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Abstract

An increased usage in IoT devices across the globe has posed a threat to the power grid. When
an attacker has access to multiple IoT devices within the same geographical location, they can
possibly disrupt the power grid by regulating a botnet of high-wattage IoT devices. Based on the
time and situation of the attack, an adversary needs access to a fixed number of IoT devices to
synchronously switch on/off all of them, resulting in an imbalance between the supply and demand.
When the frequency of the power generators drops below a threshold value, it can lead to the
generators tripping and potentially failing. Attacks such as these can cause an imbalance in the grid
frequency, line failures and cascades, can disrupt a black start or increase the operating cost. The
challenge lies in early detection of abnormal demand peaks in a large section of the power grid from
the power operator’s side, as it only takes seconds to cause a generator failure before any action
could be taken.

Anomaly detection comes handy to flag the power operator of an anomalous behavior while such
an attack is taking place. However, it is difficult to detect anomalies especially when such attacks
are taking place obscurely and for prolonged time periods. With this motive, we compare different
anomaly detection systems in terms of detecting these anomalies collectively. We generate attack
data using real-world power consumption data across multiple apartments to assess the performance
of various prediction-based detection techniques as well as commercial detection applications and
observe the cases when the attacks were not detected. Using static thresholds for the detection
process does not reliably detect attacks when they are performed in different times of the year and
also lets the attacker exploit the system to create the attack obscurely. To combat the effects of
using static thresholds, we propose a novel dynamic thresholding mechanism, which improves the
attack detection reaching up to 100% detection rate, when used with prediction-based anomaly score

techniques.
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Chapter 1

Introduction

The Internet of Things (IoT) allows devices to connect and communicate to each other with the
presence of the Internet. There has been an increase in the number of IoT devices connected to the
internet every year. According to a forecast by the International Data Corporation, there will be
upwards of 40 billion connected IoT devices, generating 79.4 zettabytes of data in 2025 [25]. This
will include the fastest growth in industrial and automotive equipment, strong adoption in smart
home and wearable devices, and a rapid growth in video surveillance. At the same time, although
an individual IoT device has low power consumption, the sheer number of active devices at a time,
and the necessary data centers to support them, will increase the rate of energy consumption [27].
In addition, IoT security, privacy, cost and regulation remains some of the most pressing concerns
of enterprises [13].

The Open Web Application Security Project’s (OWASP) Internet of Things project highlights
the top ten threats looming around IoT devices!. These include weak, guessable or hardcoded pass-
words, insecure network services, insecure ecosystem interfaces, lack of secure update mechanisms,
use of insecure or outdated components, insufficient privacy protection, insecure data transfers and
storage, lack of device management, insecure default settings, and lack of physical hardening. The
security risks in IoT devices have been converted over the years to many attacks, including the
2016 Mirai Botnet attack on the Dyn DNS provider that lead to a disruption of the Internet, the

2019 demonstration of hackable cardiac devices (deplete battery or administer incorrect pace), home

Lhttps://owasp.org/www-project-internet-of-things/



surveillance camera hacks that allow anyone to view cameras, taking control of a Jeep SUV using
the vehicle’s controller area network bus, or the 2016 taking down of a central heating system in two
housing blocks in Finland.

With the many security risks that IoT imposes, there is a threat to the power grid as well,
when these devices are breached and manipulated by an adversary. This category of attacks where
IoT devices are controlled by an attacker with the goal of affecting the power grid was discussed
by Soltan et al. and termed as Manipulation of Demand via IoT devices (MadloT) attacks [42].
When an attacker has access to high-wattage IoT devices, they can synchronously switch on/off
these devices at the same time such that it causes sudden increase or decrease in electricity demand.
Such attacks may have adverse effects on the power grid leading to line failures and damage of power
generators. Real-time detection of IoT attacks targeted to disrupt the power grid is an area that has
less research performed. This thesis aims to explore various anomaly detection methods to detect
these attacks during their preliminary stages. Early detection of these attacks will help the power
grid operator in taking necessary action to combat any resultant effects, one of which can be a black
out.

Anomaly detection has gained lot of attention during the recent years because of the need to
process big data in real time. It is humanly impossible to go through enormous amounts of data
in search of anomalous situations. There has been many anomaly detection techniques proposed by
researchers in different application domains. However, anomaly detection at a grid level is an area
that has been less explored and with this thesis, we would like to compare different techniques as well
as commercial methods and provide a list of situations that these methods are not able to detect in
an attack. A specific class of detection techniques, referred to as threshold-based anomaly detection
techniques, require setting a numeric threshold parameter that demarcates the boundary between
anomalous and normal events in time. While a threshold based anomaly detection technique may be
easier to set up, the primary research question we explore in this thesis is whether it leaves avenues for
an attacker to inject higher usages without getting noticed. In fact, since statistical learning methods
aim to not overfit a model to the training data, there remains the possibility for an attacker to exploit
a model to work within its learned parameters and still inflict damage. In scenarios with time-series
data where data points dynamically change over time, a method’s tendency to adjust to changes in
patterns can also create room for an attacker to change a model’s understanding of normal behavior.

By exploiting a threshold based anomaly detection system, we generate attacks that conforms to



the behavior of MadloT attacks using real-world power consumption data consisting of more than
hundred apartments’ consumption at a minute level.

Based on the observations of the performance of different techniques, we propose a dynamic
thresholding mechanism based on a spring system that aims to detect anomalies which other thresh-
olding mechanisms fail to detect. This approach has provided encouraging results by detecting 100%
of attack situations in some cases. This thresholding mechanism is aimed to detect situations that

are similar to the behavior of attacks that involve manipulation of IoT devices.

1.1 Thesis Contributions

This thesis exposes the performance of various anomaly detection and commercial methods in
detecting attacks that affect the power grid by manipulation of the demand from IoT devices. The

principal contributions of this thesis are:

e Generation of a set of demand manipulation attacks to demonstrate gaps in detection tech-
niques that rely on static anomaly thresholds, irrespective of their reliance on daily, weekly,

monthly or seasonal patterns;

e Extensive comparative evaluation of multiple anomaly detection methods, including five com-
mercially used applications, in terms of their ability to detect our demand manipulation at-

tacks; and

e A novel dynamic thresholding mechanism to augment threshold-based detection methods and

improve their detection capabilities.

1.2 Thesis Outline

The chapters in this thesis are organized as follows:

e Related Work: We discuss previous works in the field of anomaly detection in various ap-
plication domains, including the power consumption domain. We also discuss research work

performed in dynamic thresholding and collective anomaly detection.

e Background: This chapter covers description of the background to understand the working of

a power grid, MadloT attacks, anomaly detection and time series methods.



Attack Generation: This chapter discusses the data set we use for attacks and the attack

generation process.

Attack Performance and Evaluation: This chapter discusses the results of performance of the
attacks in various anomaly detection systems with different thresholds, as well as in commercial

methods.

Dynamic Thresholding: In this chapter, we provide insights on when an attack was not detected
by a method and form a list of expectations of a thresholding mechanism. Then, we propose

our dynamic threshold mechanism and show the results of using this mechanism.

Conclusion and Future Work: This chapter summarizes the contributions of the work in the
thesis and briefly discusses the different directions that can be explored for better detection of

MadlIoT attacks.



Chapter 2

Related Work

In this chapter, we will discuss the related work which is categorized into anomaly detection,
anomaly detection in power grid specifically, anomaly detection using dynamic thresholding and

collective anomaly detection.

2.1 Anomaly Detection in various Application Domains

Varun et al. provide a structured and comprehensive survey of the research on anomaly detection
[8]. They have grouped anomaly detection techniques into various categories based on the underlying
theory of each technique. Additionally, they also provide computational complexities, advantages
and disadvantages for each of the existing techniques. A similar survey has been done by Hodge and
Austin where they provide various anomaly detection techniques in machine learning and statistical
domains [17]. A survey on real-time big data processing for anomaly detection was performed by
Habeeb et al. in the domain of network security [5].

There has been many anomaly detection techniques proposed by researchers that apply for
specific application domains using graph techniques. An extensive survey on graph based anomaly
detection techniques was performed by Akoglu et al. highlighting the effectiveness, scalability,
generality and robustness of various techniques [3]. They also present many real-world applications
of graph-based anomaly detection encouraging the usage of graph-based tools for visualization,
monitoring and detection of anomalies. Ranshous et al. also provide a comprehensive overview

of anomaly detection in graphs, specifically for dynamic networks which are constantly changing



in terms of their structure and attributes [35]. For example, insertion and deletion of vertices
or edges in a network causes a change in the structure. Similarly, Verdoja and Grangetto used
novel graph-based solution for anomaly detection in images using a Laplacian model of the image’s
background [44]. They have claimed to have outperformed other benchmark methods in image
anomaly detection by performing experiments on hyperspectral and medical images. GraphBad is a
graph-based analysis tool proposed by Parkinson et al. which aims to analyze security configuration
data, identify anomalies that could lead to potential security risks and suggest appropriate mitigation
plans [32].

There are several anomaly detection methods that are based on neural networks. Zhou et al.
use spacial-temporal Convolutional Neural Networks (CNN) for detection of anomalous behavior in
video sequences of crowded scenes [50]. Using CNN, they are able to extract appearance and motion
information encoded in continuous frames of the video. Murugan et al. also used Region based
Scalable CNN (RS-CNN) for faster identification of different sizes of anomalies in pedestrian walk-
ways [28]. They have compared the performance of RS-CNN with several state-of-the-art detection
techniques and found RS-CNN to be faster and efficient in detection.

Zhao et al. provide a correlation-based anomaly detection method which detects anomalies based
on the correlations between sensors [48]. This technique is used for predicting failures effectively
earlier and reduce the cost of downtime and maintenance.

These are some of the various application domains explored by different researchers including
networks and computer vision. In the next section, we will go through contributions done in the

power grid domain.

2.2 Anomaly Detection in Power Grid

In this section, we will discuss related work in the same application domain as this thesis.
Sisworahardjo and Saad have performed a spatio-temporal context anomaly detection, where they
presented a contextual anomaly detection algorithm to detect irregular power consumption using a
normalized anomaly score [40]. This score calculation is based on historical consumption data and
is adjusted based on contextual variables like season or historical consumption patterns. Ouyang et
al. proposed a three stage multi-view stacking ensemble (TMSE), which is a machine learning model

based on hierarchical time series feature extraction (HTSF) methods [30]. This anomaly detection



algorithm is focused on accurate extraction of summary features, shift features, transform features
and decompose features of the time series power consumption data, which aids in better detection
of anomalies in consumption.

Anomaly detection in commercial buildings using a novel unsupervised anomaly detection al-
gorithm and anomaly scores was provided by Janetzko et al., where they focus on visual analytics
for anomaly detection in power consumption data [21]. Chahla et al. have explored the deep
learning approach to anomaly detection and prediction of power consumption which allows offline
and real-time detection of anomalies [7]. They proposed a novel unsupervised approach combining
clustering-based methods with prediction-based methods to learn typical behavior scenarios and to
predict consumption for the next hour. These scenarios are learned by using the K-means algorithm
and the prediction of the next hour is given using Long Short-Term Memory (LSTM). The predic-
tion value along with some recent historical values are compared as a group to the learned typical
scenarios to detect the anomalies.

Shouyu et al. proposed a tree-based algorithm for computing anomaly scores and use K-means
to cluster these anomaly scores and categorize them based on the alert type [39]. This research was
conducted for power grid dispatching which involves guaranteed power production and providing
end users with reliable power supply. Passerini et al. used the data from the underlying smart grid
network to detect anomalies that occur in the power distribution grid [33]. They used the data
coming from power line modems for monitoring and detecting the anomalies by estimating various
grid parameters. A similar work was done by Jamei et al. where they monitor the distribution
grid using microphasor measurement unit (¢PMU) devices for detecting anomalous behavior in a
controlled perimeter of the grid [20]. These devices are used for estimating the the magnitude and
phase angle of an electrical phasor quantity like voltage or current in the electricity grid. They
use the mean values of the quantities which ideally change smoothly over time, and if there are
high variations in the mean, they categorize that as an anomaly. We use a similar technique in
the dynamic thresholding section of our thesis where we observe the coefficients of variation of the
anomaly score we calculate to find an anomalous point.

An anomaly detection algorithm to detect anomalous behavior in power grid substations was
proposed by Hong et al. [18] where they used algorithms for detecting temporal anomalies in the
substation facilities like intrusion attempts, change of file system, change of system’s status, etc.

and detecting the anomalies by observing network messages and filtering Generic Object Oriented



Substation Event (GOOSE) and Sampled Measured Value (SMV) protocol-based messages. Yang
et al. proposed an anomaly detection algorithm with a similar goal of finding anomalies in Substa-
tion Communication Network (SCN) [46]. They use a fractional autoregressive integrated moving
average (FARIMA) based threshold model to detect anomalies in the SCN traffic flow. A similar
technique was used by Elbez et al. where they aim to detect Denial of Service (DoS) attacks us-
ing Autoregressive Fractionally Integrated Moving Average (ARFIMA) model where they aim to
use GOOSE communication in the substation network to monitor and detect anomalies based on a
statistical approach [12].

Moghaddass and Wang use large scale smart meter data collected at consumers’ premises to
build a real-time anomaly detection model for detecting abnormal conditions at both lateral and
consumer levels [26]. They provide a parameter estimation method for model training and use that
as the basis for anomaly detection. Karimipour et al. proposed an unsupervised anomaly detection
scheme based on statistical correlation between various grid parameters which aims to recognize
False Data Injection (FDI) attacks [23]. This recognizes the behavioral patterns using historical
measurements of the data and captures the dependencies between variables.

Cui and Wang proposed an anomaly detection system which is a hybrid model that combines
polynomial regression and Gaussian distribution to detect anomalies in school electricity consump-
tion data [10]. Weng et al. provide a multi agent based unsupervised anomaly detection on smart
campuses by using ensemble methods for labeling data and deep learning techniques for detecting
anomalies in an unsupervised fashion [45].

Serrano-Guerrero et al. focused on time series treatment and they proposed a novel Season-
ality Analysis of Electricity Consumption (SAEC) method for handing the time series components
accurately [38]. Then, they use a novel SAICC (statistical assessment for identifying changes in con-
sumption) methodology for presenting an index of change that quantifies and catalogs the anomalies
in the consumption data profiles.

An anomaly detection technique for electricity consumption in smart grids was proposed by Li
et al. where they collect consumption data continuously from smart meters and use a data mining
algorithm to divide the incoming data into classes namely working day, holiday and outlier classes
[24]. Then, it is checked whether the consumption falls in the normal range and flagged as an
anomaly based on various contexts such as anomalous behavior of single sensor or multiple sensors,

etc.



2.3 Anomaly Detection with Dynamic Thresholding

Haque et al. use dynamic thresholding for flagging anomalies in sensor behavior in wireless
sensor network in healthcare [16]. They predict a sensor value from historic values and find a distance
metric between the actual and predicted value. This metric is then compared to a threshold which
is dynamically adjusted by finding the standard deviation of a certain window of historic data that
allows an upper and lower bounds to be set for an anomaly score. A similar dynamic thresholding
mechanism based on mean and standard deviation was proposed by Salem et al. aiming to detect
anomalies in wireless sensor networks for reliable healthcare monitoring [37].

Bezerra and Wainer proposed a dynamic thresholding algorithm for anomaly detection in logs
of process aware systems [6]. This thresholding technique is a formula that is based on the mean
and standard deviation of the observed historic samples. David and Thomas used a sliding window
approach to calculate the mean and variance which is used for determining the threshold at a point
in time dynamically for detecting Distributed Denial of Service (DDoS) flood attacks [11]. Poornima
and Paramasivan also use a mean and standard deviation based thresholding mechanism calculated
in sliding windows of size 40 time units for detecting anomalies in wireless sensor networks [34].

Yeung and Ding provide an intrusion detection system using dynamic and static behavioral
models [47]. They have modeled the dynamic approach based on hidden Markov models (HMM)
and the principle of maximum likelihood. Park et al. also use a varying log likelihood mechanism

for multimodal anomaly detection for assistive robots [31].

2.4 Collective Anomaly Detection

Ahmed and Mahmood provide a collective anomaly detection method which uses a partitional
clustering technique to detect anomalies based on empirical analysis of any type of attack targeting
networks [2]. They analyze network traffic patterns and detect anomalies based on a variation of K
means algorithm.

Zeng et al. quantify the anomaly based on a scoring method and use stream anomaly score
technique which is based on the variation of a data point when compared to its neighbors for finding
contextual and collective anomalies in streaming data [22]. Araya et al. also aim on detecting

contextual and collective anomalies based on a sliding window approach to determine the patterns



in the original data and comparing the pattern as a whole to a threshold value that is calculated
using mean square errors in that window [4].

A collective anomaly detection technique based on Long Short-Term Memory Recurrent Neural
Network (LSTM RNN) was proposed by Thi et al. where they detect collective anomalies based
on observing whether the prediction errors of recent observations are above a threshold value [29).
Fisch et al. proposed a linear time method for detecting point and collective anomalies which is
characterized by observing changes in mean, variance or both [14].

Zheng et al. proposed an anomaly detection algorithm for detecting collective anomalies in
spatio-temporal data across different application domains [49]. They use a Spatio-Temporal Likeli-
hood Ratio Test (ST LRT) model for detection of collective anomalies which learns an underlying
distribution for different datasets, and calculates an anomalous degree for each dataset based on a
likelihood ratio test (LRT).

Rossi et al. used a frequent mining and categorical clustering with a goodness of fit thresholding

mechanism to detect collective anomalies in streaming smart meter data [36].

2.5 Chapter Summary

In this chapter, we discussed related works in anomaly detection for various application domains
and specifically discussed about the research in power grid. There has been research performed in the
area of detecting anomalies at a grid level which is based on grid parameters like voltage, frequency
and current. However, there are very few works that explored the area of detecting anomalies
from a consumption perspective at a community scale by monitoring the wattage demand. There
are very few works related to collective anomaly detection in power consumption which motivated
us to explore this area. We conclude that there is a lack of research performed in detection of
attack scenarios caused due to the manipulation of IoT devices. Through this thesis, we propose an
anomaly detection model that can effectively detect point, contextual and collective anomalies along
with a dynamic thresholding mechanism. We also explore static thresholds and provide detailed
analysis and comparison of anomaly detection in power consumption data with static and dynamic

thresholds, as well as commercial methods.
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Chapter 3

Background

3.1 The Power Grid

The power grid is a complex and highly engineered network that coordinates between the gen-
eration and distribution of electricity to its customers. It comprises of four physical components-
generation, transmission, distribution and storage as shown in figure 3.1. The electric power is
produced at the generating station and is then transmitted through a high voltage transmission
network. From there, it is then distributed to the end users that can be industrial or residential
customers.

The rate at which the electricity is generated, transferred or consumed is measured with the
unit called watts. The amount of electric energy which is generated, transmitted or used over time
is measured as the number of watt-hours.

In the United States and other developed countries, electricity is generated instantaneously.
Thus, the electricity is produced on demand!. The amount of electricity which is consumed varies
and follows patterns throughout the day and year. The demand also changes regionally based on
each season of the year. There could be situations where weekly seasonality can be seen. For
example, commercial and industrial activities are usually less during weekends than weekdays. The
non-commercial and activities of individuals also changes based on the day of the week. However,
for the power grid to operate in a stable condition, it is required that there is a balance between
the power supply and demand. In order to maintain this balance, the power operators use historical

consumption data and weather data to predict the power demand in a timely manner. With these
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predictions, they will be able to allocate adequate resources needed for the generation of the expected

demand.
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765, 500, 345, 230 and 138 kV Lines
Subtransmission
Customer
/ | ] LL 26kV and 69kV
M b Primary Customer
||| eeeesl 13kv and 4kv
Generating Station ~ Generator Transmission Substation 0 Secon dary Customer
Step-Up Customer Step-Down [6 8]
Transformer 138KV or 230 kv Transformer [=n=] 120v.and 240V
Generation M Transmission Distribution B Customers

Figure 3.1: The power grid!

3.2 MadloT Attacks

The MadloT attack which is short for Manipulation of Demand via IoT is the term introduced
by Soltan et al. [42] in their paper published in 2018. They have briefly described how different
attacks can be possible in the power grid due to manipulation and control of various IoT devices by
synchronously switching them on and off. All the attacks lead to the disruption of the power grid.

They demonstrated attacks that can be broadly classified into one of the three types:

1. Attacks that result in frequency instability
2. Attacks that cause line failures and result in cascading failures

3. Attacks that increase operating costs

In order to simulate these attacks, MATPOWER and PowerWorld simulators were used by the
authors. MATPOWER is an open-source MATLAB library which is widely used for computing the
power flows in power grids. PowerWorld is an industrial-level software suite that is widely used by
the industry for frequency stability analysis of power systems [42]. The detailed description of the

attacks and the requirements for each successful attack is explained in the following sections.

Thttps://www.energy.gov/sites/prod /files/2015/09/f26 /QER_ AppendixC_ Electricity.pdf
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3.2.1 Attacks that result in Frequency Instability

Instability in a power grid can be caused by synchronously switching on or off many IoT devices
within a geographical location. This drastic change causes an imbalance between the supply and
demand. When the supply is greater than the demand, it causes a drop in the system frequency and
the demand being greater than the supply causes a rise in the system frequency. This may result
in the frequency going out of the nominal frequency range, which causes damage to the equipment.
During such situations, the primary and secondary controllers are deployed to stabilize the system.

In order to demonstrate this type of attacks, the authors have used the WSCC 9-bus grid model.
It represents a simple approximation of the Western System Coordinating Council (WSCC) with
nine buses and three generators? and is widely used as a benchmark system [42].

The motives of this category of attacks may either be sudden generation tripping or disrupting
a grid re-start. For successfully performing these attacks, the adversary needs access to a given
number of IoT devices (bots) to perform a sudden increase or decrease in the demand. Assuming
the attacker has access to the bots, the authors have simulated the attack for an increase in demand
by 23MW and 30MW. This would require 200 to 300 bots per MW for causing the sudden generation
tripping scenario.

The grid re-start is the process of restarting the grid after a blackout which is performed by
the grid operator. The system’s frequency is usually unstable during the black start and hence, the
grid operator divides the grid into separate geographical islands and restarts the islands individually
first. Once, the individual islands reach stability, the grid operator initiates the connections between
the islands which may cause a small amount of instability, but the grid eventually reaches a stable
state. The adversary would perform the attack during the reconnection of the different islands as
the system is weak during that action. The attacker needs access to 100-200 bots per MW to disrupt

a grid re-start.

3.2.2 Attacks that cause Line Failures and Cascading Failures

When there is a frequency instability in the power grid, the primary controller is deployed to
stabilize the system. At this point, the operator does not have control over the power flows as it is

now governed automatically by the grid based on Kirchoff’s Law. In this situation, increasing the

2https:/ /electricgrids.engr.tamu.edu/electric-grid-test-cases /wscc-9-bus-system /
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demand by a small quantity causes failure of power lines due to overloads. This requires only 10
bots per MW to initiate a cascading failure resulting in 86% outage. The overall increase in the
total demand is approximately 210MW.

These attacks may eventually lead to failure of other lines, thus causing cascading line failures.
Another way of causing the cascading failure is by redistributing the demand keeping the total
demand constant. This requires an absolute value of 80MW change in demand resulting in 4 bots
per MW as the requirement to perform the attack.

The third type of attack in this category is the failure of a tie line which is used for carrying
large amounts of power between two Independent System Operators (ISOs). The adversary requires
15 bots per MW in order to increase or decrease the demand in the tie line which results in the lines
tripping.

These attacks were demonstrated using the Polish grid data Summer 2004 peak and Summer

2008 peak that are available through the MATPOWER library.

3.2.3 Attacks that Increase Operating Costs

These attacks are targeted to increase the operating costs of the grid without causing any
line overloads. When the demand increases above the expected value, the ISO has to purchase
additional power in the form of reserve generators. Using these generators results in the increase of
power generation cost. The attacker will need access to 50 bots per MW to cause a 20% increase in

operating cost. This attack was demonstrated on the Polish grid data Summer 2004 peak.

3.3 Time Series Analysis

A time series is data that is collected at various points in time. In a time series, there will be
a temporal structure associated to it. In addition to the data points, the time at which each data
point was recorded is crucial for modeling any time series. It also has the necessity to be updated
periodically thus, leading to a large data size. There are several patterns that a time series exhibits
that requires thorough analysis in recognizing them. This provides a better understanding of the
data itself and aid in the choice of the forecast model. In the next few sections we will discuss about

the different time series patterns and models.
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3.3.1 Time Series Patterns
There are three types of patterns that we may see in a time series [19].

1. Trends: A trend occurs when there is a long term increase or decrease in the data. Figure 3.2

shows an example of an increasing trend in monthly shampoo sales over a three year period.

2. Seasonality: A seasonal pattern occurs in the data when it is affected by seasonal factors such
as the time of the year or the day of the week. Seasonality is always of a fixed and known
frequency. Figure 3.3 shows the minimum daily temperatures over ten years starting from 1981
to 1990 in the city of Melbourne, Australia. It can be clearly seen that the dataset exhibits

strong yearly seasonality.

3. Cycle: A cycle occurs when the data exhibit rises and falls that are not of a fixed frequency.
Figure 3.4 shows the monthly sale of single family homes in the US from the years 1966 to

1980, which exhibits cyclic behavior with a period of about 4 to 5 years.
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Figure 3.2: Increasing trend in monthly shampoo sales over a three year period

3.3.2 Time Series Models

There are many time series models which can be used for prediction of future values. We use six
prediction methods discussed by Hyndman and Athanasopoulos [19] to evaluate the performance of
our simulated attacks. The six methods can be broadly categorized into naive and smoothing meth-
ods. Nalve, seasonal naive and average methods fall under the naive category and simple exponential

smoothing, weighted average and Holt Winters’ fall under the smoothing methods category.
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Figure 3.3: Yearly seasonality in minimum daily temperatures over ten years
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Figure 3.4: Cyclic behavior in the monthly sale of single family homes in the US

Naive Method

For the naive method, we set the prediction for each time unit to be the last observed value.

Mathematically, the following equation describes the naive forecast.

Yetnlt = Tt (3.1)

where 1,y p|; is the prediction for the time unit ¢ + h, he{l,2,...,n} is the number of units after the

last observed value at ¢, and x; is the observed value at time t.
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Seasonal Naive Method

The seasonal naive method is similar to the naive method, but it is used for seasonal data. For
this method, we set the prediction for each time unit to be the same as the last observed value of
the same season. For example, if we have yearly data with 12 observations per year denoting each
month, then the prediction for January would be the value for January in the previous year. This

method is denoted mathematically as follows.

Yt+hit = Tt+h—m(k+1)> (3.2)

where 4, p|; is the prediction for the time unit ¢ + h, he{1,2,...,n} is the number of units after the

observed value at ¢, m is the seasonal period and k is the floor function of (h — 1)/m.

Average Method

As the name suggests, the average prediction method gives the mean of the previous observed

values as the forecast for a particular time unit. The equation for the prediction is as follows.

1+ 22+ ...+ x4
t )

Yer1t =T (3.3)

where y, 1| is the prediction for the time unit ¢ + 1, {2, z2,...7;} are the observed values at time

units {1,2,...,t} respectively and z; is the last observed value.

Simple Exponential Smoothing Method

The average method discussed previously assumes that all observations are equally important
and hence, the weight allotted for each observation is the same. Whereas, the simple exponential
smoothing method, which is one of the simplest smoothing methods, assumes a weight for each
observation. It gives more importance to the recently observed values than the ones which are in
the past. This weight is allotted exponentially and hence the name exponential smoothing. It gives

the highest weight to the last observed value, which is the most recent observation, and decreases
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the weights exponentially while moving further into the past. The mathematical representation is

as follows.

Yer1pe = azy + ol — @)z + a(l — a)’z_g + ..., (3.4)

where y;,1|; is the prediction for the time unit ¢ + 1, {Z¢,2¢—1,%4_9,...} are the observed values
at time units {¢,t — 1,t — 2, ...} respectively, x; is the last observed value and « is the smoothing

parameter with values 0 < a < 1 with {a, (1 — a),a(1 — «)?, ...} being the exponential weights.

Weighted Average Method

The weighted average method is similar to the simple exponential smoothing, but the weights
are calculated differently. We have calculated the weights as done by Hao et al. [15]. Let n be the

number of observations in the time series data and ¢ = The weights are then calculated to be

2
n(n+1)"
¢,2¢, 3¢, ...,nc. Let {wy, wa, w3, ..., w, } represent the weights {¢, 2¢, 3¢, ..., nc}, then the mathematical

notation for the weighted average is as follows.

Yt = W1T(t—s) T W2k (t—2s5) T W3T(t—3s) T ... = WnT(t—ns); (3.5)

where y; is the prediction for the time unit ¢ and s is the seasonal period.

Holt Winters’ Seasonal Method

The Holt-Winters seasonal method comprises the forecast equation and three smoothing equa-
tions representing the trend, level and seasonal components with corresponding smoothing parame-
ters. There are two varieties for this method that are used based on the seasonal component. The
additive method is used when the seasonal variations are roughly constant through out the series
and the multiplicative method is used when the seasonal component changes proportional to the

level of the series.
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The additive form of Holt Winters’ is represented by the following equation.

Yernle = Ut + hbe + Seph—mks1)s (3.6)

where y;; is the prediction for the time unit ¢ + h, I; is the level component for the time unit
t, by is the trend component for the time ¢ and s;4 4y, (k1) is seasonal component with m as the
frequency and k is the floor function of (h —1)/m.

The level, trend and seasonal components are represented as follows.

ly = a(xy — $t—m) + (1 — @) (l—1 + bi—1) (3.7)
by = B(ly — li—1) + (1 = B)b—1 (3.8)
se =@ —lm1 — bp—1) + (1 — ¥)St—m, (3.9)

where «, 8,7 are the smoothing parameters for the level, trend and seasonal components respec-

tively, x; is the observed value at time ¢ and m is the frequency.

Similarly, the multiplicative form is represented by the following equation. The naming conven-

tion is the same as the additive method.

Yr4nr = bt + hbtSt s h—m(kt1) (3.10)
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The components are represented as follows.

I, = a(sit )+ (1= a)(le—1 + be1) (3.11)
bt == 6(lt - ltfl) + (1 - ﬁ)bt,1 (312)

= (— )+ (1 = )St—m 1
s =)+ (=) (3.13)

3.4 Anomaly Detection

Anomaly detection refers to the problem of finding patterns in data that do not conform to
expected behavior [9]. Outlier is also a term that is used in the context of anomaly detection and
sometimes interchangeably with the term anomaly. Anomaly detection is used in many application
domains to find critical information regarding any abnormalities in the data. There are many
anomaly detection techniques that have been developed for specific application domains. They may
differ by the nature of the data, availability of labeled data and the type of anomaly to be detected.
In the next few sections, we will go through the types of anomalies and the different anomaly

detection mechanisms.

3.4.1 Types of Anomalies

The process of anomaly detection requires to identify the nature of the target anomaly which

needs to be detected. Anomalies can be classified into the following three categories.
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Point Anomalies

A point anomaly is an an individual data point that can be considered as anomalous with respect
to the rest of data. This is the simplest type of anomaly and is the focus of majority of research on

anomaly detection [9].

Contextual Anomalies

If a data instance is anomalous in a specific context, but not otherwise, then it is termed a
contextual anomaly. The definition of the context must be specified and it can also be inferred from

the structure of the data. Each data point is defined using the following two sets of attributes.

1. Contextual attributes: The contextual attributes are used to determine the context or the
neighborhood for a data point. For example, spatial datasets have latitude and longitude as

contextual attributes and time series data has time as the contextual attribute.

2. Behavioral attributes: The behavioral attributes define the noncontextual characteristics of a
data point. For example, in a spatial dataset the temperature at any location is a behavioral

attribute.

Collective Anomalies

If a collection of related data points is anomalous with respect to the entire data set, it is termed
a collective anomaly. The individual data points in a collective anomaly may not be anomalies by

themselves, but their occurrence together as a collection is anomalous [9].

3.4.2 Anomaly Detection Techniques

In a dataset, each data point will be categorized as a normal or an anomalous instance. This
process is called data labeling. It can be difficult to obtain labeled data, especially for the cases
where there are anomalous periods. Based on the availability of data labels, anomaly detection can

be performed using any of the following techniques.

Supervised Anomaly Detection

Supervised anomaly detection is the technique of detecting anomalies with the use of a predictive

model. This model is obtained by training a dataset consisting of the appropriate labels specifying
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whether each data point is anomalous or not. Once the modeling is completed, new data points are
fed to the model in order to classify them correctly. Usually, the anomalous instances are only a few
when compared to the normal instances in the training data. This can lead to issues arising due to
the imbalance in class distributions. It is also challenging to get accurate and representative labels
for the anomalous class. There are several methods which have been proposed to inject artificial

anomalies to obtain a training dataset [9).

Semisupervised Anomaly Detection

Semisupervised anomaly detection is the technique based on the assumption that the training
data has labels only for the normal class. This makes it widely applicable than supervised techniques
as the labels for the anomaly class are not required. The typical approach is to build a model using
the data belonging to the normal class and identify the anomalous behavior in test data by using

that model [9].

Unsupervised Anomaly Detection

Unsupervised anomaly detection is a technique where we do not require training data, thus mak-
ing it most widely applicable. It is based on the assumption that the normal instances are frequent
when compared to the anomalous ones. This assumption will prevent the technique from having
a high false positive rate. Semisupervised techniques can be adapted to work in an unsupervised
environment by providing a sample of unlabeled data during the training phase [9]. We use this
category of detection techniques in the thesis to evaluate the performance of existing open source

and commercial detection mechanisms.

3.4.3 Anomaly Score Computation

One way to represent anomalies is by using an anomaly score. The score gives the extent to
which the data point should be considered as an anomaly. We use the anomaly score in order to label
the data points as anomalous if they exceed a certain threshold. We use the method implemented

by Janetzko et al. [21]. The anomaly score for a given time ¢ is as follows.
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T —
a = —1o =yl (3.14)
avgyer|Ty — Ypr|

where t is the time for which the score has to be calculated, y; is the prediction obtained for the

time ¢, x; is the observed value for the time ¢, T" is the set of all the time units starting from 1 until

t—-1)

3.4.4 Anomaly Likelihood

The anomaly likelihood is built over an anomaly score function. We have used a modified version
of the anomaly likelihood used by S. Ahmad et al. [1]. The anomaly likelihood gives a probabilistic
measure defining how anomalous the current state is based on the scores computed in the past using
a particular time series model. To compute the anomaly likelihood, we maintain a window of the
last W score values. The distribution of the scores is modeled as a rolling normal distribution where

the sample mean, j;, and variance, o7 , are continuously updated from previous scores.

i=W-1
. Ay
[y = 72“014/ ¢ (3.15)
i=W-—-1 L 2
o2 = 2= W(afl ) (3.16)

A recent short term average of the anomaly scores is then computed as follows.

_ Ziw/_l ai—;
pt = OT’ (3.17)

where a; is the anomaly score at time ¢ and W’ is the window for the short term moving average

and W/ << W.
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This is followed by the application of a threshold to the Gaussian tail probability (Q-function) to
decide whether or not to declare an anomaly. The anomaly likelihood is defined as the complement

of the tail probability as follows.

Li=1- Q(Mt;“t) (3.18)

The threshold for L; is based on the user-defined parameter € and is represented as follows.

anomaly detected; = Ly > 1 — ¢ (3.19)

There is an inherent upper limit on the number of anomalies detected and a corresponding upper
bound on the number of false positives. With e very close to 0, it would be unlikely to get alerts
with probability much higher than e. It is found that e = 10~° works well across a large range of
domains and the user does not normally need to specify a domain-dependent threshold. However,

we use € = 1073 in the thesis.

3.4.5 Anomaly Detection Packages
HTM Studio

HTM Studio is a tool developed by Numenta and is based on an online sequence memory algo-
rithm called Hierarchical Temporal Memory (HTM). Hierarchical Temporal Memory is a biologically
inspired machine intelligence technology that mimics the architecture and processes of the neocor-
tex. Anomaly detection with HTM is a state-of-the-art, online and unsupervised method [1]. HTM
networks continuously learn and model the spatiotemporal characteristics of their inputs. The out-
put of an HTM system goes through two post-processing steps, which are the computation of the
prediction error and the computation of an anomaly likelihood measure. Based on the user-defined
threshold, each data point will be classified as an anomaly based on the degree of the anomalous

behavior. The three classes used by HTM Studio are low, medium and high.
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Arundo’s ADTK

Anomaly Detection Toolkit (ADTK) is a Python package for unsupervised /rule-based time series
anomaly detection. They provide a variety of detection algorithms (detectors), feature engineering
methods (transformers), and ensemble methods (aggregators) that can be chosen and combined by
the user for developing an anomaly detection model. Our main interest is in the detectors and ADTK
provides fourteen detectors from which we have used the OutlierDetector. OutlierDetector performs
multivariate time-independent outlier detection and identifies outliers as anomalies. The multivariate
outlier detection algorithm could be those in Python Scikit-learn library or other packages following
same API. The algorithm used here is the LocalOutlierFactor from the Python Scikit-learn library
"sklearn.neighbors" which is an unsupervised algorithm. It measures the local deviation of density of
a given sample with respect to its neighbors. The anomaly score depends on how isolated the object
is with respect to the surrounding neighborhood and the locality is given by k-nearest neighbors.
By comparing the local density of a sample to the local densities of its neighbors, the samples which

have a substantially lower density than their neighbors are considered outliers.

Twitter’s Anomaly Detection

AnomalyDetection is an open-source R package that automatically detects anomalies in big
data [43]. The primary algorithm, Seasonal Hybrid ESD (S-H-ESD), builds upon the Generalized
ESD (Extreme Studentized Deviate) test for detecting anomalies. It uses a variant of the Seasonal
and Trend decomposition using Loess (STL) and then applies ESD to detect the anomalies. S-H-
ESD can be used to detect both global and local anomalies. Global anomalies are the data points
which occur above or below the seasonal pattern and thus be detected as it is does not represent
the underlying seasonality or trend. Local anomalies are the data points which are masked by the
seasonal patterns but are anomalous in their neighborhood. The detection is achieved by using
time series decomposition and robust statistical metrics. The decomposition separates the seasonal
component and then removes the median data. In addition, for long time series such as 6 months

of minutely data, the algorithm uses piecewise approximation.
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Anomalize

The Anomalize package enables a tidy workflow for detecting anomalies in data. Seasonal and
Trend decomposition using Loess (STL) is used in this thesis for decomposition. It separates the
season and trend components from the original values leaving the remainder for anomaly detection.
For the anomaly detection, we have used the IQR method which uses an inner quartile range of 25%
and 75% to establish a baseline distribution around the median3. The alpha value that is given to
the detection function controls the ease of tagging a data point as an anomaly and it represents the
width of the normal observations range. By increasing the alpha value, it increases the chance of a

data point to be flagged as an anomaly. We have used the default alpha value, which is 0.05.

Facebook’s Prophet

Prophet is a procedure for forecasting time series data based on an additive model where non-
linear trends are fit with yearly, weekly, and daily seasonality, plus holiday effects. It works best
with time series that have strong seasonal effects and several seasons of historical data. It is robust
to missing data and shifts in the trend, and typically handles outliers well*. It uses a decomposable
time series model with three main model components: trend, seasonality, and holidays. It is similar
to the GAM (Generalized Additive Model) formulation, which has the advantage that it decomposes
easily and accommodates new components as necessary, for instance when a new source of seasonality

is identified [41]. This package is available in R and Python and we have used the Python package.

3https://cran.r-project.org/web/packages/anomalize/anomalize.pdf

4https://facebook.github.io/prophet/
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Chapter 4

Attack Generation

4.1 Data Collection

The data was collected from the UMass Trace Repository!, which is being used to optimize
energy consumption in homes under a project named “Smart*”.2

There are many datasets available out of which, we chose an apartment dataset that contains
data for 114 single family apartments. This fits our requirement as we are trying to mimic the
attacks at the grid level. From all the available datasets, this was the largest in terms of the number
of apartments and hence, can be used to represent a subset of the power grid.

The dataset consists of daily consumption for each apartment for the years 2014, 2015 and 2016.
The consumption data for the years 2014 and 2015 consists of missing values and the readings are
taken at irregular intervals of one minute and fifteen minutes. Hence, we decided to go with the
data recorded from the year 2016 which consists of minute-level consumption readings from January
until mid December. For each apartment, a CSV file is provided which consists of two columns. The
first column is the timestamp of when the reading was taken and the second column is the reading
in kiloWatt(kW). The timestamp consists of the date and the time in 24 hour format. All these

apartments belong to the same unknown area in West Massachusetts, United States of America.

Thttp://traces.cs.umass.edu/index.php/Smart /Smart

2http://lass.cs.umass.edu/projects/smart/
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4.2 Data Cleaning

4.2.1 Missing Values

As there are 114 different CSV files, we had to combine them to get it in to a single CSV
file. We performed a merge across all the different apartment files. The data post join consisted
of 503,610 rows with the first column representing the time ranging from 2016-01-01 00:00:00 to
2016-12-15 18:29:00 and the remaining 114 columns representing all the apartment data with one
column per apartment. This shows that we have missing values for the remainder of the year from
2016-12-15 18:30:00. As the daylight saving started on March 13, 2016 at 2:00:00 AM, we have
missing values between 2016-03-13 2:00:00 and 2016-03-13 2:59:00. Also, as it ended on November
6, 2016 at 2:00:00, we have duplicate values from 2016-11-06 2:00:00 and 2016-11-06 2:59:00. We

have not performed any imputation or estimation for the missing values.

4.2.2 Removing Duplicates

As discussed in the previous section, we detected duplicate rows which were due to the end of
the daylight saving. We have dropped every first observation of the duplicate row and there were

no other duplicate rows found in the dataset.

Timestamp Apartment 1 | Apartment 2 ‘ ‘ Apartment 114 | Grid level
2016-01-01 00:00:00 | 0.68415000 0.7006667 0.85898333 176.3487
2016-01-01 00:01:00 | 0.68295000 0.7006833 0.85840000 158.4339
2016-01-01 00:02:00 | 0.68298333 0.7022333 0.85848333 162.1322
2016-01-01 00:03:00 | 0.68238333 0.7028000 0.85883333 154.2100
2016-01-01 00:04:00 | 0.68228333 0.7050667 0.55655000 156.9728
2016-01-01 00:05:00 | 0.68201667 0.7031167 0.47450000 165.4039
2016-01-01 00:06:00 | 0.17223333 0.6900833 0.43575000 175.4320
2016-01-01 00:07:00 | 0.16350000 0.5988833 0.37150000 179.2886
2016-01-01 00:08:00 | 0.16313333 0.5988000 0.31260000 182.1628
2016-01-01 00:09:00 | 0.16266667 0.5987167 0.18176667 187.8987

Table 4.1: Sample data showing the time stamp and consumption in kilowatt

4.3 Consumption Overview

We focus on the grid level analysis of the power consumption. We obtained the grid level data

by adding the consumption values of all the 114 apartments. For every time unit, there will be an
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aggregate value representing the grid level consumption at that point as shown in table 4.1. The

grid level aggregate value is calculated by the following mathematical formula.

114

gt = Zfﬂim (4.1)
i=1

where g; is the grid level consumption at time ¢, ¢ is the apartment number and z; ; is the consumption
of the i*" apartment at time .

Figure 4.1 shows the consumption pattern with the demand recorded every six hours. It can be
observed that the consumption is high for the five months with a decreasing trend. The consumption
is low during the Summer and the beginning of Fall followed by an increasing trend while transi-
tioning to Winter. Table 4.2 shows the average consumption with a seasonal breakdown. It can be

observed that the consumption is highest during Winter followed by Spring, Fall and Summer.

100 200 300 400

Consumption in kKW

0
|

T T I I I I
January March May July September November

Time with six hour frequency

Figure 4.1: Power consumption with six hour frequency
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Season | Average Consumption

Winter 227.88 kW
Spring 134.90 kW

Fall 102.29 kW
Summer 50.85 kW

Table 4.2: Average consumption by season

4.4 Common Terms

In this section, we will discuss some common terms used in our work.

4.4.1 Threshold

A threshold is defined as a value above which a point will be flagged as an anomaly. This is

applied to an anomaly score or an anomaly likelihood score.

4.4.2 Adder

An adder is the consumption amount in kilowatts that is added to an existing consumption
value at a time ¢t. The adder represents the number of kilowatts that an attacker is able to increase
for a particular time unit. For this thesis, we only use positive adders which means that we perform

only a demand increase.

4.4.3 Attack Profile

A transformation is performed on the original dataset by adding adder values only to the two
weeks of attack duration and the resulting dataset is called an attack profile. Attack profiles are
created by adding adders to selected months of the year. The creation of an attack profile is

represented mathematically as follows.
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g1 dq C1
g2 ds C2
| 9t | _dt_ L Ct |

where g; is the grid level consumption at time ¢ obtained from the consumption dataset, d; is the
adder value added at time ¢ and ¢; is the resultant demand at time ¢, that is obtained by adding the
adder to the consumption value. This resultant matrix is called an attack profile. It should be noted
that the attacker might add demand values at only some time periods. We consider the adders to

be zero when no demand increase is performed by the attacker.

4.4.4 Gain

Gain is the amount in kilowatt that the attacker was able to attain by increasing the demand
values through out the attack period. The gain at any point in time is calculated by adding all the

adders added previously. It is represented mathematically as follows.

¢
gaing = Zdi’ (4.3)
i=1

where gain; is the gain in kilowatt at minute ¢, ¢ ranges from the first minute of attack until the

current time ¢ in minutes and d; is the adder added at minute 1.

4.4.5 Anomaly Detection System

An anomaly detection system consists of a prediction method to predict the consumption values
followed by a scoring mechanism that uses anomaly score or likelihood score and a thresholding
mechanism to flag anomalies. It can also be a commercial application that we evaluate the attack

performance against.
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4.5 Assumptions

Before we continue to performing the attacks, we will provide a few assumptions based on which

the attacks were carried out.
1. The original dataset is assumed to have no anomalies.
2. The attacker has access to various IoT devices in all the 114 apartments.
3. The amount of demand per apartment can be of any value.

4. The attacker is aware of the anomaly detection technique used by the power grid operator to

monitor the consumption.

5. The attacker is aware of all the threshold values used for the anomaly detection process.

4.6 Threshold Calculation

For the anomaly detection techniques we used, viz., anomaly score and anomaly likelihood, we
had to decide on the thresholds. The anomaly score threshold is defined as the value beyond which
the data point will be flagged as an anomaly. In order to generate a threshold, we should fully
understand the consumption of the apartments. The following are the steps carried out to generate

the thresholds.

1. First, we categorize the various thresholds based on how often we want to change the threshold
value. We have 10 types of thresholds which change yearly, half yearly, quarterly, monthly,
weekly, daily, every twelve hours, every six hours, every one hour and every fifteen minutes.
Each type of threshold defines the number of threshold values we need to calculate for the

entire data.

2. In order to find the values for each type of threshold, we find the 99" percentile of the scores
within the calculation range. The calculation range is the period for which the threshold is
calculated. For example, for the yearly threshold, the calculation range will be the entire
year which is in our case, the entire dataset and for half yearly threshold, we will have two
calculation ranges which are the first half of the year and the second of the year. Refer to

table 4.3 for a detailed breakdown.
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9t" percentile is stored as the threshold for that range. The

3. For each calculation range, the 9
score values for a calculation range will be flagged as an anomaly if they are above the threshold
for that range. For the anomaly likelihood technique, we set the threshold to be 0.999 with

the value of € = 10~2 in anomaly likelihood calculation.

’ Threshold Type | Number of Thresholds

Yearly 1
Half yearly 2
Quarterly 4
Monthly 12
Weekly 50
Daily 350
Twelve hourly 700
Six hourly 1399
Hourly 8394
Quarter hourly 33574

Table 4.3: Number of thresholds by type®

4.7 Threshold Exploration

After generating the thresholds as described in the previous section, we explored these thresholds
to understand the behavior of the anomaly detection technique using weighted average prediction
and anomaly score along with each type of the listed thresholds. Figure 4.2 provides a summary
of the false positive rates for every fifteen minute rolling window while using a particular threshold
type.

The anomaly scores were calculated for the original dataset without modifying any of the con-
sumption values. With the assumption that the dataset does not have any anomalous values, we
expect it to have less false positives. It can be observed that the more generic the threshold is the
less frequent we see false positive rates greater than zero. For example, the yearly threshold has a
single value as the threshold for the entire year. We can see that initially, there are some instances
which are detected as anomalies but, almost none of them are flagged as an anomaly for the rest of

the year. When we look at the half yearly threshold, the number of false positives in the beginning

3The number of threshold values is calculated based on the size of our dataset which is 503610.
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of the year has decreased when compared to the yearly threshold but, we see some of them being
flagged in the second half of the year.

The more personalized the threshold becomes, we see more fifteen minute windows in that time
period being detected. In other words, as the threshold is calculated for smaller windows, the number
of anomalies decrease for that window but, we see them spread out across the neighboring windows,
thus making more number of fifteen minute windows have at least one anomaly.

Ideally, there will be a tolerance level for the number of anomalies beyond which the system
will alarm the grid operator for immediate attention. With a generic threshold, it becomes easy to
increase the demand by some amount such that it is less than the tolerance level. For example, if
we have an FPR tolerance level of 20%, we can see that for the yearly threshold, most of the fifteen
minute windows will have no anomalies triggered. All those time periods are vulnerable to an attack
as an adversary can take advantage of the tolerance level and increase the demand such that there
are false positives, but the overall FPR for that window is less than 20%. However, as the thresholds
are calculated for smaller windows, it becomes increasingly difficult to find such windows where the
FPR is 0% thus, making it difficult to perform the attack.

This brings us to the idea of dynamic thresholding where the threshold changes for each point in
time and is calculated dynamically based on the previous observations. We explore dynamic thresh-
olding in this thesis after evaluating the performance of all the different threshold types discussed

previously. Detailed analysis using dynamic thresholding approach is discussed in chapter 6.

4.8 Experiment Setup

In this section, we will give a summary of the setup and all the steps involved in generating and
evaluating the attacks. Figure 4.3 gives a brief flow of the entire process.

First, we generate the attack profiles for each threshold type. The attack profile is generated in
such a way that it is not detected while using an anomaly detection system which consists of weighted
average as the prediction method and anomaly score to compute the severity of an anomaly. This
will result in 96 different attack profiles as described in subsection 4.9.2.

This brings us to the second step where we select 10 attack profiles based on false positive rate
and the gain achieved during the attack period. Detailed description can be found in section 4.10.

Then, we evaluate the performance of these 10 profiles by using various anomaly detection systems
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Figure 4.2: Threshold exploration
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which were described in chapter 3. Table 4.4 gives the list of the anomaly detection systems we use
for our evaluation.

We used R version 3.6.1 for implementing algorithms to generate the attacks and calculate
evaluation metrics. Arundo’s ADTK and Facebook’s Prophet are the commercial methods available
as Python libraries for which we used Python version 3.7.4 for running those methods against our

attack profiles.

Anomaly Score | !

Prediction Methods

Anomaly Likelihood |

Attack Profile N Attack Profile +| Attack Performance
Generation Selection and Evaluation
Commercial
Unsupervised
Methods

Various Anomaly Detection Systems

Figure 4.3: Overview of the experiment setup

Prediction/ Library Detection technique
Naive Anomaly score and likelihood
Seasonal naive Anomaly score and likelihood
Average Anomaly score and likelihood
Simple exponential smoothing | Anomaly score and likelihood
Weighted average Anomaly score and likelihood
Holt Winters’ Anomaly score and likelihood
HTM Studio Unsupervised
Arundo’s ADTK Unsupervised
Twitter’s Anomaly Detection Unsupervised
Anomalize Unsupervised
80% confidence interval Unsupervised
] Total number of techniques \ 17 \

Table 4.4: List of anomaly detection systems used for performance evaluation
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4.9 Attack Profile Generation

4.9.1 Overview

The attack profiles are generated by performing an obscure progressive attack on the power grid
by controlling the overall demand of the grid. We perform one attack per threshold type and the
anomaly detection system used is the weighted average prediction with an anomaly score method.
These attacks will not be detected in this system while using the different thresholding techniques.
All the attacks are performed for two weeks by adding some amount of adder with a minimum value

of 0. This adder value is determined by reverse engineering the anomaly score computation.

4.9.2 Attack Generation Process

The attack generation process requires to precompute the adder value which will be added to
each observation. This adder represents the amount of wattage contributed from the compromised
ToT devices. In this subsection, we will discuss how this adder is computed and propose the algorithm

for generating attack profiles.

Adder Computation

The adder specifies the value of the increase in demand to be carried out at the grid level.
The adder is computed in such a way that the current anomaly detection system cannot detect the
increase in demand. This is done by reverse-engineering the anomaly score formula and by giving

the threshold value as the score. The adder is computed with the following formula.

zy = (ar avgyer|ze — yol) + ye, (4.4)

dt = "E; — Tt, (45)

where z; is the existing consumption value, z} is the resultant demand to be created for time ¢ which

also comnsists of the adder, a; is the anomaly score which is equal to the threshold at ¢, y; is the
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prediction of the consumption for time ¢ and d; is the adder for time ¢ which is calculated by finding
the difference between the resultant demand and the already existing consumption value.

At any point during the attack, the adversary will have access to the current threshold value and
the prediction to calculate the adder at that time. The demand is increased by the adder amount.
If the adder is negative or zero, the demand is not manipulated by the attacker. Figure 4.4 shows

the summary of the adder calculation process.

Step 1. Access
threshold for time ¢

Power grid
data and
methods

\ 4
O Step 3. Switch on devices fi A A
-7 based on the adder
> A A M
Attacker “ ﬁ ﬂ

T Apartments in
the power grid
Step 2. Reverse engineer anomaly
score and find adder for time ¢

Figure 4.4: Adder calculation process

Attack Generation Algorithm

Algorithm 1 is used to generate the attack profiles for each type of threshold and the selected
attack month. This algorithm takes the consumption dataset, pre-calculated predictions for the
dataset, respective thresholds for each point in time in the consumption dataset, attack start and
end times as input parameters. First, we create a copy of the original dataset which will be modified
and returned as an attack profile. We go through each observation from the start time to the end
time of the attack, get the resultant demand to be created for that observation by using equation 4.4
and find the prediction for the next observation based on all consumption values from the beginning
until the current observation. As seen in the algorithm, FINDPREDICTION is the method for finding

the prediction of a data point using one of the six prediction methods we use. Once the end time is
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reached, we find the predictions for the rest of the data after the end time of the attack and update

the predictions. Lastly, the generated attack profile is returned as the output.

Algorithm 1 Attack Profile Generation
> D: Power consumption data, P: Predictions, R: Thresholds, ¢, t,: Attack start & end times

1: function GENERATEATTACKPROFILE(D, P, R, t1,t,)

2 AP« D

3 for t < t; to t,, do

1 AP[t] « (R[t] avgyer 1| API] — P]]) + P[]
5: P[t + 1] + FINDPREDICTION(APIL : t])

6 end for

7 Pl(ty, + 1) : size(P)] < FINDPREDICTION(AP))

8 return AP

9: end function

Number of Attack Profiles

The attack profiles are created based on the the threshold type of the anomaly detection system
and the time of the attack i.e. which quarter or month of the year the attack was performed. The
attack duration is same for all profiles, which is of two weeks. For yearly, half yearly and quarterly
thresholds, we create an attack profile for each quarter and for the others, an attack profile for each
month is created. In total, we will be having 96 attack profiles created for each threshold type and

the month of the attack. Table 4.5 has the breakdown of the count of profiles by threshold type.

’ Threshold Type | Number of Attack Profiles

Yearly 4
Half yearly 4
Quarterly 4
Monthly 12
Weekly 12
Daily 12
Twelve hours 12
Six hours 12
One hour 12
Fifteen minutes 12
’ Total \ 96

Table 4.5: Number of attack profiles by threshold type
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4.10 Attack Selection

After generating the 96 attack profiles, we selected 10 profiles based on the gain in kW achieved
during the attack period. The gain is defined as the total wattage the attacker could increase during
the two weeks of the attack. First, we sort all the 96 profiles in decreasing order of the gain values.
If the attacks were carried out during the first quarter or the the first two months, we ignore them to
provide a buffer time to stabilize the anomaly scores. Additionally, these time periods are vulnerable
to aggressive attacks where the adversary can reach a gain of up to 313 million kilowatt as there are
less observations to normalize the anomaly score. Hence, we consider these attacks to be invalid.

Starting from the first valid attack with the highest gain, we choose every eighth attack going
downward in descending order of the gain values. In an attempt to include all threshold types in this
selection, we choose one attack per threshold type. If we hit a profile whose threshold type is already
considered, we look at its neighbors on either side to search for a profile with a different threshold
type. This technique is used to get attack profiles that are distributed between the minimum and
maximum gain values.

Table 4.6 shows the list of selected attacks.

’ Threshold Type | Attack Month | Wattage Gain

Yearly July 9,426 MW
Half yearly July 5,225 MW
Quarterly July 3,207 MW
Monthly June 4,569 MW
Weekly September 2,128 MW
Daily December 1,235 MW
Twelve hours May 4,063 MW
Six hours April 2,742 MW
One hour September 1,903 MW
Fifteen minutes May 3,601 MW

Table 4.6: List of selected attack profiles

4.10.1 Time for MadloT attack

As we performed the attacks obscurely, we have the limitation of not increasing the wattage
all at once to reflect the effects of the attack within seconds. This could have been possible if we
had the power consumption for each second. However, we analyzed the time it took to reach the

gains required to carry out each of the variations of MadloT attack. Figure 4.5 shows the time to
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reach the gains required for each MadloT attack. The gains were calculated by finding the amount
of wattage needed from 114 apartments each contributing one IoT device. Table 4.7 shows the gain

values for each attack.

Attack effects Wattage from 114 IoT devices
Frequency Instability causing generators tripping 380kW
Frequency Instability during a black start 570kW
Cascading failure 11,400kW
Failure of tie lines 7,600kW
Increase in operating costs 2,280kW

Table 4.7: Wattage requirement from 114 devices for different MadIloT attacks

Except for daily threshold, we were able to reach the required gains for all attack scenarios
within 2.5 hours. The smallest gain value which was 380kW was reached within 5 minutes and the
gains 570kW and 2,280kW were attained within 10 minutes. The time to reach the larger gain values
varies by threshold type, with yearly threshold achieving it the fastest within 27 minutes. The daily
threshold seemed to be delaying the time to reach the required amounts of gain making it the best

performing threshold to control aggressive attacks.

O  Daiy A Hourly X QuarterHourly Y/  Six Hourly % Weekly

O HalfYearly =+ Montly <> Quarterly ®  TwelveHouly ¢ Yearly

2004

T T v v T
0 3000 6000 9000 12000
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Figure 4.5: Time to reach gains required for each MadloT attack

4.11 Chapter Summary

In this chapter, we discussed about the real-world power consumption dataset and how we
obtained our final working dataset that we use for our thesis. We also discussed some common

terms we use in the context of anomaly detection in power consumption. We described about the
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threshold calculation process and some insights on the behavior of various static thresholds. We
discussed how the attack profiles are generated and how the selection of ten attack profiles from 96
of them is done. With the ten selected attack profiles, we observe if the required gains for MadloT
attacks are attained and how long it takes to reach the gains. In the next chapter, we will evaluate

the performance of these ten attack profiles against different anomaly detection systems.
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Chapter 5

Attack Performance Evaluation

5.1 Overview

In this chapter, we will evaluate the attack performance using each anomaly detection system.
We categorized the anomaly detection systems into anomaly detection using static thresholds and
anomaly detection using commercial methods. We will evaluate each technique individually and also
provide a comparision of the performance between them.

Table 5.1 shows the list of aliases for different prediction and thresholding methods which we

have used in the plots.

Name Aliases
Naive naive
Seasonal naive seasonal naive
Average average
Simple Exponential Smoothing ses
Holt Winters’ holt winters
Yearly threshold yearly
Half yearly threshold half _yearly
Quarterly threshold quarterly
Monthly threshold monthly
Weekly threshold weekly
Daily threshold daily
Twelve hourly threshold 12 hourly
Six hourly threshold 6 hourly
Hourly hourly
Quarter hourly quarter hourly

Table 5.1: List of aliases used in plots
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5.2 Anomaly Detection using Static Thresholds

In chapter 4, we selected ten attack profiles where the attacks were performed in different months
and each profile assumes a unique threshold type. These threshold types are static as we have fixed
the threshold values in advance and we do not change them regardless of the consumption. We

evaluate the performance of two variations of detection:

1. The anomaly score is calculated for each point in time and the threshold is the deciding factor

of whether to flag a point as an anomaly.

2. The anomaly likelihood is calculated for each point using the anomaly scores and the threshold

is the deciding factor in this technique as well.

In the following subsections, we will walk through the attack performance using each of the above

listed techniques.

5.2.1 Performance of Anomaly Score

The anomaly score is calculated by finding the difference between the predicted and actual usage
values followed by normalizing it. We used five prediction methods and examined the performance
in each combination of the prediction and anomaly score methods, that together make an anomaly
detection system. As we used ten thresholding techniques, we also evaluate the performance of the

thresholds individually.

Performance of each Prediction

Each prediction method was given the ten attack profiles to perform the detection using the
anomaly score technique. Then, we use the thresholding mechanism that the profile represents to
flag a point as an anomaly. First, we find the overall performance of the prediction method in
detecting true positives across all the ten attack profiles. Figure 5.1 gives the percentage of true
positive rate for each prediction method across all attacks. The true positive rate (TPR) measures
the proportion of positives that are correctly identified. The following equation was used to calculate

this metric for each prediction.
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where T PR, is the true positive rate for prediction p, p € {naive, seasonal naive, average, ses,
holt _winters} represents each prediction method, i represents each attack profile, TPy, ;) is the true
positives for the prediction p and the i*" attack profile, F'N; is the false negatives for the prediction
p and the " attack profile. A true positive is an outcome where the model correctly predicts the
positive class. Whereas, a false negative is an outcome where the model incorrectly predicts the

negative class.
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Figure 5.1: Overall true positive rate for each prediction method

It can be observed from the naive prediction category, naive and average prediction methods
have detected less than 5% of the anomalies. Seasonal naive, simple exponential smoothing and Holt
Winters’ prediction methods were able to detect 45% — 50% of the anomalies. This shows that when
we have a seasonal element associated to the prediction method, the predictions are much accurate,
thus contributing to a high anomaly score when there is an anomaly.

The false positive rate measures the proportion of negatives that were incorrectly classified as a

positive. The false positive rate is calculated using the following formula.
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where F'PR,, is the false positive rate for prediction p, p € {naive, seasonal naive, average, ses,
holt _winters} represents each prediction method, i represents each attack profile, F' Py, ;) is the
false positives for the prediction p and the " attack profile, TN; is the true negatives for the
prediction p and the i*" attack profile. A false positive is an outcome where the model incorrectly
predicts the positive class. A true negative is the outcome where the model correctly predicts the
negative class.

The false positive rates are ranging from 1% to 15%. As these values are calculated for the
entire year, which consists of more than half a million rows, these values are still low. When we look
at the false positive rates, we can see that naive and average prediction methods have high false
positive rates compared to others, again due to the low prediction accuracy. Though seasonal naive
and Holt Winters’ performed well in detecting anomalies, the false positive rate is between 5% to
10%. Simple exponential smoothing has the least false positive rate of about 2%, thus this method
with anomaly score would be the best option when looking for a detection technique with least false

alerts.
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Figure 5.2: Overall false positive rate for each prediction method
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Types of Anomalies Detected

As we performed the attack for two weeks with some points where we did not add any adder, we
expect all observations where some amount of wattage was added by the adversary to be detected.
There is some increase in wattage at most times during the attack due to which we categorize these
type of anomalies to be collective. We will provide a brief analysis of the types of anomalies detected
by each prediction method.

We could see from the true positive rate results that naive prediction method performed poorly.
Figure 5.3 shows the anomaly scores during the fourteen attack days when naive prediction method
is used with monthly thresholding mechanism. The solid dark like represents the threshold and is
constant throughout the attack period as all the data points belong to the same month. Almost all
anomaly scores are below the threshold line, resulting in a low true positive rate. However, there
are some data points which have been detected which lie above the threshold line. As the naive
prediction method stores the last observed value as the prediction for the current time, it considers
most of the anomalous wattage values to be normal. For example, minute one’s observed value is
stored as the prediction for minute two and minute two’s observed value as prediction for minute
three and so on. Hence, the detection using naive prediction method performed poorly in detecting

collective anomalies.

~— Score == Threshold

204

Day of Attack

Figure 5.3: Anomaly scores when naive prediction method is used with monthly threshold

The average prediction method also fails to detect collective anomalies as seen in figure 5.4.
In this case, the average prediction method gives equal weights to all points in time considered

for the prediction. As there may be highs and lows in the points considered for the prediction,
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the average settles at a value close to the attack wattage, thus considering the attack points to be
normal. Figure 5.4 shows that before the attack day i.e. day 0, some points have been flagged as
anomalies, conveying that there might have been an increase in consumption genuinely during those
minutes. This resulted in the detection system being in favor of the adversary by considering the

attack periods to be normal as an increase was observed previously.

= Score == Threshold

0.54

0.0

0 1 2 3 4 5 6 1 8 9 10 11 12 13 14 15
Day of Attack

Figure 5.4: Anomaly scores when average prediction method is used with monthly threshold

As the name suggests, the seasonal naive prediction is performed using a weekly seasonality.
The seasonality is reflected in figure 5.5, where the first week of attack has high anomaly scores
whereas the second week of attack has low anomaly scores. Although 50% of the anomalies are
detected, the rest are considered to be normal due to this prediction method’s inherent seasonal
nature. The prediction values for the second week of attack are the observed values during the first
week of attack, due to which the anomaly scores of the second week are less than 1. This is the
case in all thresholding mechanisms due to the weekly seasonal nature. Being a simple prediction
method, it was able to detect the first week of attack collectively, thus making it a good option for
detecting anomalies within the first seasonal cycle.

Simple exponential smoothing also exhibits weekly seasonality (refer to figure 5.6) with the
predictions calculated in a weighted average form with exponential weights. As seen in figure 5.9,
simple exponential smoothing performed well in most of the thresholding mechanisms detecting
100% of the anomalies in some of them. It is interesting to see that with daily, twelve hourly, six
hourly and quarter hourly thresholds, it has performed very poorly in detection. This brings us to

a unique case where the true positive rate is low because of the month of attack. The attacks which
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Figure 5.5: Anomaly scores when seasonal naive prediction method is used with monthly threshold

were performed using twelve hourly, six hourly and quarter hourly were performed in the months of
May, September and December. These months denote the season transition periods which simple
exponential smoothing was unable to handle. These months also represent the possible times of
performing a successful obscure attack, if this prediction method is used in the anomaly detection

system.
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Figure 5.6: Anomaly scores when simple exponential smoothing prediction method is used with
monthly threshold

Holt Winters’ prediction method is one of the only methods which could consistently detect
about 50% of the anomalies across all thresholds, except for the daily threshold. From figure 5.7,
it is clear that Holt Winters’ also shows the weekly seasonality in its anomaly scores. Due to this

characteristic, it was able to successfully detect half of the total anomalies which existed in the first
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half of the attack period. We can see that the scores are settling down within the first week itself
rather than having the scores at a single level. The initial spike which gradually settles down is what
makes this method to be consistent in detecting a proportion of anomalies in all attack profiles. This
method is inherently good at detecting the collective anomalies during the initial stages of an attack,

thus making it a good choice to alarm the system at the beginning of an attack.

= Score == Threshold
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0 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
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Figure 5.7: Anomaly scores when Holt Winters’ prediction method is used with monthly threshold

Performance of each Threshold

While comparing the different thresholding mechanisms, the hourly thresholds have detected
more than 40% of the anomalies across all prediction methods. The true positive rates do not follow
a specific trend as the thresholds are calculated for smaller periods. However, the false positive rate
shows an increasing trend as shown in figure 5.8. This interesting result comes from the threshold
breakdown plot from chapter 4 figure 4.2. We could see that as the thresholds were calculated for
smaller periods, the number of fifteen minute windows with at least one anomaly increases, finally
leading to 10% anomalies in each window. Though 10% of alerts may not be significant when
observed in each fifteen minute window, the sum of alerts through out the year increases from the
previous thresholding mechanism where the thresholds are changed less often.

When comparing the performance of each threshold individually with prediction breakdown
as shown in figure 5.9, it can be observed that the false positive rates have been increasing as the

thresholds are calculated for smaller windows. Naive and average prediction methods have performed
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Figure 5.8: Performance of each threshold mechanism

poorly for all thresholding mechanisms except for six hourly thresholds where the average prediction
has detected more than 25% of the anomalies.

The false positive rate for all threshold mechanisms is the least for simple exponential smoothing.
Seasonal naive and Holt Winters’ methods performed well in detecting around 50% of the anomalies
for all thresholding mechanisms except daily thresholds, when compared to the other prediction
methods. In summary, the generic threshold mechanisms which are the yearly, half yearly, quarterly
and monthly thresholds, weekly and hourly thresholds performed well in detection when combined

with seasonal prediction methods and anomaly scores.

First Detected Time of an Attack

We could see that in most of the detection systems that we used, the first minute of attack is
usually detected because of the sudden increase in demand. Table 5.2 gives when each attack was
first detected. Majority of the attack profiles were detected within the first minute by their respective
anomaly detection system. Six attacks were never detected and they belong to the anomaly detection

system which uses average prediction method.

5.2.2 Performance of Anomaly Likelihood

The anomaly likelihood gives a measure of how anomalous the current point is based on the

anomaly scores computed in the past. This can be considered as a layer over an anomaly score.
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Figure 5.9: Performance of each thresholding mechanism using anomaly scores with prediction
breakdown
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First detected time Number of attack profiles

Never detected 6
Minute 1 of attack 37
Between 2 to 5 minutes
Between 5 to 15 minutes
Between 6 to 24 hours
Between 2 to 7 days
Between 1 to 2 weeks

R e e

Table 5.2: Number of profiles by first detection time

Instead of using thresholds on the anomaly score itself, we first calculate the likelihood and then

check if it is greater than a likelihood threshold of 0.999.

Performance of each Prediction

The true positive and false positive rates were calculated as shown in equations 5.1 and 5.2
repectively. It can be observed from figure 5.10 that the true positive rates for all methods are
below 5%, thus performing poorly in detection when compared to anomaly score. However, the
false positive rates for all predictions are below 1%, which is less when compared with the anomaly
score method. Figure 5.11 shows the false positive rates for each prediction method using anomaly
likelihood. As the anomaly likelihood is based on the scores in the past, it flags the current data

point as an anomaly only when it is different from the scores calculated in the past window.
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Figure 5.10: Overall true positive rate for each prediction using likelihood
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Figure 5.11: Overall false positive rate for each prediction using likelihood

Types of Anomalies Detected

The naive and average methods show an increasing trend in the likelihood throughout the attack
period, detecting anomalies only at the end of the attack. It is also interesting to see that though,
naive prediction gives a high likelihood to the first point of attack, average method does not detect

it and gave a low likelihood value to the start of attack.
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Figure 5.12: Anomaly likelihood when naive prediction method is used with hourly threshold
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Figure 5.13: Anomaly likelihood when average prediction method is used with hourly threshold

Similar to the anomaly score performance results, anomaly likelihood also exhibits the weekly
seasonality for seasonal naive, simple exponential smoothing and Holt Winters’ as seen in figures
5.14, 5.15 and 5.16. For the seasonal methods, we can see that the likelihood is high during the first
two days of the attack and gradually reduces by the end of the week. We can then see an increasing
trend in week two while staying below the threshold, as it belongs to a new cycle of seasonality. We
can observe that the anomalies are detected at the beginning and at the end of the attack signifying

that there were demand changes by a huge amount.
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Figure 5.14: Anomaly likelihood when seasonal naive prediction method is used with hourly threshold
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Figure 5.15: Anomaly likelihood when simple exponential smoothing prediction method is used with
hourly threshold
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Figure 5.16: Anomaly likelihood when Holt Winters’ prediction method is used with hourly threshold

Performance of each Threshold used for Attack Generation

With the likelihood function, we do not have many thresholds to compare and so, we compared
the performance of the threshold used for attack generation. Figure 5.17 shows the prediction
breakdown of true positive and false positive rates for each threshold type. When compared to the
anomaly score method, the overall performance of likelihood in detecting anomalies is low. In all
threshold types, the true positive rates are less that 8%. This is because the likelihood function
always compares a point to its past neighbors to see if the state is anomalous. Hence, we saw the
decreasing trend in seasonal methods as the likelihood values were settling down.

We can see that seasonal naive performed consistently well when compared to the others. Sim-

ilar, to the anomaly score, the likelihood did not perform well with the detection of attack profiles
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generated using daily threshold. Simple exponential smoothing also shows similar characteristics of
not being able to detect the attacks performed during seasonal transition months. Holt Winters’ has
the least true positive rate in the seasonal methods category. Unlike in anomaly score, the average
method detected about 5% of the anomalies when yearly and six hourly thresholds were used for

attack generation.

First Detected Time of an Attack

Eleven attack profiles were not detected by the likelihood technique and eight of them were
detected in the first minute. Around fourteen attacks were detected between two to five minutes.

Table 5.3 shows the summary of the times when the attack profiles were first detected.

First detected time Number of attack profiles

Never detected 11
Minute 1 of attack 8
Between 2 to 5 minutes 14
Between 5 to 15 minutes 9
Between 6 to 24 hours 1
Between 2 to 7 days 1
Between 1 to 2 weeks 5

Table 5.3: Number of profiles by first detection time using likelihood

5.3 Anomaly Detection using Commercial Methods

In this section, we will evaluate the performance of each commercial method that we used for
anomaly detection. We used five methods namely, Arundo’s ADTK, Facebook’s Prophet, HTM
Studio, Anomalize and Twitter’s Anomaly Detection. In the following sections, we will observe

which methods performed the best in detection and what types of anomalies were detected.

Performance of each Method

The true positive and false positive rates were calculated as shown in equations 5.1 and 5.2
repectively. Figure 5.18 shows the overall true positive rate for each commercial method. Surpris-
ingly, we can see that Facebook’s Prophet performed the best in detecting the anomalies with about
40% true positive rate, though it is not an anomaly detection system as a whole, but produces

accurate predictions. Next, we have Arundo’s ADTK having about 5% true positive rate. HTM
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Figure 5.17: Performance of each thresholding mechanism using anomaly likelihood with prediction

breakdown
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Studio, Anomalize and Twitter’s Anomaly Detection were able to capture less than 1% of the total
anomalies.

Facebook’s Prophet method has shown the highest false positive rate compared to the others
with a value less than 20%. Arundo’s ADTK performed similar to the true positive rate by having
5% as its false positive rate too. HTM Studio, Anomalize and Twitter’s Anomaly Detection methods
have low false positive rates too which shows that these methods depend on the recent observations
for the anomaly detection which is why they start considering the attack consumption values to be

normal as we progress during the attack.
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Figure 5.18: Overall true positive rate for each commercial method

Types of Anomalies Detected

Figure 5.20 shows the anomalies detected by Arundo’s ADTK. This method has performed well
in detecting anomalies distributed through out the time of the attack. Though a small fraction
was detected, this method could also detect collective anomalies. However, all the point anomalies
were not detected. There are some spikes which would be categorized as a point anomaly due to
its abnormal nature when compared to its neighbors, but were not detected. Overall, this method
could identify anomalies during the attack duration as opposed to detection only during the start

or end of the attack.
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Figure 5.19: Overall false positive rate for each commercial method
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Figure 5.20: Anomaly detection using Arundo’s ADTK

Facebook’s Prophet has performed well in detecting spikes and troughs collectively as well as
point anomalies represented as spikes. We can see in figure 5.21 that it could detect almost all the
anomalies during the first two days of the attack which aids in detecting the attack in the initial
stages itself.

HTM Studio could detect only a small amount of anomalies, some of them being detected
collectively. It is interesting to see that none of the points at the end of the spikes were detected.

Anomalize could detect the anomalies collectively at the start of the attack and gradually detected
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Figure 5.21: Anomaly detection using Facebook’s Prophet
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Figure 5.22: Anomaly detection using HTM Studio

only some increasing trends in consumption, whereas for the second week of the attack, only one
anomaly was detected.

Twitter’s Anomaly Detection could detect only some point anomalies with high consumption
represented as spikes, but it could not detect any of the other consumption values.

In summary, most of the commercial methods are able to detect some of the point anomalies
and the collective anomalies at the beginning of the attack. Facebook’s Prophet had the best
performance in detection when compared to the others as it could detect both point and collective

anomalies when there is a change of direction in the trend.

61



—e— Alerts —=- Consumption

600
c .‘yA'
S 400+ ; ‘
Qo 4
g 4
=]
(2]
=
[s}
3
2004
o 1 2 3 4 5 6 7 & 9§ 10 11 12 13 14 15
Day of Attack
Figure 5.23: Anomaly detection using Anomalize
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Figure 5.24: Anomaly detection using Twitter’s Anomaly Detection

First Detected Time of an Attack

Thirteen attack profiles were not detected by the commercial methods in total. These methods
which could not detect are Anomalize and Twitter’s Anomaly Detection. Eleven attack profiles were
detected during the first minute of the attack by Facebook’s Prophet and Arundo’s ADTK. Table

5.4 shows the summary of the times when the attack profiles were first detected.

5.4 Chapter Summary

In this chapter, we evaluated anomaly detection techniques which included anomaly score with

thresholding, anomaly likelihood with thresholding and commercial unsupervised anomaly detection

62



First detected time Number of attack profiles detected

Never detected 13
Minute 1 of attack 11
Between 2 to 5 minutes 10

Between 5 to 15 minutes
Between 6 to 24 hours
Between 2 to 7 days
Between 1 to 2 weeks

=N O

Table 5.4: Number of profiles by first detection time using commercial methods

methods. We observed that Holt Winters’ prediction method along with anomaly score was able to
detect some proportion of anomalies consistently across all thresholding mechanisms. Simple expo-
nential smoothing with anomaly score detected 100% of the anomalies with quarterly, weekly and
hourly thresholding while keeping its false positive rates low. Seasonal naive prediction method with
anomaly score performed well with generic thresholds which are yearly, half yearly quarterly, monthly
and weekly in terms of detecting 50% of the anomalies. As the thresholds are calculated for smaller
windows, the false positive rates started to increase for the seasonal naimethod. Naive and average
methods performed poorly across all thresholds. From a thresholding view, daily thresholding failed
to detected the anomalies across all prediction methods.

Anomaly likelihood technique detected less than 10% of the anomalies across all prediction
methods. In this case, the attack generated using daily thresholding has again performed poorly
in detection across all prediction methods. Seasonal naive method with anomaly likelihood has
performed well in detection across all attack profiles.

From the commercial anomaly detection methods, Facebook’s Prophet performed better than
the others detecting about 40% of the anomalies on an average. This method was able to detect
point anomalies and some collective anomalies as well. Arundo ADTK detected about 5% of the
anomalies on an average spread across the attack duration. This method also has a low false positive
rate of 5%. Anomalize was able to detect a collection of anomalies in the beginning of the attack.
HTM Studio and Twitter’s Anomaly De