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ABSTRACT 

The facial features are the most important tool to understand an individual's state of 

mind. Automated recognition of facial expressions and particularly Facial Action Units 

defined by Facial Action Coding System (FACS) is challenging research problem in the 

field of computer vision and machine learning. Researchers are working on deep learning 

algorithms to improve state of the art in the area. Automated recognition of facial action 

units has man applications ranging from developmental psychology to human robot 

interface design where companies are using this technology to improve their consumer 

devices (like unlocking phone) and for entertainment like FaceApp. Recent studies suggest 

that detecting these facial features, which is a multi-label classification problem, can be 

solved using a problem transformation approach in which multi-label problems converted 

into single-label problem with BinaryRelevance classifier.  

In this thesis, convolutional neural network is used as it can go substantially deeper, 

more accurate, though requires lots of data to train the algorithm. It usually results in a 

significant feature map obtained from each layer of the network. We introduce Modified 

DenseNet considering DenseNet as a baseline model. Averaging all the features obtained 

from each block of DenseNet gives importance to each level of features which can get lost 

during concatenating the layers in DenseNet and other state of the art classification models.  
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Detection of Facial Action Units (AUs) can be determined by selecting threshold for 

the probabilities obtained by training the Modified DenseNet model. Threshold selection 

can be done with the help of Matthew Correlation Coefficient. Using Matthew Correlation 

Coefficient, AU correlation can take into account which was missing for previous studies 

using BinaryRelevance classifier as it does not consider label’s correlation because it treats 

every target variable independently. Modifying DenseNet model helped to improve results 

by reusing features and alleviating the vanishing-gradient problem. 

We evaluated our proposed architecture on a competitive Facial Action Unit 

Detection task (EmotioNet) database which includes 950,000 images with annotated AUs. 

Modified DenseNet obtain significant improvements over the state-of-the-art methods on 

most of them by comparing with the accuracy and other metrics of evaluation and requiring 

less computation time as compared to problem transformation methods. 
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CHAPTER 1: INTRODUCTION 

Facial expressions can be defined as changes in the muscles beneath the skin of the 

face. These movements which can be seen from the face convey the emotional state of an 

individual. These facial expressions can be voluntarily or involuntarily [1]. Voluntary 

facial expressions are often socially conditioned and follow a cortical route in the brain. 

On the other hand, involuntary facial expressions are believed to be natural and follow a 

subcortical route in the brain. The best example to explain this is smiling for the camera 

(voluntarily) and smiling at a joke (involuntarily). Thus, Facial expressions are a form 

of nonverbal communication. It is one of the means to understand an individual's emotion 

and state of the mind. 

Charles Darwin [2] wrote in his 1872 book about the Expressions for the Emotions 

in Man or Animals that “facial expressions of emotion are universal, not learned differently 

in each culture.” The most notable research into the topic came from psychologist Paul 

Ekman, who pioneered research into emotion recognition in the 1960s. His team of 

researchers gave hand on pictures of faces showing different emotional expressions to test 

subjects.  

The test subjects then had to determine the emotional states they saw in each photo, 

based on a predetermined list of possible emotions they had seen prior. Through
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these studies with the help of the test subject’s majority agreement about the emotional 

state of the photo, Expressions Ekman found to be universal includes those indicating 

happiness, disgust, anger, sadness, surprise and fear.  From this study, the six basic 

emotions were proposed. In Figure 1-1, these 6 universal basic emotions are mentioned.

 

 
Figure 1-1: Six Universal Expressions  (Source:twinklet8) 

However, guilt, jealousy, pride, shame which we genuinely feel these emotions, we 

do not express it clearly and it is difficult to identify such emotions and label them by easily 

glancing at any photos. Thus, you cannot just label these six emotions to any other state of 

an individual's expression. Sometimes humans go to mixed feelings which are difficult to 

http://twinklet8.blogspot.com/2015/03/classifying-different-emotions.html
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understand by just seeing them. It is important to pay attention to the minute details of the 

face and this is the reason why facial action units come into the picture [3]. 

The Facial Action Coding System (FACS) refers to a set of facial muscle 

movements that correspond to a displayed emotion. Ekman and Friesen developed the 

Facial Action Coding System (FACS) [4] for describing facial expression by action units. 

Of 44 FACS AUs that they defined, 30 AUs are anatomically related to contractions of 

specific facial muscles. 12 are Upper face and 18 are lower face. AUs can occur either 

singly or in combination. In Figure 1-2, 12 Upper face and 18 lower face action units are 

mentioned. 

By keeping track of each action unit whether they are present or not on the face of 

individuals, we can reach the final conclusion about their emotions. The study of action 

units becomes really important in various fields after realizing few applications we stated 

below. 

1. Counseling and determining client’s medical state 

2. During healthcare, determining patients feeling and comfort level about the 

treatment 

3. In the case of autism, struggling to interpret expressions 

4. In the case of e-learning, study the emotions and adjust the learning technique and    

presentation according to the style of learner 

5. Determining fatigue in the case of driving and alerting in advance 
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6. When person is scared and withdrawing money, ATM machine not dispensing 

money 

 

Figure 1-2: Facial Action Coding System   (Source: researchgate) 

Social Robots 

A social robot is an autonomous robot that interacts and communicates with 

humans using artificial intelligence to decide how to act on information received through 

cameras and other sensors. When the robot is communicating with humans, it is really 

https://www.researchgate.net/figure/Facial-Action-Units-AUs-of-upper-and-lower-face_fig3_280298368/download
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important to capture human’s facial expressions to predict the emotions behind their 

actions or words so that the robot can respond to it accordingly. The important aspect of 

this implementation is when a person is interacting with a social robot, a person should feel 

much more like they are interacting with someone rather than something.  

The ability to respond in ways that seem lifelike has been achieved with the study 

of social and emotional intelligence. Advancement in Artificial Intelligence (AI) has 

opened ways to interpret humans by designing algorithms that allow robots to recognize 

voices, faces and emotions; interpret speech and gestures; respond appropriately to 

complex verbal and nonverbal communications which includes Action unit detection. 

There has been so much research going on around the world where interaction with 

humans enhances human life in a positive way. One of the examples of this interaction is 

that the researchers found that RUBI (social robot) learned to use information about the 

children's facial expressions to accurately predict their preferences for different activities. 

They have verified this with the number of human judges agreeing on the same prediction 

which social robot did.   

The personal robot can be programmed to catch depression in human beings early 

by monitoring day to day changes in someone’s behavior and help with simple 

interventions, like music and video, for people in need of social therapies. This can be 

really helpful to the people who are suffering from depression or similar kind of mental 

disease and could not tell the society about it or could not understand by themselves.   
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Socially assistive robots also show promise in providing therapy to children with 

autism. Research has found that engaging with therapy robots increases engagement, 

attention and novel behaviors (such as spontaneously imitating the robot) among children 

with autism. Figure 1-3 shows the analysis of behavior of children with ASDs with the help 

of robots [5]. 

In our lab, under the guidance of Prof. Mahoor, a fully autonomous robot has been 

developed which can talk, listen, express, understand and remember things which we set 

for reminders. This social robot named Ryan, interacts with any age of the person and keeps 

the person engaged in the conversation by making people comfortable with the responses. 

Figure 1-4 shows the social robot named Ryan [6]. 

Figure 1-3: Robot based Autism Therapy (Source: lab) 

http://mohammadmahoor.com/autism-robot-assist/
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The goal of AU detection can be achieved by predicting AU labels correctly for 

each image of the facial expression. Human face with complex facial expression requires 

a better classifier so that it can catch each minute features to determine the correct 

expression. Improvements in computer hardware and network structure have given access 

to the researchers to build and train truly deep Convolutional Neural Networks (CNNs) for 

the betterment of the results. Various convolution neural networks applied and tested to get 

the best feature map for AU detection before reaching to the proposed Modified DenseNet 

model. We started with VGG16 [7], ResNet [8], Inception ResNet [9] and using ensemble 

method [12] to include both ResNet and Inception ResNet in one algorithm [11].    

As testing all these models to the ‘EmotioNet’ dataset, we faced the shortcomings 

of the respective models which cause problems of vanishing gradient descent, too many 

parameters results into over-fitting of the model and the computational time required for 

training. Stochastic depth shortens ResNet by randomly dropping layers during training to 

allow better information and gradient flow. With the motivation of dropping layers idea 

and to create short paths from early layers to later layers, we found out that DenseNet 

model [10] performs really well as compared to other classifiers. We have discussed about 

it later in literature review. 

Dense connections have a regularizing effect, which reduces overfitting on tasks 

with smaller training set sizes. With the DenseNet motivation, in this thesis, we propose a 

new Convolutional network to generate the best feature map for detecting the action unit. 

For the detection of AU properly we need each and every minute detail possibly. Thus, 

considering all the features we generate from each block of the Convolutional network is 
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important. In DenseNet, feature maps get reduced across each transition layer between two 

dense blocks. With the network going deeper, dense blocks increase as a result of which 

feature maps reduced at each step of transition layers. To consider all the features, in my 

proposed Modified DenseNet model, Average of all the dense block output considered and 

created feature map to predict the AU detection. 

After training the data with Modified DenseNet model, threshold selection method 

helped to determine whether AUs are present or not. Sigmoid activation function with 

binary cross entropy loss provides the probabilities for each of the AU’s. Matthew 

Correlation Coefficient (MCC) method decides the threshold considering AU correlation 

Figure 1-4: Ryan      (Source: dreamface) 

http://dreamfacetech.com/ryan-2/
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amongst each other. Comparing the threshold with the probabilities from the convolutional 

network, AUs are set and reset. 

We evaluated proposed models on highly competitive ‘EmotioNet’ dataset and we 

significantly outperform the current state-of the-art results on the basis of accuracy metric. 

 Thesis Outline 

      The overview of this thesis is as follows:  

● Chapter 2: Background and Related Work 

We discuss in depth how CNN works and all the previous works in the field of 

Classifying multi label problem with Binary Relevance approach and other Pre-

trained models including DenseNet which is the motivation of our proposed 

network for multi label classification.   

● Chapter 3: Methodology  

This chapter discusses the approach of multi label classification problem we have 

implemented with the proposed Modified DenseNet model.  

● Chapter 4: Experiments 

To perform well on test data, this chapter describes the parameters and methods 

implemented to achieve best results. 
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● Chapter 5: Results and Discussion  

This chapter presents the results obtained by performing different models and the 

proposed modified DenseNet model including comparison with the state of the art 

by evaluating performance metrics.  

● Chapter 6: Conclusions and Future Work 

This chapter summarizes the contributions of the work in the thesis and briefly 

discusses the different directions that can be explored to improve the performance 

of the task. 
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CHAPTER 2: BACKGROUND AND RELATED WORK 

 Deep Learning 

Deep Learning is a field inspired by the structure and function of the brain called 

artificial neural networks (ANN). Deep learning is a process of learning structures 

extracting from the data which can be numerical, images, sound, text or time series. 

Structures are extracted through a number of successive layers which differ based on the 

dataset. Patterns can be learned for these structures by feeding data into the ANN and 

training them [13].  

 Neural Network Elements 

Deep learning is all about networks composed of several layers, we should 

understand the working of these layers first. The layers are made of nodes. A node 

combines input from the data with a set of coefficients or weights, that either amplify or 

dampen that input. These weights get updated once you start training the network model. 

These inputs summed up after multiplying with weights. After summing up, inputs are 

passed through the activation function, which determines whether given node should be 

activated or not. 

Figure 2-1 is a diagram of what one node might look like.
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As we say ANN consists of stacked layers, these layers are stacked up as shows in 

Figure 2-2.   

In Recent years, the depth of the network is increasing which results in more hidden 

layers. ANN started with single input, output and hidden layer where nowadays networks 

are going deeper. The important reason behind this is the improvement in the predicting 

labels of the input. The advantage of multiple layers is that they can learn features at various 

levels of abstraction. Each layer trains on a distinct set of features based on the previous 

Figure 2-1: Concept of Neural Network (Source: Pathmind) 

Figure 2-2: 6 Neural Network Architecture (Source: Pathmind) 

https://skymind.ai/wiki/neural-network
https://skymind.ai/wiki/neural-network
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layer’s output. The feature map improves after every layer adding up more information 

about the feature. In Figure 2-3, level of abstraction is explained with the example. 

In Figure, you can see in layer 1, we are detecting basic features like edges. With 

these features adding information in layer 2 can determine shapes of different features like 

eyes, nose, etc. Combining this feature map by adding more layers we can predict really 

complex features like face from the given image. This is known as feature hierarchy in 

which adding more layers with more number of parameters can help to handle high 

dimensional datasets [14].   

 

 

Figure 2-3: Level of feature abstraction (Source: Pathmind) 

https://skymind.ai/wiki/neural-network
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 Working 

To understand how neural networks work, we need to start with the integral element 

of the network which is layer.  

These layers are learning essential information from the input data and storing all 

the information by updating its weights. In this context, learning means finding a set of 

values for the weights of all layers in a network, such that the network will correctly map 

example inputs to their associated targets. To see how well the weights are parameterized 

with respect to actual labels, we need some measure which is called as loss function. The 

loss function takes the predictions of the network and the true target and computes a 

Figure 2-4: Working of Neural Networks (Source: faculty.neu) 

http://faculty.neu.edu.cn/yury/AAI/Textbook/Deep%20Learning%20with%20Python.pdf


15 
 

distance score, which determines how well the network is performing for given data points 

[15]. Figure 2-4 shows how different neural network components are connected to each 

other. 

This distance score works as a feedback signal to the layers so that the value of 

given weights can be adjusted in a direction that will lower the loss score for the given data 

points. These weights get updated in the backward direction with optimizers which 

implement this using Backpropagation algorithm. This process can be carried out till our 

all parameters get the best values with low distance score. Initially, weights are randomly 

assigned due to which in the beginning we get output far from the actual targets with the 

large distance score. By repeating the backpropagation process through training the model 

results into weights with better value and minimal loss. This is how training the neural 

network model can actually predict the target we want to achieve. 

 Activation Functions 

The activation function determines the complex relationship between the variables 

introducing non linearity and gives the output. Without activation function your input gets 

added similar to a linear regression model which can only address the linear relationship 

between variables which is not adequate to work with the 3d image data [16][17]. 

Commonly used activation functions are Logistic, tanh (hyperbolic tangent), ReLu 

(Rectified linear units) 
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2.1.3.1 Logistic activation function 

It is a “S” shaped curve with equation 

   𝑓(𝑥)  =  
1

1+𝑒−𝑥                                           (1)  

It ranges from 0 to 1. It is also referred to as Sigmoid activation function. The 

weighted sum of inputs is applied to it as an input. Figure 2-5 shows the Logistic Activation 

function Representation. 

 

For a large positive input, it results in a large positive output which tends to fire and 

for large negative input, it results in a large negative output which tends not to fire. 

 

Figure 2-5: Logistic Activation Function (Source: towardsdatascience) 
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2.1.3.2 Tanh (Hyperbolic tangent) 

It is similar to logistic activation function with a mathematical equation 

𝑓(𝑥)  =  2 × 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐(2𝑥) − 1                                 (2) 

Figure 2-6 represents Tanh activation function graph. 

The output ranges from -1 to 1 and having an equal mass on both sides of zero-axis 

so it is zero centered function. So, tanh overcomes the non-zero centric issue of the logistic 

activation function. Hence optimization becomes comparatively easier than logistic and it 

is always preferred over logistic. But still, a tanh activated neuron may lead to saturation 

and cause vanishing gradient problems. 

 

Figure 2-6: Tanh Activation Function (Source: towardsdatascience) 
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2.1.3.3 ReLu (Rectified linear units) 

It is the most commonly used function because of its simplicity. It is defined as 

𝑓(𝑥)  =  𝑚𝑎𝑥(0, ∑𝑖=𝑛
𝑖=1 𝑤𝑖𝑥𝑖 + 𝑏)                         (3) 

If the input is a positive number, the function returns the number itself and if the 

input is a negative number then the function returns 0. In Figure 2-7, ReLu graph 

representation is shown. 

Advantages of ReLu activation function 

1. Easy to compute. 

2. Does not saturate for the positive value of the weighted sum of inputs. 

Because of its simplicity, ReLu is used as a standard activation function in CNN. 

 

Figure 2-7: ReLu Activation Function (Source: towardsdatascience) 
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 Backpropagation 

Backpropagation is the mechanism where loss score takes into account as we keep 

on training the model and update the weights in the backward to decrease the loss score 

and find the best values for each of the parameters. By doing this we extract best features 

to predict the labels perfectly in the end.  

We change the parameters using optimization algorithms. A very popular 

optimization method is called gradient descent, which is useful for finding the minimum 

of a function. Gradient Descent is used to minimize the error which results in a low loss 

score. This function is also called as loss function.  

 Loss Function  

Loss function helps in optimizing the parameters of the neural networks. The loss 

is calculated using loss function by matching the target value and predicted value by a 

model. Then we use the gradient descent method to update the weights of the neural 

network such that the loss is minimized. I have stated some of the popular loss functions 

below [18][19].    

2.1.5.1  Mean Squared Error (MSE) 

Mean squared error is calculated by taking the mean of squared differences between 

actual(target) and predicted values. MSE is used mostly whenever we must deal with the 

dataset of regression problems. 
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2.1.5.2   Binary Cross Entropy (BCE) 

If you are using BCE loss function, you just need one output node to classify the 

data into two classes. The output value should be passed through a sigmoid activation 

function and the range of output is (0 – 1). BCE is used mostly when we have a dataset 

with binary classification problems. 

2.1.5.3   Categorical Cross Entropy (CCE) 

If you are using CCE loss function, there must be the same number of output nodes 

as the classes. And the final layer output should be passed through a Softmax activation so 

that each node outputs a probability value between (0-1). CCE is used mostly when we 

have a dataset with multi class problems. 

 Optimizers 

Once we get the loss score after applying loss function, weights need to get updated 

to improve loss score further. Finding optimized value for the weights is the goal of the 

optimizers. Finding optimized values for weights ensure generalization of the model and 

help for the prediction on the data [20]. 

2.1.6.1 Gradient Descent 

Gradient Descent is the most common algorithm to optimize the weights [21]. 

Gradient indicates the direction of increase. To find the minimum point in the valley we 
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need to go in the opposite direction of the gradient and update the weights to reduce loss 

values.   

𝜃 = 𝜃 − 𝜂𝛻𝐽(𝜃; 𝑥, 𝑦)                     (4) 

θ is the weight parameter, η is the learning rate and ∇J(θ;x,y) is the gradient of 

weight parameter θ. 

2.1.6.2 Adam — Adaptive Moment Estimation 

Another method that calculates the individual adaptive learning rate for each 

parameter from estimates of first and second moments of the gradients [22]. 

Adam can be viewed as a combination of Adagrad (optimizer), which works well 

on sparse gradients and RMSprop (optimizer) which works well in online and 

nonstationary settings. Adam implements the exponential moving average of the gradients 

to scale the learning rate. Adam is computationally efficient and has very little memory 

requirements. Because of these factors I decided to use this optimizer in my project. Adam 

algorithm first updates the exponential moving averages of the gradient(mt) and the 

squared gradient (vt) which is the estimates of the first and second moment. Hyper-

parameters β1, β2 ∈ [0, 1) control the exponential decay rates of these moving averages as 

shown below 

                                                𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡               (5) 

             𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2                (6) 
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Moving averages are initialized as 0 leading to moment estimates that are biased 

around 0 especially during the initial timesteps. This initialization bias can be easily 

counteracted resulting in bias-corrected estimates 

𝑚𝑡̂ =
𝑚𝑡

1−𝛽1
𝑡                                                  (7) 

𝑣𝑡̂ =
𝑣𝑡

1−𝛽2
𝑡                                                   (8) 

where 𝑚𝑡̂and 𝑣𝑡̂ are bias corrected estimates of first and second moment respectively. 

Finally, we update the parameter as shown below 

  𝜃𝑡+1 = 𝜃𝑡 −
𝜂𝑚𝑡̂

√𝑣𝑡+𝜀̂
                               (9) 

 Types of Deep Learning algorithms 

After Learning through each neural network element and their working, It is really 

important to decide which type of learning is suitable for our classification problem, let’s 

discuss the types of learning first. Figure 2-8 explains the types of Deep Learning 

algorithms. 

 Supervised Learning 

Supervised Learning algorithms try to create mapping between input features and 

target prediction output so that it can predict the correct labels for the new data based on 

the learned relationships. In Supervised Learning, input feature is fed into the model with 

the labels and then training the model, loss function tries to minimize the error between 
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values they predicted (estimated value) and the actual label for the input. Convolutional 

neural networks, Recurrent neural networks can be used for this learning. 

 Unsupervised Learning: 

In Unsupervised Learning, unlabeled data is trained to learn structure from which 

features can be extracted. There is no way to measure accuracy as the data is unlabeled. 

Clustering algorithm is the best example of this type of learning in which patterns can be 

detected from the structure learned during the training of the data. Identifying the pattern, 

data can be clustered into groups which help in deriving meaningful insights and describe 

the data better to the users. 

        These types of algorithms are useful in cases where the human expert doesn’t know 

what to look for in the data. 

 Semi supervised Learning 

        Semi supervised learning is the middle ground between supervised learning and 

unsupervised learning, where both labeled and unlabeled images are used in the process. 

In many practical situations, the cost to label is quite high, since it requires skilled 

human experts to do that. So, in the absence of labels, few images can be labeled and train 

the model as we do in Supervised Learning. This trained model is then trained on unlabeled 

data. These unlabeled data can be labelled with the help of trained models; this process is 

called Pseudo Labeling. Now full data which includes labeled data and pseudo labeled data 

can be trained with our model. 
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Figure 2-8: Types of Deep Learning Algorithm (Source: Viblo) 

Our dataset consists of all the images of human faces and To work with the image 

dataset it is necessary to understand Convolutional Neural Network (CNN).  

 Convolutional Neural Networks 

A Convolutional Neural Network (ConvNet/CNN) is a Deep Learning algorithm 

which can take in an input image, extract all the features from the image by processing it 

and this information updates all the parameters of the network to make a prediction on 

the unknown images. CNN takes care of feature engineering by learning through these 

weights [23]. 
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Figure 2-9 shows the block diagram of CNN consisting all the components. After 

training the model and by learning all the parameters with the given data, CNN can be 

useful to solve image classification problems. Layers in the CNN also called Convolution 

layer helps to learn features from the image which is why preprocessing required is less as 

compared to other neural networks. 

A ConvNet can successfully capture the Spatial and Temporal dependencies in an 

image through the application of relevant filters. The architecture performs a better fitting 

to the image dataset due to the reduction in the number of parameters involved and 

reusability of weights.     

 Convolution Layer 

Convolution is the first layer to extract features from an input image. Convolution 

preserves the relationship between pixels by learning image features using small squares 

of input data. Convolution is a mathematical operation that takes place between inputs such 

as image matrix and a filter or kernel. 

Figure 2-9: Block Diagram of CCN (Source:medium) 
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The objective of the Convolution Operation is to extract the low-level features such 

as edges, from the input image. These low-level features serve as input to the next 

ConvNets layer which helps to gather all the information in one feature map. These low-

level features when we give as input to the next convolution layer, we get high level 

features like shapes consisting more detailed information of the image. Adding 

Convolution layer helps to understand image more clearly, which is why we use ConvNet 

to work with complex 3D images. Convolution of an image with different filters can 

perform operations such as edge detection, blurring and sharpening the image by applying 

filters. 

 Padding 

Sometimes filter does not fit perfectly to the input image because of different sizes of 

images. Padding helps to process those images with the following two ways:  

1. Pad the picture with zeros (zero-padding) so that it fits. 

2. Drop the part of the image where the filter did not fit. This is called valid padding 

which keeps only the valid part of the image. 

 Rectified Linear Unit (ReLU) 

ReLU stands for Rectified Linear Unit for a non-linear operation.  

The output is ƒ(x) = max(0,x).  
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ReLU’s purpose is to introduce non-linearity in our ConvNet. Since, the real world 

data are not linearly distributed, ReLU adds non linearity to detect all those non linear 

features. 

 Pooling Layer 

Pooling layers section would reduce the number of parameters when the images are too 

large. Spatial pooling is also called subsampling or downsampling which reduces the 

dimensionality of each map but retains the important information. Spatial pooling can be 

of different types: 

● Max Pooling 

● Average Pooling 

● Sum Pooling 

The role of a fully connected layer in a CNN architecture. The objective of a fully 

connected layer is to take the results of the convolution/pooling process and use them to 

classify the image into a label. The output of convolution/pooling is flattened into a single 

vector of values, each representing a probability that a certain feature belongs to a label. 

For example, if the image is of a cat, features representing things like whiskers or fur should 

have high probabilities for the label “cat”. 
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 Pre-Trained Networks: 

A pretrained network is a saved network that was previously trained on a large 

dataset, typically on a large-scale image-classification task. ImageNet is one of the large 

dataset consisting of more than 14 million images which consist of 20000 classes. Training 

model on this dataset surely helps to generalize that model on another dataset. Creating a 

model from the start is always a huge task but with the model trained on ImageNet can 

efficiently help to predict on other small data. There are so many Pre-trained well-known 

models already built on ImageNet dataset in the past years. Let’s start exploring those to 

get an idea of the architecture and ideas used to build a model. The pre-trained models 

which we used for this project is as follows: 

2.3.5.1 VGG16 

VGG is a Convolutional Neural Network (CNN) architecture used for classification 

tasks [7]. All the CNNs have more or less similar architecture, stack of convolution and 

pooling layers at start and ending with fully connected and soft-max layers. The VGG 

architecture is also similar and is clearly explained in the following paper. VGG was the 

simplest but one of the deep neural networks prior to the state of the art model. It accepts 

input as 224*224 RGB image. VGG used 3*3 receptive fields as convolution layer which 

is why they could go deeper till 19 layers. Max Pooling is used to extract the features from 
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the image in between the two layers. Architecture ended with Fully connected layer of 

1000 classes.  

VGG really generalized well by securing first and second positions in the 

localization and classification tasks respectively in ImageNet challenge. Table 2-1 shows 

the Architecture of VGG16. 

Table 2-1: Architecture of VGG16 (Source: arxiv) 
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Problem: It has been noticed that after some depth, the performance degrades. This was 

one of the bottlenecks of VGG. They couldn’t go as deep as wanted, because they started 

to lose generalization capability. 

One of the problems ResNet solve is the famous known vanishing gradient. This is 

because when the network is too deep, the gradients from where the loss function is 

calculated easily shrink to zero after several applications of the chain rule. This result on 

the weights never updating its values and therefore, no learning is being performed. 

2.3.5.2 ResNet [8] 

Neural networks approximate a function really well. The logic behind improving 

results is to create an identity function where the output of a function becomes the input 

itself.  

𝑓(𝑥)  =  𝑥                              (10) 

Table 2-2: Architecture of ResNet (Source: arxiv) 
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Following this logic, we bypass the input to the first layer of the model to be the 

output of the last layer of the model, so that the network should be able to predict any 

function it was learning before with the input added to it. 

𝑓(𝑥)  +  𝑥 = ℎ(𝑥)                   (11) 

With ResNets, they created skip connections between layers so that the gradients 

can flow directly through the skip connections backwards from later layers to initial layers. 

Using this skip connection, it becomes easier to track back the gradient avoiding vanishing 

gradient problem. Table 2-2 represents the architecture of ResNet model. 

To Discuss the architecture the first important component is the convolution layer. 

a) Convolution 1: The first step on the ResNet before entering the common layer 

behavior is a block called Conv1 consisting of a convolution + batch normalization 

+ max pooling operation. We have explained working of convolution and max 

pooling layer before. Batch Normalization normalizes output by subtracting the 

batch mean and dividing by the standard deviation.  

Figure 2-10: Building Block for ResNet (Source: arxiv) 



32 
 

b) ResNet Layers: Resnet models can go deeper by increasing the number of blacks 

which consist of convolution layer and batch normalization with ReLU activation 

function. The identity shortcut connection between these blocks are created by the 

addition operator. Feature map generated from the previous layers gets added by 

the addition operator. Additional operator can be applied on the same size input 

which can be achieved by using 1x1 convolutions. Figure 2-10 shows the building 

block for ResNet model. 

2.3.5.3 DenseNet [10] 

In this paper, they have discussed the state of an art Convolutional Neural Network 

which performs best amongst all the other CNN’s. Table 2-3 represents the Architecture of 

DenseNet model. 

Table 2-3: Architecture of DenseNet (Source: arxiv) 
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The problems arise with other CNNs when they go deeper. As the network goes 

deeper and deeper, connection between input layer and the output layer increases due to 

which, vanishing gradient problem occurs. In this problem, gradient becomes so small that 

after multiplying with the weights, it can vanish. The ResNet model solved this problem 

by adding skip connections but results in a large number of parameters and redundant 

feature map.  

In DenseNet, each layer obtains additional inputs from all preceding layers and 

passes on its own feature-maps to all subsequent layers. Concatenation is used for 

connection between the two layers. Concatenation is the simple change made in the ResNet 

model which improved in all aspects of training the model. Feature reusability, 

computational efficiency and reduced complexity are the main advantages as compared to 

other models. By connecting this way DenseNets require fewer parameters than an 

equivalent traditional CNN, as there is no need to learn redundant feature maps. 

Traditional feed-forward neural networks connect the output of the layer to the next layer 

after applying a composite of operations. 

    xl = Hl(xl-1)                                                        (12) 

DenseNets make the first difference with concatenating all the feature maps. 

The equation becomes: 

xl = Hl([x0, x1,…, xl-1])                                        (13) 

DenseNets are divided into DenseBlocks, where the dimensions of the feature maps 

remain constant within a block, but the number of filters changes between them. These 
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layers between them are called Transition Layers and take care of the downsampling 

applying batch normalization, a 1x1 convolution and a 2x2 pooling layer. 

DenseNet also introduced the parameter growth rate which regulates how much 

information is added to the network each layer. In other words, it decides how much 

previous feature map should add to the next Dense Block as an input. To explain this, you 

can see every layer is adding to the previous volume these 32 new feature maps. Therefore 

we go from 64 to 256 after 6 layers. To reduce the feature map and bypass connection, 

Transition Block performs as 1x1 convolution with 128 filters. followed by a 2x2 pooling 

with a stride of 2, resulting in dividing the size of the volume and the number of feature 

maps in half. 

The original idea about improving training efficiency by shorter connections between 

layers close to the input and those close to the output helped me to propose my Modified 

DenseNet model. 

 Action Unit Detection with Deep Learning 

AU detection has been studied over a long period of time to understand human 

expression and emotions associated with it. To detect action units using algorithms, the 

best reference to have is the Facial key points (landmark points) [24]. Two types of features 

were usually used in landmark-based approaches. Landmark geometry features were 

obtained by measuring the normalized facial landmark distances and the angles of the 

Delaunay mask formed by the landmark points. On the other hand, landmark texture 

features were obtained by applying multiple orientation Gabor filters to the original images. 

These landmark points help to identify each feature of the face like nose, eyes, lips etc. 
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With this information it is easy to select features related to each action unit and then classify 

with the help of Supervised Vector Machine (SVM) and many other classifiers. SIFT 

algorithm also can be used to select such features. 

Over the last few years, CNN has boosted the performance in many fields of 

detection and classification. With deep learning, it became easier to solve such complex 

problems with the large dataset. CNN can be used now for feature extraction and feature 

selection just by training a good deep classifier with a good amount of data. 

 Deep Net 

As we discussed about the advantages of CNN, in this paper, the network consists 

of two parts [25]. The first part of the network is used to detect a number of facial key 

points to determine the features required to detect action units. Introducing CNN layers, 

we no longer require geometric methods to find out landmark points. In this paper, nine 

layers are dedicated to the detection of facial landmark points. They use three convolutional 

layers, two max pooling layers and two fully connected layers. They applied normalization, 

dropout, and rectified linear units (ReLU) at the end of each convolutional layer to enhance 

the results. They detected 66 landmark points with this first part of the network. 

In the second part of the network they combined the landmark points obtained from 

the first part of the network and the images pre-processed required to detect action units. 

They used concatenation to connect two parts of the network and get the final prediction. 

To simplify, first part of the network concatenated with the output of the first fully 

connected layer of the second part of the network. 
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As for the structure of the deep net, they adopted GoogleNet to work with. To 

concatenate and add both the layers they had to change input size and number of filters 

according to the requirement. Detecting the action unit with this approach is really great to 

start with. Adapting to state of the art classifier can definitely improve the results for sure. 

The problem with this approach is that the first part of the network will always be fixed to 

determine landmark points and if the points do not match with the face of the images then 

it is really difficult to track back all the features we need. If the image has more than one 

face which is there in our dataset, it is going to be really difficult to match landmark points 

with the faces and extract features. Hence considering different datasets which has 

landmark points for every image and which can have automated facial expression 

recognition system can enhance the detection process. 

 DISFA: A Spontaneous Facial Action Intensity Database [26] 

We have discussed different potential applications of AU detection include human-

computer interaction, social robots, healthcare, marketing, biometrics, behavioral and 

neuroscience. With initial work in these domain, AU Detection technology is growing with 

different emerging applications. With improvement in different neural network models, to 

get better results it is critical to get well-labeled video and photos of facial behavior. To 

get the success of automated facial expression recognition, it is important to have publicly 

available databases to work on. Working with different database, will improve the feature 

map for respective action unit and it will help to detect action units more efficiently. 
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To annotate facial action units, a human expert manually labels every video frame 

which is very time consuming. To go through all the frames of videos and label them with 

different action units is tedious task to perform. To label graded changes in intensity, 

additional time would be required. Considering manually annotating facial action units is 

standard process, it is not ideal to rely on. Automated measurement is essential to the 

feasibility of real-time applications. DISFA is the database where action units are 

automatically annotated considering changes in intensity. 

Almost all research into automated measurement has been directed at binary AU 

detection whether it is present or absent. But considering temporal envelope of intensity 

variation, it is possible to achieve more insights about different action units. DISFA 

contains approximately 130,000 annotated frames from 27 adult participants. For every 

video frame, the intensity of 12 action units was manually annotated on a six-point ordinal 

scale (0 and five increasing levels of intensity). The AUs chosen were among those most 

common in emotion expression and social interaction and that have been studied previously 

in computer vision and machine learning. Participants for data collection process viewed a 

4-minute YouTube video clip to collect range of facial expressions of emotion.   

AU intensity was coded for each video frame on a 0 (not present) to 5 (maximum 

intensity) ordinal scale. The advantage of this dataset is that they have set of landmark 

points (66 points) which are required for automated facial expression recognition. In my 

thesis, I am working on EmotioNet dataset which consist of images with 12 Action Units. 

But in future scope, DISFA is really one of the important datasets which will help me to 



38 
 

improve my detection results more considering changes in intensity. Let’s discuss one of 

the approaches to work with multi label classification problem. 

 Binary Relevance for Multi Label Learning [27] 

Multi Label classification problem is a generalization of multiclass classification 

where multiple labels are assigned for particular instance. In this paper they have 

approached this problem by decomposing the multi-label learning task into a number of 

independent binary learning tasks (one per class label).  

The simplicity of this method is to start training independently on one binary 

classifier for each label. Given an unseen sample, the combined model then predicts all 

labels for this sample for which the respective classifiers predict a positive result. In this 

algorithm, binary classifiers need to train for one label irrespective of other existing labels. 

Due to its conceptual simplicity, binary relevance has attracted considerable attention in 

multi-label learning research. 

Mathematical expression for the given algorithm is simplified as follows. 

Let X = 𝑅𝑑 denote the d-dimensional instance space and let Y = {λ1, λ2,...,λq} 

denote the label space, consisting of q class labels. For each multi label training example 

(𝑥𝑖, 𝑦𝑖), 𝑥𝑖 ∈ X is a d-dimensional feature vector [𝑥1
𝑖 , 𝑥2

𝑖 ,..., 𝑥𝑑
𝑖 ]  and yi ∈ {−1, +1}q is a q-

bit binary vector [𝑦1
𝑖 , 𝑦2

𝑖 ,..., 𝑦𝑞
𝑖] , with 𝑦𝑗

𝑖 = +1 (−1) indicating that 𝑦𝑗
𝑖 is a relevant (or 

irrelevant) label for xi. It decomposes the multi-label learning problem into q independent 

binary learning problems. Each binary classification problem corresponds to one class label 
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in the label space Y. Then, as mentioned, binary classifier can be applied to the instances 

having the same label independently. To continue this process independently for each label 

can solve the multi label classification problem.  

One potential weakness of binary relevance lies in its inability to exploit label 

correlations to improve the learning system’s generalization ability. Therefore, a natural 

consideration is to attempt to provide binary relevance with label correlation exploitation 

abilities while retaining its linear modeling complexity w.r.t. the number of class labels. 

Generally, representative strategies to provide binary relevance with label 

correlation exploitation abilities include the chaining structure assuming random label 

correlations, the stacking structure assuming full-order label correlations, and the 

controlling structure assuming pruned label correlations. 

However, it is also noteworthy that some inherent properties of multi-label learning 

should be investigated in order to further enhance the generalization ability of binary 

relevance. There are two major issues classifying multi label problem which is not 

considered in this algorithm is as follows: 

1. Class imbalance problem where there is a lack of equal number of images for each 

class. 

2. Relative labeling-importance where the correlation between two labels cannot be 

prioritized. 

Listed problems encouraged us to look in the classifier which can give us better action 

unit detection since classifier is the most important factor to start with.  
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With the mentioned literature review, our approach will be to locate the face and facial 

features in an image, derive a feature representation of the face, and then classify the 

presence or absence of a facial expression in that image using a really good fit classifier. 

Since this is a multi-label classification problem, it is really important to understand the 

Methodology to deal with this problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



41 
 

CHAPTER 3: METHODOLOGY 

 Shortcoming of CNN state of the art model 

  We went through all the history of CNN architecture from VGG16 to the state of 

the art DenseNet. In DenseNet we saw that connecting layers by concatenating requires 

fewer parameters than an equivalent traditional CNN, as there is no need to learn redundant 

feature maps. Furthermore, concatenating layers helps to solve vanishing gradient issues 

since each layer has direct access to the gradients from the loss function and the original 

input image. 

In DenseNet architecture, the depth of a dense layer’s output is dependent on the 

‘growth_rate’ parameter. As every dense layer receives all the output of its previous layers, 

the input depth for the kth layer is (k-1)*growth_rate +input_depth_of_first_layer. So to 

add new information in the feature map it all depends on the growth rate parameter. Let’s 

say the growth rate is kept 20 for the architecture, after 100 layers, the depth will be around 

2000 which is huge. To compensate for this problem, DenseNet is using a Transition layer 

which is reducing the feature map into half whenever the transition layer is used in the 

architecture. Reducing the feature map results in losing some important features. Let’s say 
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if we lose the edge of an eye at the lower level of feature abstraction, we will miss out on 

the high level of features because of the feature hierarchy.

So, it is really important to pick out the balanced value for growth rate to avoid 

such problems. You can see in the DenseNet architecture, after every Dense Block, they 

used Transition layer to reduce the depth of the feature map. Transition layer consists of 

1*1 Convolution layer with batch normalization and Pooling layer after that. 1*1 

Convolutional layer changes the dimensionality on the filter space whereas Pooling layer 

reduces the size of each feature map. Using these layers with pooling, transition layer 

achieved to reduce feature map into half. Reducing feature maps can be problematic as we 

discussed above about the important features. Missing features can affect probabilities 

predicted for each action unit which can also affect the prediction of the actual labels of 

the images. 

Best value for Growth rate hyperparameter cannot be exactly determined and Thus 

we are dealing with the Tradeoff between new information and basic crucial features.  

 Motivation to improve 

Considering the advantages of DenseNet which represents the state of the art, we 

should exhibit the idea of concatenation. To deal with vanishing gradient problems and to 

remove the redundant features, it is always helpful to create shorter connections between 

input and output. Shorter connection helps function to approximate well and update the 

parameter to predict near to the actual label. 
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Keeping in mind the cost of applying DenseNet, we need to improve our feature 

map avoiding the loss of basic features. Considering features which can get lost after 

applying transition layer is the prime target to improve the results and prediction on the 

dataset. 

 Ideas to implement 

In Table 3, DenseNet architecture, Dense Block and Transition block connected in a 

pair and it is repeated based on how many layers of network are you creating. In Dense 

block, convolutional layers used to extract features to create feature maps. These feature 

maps get reduced to half in transition layer and it is used as input for the next dense block. 

Figure 3-1: Modified DenseNet Block Diagram 
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Before applying dimensionality, reduction techniques using Pooling layer and 1*1 

averaging layer, the output of two Convolutional layers combine together by connecting 

them using concatenation. The advantage of concatenation we have mentioned before, 

which is why we need to save this feature map before reducing the dimensions in the 

transition layer.  

The idea to improve this is to make shorter connections from input to output and to 

consider all the feature maps derived from each concatenated layer. For that, we need to 

take out the output from each concatenated layer after every dense layer and combine it 

together. The architecture for the given ideas is shown below. Figure 3-1 shows the block 

diagram of proposed modified DenseNet idea. 

Since I used DenseNet-169 as my baseline model, it has 4 layers in the network. 

Thus, output needs to be collected from the concatenated layer every after each Dense 

block. 

These 4 inputs can combine by many approaches: 

1. Addition:  

By adding all the concatenated output, the feature map generated with the 

great information, but it increases dimensionality of the feature map. Increasing 

dimensions results in more numbers of parameters which need to be tuned and can 

get overfit if you do not have enough data. 

2. Concatenation:  

For Creating shorter connection, it is a really good idea to use Concatenation 

between the layers. But it did not improve the results by connecting in 
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concatenation as it did not actually perform anything on all the features. Connecting 

all features in concatenation did not help at all to improve results. 

3. Average: 

Averaging is the more efficient way to connect all the concatenated output. 

Averaging all the layers definitely consider all the output feature maps and combine 

together. It helped to keep the dimension of the feature remaining the same and 

consider all the inputs at the same time. Keeping the same number of parameters 

and with more feature information, averaging all the outputs really worked well to 

intact all the features and predict really well on the unknown dataset. 

We implemented this idea in one of the competitions named EmotioNet challenge 

which is based on EmotioNet dataset. 

 EmotioNet Challenge [28] 

EmotionNet challenge is based on the facial action unit detection. This challenge 

requires the identification of 12 action units (AUs). The AUs included in the challenge 

are: 1, 2, 4, 5, 6, 9, 12, 17, 20, 25, 26, 43. 

 Training data:  

The EmotioNet database includes 950,000 images with annotated AUs. These 

were annotated with the algorithm described [29]. This dataset is used for training 

and validation datasets. For the Verification phase we got access to a server where 

we can implement our trained model on the unknown dataset. 
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 Challenge Phase: 

In the challenge phase, Participants connected to the server one final time to complete 

the final test on the test dataset. The test dataset used in this phase is different than 

the one in the verification phase. The results of this phase will be used to compute the 

final scores of the challenge. 

 Evaluation:  

Identification accuracy of AUs measured using two criteria – accuracy and F-

scores. These are the two evaluation metrics we used to test my algorithm in this 

thesis. The best Algorithms determined will then be classified based on the mean of 

the recognition of all AUs. Formally, these criteria are defined as follows. We 

finished 6th in this competition amongst all participants. The performance of my 

algorithm based on evaluation metrics is as follows: 

http://cbcsl.ece.ohio-state.edu/EmotionNetChallenge/index.html#2018results 

    Let’s discuss our approach to solve this multi label classification problem. 

 Approach to solve multi label problem 

Focusing on our Problem Statement, AU detection considered a multi-label 

classification problem. The images in EmotioNet dataset are labeled for 12 Action Units. 

12 Action units are as follows: 1, 2, 4, 5, 6, 9, 12, 17, 20, 25, 26, and 43. Framework. 

http://cbcsl.ece.ohio-state.edu/EmotionNetChallenge/index.html#2018results
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Since we have a dataset with labeled data and we know which action units to 

determine amongst all, we chose Supervised Learning method to train the model and detect 

the AU’s. Convolutional neural network is the most popular ANN for analyzing the images. 

Images can be classified with the help of a Convolutional layer consisting of filters which 

helps to detect patterns from the images. My proposed framework is shown in Figure 3-2. 

The overall procedure is composed of three steps. 

 

Figure 3-2: Framework for the classification 

 Pre-Processing   

The images from ‘EmotiNet’ are of different sizes. There are a total of 950,000 

images. It is important to pre-processed images before training the model on them. To 

detect AU labels, the important features are on the face and other details are redundant. 

There are a number of Pre- processing methods we can carry out to improve the data and 

we have applied few of those which are as follows: 

3.5.1.1  Image Cropping 

Object Detection using Haar feature-based cascade classifiers is an effective object 

detection method we used for image cropping [30]. 
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Here we worked with face detection using Haar Cascade classifier where features 

of face region extracted from non-face region. To detect face regions, features are grouped 

into different stages of classifier and applied it one by one. While checking the face region, 

if a window fails the first stage of classifier, discard it. If it passes the first stage, apply the 

second stage of features and continue the process. The window which passes all stages is 

considered the Face region. I applied this algorithm to all the images and got nice face 

detected images to process further. 

3.5.1.2  Image Scaling 

Once we have cropped images detecting faces, image scaling is the next important 

step. To normalize the data, all the pixel values should be converted from [0,255] to [0,1]. 

To achieve this all the pixel values are divided by 255, where 255 is the scaling factor to 

convert pixels to [0,1]. 

3.5.1.3  Mean of input data 

Mean of input data is calculated to normalize data in general where mean image 

obtained by taking the mean values for each pixel across all training examples. Observing 

this could give us insight into some underlying structure in the images.   

3.5.1.4  Normalizing image inputs 

Data normalization is an important step which ensures that all the pixels have a 

similar data distribution. This makes training the network with all data faster. Data 

normalization is done by subtracting the mean from each pixel and then dividing the result 
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by the standard deviation. After Scaling and normalizing the images, all the data feeds into 

convolutional neural networks as an input. 

 Modified DenseNet 

Convolutional neural network is the classic approach we acquire to Classify 12 

Action units by training all the image inputs. The Modified DenseNet classifier mentioned 

in our thesis is used to train the input images. Modified DenseNet is developed from 

Transfer Learning the DenseNet model which is the baseline model and motivation for the 

proposed method. The architecture of the Modified DenseNet is as shown in Figure 3-3. 

 

Figure 3-3: Block Diagram of Modified DenseNet Model 
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It is a popular approach in deep learning where pre-trained models are used as the 

starting point in computer vision. In transfer learning, we first train a base network on a 

base dataset, and then we reintroduce the learned features or transfer them to a second 

target network to be trained on a target dataset and task [31]. This process will tend to work 

if the features are general, meaning suitable to both base and target tasks, instead of specific 

to the base task. 

● Pre-trained Model Approach 

1. Select Source Model.  

A pre-trained DenseNet model is chosen from available models. We applied 

other models like VGG16, ResNet, Inception-ResNet and Ensemble of both, but 

the DenseNet model gave the best result.   

2. Reuse Model 

The DenseNet pre-trained model used as the starting point for a model on 

the second task of interest.  

DenseNet Layers:    

Traditional feed-forward neural networks connect the output of the layer to 

the next layer after applying a composite of operations. 

DenseBlocks, where the dimensions of the feature maps remain constant 

within a block, but the number of filters changes between them. These layers 

between them are called Transition Layers. They take care of the downsampling by 

applying batch normalization, a 1x1 convolution and a 2x2 pooling layers. 
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3. Modify Model 

To modify the given DenseNet pre-trained model, we used Keras 

Functional model to add new layers and define my proposed model [32]. 

 Keras Functional Models 

Models are defined by creating instances of layers and connecting them 

directly to each other in pairs, then defining a Model that specifies the layers to act 

as the input and output to the model. 

A. Defining Input 

Unlike the Sequential model, we created and define a standalone Input layer 

that specifies the shape of input data. The input layer takes a shape argument that 

is a tuple that indicates the dimensionality of the input data. Since DenseNet is our 

baseline model which accepts input, we reshaped all the images to 224×224×3 

which is the shape of the DenseNet input data.  

B. Connecting Layers  

           This is done by specifying where the input comes from when defining each 

new layer. The idea of taking the average of each dense layer is implemented by 

pulling out the Output of two concatenated dense layers and taking the average of 

them. Since the shape of each output of the dense layer is different, it is difficult 

to just add and take average of them. We had to apply transition layers to adapt to 

one shape for all the output and then add them to take average. Transition layer 

contains the same layers as it was in DenseNet which includes applying batch 
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normalization, a 1x1 convolution and a 2x2 pooling layer. Dense layer of 12 

outputs is added in the end since we have to classify 12 AU’s. 

C. Creating the Model 

We define the model by creating all of the model layers and connecting 

them together. Keras provides a Model class that you can use to create a model 

from your created layers. It requires only specific input and output layers.  

After creating the functional model, all the images are trained with Modified 

DenseNet model which gives rise to the probabilities for the 12 respective AU’s. 

The Architecture of Modified DenseNet is shown in Table 3-1. 

Layers Output Size Modified DenseNet 

Convolution 112×112 7×7 conv, stride 2 

Pooling 56×56 3×3 max pool, stride 2 

Dense Block 

(1) 

56×56 [1×1 conv, 

3×3 conv]×6 

Transition Layer 

(1) 

56×56  

1×1 conv 

28×28 2×2 average pool, stride 2 

Dense Block 

(2) 

28×28 [1×1 conv, 

3×3 conv]×12 
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Transition Layer 

(2) 

28×28 1×1 conv 

14×14 2×2 average pool, stride 2 

Dense Block 

(3) 

14×14 [1×1 conv, 

3×3 conv]×32 

Transition Layer 

(3) 

14×14 1×1 conv 

7×7 2×2 average pool, stride 2 

Dense Block 

(4) 

7×7 [1×1 conv, 

3×3 conv]×32 

Average of 

concatenation 

layer from Dense 

Block (1), (2), (3) 

& (4) 

(FC-128) [1×1 average pooling, 

BatchNormalization 

Activation (Relu) 

]×4 

Classification 

Layer 

(FC-12) 12 classes, sigmoid 

Table 3-1: Architecture of Modified DenseNet 
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 Threshold Selection 

Once we get the probabilities for each class from the classifier, the important task 

remains to select the threshold. Selection of threshold is important since it will decide 

which label should be 1 0r 0. 

In Keras library, for binary classification, 0.5 is the threshold to decide the label. If 

the probabilities are above 0.5, label set to 1 and for the probabilities below 0.5, label set 

to 0. Since we are dealing with multi class labels, we cannot just set 0.5 as the threshold 

for all the classes. We need to consider all the possibilities between 0 and 1. 

The Matthew correlation coefficient is used to achieve this as a measure of the 

multiclass classifications [33]. Matthew correlation coefficient takes into account true and 

false positives and negatives and is generally regarded as a balanced measure which can 

be used even if the classes are of very different sizes. MCC treats the actual class and the 

predicted class as two different variables and computes their correlation coefficient. The 

higher the correlation between actual and predicted values, the better the prediction. 

Formula use for computation is as follows: 

MCC = 
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
                   (14)   

The MCC is a correlation coefficient value between -1 and +1. A coefficient of +1 

represents a perfect prediction, 0 an average random prediction and -1 an inverse 

prediction. MCC is useful to check the correlation between predicted label and actual label. 
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To set the threshold, we consider all the probabilities between 0 and 1 in the interval 

of 0.1 and set the best threshold (probability) for a particular action unit where MCC is 

close to +1(high). Best threshold achieved can be used for the prediction of the test images. 

Classification on the test image dataset is explored in the experiment below. 
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CHAPTER 4: EXPERIMENTS 

 Dataset 

The EmotioNet database includes 950,000 images with annotated AUs. This dataset 

has been used to successfully train a variety of classifiers, including several deep networks.   

 Dataset Split 

We split our dataset in 3 parts. 60% of the data is for training where we can run our 

Modified DenseNet model. 20% validation data where we can validate our trained model 

and the remaining 20% of data is for testing the model which states that how good our 

model is doing on unseen data. We used HDF5 file format to split and store data separately 

so that we can easily read this while doing a particular task [34]. 

 Model Framework 

         There are many high level API’s for building neural network models. We used 

Keras Library with Tensorflow as a back-end (neural network computation engine) for 

several reasons like it is user friendly, easy to learn and most importantly, it is easy for 

model building and deployment of the model.
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Since there are around 1 millions of images to process, train, manipulate and store 

somewhere, we used ‘HDF5 library’ to deal with the large amount of data. The h5py 

package is a Pythonic interface to the HDF5 binary data format that helped us to 

preprocessed our data and save by making hdf5 file which can be read again easily. Since 

Keras is pretty much flexible with Hdf5, it was easy to save and load the models we created 

for training and testing the data. 

 Pre-Processing 

With the URL’s given, we downloaded all the images. Since we have different 

multi labels corresponding to each image, it was important to make sure that downloaded 

images are linked with the corresponding labels where HDF5 library came in the picture. 

With hdf5 file format it was easy to create dataset with the labels.  

We pre-processed all the images by extracting facial landmarks using Haar Feature-

based Cascade Classifiers. Face detection is the key part to avoid other unnecessary 

features using OpenCV library. Tracked faces were registered in hdf5 file after randomly 

cropped into 255×255 with 224×224 face images, as most neural networks acquire 

224×224 inputs to the model. Once we got the images, we applied scaling and 

normalization methods to make sure we will get good results with our training process. 
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Figure 4-1: Preprocessing using Haar Cascade  (Source: Krasserm) 

These images then converted into numpy arrays. To normalize these images, the 

Mean subtraction method applied. The reason behind this is because in the process of 

training our network, we're going to be multiplying (weights) and adding to (biases) these 

initial inputs in order to cause activations that we then backpropagate with the gradients to 

train the model. We'd like in this process for each feature to have a similar range so that 

our gradients don't go out of control. 

 Network Setting and Training [35] 

 Data and Batchsize 

On EmotioNet dataset, we train Modified DensNet model using batch size 32 for 

10000 images respectively. Training of 1 million images is impossible at a time for 20 

epochs because of the limited GPU space; we trained 10000 Images at a time with the batch 

size of 32. All input data is preprocessed to the same shape (224*224*3) which is the 

requirement of almost all the CNN models. 
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 Activation function and Loss function 

As we discussed before, activation function introduces non linearity into the model, 

we are using Sigmoid function for the last dense layer of this multilabel classification. 

Multilabel classification is done when your model needs to predict multiple classes as the 

output. For example, let’s say you are training a neural network to predict the ingredients 

present in a picture of some food. There will be multiple ingredients we need to predict so 

there will be multiple 1’s in Y. 

For this we can’t use softmax because softmax will always force only one class to 

become 1 and other classes to become 0. So instead we can simply keep sigmoid on all the 

output node values since we are trying to predict each class’s individual probability. With 

the sigmoid activation function at the output layer neural network models the probability 

of a class cj as a Bernoulli distribution. 

P(cj|xi) = 
1

1+𝑒𝑥𝑝 (−𝑧𝑗)
                                             (15) 

Now the probabilities of each class are independent from the other class 

probabilities. So we can select a threshold for each AU and can determine the AU is present 

or not. To make this work in Keras we need to compile the model. An important choice to 

make is the loss function. We use the binary cross entropy loss to penalize each output 

node independently, So that the output of the network will be independent Bernoulli 

distributions per label. 
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 Learning Methods and Learning rate 

Adam is an optimization algorithm that we used instead of the classical stochastic 

gradient descent algorithm since it is Straightforward to implement and well suited for 

our problem which consists of large data.  After experimenting with different learning 

rates, we fixed to 0.001 considering the change in the accuracy and overfitting problem. 

 Dropout 

To avoid overfitting, we used one of the regularization techniques called Dropout 

where single model can be used to simulate having a large number of different network 

architectures by randomly dropping out neurons during training. We set dropout 

hyperparameter to 0.5 to achieve best results for such a large dataset. 

 Number of Layers 

We used a pre-trained densenet model of 169 layers which consist of 4 

convolutional blocks. After modifying the network with the proposed idea, the number of 

layers goes to 175 considering dropout layer. 

 Number of Epochs 

Number of Epochs cannot be fixed and cannot be determined without running the 

experiment. We ran different numbers of epochs starting with 10, 15, 20 and 30. We fixed 

with 20 epochs considering all the factors like accuracy, overfitting and time complexity. 
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To summarize everything, Model is compiled with 0.001 learning rate and binary 

cross entropy loss function. After training and testing, keeping in mind about overfitting 

and underfitting decided to keep the last 30 layers trainable [36]. Model checkpoint used 

to save the information about the weights for particular experiments and find out the best 

weights for the greater accuracy on validation data. All the networks are trained using 

Adam optimizer and sigmoid activation function. 

 Threshold Selection 

After training all the images, prediction probabilities for each action unit are 

received. Best threshold can be achieved using MCC by finding the correlation between 

label probabilities and actual labels. 

 Evaluation 

            Identification accuracy of AUs measured using two criteria – accuracy and F-scores 

[20]. Accuracy is a measurement of closeness to the true value. We have computed 

accuracy for each AU and Average accuracy is calculated by averaging all the single AU 

accuracies. 

accuracyi =  
∑𝑖 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+ ∑𝑖 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

∑𝑖 𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
         (16)  

Where true positives are AUi instances correctly identified in the test images, true 

negatives are images correctly labeled as not having AUi active/present and the total 

population is the total number of test images. 
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The mean accuracy is  

Accuracy =  𝑚−1 ∑𝑖 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦                             (17) 

The standard deviation is  

𝜎2 = 𝑚−1[(∑𝑖 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦) − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦]2            (18) 

where m is the number of AUs. 

F-scores can be provided by each AU before computing the mean and standard deviation. 

The F-score of AUi is given by 

Fβi = (1 + β2) 
∑𝑖 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 .∑𝑖 𝑟𝑒𝑐𝑎𝑙𝑙

𝛽.𝛽 ∑𝑖 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ ∑𝑖 𝑟𝑒𝑐𝑎𝑙𝑙
                     (19) 

Where Precisioni is the fraction of AUi is correctly identified, Recalli is the number 

of correct recognitions of AUi over the actual number of images with AUi active, 

and β defines the relative importance of precision over recall.  

Labels of test data are predicted with the model we trained on the training data. The 

trained model is loaded again to predict probabilities for each action unit of the test images. 

These predicted probabilities then set to 1 or 0 by comparing the best threshold we got 

from Matthew correlation coefficient. The result we got with the Modified DenseNet model 

is best amongst all other state of the art models. 

 Testing the data 

Labels of test data are predicted with the model we trained on the training data. The 

trained model is loaded again to predict probabilities for each action unit of the images 

[37]. These predicted probabilities then set to 1 or 0 by comparing the best threshold we 
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got from Matthew Correlation Coefficient. The result we got with the Modified DenseNet 

model is best amongst all other state of the art models. 
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CHAPTER 5: RESULTS AND DISCUSSION 

F1 score is used as the primary criteria alongside average mean to evaluate large 

EmotioNet dataset. Moreover, as we were exploring which CNN structure performs the 

best for these 12 action units in the EmotioNet dataset, the F1 score and average mean of 

each action units are averaged. The averaged F1 score and classification rate are the final 

metrics to evaluate a certain pre-trained network and my proposed method.  

Final Metric = 0.5(accuracy + F1)                     (20) 

We evaluate VGG16, Resnet, Inception Resnet, DenseNet, Ensembling Methods, 

Modified DenseNet with different loss functions, activation function, dropout and other 

factors. In the end we fixed on one framework for all the pretrained models after trying and 

testing to ensure a fair comparison between all pretrained models and our proposed model. 

We simply replace the training models keeping all the experiment settings exactly the same 

for all. All the models accept 224×224 input images. 

 VGG16 

 VGG16 model is the first experiment on Emotionet dataset we performed which 

gave decent results and gave me the idea of till what accuracy we can reach with this 

framework of fixed parameters. 
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VGG16 consists of 16 weight layers in the network. The width of the conv. layers 

(the number of channels) is rather small, starting from 64 in the first layer and then i

Increasing by a factor of 2 after each max-pooling layer, until it reaches 512. Three 

fully connected layers are added with the last sigmoid layer give us the probabilities for 12 

AU’s.  

With VGG16, we got mean accuracy of 83 and F1 accuracy as 22.96. We accounted 

for a few problems like vanishing gradient problem, so we move forward with another 

model. 

 ResNet 

             ResNet 3×3 filters, Down-sampling with CNN layers with stride of 2, Global 

average pooling layer and a 1000-way fully-connected layer with Sigmoid in the end. We 

have not got any better results with ResNet as we got almost similar accuracy which is 

VGG16 has. The problems we figure out with ResNet are lots of parameters to train and 

gradient vanishing problem. 

 DenseNet 

             DenseNet consists of Dense Blocks, where the dimensions of the feature maps 

remain constant within a block, but the number of filters changes between them. Layers 

between them are called Transition Layers and take care of the downsampling applying 

batch normalization, a 1x1 convolution and a 2x2 pooling layer. With DenseNet accuracy 

increased to 85.5% mean accuracy with 33% F1 accuracy which was really impressive as 
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compared to the previous results. With improved results we decided to modify the 

DenseNet layer to improve accuracy further. 

 Ensembling Methods 

In the Ensembling method, we averaged DenseNet model with ResNet model. The 

accuracy improved but the model was overfitting due to which it performed poorly on test 

data. Too many parameters result in overfitting the model on training data. 

 

 

 

 

AU DenseNet Modified DenseNet 

1 83.9 86.2 

2 86.2 90.2 

4 82.3 83.9 

5 86.3 89.9 

6 77.5 77.8 

9 91.6 94.7 

12 80.2 79.6 

17 89.5 92.6 

20 99 99.1 

25 79.3 80.5 

26 72.7 74.9 

43 98.2 98.2 

Table 5-1: Accuracy for each action units (Accuracy on the test data) 
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 Modified DenseNet 

Proposed model is developed by taking the entire concatenated layer which consists 

of features and we took the average of them. Modified Densenet model really worked well 

giving 87.5% mean accuracy with 36% F1 accuracy. This is the best accuracy we got on 

EmotioNet dataset after trying other pre-trained models.  Comparison between DenseNet 

and Modified DenseNet AU wise is explained in Table 5-1. 
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CHAPTER 6: CONCLUSION AND FUTURE WORK 

This project focused on detection of occurrence of each AU among the 12 AUs in 

the EmotioNet dataset using transfer learning. Feature extraction is conducted using a wide 

variety of models including VGG-16, ResNet-50, DenseNet, Ensembling of models and 

modified DenseNet model. Based on these CNN performances, the Modified DenseNet 

model really works well amongst all and gives the best probabilities for each AU’s. With 

the best threshold calculated using MCC, we receive good accuracy on test data which is 

around 87.5. Final result of the evaluation metrics on DenseNet and Modified DenseNet is 

mentioned in Table 6-1.  

A proposed extension of this project is to investigate pre-processing of Images. 

Images can be processed based on regions which depend on AU’s needs to detect. Divide 

images into regions of AU present and feed into modified DenseNet model [38] [39]. 

Region based processing carried out considering AU’s where Each AU represents 

a basic facial movement or expression change. Every facial action units depicts different 

movement in the facial feature such as eyebrows lower, cheek raiser, chin raiser and lip 

tighter, etc. Different emotions represent a combination of AU’s. So for the different 

images we select different regions representing action units and then crop it before feeding 

into the model. Cropping the images through preprocessing will give more attention to the 

features which are representing these actual action units. Result of which, we will update 



69 
 

the weights of the network accordingly so that it gets easier for the predictions on test data. 

This preprocessing will surely help to improve the detection of action units. 

LSTM layer can be added and train the model on a dataset consisting of images in 

sequence. Using LSTM layers, the images in sequence which are feeding to the network 

can be compared to see the changes in the features of the images as well as the labels. 

Comparing labels of different images, we can get the correlation between different action 

units so that when we are testing the unknown images, we can give attention to the group 

of different action units which show those respective features [40]. 

Training more datasets can improve the results acquired from the single dataset. 

Here we just used EmotioNet dataset. We can train with more dataset to improve the 

weights and therefore prediction of the network. 

 

Metrics DenseNet Modified DenseNet 

Mean 

Accuracy 

85.5 87.5 

F1 33 36.7 

Table 6-1: Evaluation of models based on the metrics (Mean accuracy calculated by 

taking average of individual AU and F1 by using listed formula) 
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