k(k−1)

2

⌉
)

.

For k < 7, K(k) = .02575
√

1
14f(k)+10

.

Previously, Gould, Horn, and Magnant gave a result for f(k)-chorded cycles that, for

sparse graphs, grows with the minimum degree rather than with n. Again, in order to
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match the
√
nd f(k)-chorded cycles that our result gives, Theorem 26 would require that

the degree is linear in n. Thus, our result is better for sparse graphs. Furthermore, our result

requires an average degree condition rather than the minimum degree dictated in Theorem

26, thus allowing for some low-degree vertices.

3.4 Sharpness Example

LetG(m, l) be the graph with a clique of sizem such that each vertex inKm is adjacent

to l leaves. Order the vertices in Km as v1, . . . , vm and for any i ∈ {1, . . . , l}, let u1
i , . . . , u

l
i

be the leaves adjacent to vi. Note that if φ is an eigenvector of D−1A with eigenvalue λ,

then for each i ∈ {1, . . . ,m}

dλφ(vi) = (D−1A)φ(vi) =
∑
k 6=i

1

l +m− 1
φ(vk) +

l∑
j=1

1

l +m− 1
φ(uji ) (3.1)

and

λφ(uji ) = φ(vi). (3.2)

For each i ∈ {1, . . . ,m − 1}, let φi(vi) = 1 and let φi(vi+1) = −1. Then from the

above two equations, we get that

λ = − 1

l +m− 1
+

l

λ(l +m− 1)

0 = λ2 +
1

l +m− 1
λ− l

l +m− 1

λ =
− 1
l+m−1

±
√

1
(l+m−1)2

+ 4l
l+m−1

2

=
−1±

√
1 + 4l(l +m− 1)

2(l +m− 1)
.
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Thus, if φi(u
j
k) = 0 for all k 6= i, i+ 1 and j ∈ {1, . . . , l} while

φi(u
j
i ) =

2(l +m− 1)

−1 +
√

1 + 4l(l +m− 1)
and φi(u

j
i+1) =

2(l +m− 1)

1−
√

1 + 4l(l +m− 1)

for all j ∈ {1, . . . , l}, then φi is an eigenvector of D−1A with eigenvalue

λ =
−1 +

√
1 + 4l(l +m− 1)

2(l +m− 1)
.

Similarly, if φi(u
j
k) = 0 for all k 6= i, i+ 1 and j ∈ {1, . . . , l} while

φi(u
j
i ) =

2(l +m− 1)

−1−
√

1 + 4l(l +m− 1)
and φi(u

j
i+1) =

2(l +m− 1)

1 +
√

1 + 4l(l +m− 1)

for all j ∈ {1, . . . , l}, then φi is an eigenvector of D−1A with eigenvalue

λ =
−1−

√
1 + 4l(l +m− 1)

2(l +m− 1)
.

In either case, note that the vectors φi are linearly independent, giving us the eigenvalues

λ =
−1+
√

1+4l(l+m−1)

2(l+m−1)
and λ =

−1−
√

1+4l(l+m−1)

2(l+m−1)
each with multiplicity m− 1.

Now, for all i ∈ {1, . . . ,m}, let φ(vi) = 1. Then from equation (1), we get that

λ =
m− 1

l +m− 1
+

l

λ(l +m− 1)
,

which implies that

λ2 − m− 1

l +m− 1
λ− l

l +m− 1
= 0.

In turn, this yields that

λ =

m−1
l+m−1

±
√(

m−1
l+m−1

)2
+ 4l

l+m−1

2
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=
m− 1±

√
(m− 1)2 + 4l(l +m− 1)

2(l +m− 1)

=
m− 1± (2l +m− 1)

2(l +m− 1)
,

which gives solutions

λ = − l

(l +m− 1)
and λ = 1.

Thus, if φi(u
j
i ) = − l+m−1

l
for all i ∈ {1, . . . ,m} and all j ∈ {1, . . . , l}, then φ is an

eigenvector of D−1A with eigenvalue λ = − l
l+m−1

. Similarly, if φi(u
j
i ) = l+m−1 for all

i ∈ {1, . . . ,m} and all j ∈ {1, . . . , l}, then φ is an eigenvector of D−1A with eigenvalue

λ = 1.

Since each set of leaves yields an identical row in the matrix D−1A, the rank of D−1A

is at most 2m. Thus, the set of 2m eigenvalues found above is the full collection of nonzero

eigenvalues of D−1A. Since D−1A and D−1/2AD−1/2 are similar matrices, these are also

the full collection of nonzero eigenvalues of D−1/2AD−1/2. Hence, the eigenvalues of L

are 1 +
1−
√

1+4l(l+m−1)

2(l+m−1)
with multiplicity m − 1, 1 +

1+
√

1+4l(l+m−1)

2(l+m−1)
with multiplicity

m−1, 1 + l
l+m−1

with multiplicity 1, 0 with multiplicity 1, and 1 with multiplicity n−2m.

Therefore,

σ = max

{
1 +

√
1 + 4l(l +m− 1)

2(l +m− 1)
,

l

l +m− 1
.

}

Let m = s and l = εs. Then the average degree d of G(m, l) is d = s(s−1+εs)+s(εs)
s+s(εs)

=

s2+2εs2−s
εs2+s

, so as s approaches∞, d approaches 1+2ε
ε

. Also, G(m, l) has spectral gap

σ = max

{
1 +

√
1 + 4εs(s+ εs− 1)

2(s+ εs− 1)
,

εs

s+ εs− 1

}
,

so σ approaches
√

ε
1+ε

as s→∞.
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Thus, for ε = 1
100

, σ < 1
10

and d approaches 102, so G(m, l) satisfies the conditions of

our theorem. Furthermore, note that G(m, l), for m = s and l = εs contains
⌊
s
3

⌋
disjoint

cycles. In this case, our theorem guarantees at least Ω(
√
nd) = Ω(s) disjoint cycles.

Hence, our result is asymptotically best possible for cycles. Similarly, this graph gives that

our results for both chorded cycles and multiply chorded cycles are asymptotically best

possible.
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Chapter 4: Discrete Curvature

Let us recall the Expander Mixing Lemma, as stated in the introduction.

Lemma 41. For two vertex sets X, Y ⊆ V (G), if e(X, Y ) is the number of edges with one

endpoint in X and the other endpoint in Y , then

∣∣∣∣e(X, Y )− Vol(X)Vol(Y )

Vol(G)

∣∣∣∣ ≤ σ
√

Vol(X)Vol(Y ),

where σ is the spectral gap of the normalized Laplacian.

In this lemma, the number of edges between X and Y is compared to an expectation

term in a random graph. As we get a stronger spectral condition, the realized number

of edges approaches this expected number of edges. Thus, as our spectral condition gets

stronger, our edges become more evenly distributed, when normalized for the volumes of

the respective sets.

In general, using spectral information to obtain such structural results is fairly com-

mon. In this chapter, however, we will use discrete curvature, a relatively recent structural

parameter on graphs, to build similar discrepancy inequalities. Due to the local nature

of discrete curvature, our new discrepancy inequalities will bound the number of edges

between subsets of vertex neighborhoods. While our results do not compare edge distri-

bution in a graph to that of a random graph, the theme behind the discrepancy inequalities

remains: as we place stronger conditions on our parameter, the edges of the graph become

more evenly distributed.
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4.1 Discrete Curvature Preliminaries

To understand the structure of graphs, a fruitful technique has been to take well-studied

properties of manifolds and adapt them to the graph setting. Often, the graph analogs of

these properties of manifolds are not clear due to the discrete nature of graphs. Therefore,

much work has been done to find appropriate graph versions of significant results in Rie-

mannian geometry. Many such properties of manifolds, however, have proven difficult to

adapt to the discrete setting.

In manifolds, curvature is a measure of how much a Riemannian manifold deviates

from a Euclidean ball at a particular point. Using curvature, one can obtain global infor-

mation on manifolds, such as diameter and bottlenecks, from a local property. One way to

do this is through the study of the heat equation. In this exploration, the Li-Yau inequality,

which bounds a positive solution of the heat equation on a non-negatively curved manifold,

was a breakthrough result. Using this result, it was shown that non-negatively curved man-

ifolds satisfy the Harnack inequality, which can be used to prove other results on manifolds

such as Gaussian bounds for heat dispersion, volume doubling, and the Poincaré inequality

(see [21, 47]).

Defining curvature on graphs in such a way that these results hold in the discrete setting

has proven quite challenging. Bakry and Émery realized that the key use of curvature in

many proofs in Riemannian geometry was the Bochner identity, which immediately implies

the following curvature-dimension inequality (also known as the CD-inequality) for all

smooth functions f :

1

2
∆|∇f |2 ≥ 〈∇f,∇∆f〉+

1

n
(∆f)2 +K|∇f |2.
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As a result, Bakry and Émery determined that this inequality could be used as an alternative

definition of curvature in settings where a direct parallel to the definition of curvature on

manifolds cannot be found [5].

Even using this definition, the lack of a chain rule for the Laplacian in the graph setting

proved to be an obstacle to obtaining a discrete version of the Li-Yau inequality. In order to

overcome this barrier, Bauer, et al. [6] gave the CDE-inequality and the CDE’-inequality,

variations of Bakry and Émery’s CD-inequality that baked in the chain rule. By doing this,

they were able to prove a discrete version Li-Yau inequality, near-Gaussian bounds on heat

dispersion, and polynomial bounds on volume growth. Using CDE ′, these results were

later expanded in [26] to obtain Gaussian bounds for heat dispersion, volume doubling,

and the Poincaré inequality, mirroring the results on manifolds. These different notions

of curvature are actually closely related. It is clear that CDE ′ implies CDE and Münch

proved that CDE ′ implies CD [45].

These results usingCDE andCDE ′ are very analytic in nature, as they parallel similar

results in Riemannian geometry. More generally, analytic arguments using curvature on

graphs have become a very active area of research (see e.g. [16, 25, 26, 27, 28, 35, 36, 37,

38, 39]). However, we are interested in combinatorial applications of curvature. Therefore,

the CD-inequality as defined by Bakry and Émery will be more appropriate as it is simpler.

Therefore, we define their version of the curvature-dimension inequality below.

For our purposes, we will assume that the graph is locally finite; that is, deg(x) < ∞

for all x ∈ V (G). Given a measure µ : V → R, the µ-Laplacian on G is the operator

∆ : R|V | → R|V | defined by

∆f(x) =
1

µ(x)

∑
y∼x

(f(y)− f(x)).
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In our results, we use the measure µ(x) = 1 for all x ∈ V (G). In this case, ∆ = −L,

where L is the standard graph Laplacian. Also of interest is when µ(x) = deg(x) for

all x ∈ V (G), giving a weighted version of ∆ that is analogous to the normalized graph

Laplacian (with a sign change) introduced in Chapter 1 of this thesis. Both operators are

used in various applications; since our goal is to obtain combinatorial results, we will use

the unweighted version of ∆.

The gradient form Γ = Γ∆ is defined by

Γ(f, g)(x) =
1

2
(∆(f · g)− f ·∆(g)−∆(f) · g) (x)

=
1

2µ(x)

∑
y∼x

(f(y)− f(x))(g(y)− g(x))

for all f, g ∈ R|V |. When f = g, we simply write Γ(f). The iterated gradient form

Γ2 = Γ∆
2 is defined by

Γ2(f, g) =
1

2
(∆Γ(f, g)− Γ(f,∆g)− Γ(∆f, g))

for all f, g ∈ R|V |. Again, when f = g, we simply write Γ2(f). A graph G satisfies the

CD-inequality CD(∞, K) at a vertex x if for any function f : V → R,

Γ2(f)(x) ≥ KΓ(f)(x).

Finally, the curvature of a graph G is defined to be the maximum value K for which

CD(∞, K) holds for every vertex x ∈ V (G).

This curvature parameter has been calculated for a number of classes of graphs over

the past half-decade. The goal of curvature is to measure local volume growth, so classes

of graphs that expand locally very quickly we expect to have large curvature. For example,

it is known due to [31] that the curvature of the complete graph Kn is 1 + n
2
, the maximum
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possible curvature of a graph. This is expected, as the first neighborhood of a vertex is

the entire graph and each vertex has an empty second neighborhood. The curvature of a

d-regular tree, on the other hand, is 2− d because the first neighborhood of any vertex has

size d and the second neighborhood has size d(d − 1) [31]. Most graphs, of course, fall

somewhere in between these two extremes.

In Riemannian geometry, there are numerous results about non-negatively curved man-

ifolds. If we are to extend these notions to graphs, then a natural question is determining

which classes of graphs have non-negative curvature. In [31], it is proven that the curva-

ture of the hypercube Qd is 2, regardless of the dimension. Furthermore, they show that

all finite abelian Cayley graphs, such as the discrete torus, have non-negative curvature. A

particularly interesting case is that of the complete bipartite graph Ks,t, as studied in [14].

When s = t, the curvature ofKs,t is 2. As the parts become more unbalanced, the curvature

decreases, and is in fact negative in many cases.

While the curvature of many classes of graphs have been previously discovered, we

collectively have only scratched the surface in understanding it combinatorially. Our goal in

this chapter, then, is not to calculate the curvature for graphs with given structure, but rather

to understand what combinatorial structure must exist within a graph of given curvature.

4.2 Curvature Inequality

As defined above, curvature depends on the Laplacian ∆ and the gradient Γ, each of

which only depend on the first neighborhood of a vertex. Since the iterated gradient Γ2 is

a composition of those two operators, the curvature at a vertex x can be fully determined

simply by analyzing the vertices of distance at most 2 from x. Therefore, we will translate

CD(∞, K) into combinatorial terms, displaying the contribution of each edge type (that

is, the edges within the first neighborhood of x, the edges between the first and second

neighborhoods of x, etc.) to the curvature dimension inequality.
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For notational purposes, let N1(x) = {y : d(x, y) = 1} be the neighborhood of x and

let N2(x) = {z : d(x, z) = 2} be the second neighborhood of x. When x has been fixed,

we will often write these simply as N1 and N2.

Theorem 42. A graph G satisfies CD(∞, K) at a vertex x ∈ V (G) if for any function

f : V → R,

∑
z∈N2

∑
y∼z
y∈N1

[
1

4
(f(z)− f(y))2 − 1

2
(f(z)− f(y))(f(y)− f(x))

]

+
∑

y,y′∈N1

{y,y′}∈E(G)

(f(y)− f(y′))2

≥
(

2K + deg(x)− 3

2

)
Γ(f)(x)− 1

2
∆(f(x))2.

Proof. Expanding Γ2 according to the combinatorial definitions of ∆ and Γ yields

Γ2(f)(x) =
1

2
∆Γ(f)− Γ(f,∆f)

=
1

2

∑
y∼x

[Γ(f)(y)− Γ(f)(x)]− 1

2

∑
y∼x

(f(y)− f(x))(∆f(y)−∆f(x))

=
1

4

∑
y1∼x

[∑
z∼y1

(f(z)− f(y1))2 −
∑
y2∼x

(f(y2)− f(x))2

]

− 1

2

∑
y1∼x

(f(y1)− f(x))

[∑
z∼y1

(f(z)− f(y))−
∑
y2∼x

(f(y2)− f(x))

]

=
1

4

∑
y∼x

∑
z∼y

(f(z)− f(y))2 − 1

4

∑
y1∼x

∑
y2∼x

(f(y2)− f(x))2

− 1

2

∑
y1∼x

∑
z∼y1

(f(y1)− f(x))(f(z)− f(y1))

+
1

2

∑
y1∼x

∑
y2∼x

(f(y1)− f(x))(f(y2)− f(x))
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=
1

4

∑
y∼x

∑
z∼y

(f(z)− f(y))2 − deg(x)

4

∑
y∼x

(f(y)− f(x))2

− 1

2

∑
y1∼x

∑
z∼y1

(f(y1)− f(x))(f(z)− f(y1))

+
1

2

∑
y1∼x

∑
y2∼x

(f(y1)− f(x))(f(y2)− f(x)).

To this sum, the edges between N1 and N2 contribute

∑
z∈N2

∑
y∼z
y∈N1

[
1

4
(f(z)− f(y))2 − 1

2
(f(z)− f(y))(f(y)− f(x))

]
.

To the sum, the edges between two vertices in N1 contribute

∑
y,y′∈N1

{y,y′}∈E(G)

[
1

2
(f(y)− f(y′))2

− 1

2
(f(y)− f(x))(f(y′)− f(y))− 1

2
(f(y′)− f(x))(f(y)− f(y′))

]
=

∑
y,y′∈N1(x)
{y,y′}∈E(G)

(f(y)− f(y′))2.

Finally, the edges between x and N1 contribute

∑
y∼x

[
1

4
(f(x)− f(y))2 − deg(x)

4
(f(y)− f(x))2

+
1

2
(f(y)− f(x))2 +

1

2
(f(y)− f(x))∆f(x)

]
=

3− deg(x)

4

∑
y∼x

(f(x)− f(y))2 +
1

2
∆f(x)

∑
y∼x

(f(y)− f(x))

=
3− deg(x)

2
Γ(f)(x) +

1

2
(∆f(x))2.
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Therefore, CD(∞, K) is equivalent to

∑
z∈N2

∑
y∼z
y∈N1

[
1

4
(f(z)− f(y))2 − 1

2
(f(z)− f(y))(f(y)− f(x))

]

+
∑

y,y′∈N1

{y,y′}∈E(G)

(f(y)− f(y′))2

≥
(

2K + deg(x)− 3

2

)
Γ(f)(x)− 1

2
∆(f(x))2.

A similar combinatorial interpretation of the curvature dimension inequality was estab-

lished by Klartag, et al. in [31]. While their version of the curvature dimension inequality

is effective in many applications, ours proved more fruitful for the types of inequalities that

we derive below.

4.3 Discrepancy Inequalities

The Expander Mixing Lemma bounds the difference between the term Vol(X)Vol(Y )
Vol(G)

and

the edge distribution between two sets X and Y . This term is a measure of randomness in

the following sense, as stated in the introduction. If G′ is a random graph in the configu-

ration model with degree sequence matching that of G and X ′ and Y ′ are the sets in this

random graph with degree sequences corresponding to those of X and Y in G, then the

expectation of the number of edges between X ′ and Y ′ is Vol(X)Vol(Y )
Vol(G)

. Therefore, the term∣∣∣e(X, Y )− Vol(X)Vol(Y )
Vol(G)

∣∣∣ measures the distance towards randomness of a graph G. It is this

comparison that we will consider the defining feature of a discrepancy inequality.

Since curvature is a local property dependent upon the edges appearing in the first

two neighborhoods of any given vertex, we will explore how curvature can measure the

randomness of the edge distribution within these neighborhoods. In other words, how

randomly are the edges distributed between the first and second neighborhoods of any
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vertex in a graph with high curvature? If we partition the first neighborhood into two sets

of not necessarily equal size, we would expect in a random graph that the edges from the

second neighborhood to the first neighborhood would be split proportionally according

to the size of the two sets in N1. In fact, this should be true not just for the total set

of edges coming from the second neighborhood, but also for the edges between the first

neighborhood and any particular vertex in the second neighborhood. We will also explicitly

consider the case where the first neighborhood is partitioned into a set containing a single

vertex and a set containing all other vertices, as this measure will help us quantify the

number of 3- and 4- cycles appearing in the neighborhoods of any given vertex.

Just as the Expander Mixing Lemma measures the edge distribution of a graph based

on its normalized Laplacian spectrum, in this section we seek to measure the local edge

distribution of a graph based on its curvature.

4.3.1 Second neighborhood discrepancy. Our goal here is to use the combinatorial inter-

pretation of curvature given above in order to quantify the distribution of edges between

the first and second neighborhoods of a vertex. In the theorem that follows, we split the

neighborhood of a vertex x into two (not necessarily equal) parts, X and XC . In doing so,

we show that a sufficiently large curvature condition implies that for most vertices z in N2,

the divide between the edges from z to X and the edges from z to XC is proportional to

the size of each set.

Theorem 43. Let G be a graph with curvature K. Let x ∈ V (G) be any vertex and let

X ⊆ N1(x) with XC = N1(x) \X . If |X| = α|N1(x)|, then

∑
z∈N2

(
[α degXC (z)− (1− α) degX(z)]2

degN1
(z)

)
≤

3

4
[α2 · e(XC , N2) + (1− α)2 · e(X,N2)] + e(X,XC)

−
(

2K + deg(x)− 3

2

)
· 1

2
α(1− α) deg(x).
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The above theorem says that a graph with high curvature locally acts like a random

graph in the following sense. For a fixed vertex x, split N1(x) into two sets, one of size

α|N1| (which we call X) and the other of size (1 − α)|N1| (which we call XC). For any

vertex z ∈ V (G) \N1[x], if the edges from N1 to z are distributed uniformly randomly, we

expect that an α proportion of the edges will go to the set of size α|N1| and a 1−α propor-

tion of the edges will go to the set of size (1−α)|N1|. Thus, |α degXC (z)− (1− α) degX(z)|

should be small. Our theorem, therefore, states that for a graph with high curvature,

most vertices have edge distribution according to the proportion of the split in N1(x). It

is because this mimics the theme of the Expander Mixing Lemma, that a strong graph

parameter implies a random-like edge distribution, that we call this theorem a discrepancy

inequality.

Proof. Fix x ∈ V (G) and define f(x) = 0. Let X ⊆ N1(x) such that |X| = α|N1(x)|

and let XC = N1(x) \ X . For each y ∈ X , let f(y) = 1 − α and for each y ∈ XC , let

f(y) = −α. Note that this implies that ∆f(x) = 0 and

Γ(f)(x) =
1

2
[α(1− α)2 + (1− α)(α)2] deg(x)

=
1

2
(α− 2α2 + α3 + α2 − α3) deg(x)

=
1

2
(α− α2) deg(x)

=
1

2
α(1− α) deg(x).

Our goal is, for each z ∈ N2(x), to select f(z) in order to minimize the left side of the

inequality derived from CD(∞, K). Thus, fix z ∈ N2(x). Then

∑
y∼z
y∈N1

[
1

4
(f(z)− f(y))2 − 1

2
(f(z)− f(y))(f(y)− f(x))

]
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= degX(z)

[
1

4
(f(z)− (1− α))2 − 1

2
(f(z)− (1− α))(1− α)

]
+ degXC (z)

[
1

4
(f(z) + α)2 +

1

2
(f(z) + α)α

]
=

1

4
degN1

(z)f(z)2 + [α degXC (z)− (1− α) degX(z)] f(z)

+
3

4
[α2 degXC (z) + (1− α)2 degX(z)].

Using calculus, we can see that this is minimized when

f(z) = −2 [α degXC (z)− (1− α) degX(z)]

degN1
(z)

.

For this selection of f(z),

∑
y∼z
y∈N1

[
1

4
(f(z)− f(y))2 − 1

2
(f(z)− f(y))(f(y)− f(x))

]

= − [α degXC (z)− (1− α) degX(z)]2

degN1
(z)

+
3

4

[
α2 degXC (z) + (1− α)2 degX(z)

]
.

Summing over z ∈ N2, we get that

∑
z∈N2

∑
y∼z
y∈N1

[
1

4
(f(z)− f(y))2 − 1

2
(f(z)− f(y))(f(y)− f(x))

]

=
∑
z∈N2

(
− [α degXC (z)− (1− α) degX(z)]2

degN1
(z)

+
3

4

[
α2 degXC (z) + (1− α)2 degX(z)

])

=
∑
z∈N2

(
− [α degXC (z)− (1− α) degX(z)]2

degN1
(z)

)

+
3

4
[α2 · e(XC , N2) + (1− α)2 · e(X,N2)]

As a result, CD(∞, K) implies that
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−
∑
z∈N2

(
[α degXC (z)− (1− α) degX(z)]2

degN1
(z)

)

+
3

4
[α2 · e(XC , N2) + (1− α)2 · e(X,N2)] + e(X,XC) ≥(

2K + deg(x)− 3

2

)
· 1

2
α(1− α) deg(x).

Solving for this first term yields

∑
z∈N2

(
[α degXC (z)− (1− α) degX(z)]2

degN1
(z)

)
≤

3

4
[α2 · e(XC , N2) + (1− α)2 · e(X,N2)] + e(X,XC)

−
(

2K + deg(x)− 3

2

)
· 1

2
α(1− α) deg(x).

Corollary 44. Let G be a graph with curvature K. Let x ∈ V (G) be any vertex and let

X ⊆ N1(x) with XC = N1(x) \X . If |X| = α|N1(x)|, then

(∑
z∈N2
|α degXC (z)− (1− α) degX(z)|

)2

e(N1, N2)
≤

3

4

[
α2e(Xc, N2) + (1− α)2e(X,N2)

]
+ e(X,XC)

−
(

2K + deg(x)− 3

2

)
· 1

2
α(1− α) deg(x).

Proof. We will use Cauchy-Schwarz to simplify the sum

∑
z∈N2

(
[α degXC (z) + (1− α) degX(z)]2

degN1
(z)

)
.
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For our purposes, we will use Cauchy-Schwarz in the form of

∑
a2
i ≥

(
∑
aibi)

2∑
b2
i

,

with

ai =
α degXC (z)− (1− α) degX(z)√

degN1
(z)

and bi =
√

degN1
(z).

Thus,

∑
z∈N2

(
[α degXC (z)− (1− α) degX(z)]2

degN1
(z)

)
≥

(∑
z∈N2

[α degXC (z)− (1− α) degX(z)]
)2∑

z∈N2
degN1

(z)

=

(∑
z∈N2

[α degXC (z)− (1− α) degX(z)]
)2

e(N1, N2)
.

As a result, CD(∞, K) implies that

− (
∑
|α degXC (z)− (1− α) degX(z)|)2

e(N1, N2)
+

3

4

[
α2e(Xc, N2) + (1− α)2e(X,N2)

]
+ e(X,XC) ≥(

2K + deg(x)− 3

2

)
· 1

2
α(1− α) deg(x).

This corollary gives us a much cleaner version of the above theorem. However, in some

situations, this corollary gives away too much in its use of Cauchy-Schwarz. For example,

our theorem gives a sharp bound on curvature for the graph Zd, while the corollary only

gives us an asymptotic upper bound of d on the curvature. We will more fully explore this

example later.
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While the above theorem and corollary are the most general versions, as they apply to

all subsets X of the neighborhood of some vertex x, we state the following corollary that

restricts X to exactly half of the first neighborhood of x for the sake of clarity.

Corollary 45. Let G be a graph with curvature K. For any vertex x ∈ V (G) and any

X ⊆ N(x) with |X| = 1
2
|N(x)|, if XC = N(x) \X , then

(∑
z∈N2
|degXC (z)− degX(z)|

)2

e(N1, N2)

≤ 3

4
e(N1, N2) + 4e(X,XC)− 2K + deg(x)− 3

4
deg(x).

Proof. Taking α = 1
2

in the above theorem directly gives the corollary.

Corollary 46. Let G be a triangle-free graph with curvature K. Let x ∈ V (G) be any

vertex and let X ⊆ N1(x) with XC = N1(x) \X . If |X| = α|N1(x)|, then

(∑
z∈N2
|α degXC (z)− (1− α) degX(z)|

)2

e(N1, N2)
≤

3

4

[
α2e(Xc, N2) + (1− α)2e(X,N2)

]
−
(

2K + deg(x)− 3

2

)
· 1

2
α(1− α) deg(x).

Proof. If e(X,XC) > 0, then there exist adjacent vertices y, y′ ∈ N1. This edge then

creates a triangle with x. Since G is triangle-free, then, e(X,XC) = 0.

In [31], it is shown that if G is a triangle-free graph, then G has curvature K ≤ 2.

However, as we show when we apply this corollary to trees, our result can clearly differ-

entiate between trees and graphs with curvature zero, so this triangle-free corollary is still

quite useful.

Example 1: Regular Trees As an example of Corollary 45, suppose that G is a d-regular

tree. In any tree, every vertex in N2 must be adjacent to exactly one vertex in N1, as any
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vertex z ∈ N2 with degN1
(z) would form a 4-cycle with x and its neighbors in N1. Thus,

we have that ∑
z∈N2

| degXC (z)− degX(z)| =
∑
z∈N2

1 = d(d− 1).

Furthermore, every tree is triangle-free, which implies that e(X,XC) = 0. Our theorem,

in this case, states that

d(d− 1) ≤ 3

4
d(d− 1)− 2K + d− 3

4
d.

Solving for K here yields that K ≤ 2 − d, and as shown in [31], the curvature of a tree is

exactly K = 2− d. Therefore, our theorem gives a sharp upper bound on the curvature of

a d-regular tree.

Example 2: Zd As an example of Theorem 43, consider the graph Zd. Let x = (0, . . . , 0).

Then N1(x) = {(y1, . . . , yd) :
∑
|yi| = 1} and N2(x) = {(z1, . . . , zd) :

∑
|zi| = 2}.

Define X ⊆ N1(x) to be the points (y1, . . . , yd) where yi = 1 for some i ∈ {1, . . . , d} and

yj = 0 for all j 6= i. Then XC ⊆ N1(x) is the set of points (y1, . . . , yd) where yi = −1 for

some i ∈ {1, . . . , d} and yj = 0 for all j 6= i. Note here that α = 1
2
, as N1 is split evenly

according to this partition.

Let z ∈ N2(x). We will analyze how each possible z contributes to the sum on the left

side.

• If z contains two 1s, then |α degXC (z) − (1 − α) degX(z)| = 1 and degN1
(z) = 2.

Thus, the contribution of z to the sum is 1
2
. There are

(
d
2

)
such vertices.

• If z contains two −1s, then |α degXC (z)− (1− α) degX(z)| = 1 and degN1
(z) = 2.

Thus, the contribution of z to the sum is 1
2
. There are again

(
d
2

)
such vertices.

78



• If z contains a 2, then |α degXC (z)− (1−α) degX(z)| = 1
2

and degN1
(z) = 1. Thus,

the contribution of z to the sum is 1
4
. There are d such vertices.

• If z contains a −2, then |α degXC (z) − (1 − α) degX(z)| = 1
2

and degN1
(z) = 1.

Thus, the contribution of z to the sum is 1
4
. There are d such vertices.

• If z contains a 1 and a−1, then |α degXC (z)−(1−α) degX(z)| = 0 and degN1
(z) =

2. Thus, the contribution of z to the sum is 0. There are 2
(
d
2

)
such vertices.

Thus, the sum over all z yields

∑
z∈N2

(
[α degXC (z)− (1− α) degX(z)]

degN1
(z)

)
=

1

2

(
d

2

)
+

1

2

(
d

2

)
+

1

4
d+

1

4
d+0 ·2

(
d

2

)
=

1

2
d2.

On the right side, α = 1
2
. Thus,

3

4
[α2 · e(XC , N2) + (1− α)2e(X,N2)] =

3

16
e(N1, N2).

To compute e(N1, N2), every vertex in N2 with two nonzero coordinates has two neighbors

in N1 and there are 4
(
d
2

)
of these vertices. Also, every vertex in N2 with one nonzero

coordinate has one neighbor in N1 and there are 2d of these vertices. Thus, e(N1, N2) =

8
(
d
2

)
+ 2d = 4d2 − 2d. Since Zd is triangle-free, we have that e(X,XC) = 0. Finally, the

curvature term yields d(2K+2d−3)
8

.

Therefore, our discrepancy inequality yields that

1

2
d2 ≤ 3

16
(4d2 − 2d)− d(2K + 2d− 3)

8
.

Solving for K yields that K ≤ 0, which again is a tight upper bound as [31] gives that

K = 0.
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4.3.2 Discrepancy of the neighbors of a single vertex. In the theorem that follows, we

isolate a single vertex in N(x). In doing so, counting the number of edges from y to

N(x) becomes equivalent to counting the number of triangles that include the edge xy.

Similarly, for any vertex z ∈ N(y) such that d(x, z) = 2 (in other words, for any vertex

z ∈ N(y) ∩N2(x)), every edge from z to any vertex in N(x) other than y forms a 4-cycle

that includes the edge xy. Therefore, the following inequality will give us a way to count

the number of short cycles that include any given edge.

Theorem 47. Let G be a graph with curvature K. Let x ∈ V (G), let y ∈ N(x), and let

A = {y′ ∈ N1(x) : y′ 6= y}. Then

∑
z∈N(y)
d(x,z)=2

1

degA(z) + 1
≤ degN1

(y) +
3

4
degN2

(y)− 1

4
deg(x)− 1

2
K +

5

4
.

Since we saw in the previous section that edges fromN2 toN1 are split nearly randomly

in a graph with high curvature, if an edge exists from a particular vertex y ∈ N1 to some

vertex z ∈ N2, there must be many edges from z to the rest of N1.

Proof. Fix x ∈ V (G) and define f(x) = 0. Then fix y ∈ N1(x) and define f(y) = 1. Let

A = {y′ ∈ N1(x) : y′ 6= y} and for all y′ ∈ A, define f(y′) = 0. For all z ∈ N2(x) such

that z 6∼ y, let f(z) = 0. Here we get that ∆f(x) = 1 and Γ(f)(x) = 1
2
.

Then for each z ∈ N2(x) that is adjacent to y,

∑
y∼z

[
1

4
(f(z)− f(y))2 − 1

2
(f(z)− f(y))(f(y)− f(x))

]
=

1

4
(f(z)− 1)2 − 1

2
(f(z)− 1) +

1

4
degA(z)f(z)2

=
1

4
(degA(z) + 1)f(z)2 − f(z) +

3

4
.
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This term is maximized when f(z) = − 2
degA(z)+1

, which yields that

∑
y∼z

[
1

4
(f(z)− f(y))2 − 1

2
(f(z)− f(y))(f(y)− f(x))

]
= − 1

degA(z) + 1
+

3

4
.

Therefore, CD(∞, K) implies that

∑
z∈N(y)
d(x,z)=2

− 1

degA(z) + 1
+

3

4
degN2

(y) + degN1
(y) ≥ 2K + deg(x)− 3

4
− 1

2
.

Rearranging this inequality yields the result of the theorem.

4.4 Combinatorial Applications

Earlier, we explored the extremal question of how many disjoint cycles a graph with

certain degree conditions can contain. In their initial work, Corradi and Hajnal found that

a sufficiently large graph with minimum degree δ contains at least δ
2

vertex-disjoint cycles.

In this dissertation, we studied how adding a spectral condition can improve this lower

bound for sparse graphs. In this same vein, can we produce lower bounds on the number

of disjoint cycles in a sparse graph using a curvature condition? In order to do this, we

will only be able to study cycles of size 3 and 4, as the curvature of a graph only gives

us information within the first two neighborhoods of any given vertex. However, the local

discrepancy inequalities above can be used to quantify the number of these short cycles that

an edge must be contained in.

Proposition 48. If G is a graph with minimum degree δ(G) ≥ 4 and curvature K ≥ 0,

then for every pair of adjacent vertices x, y ∈ V (G), there exists a 3-cycle or a 4-cycle

containing the edge xy.
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Proof. Fix two adjacent vertices x, y ∈ V (G). By Theorem 47, we have that

∑
z∈N(y)
d(x,z)=2

1

degA(z) + 1
≤ −1

4
deg(x) + degN1

(y) +
3

4
degN2

(y) +
5

4
.

Suppose that there are no triangles involving edge xy. Then degN1
(y) = 0 as every edge

within N1 forms a triangle with x. Furthermore, if there exists an edge between a vertex

in z ∈ N(y) with d(x, z) = 2 and y′ ∈ A, then xyzy′ forms a four-cycle including the

edge xy. Suppose by way of contradiction that degA(z) = 0 for all z ∈ N(y) such that

d(x, z) = 2. Then ∑
z∈N(y)
d(x,z)=2

1

degA(z) + 1
= degN2

(y) = d− 1.

This implies that the above inequality derived from Theorem 47 is equivalent to

degN2
(y) ≤ −1

4
deg(x) +

3

4
degN2

(y) +
5

4
.

Therefore, we have that

degN2
(y) + deg(x) ≤ 5,

which contradicts the assumption that δ(G) ≥ 4.

By only asking for one 4-cycle, we forced the degN2
(y) term on the left side to have a

greater coefficient than that on the right side. In order to optimize the number of 4-cycles

for a graph, these two coefficients should be equal.

Proposition 49. If G is a graph with minimum degree δ(G) ≥ 6 and curvature K ≥ 0,

then for every pair of adjacent vertices x, y ∈ V (G), there exists at least 1
4
(deg(x) − 5)

3-cycles containing the edge xy or at least 1
2

deg(y) 4-cycles containing the edge xy.

Before proving this statement, we need the following lemma.
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Lemma 50. For all nonnegative integers a1, . . . , an with
∑n

i=1 ai ≤
1
2
n,

n∑
i=1

1

ai + 1
≥ 3

4
n.

Proof. Consider a sequence of nonnegative integers a1, . . . , an with
∑n

i=1 ai ≤
1
2
n that

minimizes
∑n

i=1
1

ai+1
. Then there exists j ∈ {1, . . . , n} such that aj = 0. If there exists

k with ak ≥ 2, then replacing aj and ak with ones would preserve or decrease
∑n

i=1 ai.

However, this replacement would also reduce
∑n

i=1
1

ai+1
because 1

2
+ 1

2
< 1 + 1

ak+1
, which

contradicts the minimality of the sequence. Thus, ai ∈ {0, 1} for all i ∈ {1, . . . , n}.

Since a1, . . . , an must be a {0, 1}-sequence,
∑n

i=1
1

ai+1
decreases as the number of ones

increases. Thus, the {0, 1} sequence that minimizes this sum must contain
⌊

1
2
n
⌋

ones, the

maximum allowable subject to the constraint
∑n

i=1 ai ≤
1
2
n. For this minimizing sequence,

with n even (n odd produces a slightly larger sum), we have

n∑
i=1

1

ai + 1
=

3

4
n.

Proof of Proposition 49. Fix two adjacent vertices x, y ∈ V (G). By Theorem 47, we have

that ∑
z∈N(y)
d(x,z)=2

1

degA(z) + 1
≤ −1

4
deg(x) + degN1

(y) +
3

4
degN2

(y) +
5

4
.

If there exists an edge between a vertex in z ∈ N(y) with d(x, z) = 2 and y′ ∈ A, then

xyzy′ forms a four-cycle including the edge xy. Suppose that xy is contained in fewer than

1
2

deg(y) 4-cycles. Then ∑
z∈N(y)
d(x,z)=2

degA(z) ≤ 1

2
degN2

(y).
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By the above lemma, this implies that

∑
z∈N(y)
d(x,z)=2

1

degA(z) + 1
≥ 3

4
degN2

(y).

Combining this inequality with the inequality derived from Theorem 47 yields

3

4
degN2

(y) ≤ −1

4
deg(x) + degN1

(y) +
3

4
degN2

(y) +
5

4
.

This is equivalent to degN1
(y) ≤ 1

4
(deg(x) − 5). Since every edge within N1 forms a

triangle with x, this means that the edge xy is contained in at least 1
4
(deg(x)− 5) triangles.

In this calculation, it is important that degA(z) is an integer. In Lemma 50, if a1, . . . , an

were nonnegative real numbers, the lower bound on
∑n

i=1
1

ai+1
would instead by 2

3
n by

Jensen’s inequality. Furthermore, such a lower bound could not be improved, as taking

ai = 1
2

for all i realizes this lower bound. However, due to our application on graphs, ai

must be an integer, giving us this coefficient of 3
4
. This lower bound is ideal, as the left

side cancels out the 3
4

degN2
(y) on the right side. Furthermore, this lower bound is realized

when degA(z) = 1 for half of the neighbors of y with d(x, z) = 2 and degA(z) = 0 for the

other such neighbors. With this partition,

∑
z∈N(y)
d(x,z)

1

degA(z) + 1
=

3

4
degN2

(y).

If this sum were any smaller, as it would be if more than half of the neighbors of y had an

edge to A, then we would get a result comparing deg(x) and deg(y), which would in turn

force a regularity-type condition on the graph to obtain a similar result.
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This local result about the number of 4-cycles containing an edge can be transformed

into global results about edge-disjoint and vertex-disjoint 4-cycles.

Corollary 51. Let G be a d-regular, triangle-free graph with d ≥ 6 and curvature K ≥ 0.

Then G contains at least n
64

edge-disjoint 4-cycles.

Proof. By Proposition 49, every edge is in at least 1
2
d 4-cycles. Since there are nd

2
edges,

this yields at least d2n
16

total 4-cycles in G. Note that any edge can appear in at most d2

4-cycles, so each 4-cycle shares an edge with at most 4d2 4-cycles. Therefore, the graph

must contain at least n
64

edge-disjoint 4-cycles.

In the above proof, we examined the number of 4-cycles in which a given edge can

appear in order to get a lower bound on the number of edge-disjoint 4-cycles. Similarly,

examining the number of 4-cycles in which a given vertex can appear produces a lower

bound on the number of vertex-disjoint 4-cycles in a graph.

Corollary 52. Let G be a d-regular, triangle-free graph with d ≥ 6 and curvature K ≥ 0.

Then G contains at least n
32d

vertex-disjoint 4-cycles.

Proof. By Proposition 49, every edge is in at least 1
2
d 4-cycles. Since there are nd

2
edges,

this yields at least d2n
16

total 4-cycles in G. Fix a vertex x. Since a 4-cycle containing x

must have two neighbors of x and a second vertex adjacent to each of these neighbors, x

is contained in at most
(
d
2

)
(d− 1) ≤ d3

2
4-cycles. Thus, every 4-cycle shares a vertex with

at most 2d3 other 4-cycles. Dividing the total number of 4-cycles in G by this maximum

number of 4-cycles that share a vertex yields a total of at least n
32d

vertex-disjoint 4-cycles.

Unfortunately, this result decreases in d, which does not mesh with our intuition. Ulti-

mately, as the degree of a regular graph increases, so too should the number of disjoint

cycles. For graphs with large degree, this bound is quite bad. For example, this bound
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gives only 1 disjoint cycle in a complete graph. For graphs with small degree, however,

this bound is much closer to correct. For example, the hypercube Qd can be decomposed

into n
4

4-cycles while the above bound gives at least Ω( n
logn

) vertex-disjoint 4-cycles. We

believe that the above technique can be improved to guarantee Ω(n) disjoint 4-cycles.

Even obtaining this many 4-cycles, however, shows the impact of this curvature term.

For a fixed degree d, the Turán number for 4-cycles is n3/2, meaning that there exists

a regular graph with degree as large as d =
√
n that contains no 4-cycles. By simply

adding this curvature condition, however, we guarantee that a d-regular graph with d =
√
n

contains at least Ω(
√
n) 4-cycles.

Additionally, this result gives us an improvement on the result by Corradi and Hajnal if

d is small. In fact, these two results can be combined to give at least Ω(
√
n) disjoint cycles

on a sufficiently large graph.

Corollary 53. Let G be a d-regular, triangle-free graph on at least 3
2
d vertices with d ≥ 6

and curvature K ≥ 0. Then G has at least Ω(
√
n) disjoint cycles.

Proof. If d ≥ Ω(
√
n), then the above result of Corradi and Hajnal states that G has at least

d
2
≥ Ω(

√
n) disjoint cycles. If d ≤ O(

√
n), then our above result states that G contains at

least n
32d
≥ Ω(

√
n) disjoint 4-cycles.

Each of the above corollaries applies only to a quite restrictive class of graphs, as

the maximum curvature of a triangle-free graph is 2 [31]. While there are graphs such

as Qd and Kt,t that satisfy this condition, ideally these results would hold for a larger

class of graphs. By eliminating the triangle-free restriction and using the full capacity of

Proposition 49, we can obtain similar results on the number of 3- and 4-cycles (which we

refer to as short cycles) with slightly worse constants.

Corollary 54. Let G be a d-regular graph with d ≥ 6 and curvature K ≥ 0. Then G

contains at least n(d−5)
128(d+1)

edge-disjoint cycles of size 3 or 4.
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Proof. By Proposition 49, every edge is in at least 1
4
(d−5) 3-cycles or at least 1

2
d 4-cycles.

Since there are nd
2

edges, this yields at least nd(d−5)
32

total short cycles. Any edge is in at

most d 3-cycles and at most d2 4-cycles. Thus, any 3-cycle shares an edge with at most 3d

other 3-cycles and at most 3d2 4-cycles. Similarly, any 4-cycle shares an edge with at most

4d 3-cycles and at most 4d2 4-cycles. Dividing the total number of short cycles in G by

the maximum number of short cycles that share an edge gives that G must contain at least

n(d−5)
128(d+1)

edge-disjoint short cycles.

Again, we can determine the maximum number of 3- and 4-cycles in which a vertex

can appear to find a lower bound on the number of vertex-disjoint short cycles in a graph.

Corollary 55. Let G be a d-regular graph with d ≥ 6 and curvature K ≥ 0. Then G

contains at least n(d−5)
64(d−1)2

disjoint cycles of size 3 or 4.

Proof. By Proposition 49, every edge is in at least 1
4
(d−5) 3-cycles or at least 1

2
d 4-cycles.

Since there are nd
2

edges, this yields at least nd(d−5)
32

total cycles of size 3 or 4. Fix a vertex

x. Since a triangle containing x must consist of two neighbors of x, x is contained in at

most
(
d
2

)
3-cycles. Thus, every 3-cycle shares a vertex with at most 3d(d−1)

2
other 3-cycles

and at most 3d(d−1)2

2
4-cycles. Furthermore, any 4-cycles containing x must consist of two

neighbors of x and another vertex adjacent to each of these neighbors, so x is contained in

at most
(
d
2

)
(d − 1) 4-cycles. Thus, every 4-cycle shares a vertex with at most 2d(d − 1)

3-cycles and at most 2d(d − 1)2 other 4-cycles. Dividing the total number of short cycles

in G by the maximum number of short cycles that share a vertex yields that G must contain

at least n(d−5)
64d(d−1)

vertex-disjoint short cycles.

While many of these results are immediate applications of the discrepancy-type inequal-

ities that we have derived, we believe that there is much more room for exploration using

these tools. For example, we have made significant progress on results giving lower bounds
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for connectivity based on the curvature. Furthermore, other techniques that use local infor-

mation to prove global results should be fertile territory for the application of curvature

bounds. For example, a graph can be shown to be Hamiltonian by considering the size

of particular neighborhoods. Could such conditions be altered to conditions on curvature

that still guarantee Hamiltonicity? The examples above give a slight glimpse into what

is possible using these local discrepancy inequalities, but there is still plenty of room for

exploration.
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