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Abstract 

With the increasing attention of renewable energy development in distribution power 

sys- tem, artificial intelligence (AI) can play an indispensiable role. In this thesis, a series 

of artificial intelligence based methods are studied and implemented to further enhance the 

performance of power system operation and control. 
Due to the large volume of heterogeneous data provided by both the customer and the 

grid side, a big data visualization platform is built to feature out the hidden useful knowl- 

edge for smart grid (SG) operation, control and situation awareness. An open source cluster 

calculation framework with Apache Spark is used to discover big data hidden information. 

The data is transmitted with an Open System Interconnection (OSI) model to the data visu- 

alization platform with a high-speed communication architecture. Google Earth and Global 

Geographic Information System (GIS) are used to design the visualization platform and 

realize the results. 

Based on the data visualization platform above, the external manifestation of the data 

is studied. In the following work, I try to understand the internal hidden information of the 

data. A short-term load forecasting approach is designed based on support vector regression 

(SVR) to provide a higher accuracy load forecasting for the network reconfiguration. The 

nonconvexity of three-phase balanced optimal power flow is relaxed to an optimal power 

flow (OPF) problem with the second-order cone program (SOCP). The alternating direction 

method of multipliers (ADMM) is used to compute the optimal power flow in distributed 
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manner. Considering the reality of distribution systems, a three-phase unbalanced distrib- 

tion system is built, which consists of the hourly operation scheduling at substation level 

and the minutes power flow operation at feeder level. The operaion cost of system with 

renewable generation is minimized at substation level. The stochastoc distribution model 

of renewable generation is simulated with a chance constraint, and the derived deterministic 

form is modeled with Gaussian Mixture Model (GMM) with genetic algorithm-based ex- 

pectationmaximization (GAEM). The system cost is further reduced with OPF in real-time 

(RT) scheduling. The semidefinite programming (SDP) is used to relax the nonconvexity 

of the three-phase unbalanced distribution system into a convex problem, which helps to 

achieve the global optimal result. In the parallel manner, the ADMM is realizing getting 

the results in a short time. 

Clouds have a big impact on solar energy forecasting. Firstly, a convolutional neural 

network based mathod is used to estimate the solar irradiance, Secondly, the regression 

results are collected to predict the renewable generation. After that, a novel approach is 

proposed to capture the Global horizontal irradiance (GHI) conveniently and accurately. 

Considering the nonstationary property of the GHI on cloudy days, the GHI capturing is cast 

as an image regression problem. In traditional approaches, the image regression problem 

is treated as two parts, feature extraction and regression, which are optimized separately 

and no interconnections. Considering the nonlinear regression capability, a convolutional 

neural network (CNN) based image regression approach is proposed to provide an End-to- 

End solution for the cloudy day GHI capturing problem in this paper. For data cleaning, the 

Gaussian mixture model with Bayesian inference is employed to detect and eliminate the 

anomaly data in a nonparametric manner. The purified data are used as input data for the 

proposed image regression approach. The numerical results demonstrate the feasibility and 

effectiveness of the proposed approach. 



iv  

 

Acknowledgements 

First of all, I would like to extend my sincere gratitude to my supervisor, Dr. David 

Wenzhong Gao, for his instructive advice and useful suggestions on my thesis. I am deeply 

grateful of his help in the completion of this thesis. I learned a lot of knowledge from his 

excellent performance in teaching and research capabilities as well as responsibility to his 

students. 

I also gratefully thank my formal advisor Dr. Jun Jason Zhang, for his profound knowl- 

edge of power systems and help. 

I am also deeply indebted to all the other tutors and teachers for their direct and indirect 

help to me. 

Special thanks should go to my friends and colleagues, especially Dr. Yingchen Zhang, 

Dr. Eduard Muljadi, Dr. Huaiguang Jiang at NREL, who have put considerable time and 

effort into their comments on the draft. 

Finally, I am indebted to my parents for their continuous support and encouragement. 



Table of Contents
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction 1
1.1 Current Research on Data Analysis and Knowledge Discovery . . . . . . . 4
1.2 Current Research on Load Forecasting on SVR . . . . . . . . . . .. . . . 7
1.3 Current Research on multi-timescale distributed powersystem . . . . . . . 8
1.4 Current Research on image regression with convolutional neural network . 9
1.5 Organization of thesis and Main Contributions . . . . . . . .. . . . . . . . 10

2 Data analysis and data computation platform of smart grid operation 13
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Architecture of the Platform . . . . . . . . . . . . . . . . . . . . . . .. . 14

2.2.1 Main Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Detailed Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Data Communication Architecture . . . . . . . . . . . . . . . . .. 16

2.3 The Spark Based Knowledge Discovery . . . . . . . . . . . . . . . . .. . 17
2.3.1 Spark Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Spark SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 Spark Streaming . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 The Google Earth Based Data Visualization . . . . . . . . . . . .. . . . . 18
2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 An Example of Demand Response . . . . . . . . . . . . . . . . . . 18
2.5.2 A Description of Renewable Energy-PV . . . . . . . . . . . . . .. 19
2.5.3 Multivariate Linear Regression Analysis . . . . . . . . . .. . . . . 20
2.5.4 A consideration to solve the overflow problem in distribution power

system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Conclusion and Contributions . . . . . . . . . . . . . . . . . . . . . .. . 25

3 Load forecasting with Support Vector Regression (SVR) 26
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 The Architecture of the Proposed Approach . . . . . . . . . . . .. . . . . 26
3.3 SVR-Based Short-term Load Forecaster . . . . . . . . . . . . . . .. . . . 28

3.3.1 SVR Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.2 Two-step parameter optimization . . . . . . . . . . . . . . . . .. . 29

3.4 Distribution System Network Reconfiguration . . . . . . . . .. . . . . . . 30
3.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5.1 Short-term Load Forecasting . . . . . . . . . . . . . . . . . . . . .34
3.5.2 Network Reconfiguration . . . . . . . . . . . . . . . . . . . . . . . 34
3.5.3 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

v



3.6 Conclusion and Contributions . . . . . . . . . . . . . . . . . . . . . .. . 35

4 Multi-timescale distribution system optimization with renewable energy 36
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 The Flowchart of the Proposed Approach . . . . . . . . . . . . . . .. . . 37
4.3 Day-ahead hourly scheduling at the substation level . . .. . . . . . . . . . 39

4.3.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.2 Genetic-based Expectation Maximization Algorithm for learning

Gaussian Mixture Model . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.3 Chance Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Optimal power flow (OPF) and the ADMM based Semidefinite Program-
ming (SDP) relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.1 Alternating Direction Method of Multipliers(ADMM) .. . . . . . 46
4.4.2 ADMM in Proposed Method . . . . . . . . . . . . . . . . . . . . . 47

4.5 Numerical Simulation and Results . . . . . . . . . . . . . . . . . . .. . . 50
4.5.1 Numerical Results Analysis on IEEE 123-bus . . . . . . . . .. . . 50
4.5.2 Numerical Results Analysis on Feeder J1 model . . . . . . .. . . 55

4.6 Conclusion and Contributions . . . . . . . . . . . . . . . . . . . . . .. . 61

5 Improved distribution system optimization with image regression and ensem-
ble learning 63
5.1 Solar Irradiance Capturing in Cloudy Sky Days

–A Convolutional Neural Network Based Image Regression Approach . . . 63
5.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.1.2 Data cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.1.3 Image Regression Problem with Convolutional Neural Network . . 75
5.1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Ensemble model design with multiple machine learning and deep learning
models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2.1 Load forecasting tools . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3 Methods Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3.1 Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3.2 Linear Regression Analysis . . . . . . . . . . . . . . . . . . . . . 98
5.3.3 Support Vector Regression Analysis . . . . . . . . . . . . . . .. . 98
5.3.4 Multi-layer Perceptron Analysis . . . . . . . . . . . . . . . . .. . 99
5.3.5 Random Forest Analysis . . . . . . . . . . . . . . . . . . . . . . . 100
5.3.6 Extra Tree Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.3.7 Adaboost Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.3.8 GBDT Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.3.9 XGBoost Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4 Ensemble Learning - Stacking Regression . . . . . . . . . . . . .. . . . . 105
5.5 Bootstrapping Based Prediction Intervals Computation. . . . . . . . . . . 107

5.5.1 The Theory of Bootstrapping . . . . . . . . . . . . . . . . . . . . . 107
5.5.2 Forecast Results and Statistic Analysis . . . . . . . . . . .. . . . . 110

vi



5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.6.1 Total cost with ensemble learning . . . . . . . . . . . . . . . . .. 112
5.6.2 Total costs comparison with different machine learning models . . . 113

5.7 Conclusion and Contributions . . . . . . . . . . . . . . . . . . . . . .. . 114

6 Conclusion and Future Work 116

References 118

vii



List of Tables
2.1 Regression Performance (Squared Error) . . . . . . . . . . . . .. . . . . . 21
2.2 The coefficients of explanatory variables with FGLS . . . .. . . . . . . . 21

3.1 Results of Network Reconfiguration . . . . . . . . . . . . . . . . . .. . . 32
3.2 Performance comparison . . . . . . . . . . . . . . . . . . . . . . . . . . .35

4.1 Comparison onη for different fitting model . . . . . . . . . . . . . . . . . 50
4.2 Comparisons based on Fig. 4.2 at substation level . . . . . .. . . . . . . . 52
4.3 Time Consumption Comparison . . . . . . . . . . . . . . . . . . . . . . .52
4.4 Line Loss Comparison with or without OPF . . . . . . . . . . . . . .. . . 54
4.5 Comparison onη for different fitting model . . . . . . . . . . . . . . . . . 58

5.1 The comparison of different approaches in Fig.1 . . . . . . .. . . . . . . . 66
5.2 Performance of Proposed Approach . . . . . . . . . . . . . . . . . . .. . 110

viii



List of Figures
2.1 Main architecture of the proposed big data platform. . . .. . . . . . . . . . 14
2.2 Detail architecture of the proposed big data platform. .. . . . . . . . . . . 15
2.3 Architecture of the communication design. . . . . . . . . . . .. . . . . . . 16
2.4 Real-time demand response in DU campus. . . . . . . . . . . . . . .. . . 19
2.5 Real-time PV generation and total electrical power consumption on DU

campus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 System Visualization Platform in General Situation . . .. . . . . . . . . . 23
2.7 System Visualization Platform in Unexpected Situation. . . . . . . . . . . 23
2.8 System Visualization in Monitoring Situation . . . . . . . .. . . . . . . . 25

3.1 The flowchart of the proposed approach. . . . . . . . . . . . . . . .. . . . 27
3.2 (a) The IEEE 123-bus based distribution system, (b) the error distribution

of short-term load forecasting. . . . . . . . . . . . . . . . . . . . . . . .. 31

4.1 The flowchart of proposed approach. . . . . . . . . . . . . . . . . . .. . . 37
4.2 Comparisons between GSM, GMM and GAEMGMM: (a) the original ag-

gregated error distribution, (b) the modeled result with GSM and comparing
with the original original aggregated error distribution,(c) the original ag-
gregated error distribution is modeled with a GMM consists of 3 GSMs,
(d) the GMM fitted result compare with the original aggregated error dis-
tribution, (e) the original aggregated error distributionis modeled with a
GMM consists of 4 GSMs, (f) the GAEMGMM fitted result compare with
the original aggregated error distribution. . . . . . . . . . . . .. . . . . . 43

4.3 (a) Total Operation Cost with and without the CA. (b) Total Cost with GSM
based approach and proposed approach. . . . . . . . . . . . . . . . . . .. 53

4.4 Total Operation Cost with Differentγ in Chance Constraint. . . . . . . . . 53
4.5 The Line Loss of the Distribution System. . . . . . . . . . . . . .. . . . . 54
4.6 Convergence Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
4.7 Topology of Feeder J1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.8 PV Installation of Feeder J1 . . . . . . . . . . . . . . . . . . . . . . . .. 57
4.9 (a) Total Operation Cost with and without CA in Peak Day. (b) Total Oper-

ation Cost with and without CA in Off-Peak Day. . . . . . . . . . . . .. . 59
4.10 Total Operation Cost with Different Percentage Limit in Chance Constraint 60
4.11 The Line Loss of Power System in Peak Day and Off-Peak Day. . . . . . 61

5.1 The proposed approach compared with the traditional approaches. . . . . . 64
5.2 The flowchart of proposed approach. . . . . . . . . . . . . . . . . . .. . . 66
5.3 The flowchart of data cleaning in proposed approach. . . . .. . . . . . . . 68
5.4 The selected anomaly sky images taken by different devices (a) the sky

image of sunrise, (b) the sky image of sunset, (c) the sky image polluted by
rain and snow, (d) the sky image of a clean day without any clouds. . . . . . 71

ix



5.5 The graphic model of the Gaussian mixture model with Bayesian inference. 72
5.6 The selected normal sky images with some clouds (a) few cloud with okta

1 to 2 in a sky image, (b) cloud with okta 3 to 4 in a sky image, (c)cloud
with okta 5 to 6 in a sky image, (d) cloud with okta 7 to 8 in a sky image. . 76

5.7 The architecture of proposed CNN. . . . . . . . . . . . . . . . . . . .. . . 77
5.8 Anomaly detection for the GHI data. . . . . . . . . . . . . . . . . . .. . . 81
5.9 Anomaly detection for the GHI and Zenith Angle data. . . . .. . . . . . . 82
5.10 Anomaly detection for the GHI and Temperature data. . . .. . . . . . . . 83
5.11 Feature expression of CNN (a) the original sky image demo, (b) the feature

of conv1, (c) the feature of conv2, (d) the feature of conv3, (e) the feature
of conv4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.12 Image regression for GHI with different training data length: (a) 1 day data
as training data, (b) 3 day data as training data, and (c) 5 daydata as training
data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.13 MLP network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.14 Pearson Correlation Analysis. . . . . . . . . . . . . . . . . . . . .. . . . 96
5.15 Feature importance analysis of Linear Regression. . . .. . . . . . . . . . . 99
5.16 Feature importance analysis of Support Vector Regression. . . . . . . . . . 100
5.17 Feature importance analysis of Multi-layer Perceptron. . . . . . . . . . . . 101
5.18 Feature importance analysis of Random Forest . . . . . . . .. . . . . . . . 102
5.19 Feature importance analysis of Extra Tree . . . . . . . . . . .. . . . . . . 103
5.20 Feature importance analysis of Extra Tree . . . . . . . . . . .. . . . . . . 104
5.21 Feature importance analysis of GBDT. . . . . . . . . . . . . . . .. . . . . 105
5.22 Feature importance analysis of Xgboost. . . . . . . . . . . . .. . . . . . . 106
5.23 Feature extraction correlations. . . . . . . . . . . . . . . . . .. . . . . . . 107
5.24 Major Idea of Stacking Regression. . . . . . . . . . . . . . . . . .. . . . . 108
5.25 Detail Architecture of Stacking Regression. . . . . . . . .. . . . . . . . . 109
5.26 One day forecast example of proposed method. . . . . . . . . .. . . . . . 111
5.27 Error Distribution between Proposed Method and Xgboost. . . . . . . . . . 112
5.28 Total cost with Ensemble learning. . . . . . . . . . . . . . . . . .. . . . . 113
5.29 Total cost with different machine learning models and proposed model. . . 113

x



Chapter 1

Introduction

Artificial Intelligence (AI) was introduced in the mid 1950s, which has rapidly evolved

in recent decades. It has been an essential tool, which has board applications in humans’

daily life. Particularly useful in commercial and industrial applications. In the 1890, science

fiction H.G.Wells started exploring the idea of robots and machine thinking as human. After

that, in 1956, an AI application is realized to play checker and beat most of the humans.

In 2011, Watson is introduced by IBM, which is used for much complicated techniques,

such as deep learning. 2015 is a landmark for human research on AI, Google Clouds, AWS

and others began to start research computer vision, naturallanguage processing and other

analysis tools. There are several methods used to support the AI technology. Machine

learning, deep learning, Bayesian Network and Genetic Algorithm [1]. AI systems have

been used across many areas of business and industry.

1. Health care: AI enables the doctors to understand the diseases at a deeper level, which

aids to supply insights of the risks. And Internet of Things(IoT) and surgical robots

have been used.
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2. Agriculture: crop monitoring system by AI is set up for farmer to decide if they

need to water, fertilizer and others. The complex biological problems are solved by

mutation and crossover technology.

3. Finance: banks make credit decision automatically with models such as decision tree.

Fraud is easier to spotted with algorithm by financial organization. One more general

example, humans can make deposits by scanning the check withsmart phone with

AI.

4. Travel: Airline companies, hotels and car rentals use AI on demand forecasting and

adjust the price automatically. And AI is also used to make the plans with routes,

weather, customer loads and other variables.

5. Power System: An electric power system is a network of electrical components,

which is used to supply, transmit and consume electric power. Power systems en-

gineering is a brand of electrical engineering, which aims at power generation, trans-

mission, distribution. Artificial Intelligence (AI) technology becomes popular for

solving different problems in power systems like controlling, planning, scheduling

and forecasting, etc. The techniques can used to solve difficult tasks faced by appli-

cations in present large power systems. The application of these techniques has been

successful in many areas of power system engineering.

In recent decades, the increasing demand of world energy requires a rapid development

of modern power systems with renewable energy. It is still facing many challenges in

future development of hybrid power system. Due to advantages of green energy, such as

economic benefits, almost no pollutions, less maintenance fee, a hybrid distributed power

system is a top topic in recent power energy research. However, renewable energy is a

highly weather depended resource. Because of that, a traditional distributed power system

combined with renewable energy generation can be satisfactory to take the advantages and

avoid disadvantages [2].
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Traditional power system is dramatically changing with therapid technology develop-

ment. A large amount of massive heterogeneous data are provided and indispensable for

the SG operation. The method on how to choose the useful information without spatial

information is proposed as an open source cluster framework, which is based on Apache

Spark and can be used to effectively collect, store and process data in parallel manner. The

discovery knowledge is visualized with a Google Earth Platform, the operators can also

monitor the power system based on that. The network reconfiguration is used to operate the

power system with limited switches controlling, which aimsto maintain voltage profiles,

reduce system loss. An improved method on load prediction technology is used to compute

the load deviations at two scheduled time points, which is ignored by traditional ways. The

dynamic and efficient network reconfiguration method is simulated based on support vector

regression (SVR). The short-term load forecasting approach is employed to minimize the

error between real and forecasting demand load.

The distribution system markets are attracting more attention in recent research along

with the rapid technology development of the power system. Considering the hybrid power

system with high penetration of renewable energy, how to improve efficiency and reliability

of the hybrid power system become a new challenge. Due to the economic benefits of

renewable energy, a multi-timescale operational approachis scheduled on substation and

feeder level. Different from traditional computation on distribution system, a three-phase

unbalanced distribution system is used to minimize system loss. It should not be ignored

with a desire of high accuracy on optimizing operation cost.And the corrective action is

implemented at substation level. Reselling the redundant power to real-time power system

should be helpful for operation cost optimization.

3



1.1 Current Research on Data Analysis and Knowledge Discov-

ery

Big data representation and visualization are described in[3], which helps to avoid the

problems, such as visual noise, large image perception, information loss and high rate of

image change [4–10]. In this method, more than one view are collected for each representa-

tion display. However, how many views are needed for each representation display is still a

problem. Recently the challenge of data analysis has risen to incorporation uncertainty into

visual representation, a novel data analysis method of uncertainty is described in [11]. The

data analysis platform will result an inaccuracy after process the data in the pipeline. [12]

construct a visualization framework to analysis the relationship between transmission sys-

tem capacity, scheduled power flows and actual network powerflows. It includes the con-

tour of bus, transmission line flow values, power flow values,but still limited on renewable

energy power generation. For large-scale of electric powersystem, information visualiza-

tion is necessary for research [13]. Several power system visualization tools are presented

in [13], which realize 3D data analysis. Effective power system always require operators

to analysis and interactive in a short time, presenting the data in a form for engineers to

assess in an a quick manner is what [12] did. The platform can help operators to monitor

and control the system, however, a visualization platform for large scale power system is

still needed. data analysis is an established method and hasbeen widely used because of the

strong data management and knowledge display. [14] proposed some tools on how to visu-

alize the data information of distribution system. A big amount of data analysis methods has

been proposed in the recent decades, there are multi-direction model, large-scale transmis-

sion visualization model, while the researching on 3D distribution system visualization is

still limited. In this chapter, I proposed a 3D data analysisplatform for distribution system,

the campus of University of Denver is used as the test bench, which helps to monitor the

load for each building in real time. A lot of machine learningrelated approaches are imple-

4



mented in power system and related areas [15–26]. Similarly, optimization is a large topic,

which contains both convex optimization and non-convex optimization approaches [27–34].

Building a smart grid (SG) with renewable energy generationis imperative, such as solar

energy, wind power, hydropower, geothermal, bio energy, etc. [35–37]. Along with the

rapid development of the modern power generation technology, the new inventions are dra-

matically improving the traditional power systems [37–40]. The large amount of smart

sensors provide heterogeneous massive data, which are necessary to the smart grid opera-

tion and management. However, the useful knowledge always hides in the big amount of

the data with less spatial information. In order to figure outthe useful information, an open

source cluster computing framework based on the Apache Spark is built to collect, save and

process the big data in parallel manner. And then, the selected data are transmitted to the

proposed visualization platform. For example, the way to improve the system efficiency

and extend the service life to determine the optimal position of wind turbine [41]. Accord-

ing to the analysis of the market research, the service market grew from $3.2 billion in 2010

to $16.9 billion in 2015 [42].

The most important features are used to do the knowledge discovery are low value

density, large volume and high velocity [41,43–45].

1. Low value density: in smart grid abnormal data detection,most part of the col-

lected data from operation are general data, the abnormal data only occupy very small

parts [46].

2. Large volume: the various smart sensors with high speed sampling rate always pro-

duces a large volume of data, which can increase the TB level up to PB level [43].

3. High velocity: the rate speed of the smart sensors are increasing. For example, the

synchrophasor measuring device, which measures from 20 samples/s to 1440 sam-

ples/s [46].
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According to the characteristics, the proposed platform ofbig data is described to satisfy

the requirements as follows. Four points are described here.

1. Efficient, resilient and distributed data storage skill for the collecting heterogeneous

massive data.

2. Error tolerant, high speed, big data processing and analyzing in parallel manner.

3. Streaming processing platform for high speed in real-time data.

4. Hidden knowledge discovery based on machine learning to meet the requirements of

different complex projects.

Hadoop is a widely used open-source software, which is released by Google file system

in 2003. It is designed for big data processing and distributed storage in computer clus-

ters [47, 48]. Compared with the traditional approach, MapReduce is the critical feature of

Hadoop, it can divide the job into several smaller jobs and deal with them in distributed

computer clustering. In each iteration, reloading the datafrom disk can cause a longer

time consumption, especially for the iterative parametersoptimization with machine learn-

ing [48]. Based on the new cluster computing framework, Apache Spark is designed to

reduce the time-consumption on the clusters computation. The important advantages of

Apache Spark are as follows [47]

1. Not frequently reload the data from disk for iterative calculations in machine learning.

2. Dividing the task into several smaller jobs and compute the results in distributed

computer clusters.

3. Easy to use in many languages and different operation systems.

At present, Google Earth is widely used and can be operated indifferent operation

systems such as Mac OS, Linux, Windows [49]. A Google Earth platform is used to achieve

the data analysis with discovered knowledge.
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The visualized platform is designed to meet the requirements of independent system

operators (ISOs), customers and the utilities, which consists: 1) decision support, 2) fore-

casting assessment, 3) operation and control, 4) security and detection.

1.2 Current Research on Load Forecasting on SVR

Load forecasting is one of major field of research on power system operation. Many

traditional ways have been tried to obtain good results. In [50], an early neural network

is constructed to analysis the relationship between actualload and various features. How-

ever, the early model did not consider some reasons which maylead overfitting. Because

of renewable integration, a high accuracy model of load forecasting has been more and

more important for power planning and operation. A probabilistic electric load forecasting

has been proposed in [51], the emerging technology has been considered during the load

forecasting process. [52] introduces the definition of short-term load forecasting of power

system. The current load forecasting methods are classifiedas new forecasting methods,

traditional methods, intelligent methods and classic methods. It is reminded that not only

the historic data is important, but also the right model selection. [53] proposed an approach

of load forecasting with dynamic pricing for demand side management. Real time pricing

and peak price are considered in details. There are plenty ofmethods considered in the

development of load forecasting. In this chapter, mathematical and artificial intelligence

computational model is a new trend on solving this problem, an SVR model is built with

grid traversal to find out the best combination of hyper-parameters, which helps to reach

the global minimal in our research.

Network reconfiguration is widely used to decrease system loss, control voltage sta-

bility [54–57]. The load prediction technology provides the load deviations between two

time points. Considering the stochastic load deviation in distribution power system, it is

important to set up an efficient and dynamic network reconfiguration approach [40,58–62].

A support vector regression (SVR) is used to cooperate with the network reconfiguration
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based on short-term load prediction method to minimize the system loss. Most parameters

in SVR can be solved in a convex manner. Several parameters, defined as hyper-parameters,

cannot be determined in a same time. The optimization of the parameters are really indis-

pensable of SVR, and dramatically influence the performanceand efficiency of the fore-

caster [63–66]. Due to this, a two-steps parameters optimization approach is proposed

with grid traverse algorithm (GTA). According to the distributed computation frameworks

in [67–70], the hyper-parameter optimization of SVR is described with MapReduce to op-

timize the parameters in parallel manner and reduce the calculation time consumption.

1.3 Current Research on multi-timescale distributed powersys-

tem

With advanced development of power generation technology,distribution system mar-

kets attracts more and more attention in recent research [71–73]. Considering the output of

high penetration renewable energy generation, distribution power system faces a big chal-

lenge. Many approaches are used to improve the net reliability. In [71], a day-ahead market

energy auction is built for distribution system operation.In [74,75], a multi-timescale power

system operation approach is proposed for renewable energygeneration. In [76], a storage-

based operation approach is used to decrease the operation cost of a distribution power

system with renewable energies. In [72, 77], the optimal operation methods are proposed

with economic dispatch in distribution system with renewable energy. However, all these

studies ignored the system loss, which would significantly influence the operation cost. A

multi-timescale operation approach is proposed to reduce the operation cost. A three-phase

unbalanced OPF is built to reduce the system loss.

In [78], the stochastic programming optimization (SPO) provides many benefits to dis-

tribution systems. The distribution of the forecasting errors is given to generate the error

models, which are formulated as a chance-constraint for SPOin distribution systems. It is
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assumed that there are more than one renewable generators operating on certain feeders.

The aggregated error distribution usually includes multiple Gaussian models, which can be

modeled as the Gaussian mixture model (GMM) [79]. The variant Gaussian models indi-

cates the uncertainties of the renewable energies. The genetic algorithm-based expectation

maximization (GAEM) is applied for GMM to determine the amount of Gaussian models

automatically [80]. According to the this, the chance-constraint of the renewable generation

is formulated into a deterministic form for further reducing the computation burden [78].

In [81, 82], the variability of the renewable generation is operated by hourly demand re-

sponse with day-ahead scheduling, which is scheduled without considering the stochastic

net load deviation within an hour. In [83], a single line model instead of three-phase system

is used to compute the system loss, which ignores the three-phase unbalanced configuration

in distribution power systems. Because of the nonconvexityof the three-phase unbalanced

OPF in distribution system, the heuristic based approach isproposed in [84]. However,

this method hardly avoids to fall into the local minimums with a high computation time-

consumption for a large-scale distribution systems [85]. To avoid the issues above, an

inequality constraint is proposed based on semidefinite programming (SDP) to relax the

three-phase unbalanced OPF problem. After that, the proposed formulation for system loss

is solved in parallel manner with alternating direction methods of multipliers (ADMM). It

helps to further reduce the total operation cost hourly.

1.4 Current Research on image regression with convolutional

neural network

Global horizontal irradiance (GHI) ia a critical index which we use to predict the output

power of PV generators. In [86], time series forecasting model is set up for short-term load

forecasting. The logical procedures for model developing,which use the autocorrelation

function helps to obtain a better performance. A novel approach for daily peak load fore-
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casting is proposed in [87], the result shows that the daily peak load can be forecast in a high

accuracy with artificial neural network. ARMA (autoregressive moving-average) model is

studied for short-term load forecasting of power system in [88]. The Box-Jenkins trans-

fer function is used as a important tool to increase the forecasting accuracy. However, the

time series forecasting model always need continuous data,in this chapter, a deep learning

model is built to overcome the non-serial data. [89] set up a probability approach for long-

term load forecasting, the probability distribution of weekly peak electricity was predicted

in his method. A deep learning framework is proposed for short-term load forecasting, a

deep belief model is used to do the hourly load forecasting in[90].

1.5 Organization of thesis and Main Contributions

In Chapter 1, the literature review of the current research around renewable energy dis-

tribution power systems are described, which provides background study of the renewable

energy. In Chapter 2, The useful hidden data is transmitted into a visualization platform.

The result provides the audience a convenient way to get the information. In Chapter 3,

network reconfiguration is used to operate the power system with an improved load fore-

casting technology based on SVR. In Chapter 4, a multi-timescale operational approach

is used on a two level distribution power system, which consists of the substation and the

feeder level. The numerical results are obtained from simulation on IEEE 123-bus, IEEE-

8500, University of Denver campus distribution power system and Feeder J1. Feeder J1

is [91] selected for analysis because 1.7 MW of clients ownedPV generators exists on the

feeder. The system locates in the northeast of US, which serves 1300 commercial, small

industrial and residential customers. In Chapter 5, a novelapproach is proposed to capture

the GHI conveniently and accurately. Considering the nonlinear regression capability, a

convolutional neural network (CNN) based image regressionapproach is proposed to pro-

vide an End-to-End solution for the cloudy day GHI capturingproblem. After that, a novel

ensemble learning model is constructed with different machine learning and deep learning
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model. An efficient way is introduced to construct the renewable energy forecasting model.

In Chapter 6, the conclusion and future work is summarized.

Themain contributions of this thesis are:

1. data analysis platforms are constructed for operators toassess the load power and

renewable energy in convenience. The visualization platforms provide the operators

a clear understanding of the information in a short time. Theplatform can be used to

visualize a large volumes of data, which helps the customersto make decision more

efficiently with less time consumption. Depends on current research, it is necessary

for operators to work on this platform.

2. For a distribution system operator, a multi-timescale approach is proposed based on

a three-phase unbalanced distribution system. With the day-ahead dispatch of the

substation level, the objective is provided to optimize thesystem cost with renewable

energy. The chance constraint is built based on GMM and GAEM.At the feeder

level, the objective is minimizing the system loss. An OPF problem is formulated for

the three-phase unbalanced system, calculate the results in parallel with ADMM. In

the proposed multi-timescales model, the feeder scheduling is described with higher

time resolution and update frequencies, which can be obtained near RT calculation.

3. A big data processing approach is used in renewable energyarea for solar irradiation

capturing, which contains big data cleaning and deep learning based image regres-

sion. Compared with the traditional solar irradiation capturing approach, the CNN

based approach is cheap, fast, accurate, and convenient to be extended for large-area

monitoring.

4. Based on the Dirichlet process, variational inference, and Bayesian theory, a Gaussian

mixture model with Bayesian inference approach is employed. It determines the

mixture components automatically.
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5. Based on the CNN architecture for classification, a new regression CNN architecture

is designed for image regression problem. The input of the proposed approach is the

image set and the output is the continuous variable set, which can be extended for

multiple regression problems. In future study, the relatedproblems, for example, the

large-area PV output forecasting, can be studied based on our research.

6. A new ensemble learning model is built for energy forecasting, compare with tran-

sitional ensemble learning model. The proposed model aims to figure out the most

efficient combination of the machine learning models.

12



Chapter 2

Data analysis and data computation

platform of smart grid operation

2.1 Introduction

Recently, with widely spread smart sensors, multidimensional data such as voltage, cur-

rent, wind direction, wind speed, and solar irradiance can be collected in highly simpling

rate over large area. The collected large-volume data contains a large amount of knowledge

and requires a bunch of new method to process and discover. For example, a modern hybrid

power system usually contains high penetration of wind and solar, which is very difficult to

identify its real system operation states with traditionalmethods. And traditional methods

are also not suitable for large-volume and high-speed data process. Therefore, considering

advanced data-processing and data-driven technologies, machine learning based approaches

are proposed to discover the hidden information for power system operation and control. In

addition, data visualization is a significant indispensable step for advanced data-processing

and data-driven technologies, which displays rich information vividly for both data prepro-

cessing and result analysis.
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Figure 2.1: Main architecture of the proposed big data platform.

2.2 Architecture of the Platform

2.2.1 Main Architecture

The proposed platform in Fig. 2.1 has four major applications which consists of 1)

forecasting and risk assessment, 2) decision support and management, 3) operation and

control, 4) security and protection. The independent system operators (ISOs) could ask the

useful knowledge from the proposed platform, respectively.

2.2.2 Detailed Architecture

As shown in Fig 2.2, the major architecture of knowledge discovery platform contains

several parts such as Data collection, resilient distribution dataset, Spark master, GIS visu-

alization, and Applications.

1. Resilient Distributed Dataset: the major task is to store and process data with su-

pervising of Spark master. On one hand, the work nodes from 1 to n are working

in parallel. On the other hand, the distributed datasets receive original dataset and
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Figure 2.2: Detail architecture of the proposed big data platform.

store the datasets at distributed data centers. It can reduce the communication burden

to Spark master (It is an advanced big data process engine, which has been widely

used in both industrial and academic research). In addition, the critical data can be

compressed and stored in distributed to increase the resilient of databases [46].

2. Spark master: the major task is to collect different types of data in natural world.

In this part, the smart sensors provide the original data from natural world and the

smart sensors can receive commands from the Spark master about measurement time

periods.

3. GIS visualization: the data flow of the discovered knowledge is obtained from Spark

master, Python and Matlab are used to generate the KML files for visualizing data in

various forms. Based on different kinds of scenarios, multi-layered architecture is

applied, and different kinds of display forms are used for different research areas

such as operation, control, security, and management.
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Figure 2.3: Architecture of the communication design.

2.2.3 Data Communication Architecture

The architecture of communication system in the proposed platform is described in

Fig 2.3. The two major layers are: data flow in lower layers, application in upper layers.

The standard Open System Interconnection (OSI) model is used to compare and explain the

corresponding abilities and applications of each layer in the detailed architecture.

1. Network Access: The major task of this layer is to build a reliable physical wired

or wireless communication connection among the work nodes for transmitting and

receiving data. In the data collection part, as shown in Fig 2.2, the smart sensors

are pervasively located. Both wired and wireless communication connections can be

implemented according to the data volume and transmission speed.
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2. Node-to-Node: The major task of this layer is to provide addresses for network ac-

cess devices such as computers, smart sensors, servers, andend users, to send and

receive data among the network access devices, determine the path of data flow, con-

trol the security and quality of service (QoS).

3. Application and Presentation: The major task of this layer is to implement the

complex data structure on the data visualization platform.

2.3 The Spark Based Knowledge Discovery

Apche Spark based computer cluster is used to discover the hidden knowledge in the

collected big data, which provides a resilient, fast, and effective parallel computation plat-

form for many machine learning algorithms such as regression, classification, recognition,

etc.. [92]. As shown in Fig 2.2, the Apache Spark contains: Spark core, Spark SQL, Spark

Streaming, Spark GraphX, Spark Mlib.

2.3.1 Spark Core

The Spark Core contains a lot of basic functions such as task scheduling, memory man-

agement, fault recovery, etc. [47]. RDD is one of the most significant features of Spark

core, which means that many distributed computer nodes withdatabases can be organized

and manipulated in parallel. RDD saves the application states such as check points period-

ically, which means that the system and computation can be recovered quickly after some

work nodes loss or failed. Considering the different requirements from different customers,

multiple tasks can be computed in parallel with the high-effective platform. The big data

processing results can be accessed in multiple end users, respectively.
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2.3.2 Spark SQL

Spark SQL is an efficient package focusing on processing data, and supporting a lot of

data forms [47]. Python is used as the programming language,which also supports a lot of

data forms such as XLS, MAT, etc. [93].

2.3.3 Spark Streaming

Spark Streaming is a useful component for processing the live streaming of data [47].

Compared with Hadoop, which needs to frequently load and reload data from disk, Spark

can save and store the data in memory, which dramatically increasing the data processing

speed.

2.4 The Google Earth Based Data Visualization

Many open source visualization tools are used to support a simple platform for the

researchers to integrate any kind of data with their geospatial products [49, 94]. Both of

the two platforms (Google Earth and arcGIS) can be attached multiple layers with small

editing. For Google Earth, the map and other information aredisplayed in KML format.

Compared with arcGIS, Google Earth is more convenient and vivid for primer operations.

Google Earth is considered as a better choice to build the power system model for DU

campus.

2.5 Results

2.5.1 An Example of Demand Response

The proposed platform can be used to satisfy a variety of different requirements for

different users. Fig. 2.4 illustrates the demand response with the temperatures and the unit

price in the SG of DU campus. Specifically, demand response isan electrical power demand
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Figure 2.4: Real-time demand response in DU campus.

shift skill which allow users to shift their loads such as dishwasher and washing machine to

avoid high price periods. Massive heterogeneous data such as temperature, electrical price,

voltage, frequency, etc. are collected by the pervasively located smart sensors in real-time.

Then the designed platform is used to compute the demand responses according to different

time periods. The red and blue pyramids indicate the real-time temperature and electricity

price, respectively. The green pyramid denotes the corresponding demand response in real-

time.

2.5.2 A Description of Renewable Energy-PV

As shown in Fig. 2.5, this model illustrates the ratio between PV generation and total

electrical power consumption. In the red circle, the three white bars denote the total power

consumption of three areas in Ritchie Center building. The three red bars indicate the
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Figure 2.5: Real-time PV generation and total electrical power consumption on DU campus.

electrical power bought from utility, the white areas not covered by the red bars are the PV

generations. As shown in Fig. 2.5, the PV generation is decreasing, and electrical power

from utility is increasing in a cloudy day. With this real-time information, the customers,

ISO, and power plant can schedule their behaviors and managements correspondingly.

2.5.3 Multivariate Linear Regression Analysis

The multivariate linear regression is used to analyze the correlationships between re-

sponse variableYt and explanatory variablesXi
t , whereYt andXi

t are time series variables,

and i ∈ {1, 2, 3, · · · } indicates the different types of explanatory variables,t is the time

index [95]. The response variableYt is the load profile of the Daniels College of Business

building. The explanatory variables are collected from HVAC of the Daniels College of

Business building including air pressure index 1 in HVAC (X1
t ), fan tuning index (X2

t ),
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wind tunnel temperature 1 (X3
t ), wind tunnel temperature 2 (X4

t ), and air pressure index 2

(X5
t ). The regression output is a time series variableŶt. The collected data are normalized

between 0 and 1.

Ordinary least squares (OLS) is a widely used to compute the coefficients of the ex-

planatory variables, and optimize the squared differencesbetweenYt and Ŷt. However,

in the OLS, it is assumed that the error term is a constant variance, and ignores the het-

eroscedasticity, which concerns the expectations of the second moment of the errors [96].

This means the OLS is not a valid estimation approach. Considering the heteroscedasticity

impact, the feasible generalized least squares (FGLS) can estimate the errors covariance

matrix to improve the efficiency of the regression. Therefore, the FGLS is used to compute

the multivariate linear regression in big data analysis [96].

Table 2.1: Regression Performance (Squared Error)
Original Normalized

OLS 635 0.457
FGLS 345 0.342

Table 2.2: The coefficients of explanatory variables with FGLS
X1

t X2
t X3

t X4
t X5

t

Coefficient 0.0251 0.0826 0.0857 0.1719 0.0318

As shown in Table 2.1, compared to the original data without normalization, the regres-

sion error of the normalized data is much smaller. The regression errors of FGLS are less

than the OLS in both original and normalized data regression. As shown in Table 2.2, the

explanatory variableX4
t , wind tunnel temperature 2, have the largest impact; andX1

t , air

pressure index 1, have the smallest impact to the response variableYt, the load profile of

the Daniels College of Business building.
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2.5.4 A consideration to solve the overflow problem in distribution power

system

The test bench of University of Denver is used to describe howthe operators monitor

the real time system, and discuss the ways to duel with the unexpected happening. 6 main

buildings, which always requires a big load power, are considered as the targets to overcome

the problems. They are called Ritchie Center, Law, Sturm, Daniels, Newman and Olin Hall.

In the following analysis, Sturm Hall and Ritchie Center aremainly considered. Bigger size

of the green circle indicates a bigger power flow and small size indicates a smaller power

flow. The flowing direction of the green circles represents the power flow direction in lines.

In power system, the power of transmission increases along with the increasing of load

demand. When the load increases to the load equivalent impedance and the system equiva-

lent impedance, the transmitted active power reaches the limit (when the impedance angle

of the load equivalent impedance and the system equivalent impedance is opposite to each

other), the power limit obtains the maximum value. on the other hand, when the load in-

creases beyond the critical point, there will be a voltage collapse, which results the power

flow does not converge. Because of that, the power flow equation has no solution or a infi-

nite solution. Due to the heavy load on transmission lines ofdistribution system, the large

current causes a line heating, which makes line strain.

In Fig. 2.6, the demand load of Sturm Hall increase sharply, which requires more energy

from the substation (”G” in the Figure). Based on the limitation of each building and

transmission line, Sturm issues a warning with the sharply increasing load demand. The

operators can access the visualization platform to monitorif there is an issue and which

building has the issue.

In Fig. 2.7, there is another way to remind the operators to pay attention on the demand

load of the building. Hourly demand load of Ritchie Center increase and decrease randomly,

which highly depends on the events hold in the building. A continuous 8 hour demand load

is shown in the figure, green color of the bar means the real time load demand is under
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Figure 2.6: System Visualization Platform in General Situation

Figure 2.7: System Visualization Platform in Unexpected Situation

the maximum threshold, and the red color is warning the operators to take some actions if

needed. It is convenient for operators to monitor the whole campus in directly. And they

can decide how to due with it if unexpected problems happen.
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There are several methods to avoid the sharply transmitted power reach the limits. The

methods below are used to describe how to deal with the problems.

1. Add local renewable generators to satisfy the sharply increase load demand. Based

on research, the sharply increasing demand load always happens in the daytime. In-

stalling local PV panels is a potential way to reduce the power supply pressure of the

school. Considering the prolonged sunshine of Denver and easy installation of solar

energy, an efficient solar generation system could benefit both the power transmission

and operation cost. Besides that, solar energy is clean withalmost no pollution. In

every year, the amount of solar radiation that reaches the earth’s surface is about 130

trillion tons of coal, the largest energy available in the world today. It is a big advan-

tage compare with the traditional energy, like coal. How to handle the uncertainty

of solar energy is a challenge, which requires a high accuracy simulation model in

future research work from the operators.

2. Compare with add extra power to the system, demand response supply a way for op-

erators to work as a important role in electric power grid operation. The operators are

allowed to operate the network by reducing or shift the electricity usage of peak time

period base on some time series factors, such as the electricity price. For example

at school, we can schedule the classes in off-peak period, oravoid all classes start at

same periods. The problem is that the feasibility of plan from operators is doubted

sometime. More constraints are necessary for objective model from the operators.

After a series operation on the model, Fig. 2.8 shows the system works in a general

situation, the operators need to do nothing with the system right now. It is clear that the

proposed visualization platform can help operators to monitor the system in real and make

decision in a short time. The platform provides a convenientway for observers to get

knowledge from the current power flow.
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Figure 2.8: System Visualization in Monitoring Situation

2.6 Conclusion and Contributions

Data visualization platforms are constructed for operators to assess the load power and

renewable energy in convenience. The results shows a novel way on how to use the platform

to visualize the real time power flow and monitor the alert in system.

Themain contributions of this section are:

1. Data visualization platforms are constructed for operators to assess the load power

and renewable energy in convenience.

2. The visualization platforms provide the operators a clear understanding of the infor-

mation in a short time. The platform can be used to visualize alarge volumes of data,

which helps the customers to make decision more efficiently.
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Chapter 3

Load forecasting with Support

Vector Regression (SVR)

3.1 Introduction

In modern power system, load forecasting is an indispensable role for power system

operation and control. In traditional method, auto regressive integrated moving average

is a widely used tool for time series analysis. Based on linear regression, support vector

regression achieves higher performance with the kernel trick, which maps the input data

into higher dimensions.

3.2 The Architecture of the Proposed Approach

In the left part of Fig. 3.1, the optimization of the hyper-parameters contains Grid

traverse algorithm (GTA) and PSO to avoid be trapped into local minimum. And the right

part is the distribution network reconfiguration part to validate the forecast results. In the

first step, the global solution space is spitted by the GTA into the local solution spaces.

In the Map phase, because of the independency among the localsolution spaces, they are
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Figure 3.1: The flowchart of the proposed approach.

traversed by GTA in parallel. In the Reduce phase, one or several local solution spaces are

selected with the minimum training errors. In the second step, the selected local solution

spaces are optimized by the particle swam optimization (PSO) in the similar manner. The

optimal parameters can be generated after comparison in theReduce phase. In the right

part of Fig. 3.1, in the part of distribution system network reconfiguration, a three-phase

balanced distribution system model is built with the forecasted load profiles. The Second-

order cone programming (SOCP) is used to relax the three-phase balanced optimal power

flow problem into a convex problem. In the Map phase, the ADMM is used to compute the

three-phase balanced optimal power flow in parallel.
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3.3 SVR-Based Short-term Load Forecaster

Based on the architecture design, in this section, a SVR-based load forecaster is de-

signed for short-term distribution system load forecast. Then, in the next step, the distribu-

tion network reconfiguration demo is used as an example to validate the forecast results.

3.3.1 SVR Formulation

In this part, the SVR-based short-term load forecaster is trained by the collected histor-

ical data to get the optimal hyper-parameters. The objective function of the Kernel based

SVR can be built to minimize the forecast error with the soft margin as follows:

Rrisk = min
ε,ω,ξi1 ,ξ

∗

i1
,C,b,γ

{
1

2
ωTω + C

n∑

i1=1

(ξi1 + ξ∗i1)} (3.3.1)

Subject to 



L′
i1
− f(xi1) 6 ε+ ξi1 ,

− L′
i1
+ f(xi1) 6 ε+ ξ∗i1 ,

ξi1 , ξ
∗
i1
> 0.

(3.3.2)

where in (3.3.1),f is a Kernel based regression function,i1 is a time index,12ω
Tω indi-

cates the flatness of the regression coefficients, the seconditem is the tube violation,C

is a trade-off coefficient between the first two items,ξi1 andξ∗i1 indicates the two training

errors. In [63], the risk function (3.3.1) with the constraint (3.3.2) can be derived to a dual

problem with Karush-Kuhn-Tucker (KKT) condition. However, the parametersγ, C, and

ε are still need to be determined, which are the critical factors to the performance of the

forecaster [63]. The detail derivative of the SVM or SVR and its dual forms can be found

in [63, 97]. Then, as shown in Fig. 3.1, a two-step based parameter optimization approach

is designed to compute the optimal parameters.
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3.3.2 Two-step parameter optimization

Because the parametersγ, C, andε cannot be solved with the convex optimization,

they are be defined as hyper-parameters in [98]. There are several approaches are proposed

for the hyper-parameters such as random search and Gaussianprocess [98, 99]. Consider-

ing the complexity and feasibility, a grid traverse search based two-step hyper-parameter

optimization is proposed for the SVR based short-term load forecasting [64].

First Step: GTA Procedure

As shown in Fig. 3.1, the GTA procedure is the first step for thehyper-parameters

optimization.

1. In the second step, the local solution spaces can be searched with the PSO based

approach. The proposed approach is based on the increasing computation capabil-

ity and new computer cluster cooperation soughs. The three hyper-parameters are

initialized with their upper bounds, lower bounds, and gridsearching steps.

2. Then, a traversing vectorH can be generated as a finite multi-Cartesian product,

which is critical for the Mapreduce process.Hj2 is an element inH. For eachHj2,

the loss function of SVRRrisk can be computed independently. As shown in Fig. 3.1,

they can be computed in parallel to reduce the computation time.

3. In the last step, the minimumRrisk is selected. In addition, if severalHj2 are selected,

all of them are transmitted to the second step for PSO optimization.

Second Step: PSO Procedure

The PSO procedure is designed as a ”fine” optimization for thehyper-parameters. It

can be implemented as the scenarios with less time consumption requirements. The accel-

eration coefficients are defined asϕ1 andϕ2, θ1 andθ2 can be seemed as two independently
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Algorithm 1 GTA for Hyper-parameter Optimization
Objective: Shrink the global solution spaces into one or several localsolution spaces.

Initialization: Hyper-parameters initialization and multi-Cartesian product generation
for the GTA.

Grid Traverse Searching: For each core or each process, assign theHj2 to compute
theRrisk, which can be computed in parallel with the Mapreduce model.

Determine Local Solution Space: Collected all the results, and select the local so-
lution spaces with minimumRrisk.

weightiness coefficients. The best historical position andthe best position are defined asη
Ω
i3

andηΩ
g , respectively. And hyper-parameterΩ = [γ C ε]. αΩ

i3
(t) andνΩ

i3
(t) are the position

and velocity vectors, respectively.

ν
Ω
i3
(t) =ν

Ω
i3
(t− 1) + ϕ1θ1(η

Ω
i3
−α

Ω
i3
(t− 1)) (3.3.3a)

+ ϕ2θ2(η
Ω
g −α

Ω
i3
(t− 1)),

α
Ω
i3
(t) =α

Ω
i3
(t− 1) + ν

Ω
i3
(t), (3.3.3b)

3.4 Distribution System Network Reconfiguration

As shown in the Fig.3.1, the right part is distribution system network reconfiguration,

which a demo to validate the forecasting results. The detailed information is described in

this section with numerical results and analysis.

The topology of a distribution system can be represented in agraph with buses and

branches:G = [V, E ]. Then the branch flow model can be built as follows [100,101].

si =
∑

j

Sij −
∑

k

(Ski − lkizki), (3.4.1a)

vj = vi − 2(rijPij + xijQij) + (r2ij + x2ij)lij , (3.4.1b)

lij = (P 2
ij +Q2

ij)/vj , (3.4.1c)

30



(a)

-20 -15 -10 -5 -3 0 3 5 10 15 20
0

5

10

15

20

25

81.21%

Forecast Error (%)

D
en

si
ty

(%
)

(b)

Figure 3.2: (a) The IEEE 123-bus based distribution system,(b) the error distribution of
short-term load forecasting.

wherelij := |Iij |
2, vi := |Vi|

2, Sij, Pij , Qij andzij indicate the complex power flow,

active power, reactive power, and impedance on branchij ∈ E , Sij = Pij + iQij , Pij =

|Iij |
2rij andzij = rij + ixij. In the formulations, it can be figured out that the branch flow

model is used to compute in parallel. In the system, the target node only needs to exchange

the information to its neighbors nodes instead of all other nodes. In traditional ways, the

nodes need to get information from all nodes, which cannot berealized in parallel work.
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Table 3.1: Results of Network Reconfiguration
No. Scenario Bus No. Opened

Switches
Original
PLoss

NewPLoss Loss Reduction

1. Load In-
creasing

83 TS-3, TS-4 54.2 kW 36.7 kW 32.28 %

2. Load In-
creasing

300 TS-2, TS-3 42.4 kW 31.5 kW 25.71 %

3. Load In-
creasing

95 TS-3, TS-4 78.5 kW 67.0 kW 14.65 %

4. Load In-
creasing

49 TS-1, TS-4 17.6 kW 13.4 kW 23.86 %

5. Load De-
creasing

47 TS-2, TS-4 39.4 kW 22.3 kW 43.40 %

6. Load De-
creasing

108 TS-1, TS-4 24.1 kW 20.1 kW 16.59 %

7. Load De-
creasing

250 TS-3, TS-4 29.5 kW 26.8 kW 9.15 %

8. Load De-
creasing

56 TS-1, TS-2 35.2 kW 33.7 kW 4.27 %

During the operation of network reconfigurations, the topology of the distribution sys-

tem is keeping radial and avoid any loops, which are characteristics of a model using branch

flow model. Considering the characteristics of the three-phase balanced system, the SOCP

relaxation inequalities are represented as follows [100,101]:

|Sij|
2

vi
≤ lij , (3.4.2)

where (3.4.2) can be used to instead of (3.4.1c) as the inequalities constraints. The objective

function is defined as total line loss as follows. The constraints contain (3.4.1a), (3.4.1b),

(3.4.2) helps tp define the maximum voltage and power flow. Themaximum amount of the

voltage and power flow are important features for solving theproblems here.

F =
∑

E

Pij , (3.4.3)

Vi,min ≤ Vi ≤ Vi,max, (3.4.4a)

Iij ≤ Iij,max. (3.4.4b)
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rank(A) = N − d, (3.4.5a)
∑

E

aij = N − d, (3.4.5b)

∑

Ek

aij = Mk − 1. (3.4.5c)

Considering the ADMM, the objective function (3.4.3) with the constraints (3.4.1a),

(3.4.1b), (3.4.2), (3.4.4a), and (3.4.4b) can be decomposed into a dual problem. The detail

derivatives of the ADMM can be found in [100, 101]. During theparallel traverse of all

statuses of the switches, the topology of the distribution system is keeping as radial.

A is the adjacency matrix of the graphG. d is the number of slack bus.N is the number

of busesV. Mk is the number of branches in pathEk, andaij is an element ofA:

aij =





1, if bus i and bus j are connected,

0, else.

(3.4.6)

Considering the limited number of switches, the proposed approach is designed to tra-

verse all the permutations and determine the optimal configuration of the distribution sys-

tem. For example, the modified IEEE 123-bus system with 4 switches indicates 16 scenarios

with all the permutations of the switches [54].

With the topology constraints discussed above, the number of scenarios can be reduced

in different scenarios. Then, considering the independency of each configuration (per-

mutation), all the permutation can be implemented into different cores or processes and

computed independently, which dramatically reduces the computation time and keeps the

convexity to get the guaranteed optimization results.
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3.5 Numerical Results

As shown in Fig. 3.2(a), the test bench is based on the IEEE 123-bus distribution

system. Four initially opened tie switches TS-1, TS-2, TS-3and TS-4 are added to make

the system topology changeable, and the detail informationcan be found in [54,102].

3.5.1 Short-term Load Forecasting

The test load data contains four seasons of one year. The proposed approach is used for

1-hour-ahead sliding window forecasting with 1 second resolution. The training data is 5

times as the test data. The distribution of the forecaster errors is shown in Fig. 3.2(b). The

MAPE is 2.23%, normalized root-mean-square error (NRMSE) is 4.03%, and more than

80% of the errors are accumulated between (-3.1%, 3.1%).

3.5.2 Network Reconfiguration

As shown in Table 3.1, considering the load increasing, for example, in scenario 1, with

the forecasting results, there is a load increasing 20.31% in bus 83. The system loss reduces

32.28% with the proposed approach. For the load decreasing,for example, in scenario

5, with the forecasting results, there is a load decreasing 55.4% in bus 47. The system

loss reduces 43.40% with the proposed approach. The averageloss reduction for the load

increasing scenarios is 24.13%, the average loss reductionfor the load decreasing scenarios

is 18.35%, and the total average for all scenarios is 21.24%.

3.5.3 Comparison

As shown in Table 3.2, compared with the traditional networkreconfiguration approach

with the genetic algorithm (GA), the proposed approach has less computation time and

more loss reduction. Furthermore, the proposed approach ismore intuitive, and convenient

for implementation in different programming language suchas python and Matlab.
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Table 3.2: Performance comparison
Methods Loss Reduction Computation Time (s)

GA based traditional 17.87% 107
Proposed Approach 21.24% 30

3.6 Conclusion and Contributions

Consider these benefits, an advanced distribution load forecasting approach is pro-

posed for load forecasting. In order to validate the forecast result, a distribution network

reconfiguration demo is designed to demonstrate the feasible and efficient of the proposed

approach.

Themain contributions of this section are:

1. The novel method of grid traversal algorithm(GTA) with SVR is used to optimize the

loss function with choosing the best hyperparameter combination. SVR is used to

map the nonlinear data into high dimensions.

2. The two level optimized model is released with GTA and particle swam algorithm,

which helps to figure out the best global minimal results. Thegrid search method

efficiently figure out the best combination of hyper-parameters
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Chapter 4

Multi-timescale distribution system

optimization with renewable energy

4.1 Introduction

With a distribution system, a three phase unbalanced multi-timescale approach is pro-

posed. The day-ahead dispatch of the substation level is used to minimize the operation

cost with renewable energy hourly. The uncertainty of renewable energy is simulated with

chance constraints and Gaussian Mixture Model is used to simulate the output of multi-

ple renewable generation for a higher accuracy. Genetic Algorithm is used to further in-

crease the accuracy of GMM results by automatically select the amount of components.

At the feeder level, an OPF problem is formulated for the three-phase unbalanced system

with considering the reality, the non-convex problem with three variables are relaxed by

semidefinite programming. In the proposed multi-timescales model, the feeder scheduling

is described with higher time resolution and update frequencies, which can be obtained near

RT calculation.
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Figure 4.1: The flowchart of proposed approach.

4.2 The Flowchart of the Proposed Approach

In this method, multi-timescale stochastic algorithm [103] is applied to improve the

operation cost of a distribution power system. We have proposed the configurable stochas-

tic approach with the multi-timescale scheduling procedure, which consists of submodels

including day-ahead power scheduling, real-time power trading constraint and OPF in the

distribution system. The two parts stochastic optimization is implemented in this method.

As in Fig. 4.1, the proposed approach consists of two parts, the stochastic optimization

for hourly scheduling at the substation, and the three-phase unbalanced OPF for minutes

operation at feeders. By the proposed two-part framework, the optimal day-ahead schedul-

ing power purchased from the utilities for the next 24 hours is determined in the first part.

In the second part, based on the results of the first part, the OPF is computed in minutes to

reduce the system loss and the total system cost within an hour. In the left part of Fig. 4.1,

the error distribution of the forecast result is given by thehistorical data of the distribu-

tion renewable generation. Combined with the day-ahead hourly scheduling, an objective
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function can be formulated with the chance constraints for the forecast errors. According to

GAEMGMM, the error distribution model can be accurately modeled with several Gaussian

components. And the chance constraints can be formulated into the deterministic forms for

the stochastic optimization. Finally, the optimal hourly schedule can be determined and the

optimal operation cost is computed at the substation level.

In the right part of Fig. 4.1, at feeder level, a three-phase unbalanced optimal power flow

is used to model and compute the distribution system loss in minutes level. In this method,

the renewable generation such as micro wind turbines and PV panels derated,2.5% power

are reserved for the OPF regulation, which aims to minimize the system loss. Considering

the nonconvexity of the three-phase unbalanced OPF, SDP is used to relax the problem.

Then, the objective function of system loss can be solved with ADMM to further reduce

computation time. Finally, the three-phase unbalanced OPFcan be computed to minimize

the system loss at feeder level.

The total cost is formulated in (4.2.1), which can be presented as the sum of the opera-

tion cost at the substation level and feeder level:

Ctotal = min(fsub + βffee) (4.2.1)

where the cost of substation and feeder levels are (fsub) and (ffee), respectively, andβ is a

weightness coefficient. Given three different ways to working withβ, the operation cost at

the substation level (feeder level) is attacking more attention if β > 1 (β < 1). β is defined

as 1, when the two levels are the same important.
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4.3 Day-ahead hourly scheduling at the substation level

4.3.1 Problem formulation

fsub =

T∑

t=1

(
(̺DA

t GDA
t + ̺Rt G

R
t ) + (δt · ̺

RT
t GRT

t )

+ (1− δt) · ̺
s
tG

RT
t

)
(4.3.1)

t = {1, 2, · · · , T} represents the time intervals,t indicates thetth time interval andT is

used to describe how many time intervals we have in this situation. ̺DA
t GDA

t is the genera-

tion cost of day-ahead scheduling and̺Rt G
R
t is the renewable generation cost.δt ·̺

RT
t GRT

t

presents the deviation power purchased from RT market to satisfy the power balance equa-

tion. And (1 − δt) · ̺
s
tG

RT
t is the corrective action (CA), which indicates the redundant

energy will be reselled to the market in a lower price. It is noticed thatGR1 is used to

supply the power consumption at the substation level for thefirst part, which is defined as

97.5% of the total renewable power generation for each hour in thismethod.

A typical forecasting error model represented by a normal distribution is used to incor-

porate the uncertainty of renewable generation. Here, the load forecasting error model is

also represented as normal distribution. The study of the data forecasting is not the major

concentrate in this method, and the hourly forecasted renewable generation and the hourly

load forecast are described as:

GR = GR
f +GR

f ∗Gerr1 (4.3.2)

GDL = GDL
f +GDL

f ∗Gerr2 (4.3.3)
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GDA
t +GRT

t +GW
t = GDL

t (4.3.4a)

̺st < ̺Rt < ̺DA
t < ̺RT

t (4.3.4b)

GRT,min ≤ GRT
t ≤ GRT,max (4.3.4c)

GDA,min ≤ GDA
t ≤ GDA,max (4.3.4d)

GR1,min ≤ GR1
t ≤ GR1,max (4.3.4e)

δt =





1 GDA
t +GW

t 6 GDL
t

0 GDA
t +GW

t > GDL
t

(4.3.4f)

GRT
t





> 0 buy power from bulk system

< 0 sell power to bulk system

(4.3.4g)

Pr(GDL
t 6 GDA

t +GW
t ) > γ (4.3.4h)

Pr(ρGR1
t −GW

t 6 0) > α (4.3.4i)
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The constraints include the modified power balanced equation, market price limitation,

capacity limits forGRT
t , GDA

t , GR1
t . δt is a binary variable to describe the relationship

betweenGDA
t + GW

t andGDL
t . It is easy to understand that the̺st should be the lowest

in case of purchasing the redundant power generation from the day-ahead market. (4.3.4h)

defines that the demand load will not exceed the sum amount of the renewable generation

and the day-ahead power scheduling with a prescribed probability γ. In (4.3.4i), for each

hour, the amount of the used renewable generation for all buses should be larger than the

renewable generation at chanceα, where0 < ρ < 100%.

4.3.2 Genetic-based Expectation Maximization Algorithm for learning Gaus-

sian Mixture Model

A brief description of the finite GAEMGMM is given below. Then, it is used to model

the forecasting error distribution of the renewable generation.

GMM is an unique form of the finite mixture model. For the finitemixture model in

(4.3.5), it is the sum of more than one components(N > 1) with different weights(ǫn) in

Rq, which indicates:

p(x|Θ) =

N∑

n=1

ǫnp(x|θn) (4.3.5)

The weights in (4.3.5) can be calculated in [104] and has the intuitive interpretation to

be non-negative(ǫn > 0), and the sum equals to1. Each component in the model obeys to

a normal distribution, which is restricted byθn = (µn,Σn), the matrix of the means vector

and the covariance.

The EM algorithm is used as the standard approach to calculate the parameters of the

mixture model. It consists of an expectation-step (E-step)and a maximization-step (M-

step).
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For E-step, the complete dataZ = {(x1, ξ1), (x2, ξ2), · · · , (xm, ξm)}, {x1, · · · , xm}

is known as the observed data and incomplete,ξm is the component identity ofxm. The

algorithm will be ended when thelog likelihood function in (4.3.6) reaches the convergence.

L(x|Θ) =
M∑

m=1

log
( N∑

n=1

ξn(xm|θn)
)

(4.3.6)

The posterior probability(ξn) at thel-th iteration is computed as equation below. It is

used to calculate the hidden amount for next step.

ξ(l)n =
ǫ
(l)
n p(xm|θm)

∑N
n=1 ǫ

(l)
n p(xm|θ

(l)
n )

(4.3.7)

For M-step, the parameters of the GMM is reestimated byξ
(l)
n . The parameters can be

updates as the equations below for Gaussian distributions.

ǫ(l+1)
n =

∑M
m=1 ξm,n

m
(4.3.8)

µl+1
n =

∑M
m=1 ξm,nXm∑M

m=1 ξm,n

(4.3.9)

Σ(l+1)
n =

∑M
m=1 ξm,n(xm − µ

(l+1)
n )(xm − µ

(l+1)
n )

∑M
m=1 ξm,n

(4.3.10)

For learning the GMM in [80], the GAEM shows its superiority on selecting the num-

ber of components based on the minimun description length (MDL) criterion. In [105], the

MDL criterion is widely used on selection. Compared with thestandard EM, the new algo-

rithm is less sensitive to the initialization. GAEM is capable to explore the parameter more

thoroughly, because of its population-based search skill.Meanwhile, the new algorithm

still remain the property of monotonic convergence as before.
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Figure 4.2: Comparisons between GSM, GMM and GAEMGMM: (a) the original aggre-
gated error distribution, (b) the modeled result with GSM and comparing with the original
original aggregated error distribution, (c) the original aggregated error distribution is mod-
eled with a GMM consists of 3 GSMs, (d) the GMM fitted result compare with the original
aggregated error distribution, (e) the original aggregated error distribution is modeled with
a GMM consists of 4 GSMs, (f) the GAEMGMM fitted result comparewith the original
aggregated error distribution.

A comparison with the GSM, GMM, and the GAEMGMM is illustrated as shown in

Fig. 4.2. Fig. 4.2(b) displays the modeled error distribution result by GSM, which cannot

modeled the aggregated error distribution accurately. Theresults of standard GMM with 3

components are shown in Fig. 4.2(c) and Fig. 4.2(d). Becausethe standard GMM cannot

determine the number of the components automatically, which also bring some errors in

the error distribution modeling. The GAEMGMM are employed to model the original error

distribution in Fig. 4.2(e) and Fig. 4.2(f), which can automatically determine the number of

the components (like how many clusters in a Gaussian distribution) and reduce the modeling

error in this process instead of the traditional ways.
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η =
(∇d −∇org)

2

∇2
org

· 100% (4.3.11)

As in (4.3.11), the ratio of the residual deviationη is used to evaluate the performances

of different approaches, where∇org is the envelope of the original forecasting error distri-

bution, and∇d is the envelope of the deformed forecasting error model by GSM, general

GMM and GAEMGMM. According to (4.3.11), the ratio of the residual deviation of GSM

is 2.17%, GMM is 1.27%, the GAEMGMM is 0.13%.

4.3.3 Chance Constraint

According to discussion above, the proposed GAEMGMM is capable to accurately

model the aggregated error distribution and determine the components number at each

feeder. It can effectively convert the chance-constraint of the forecasting error model in

(4.3.4h) (4.3.4i) into a deterministic problem.

BecauseGerr1 andGerr2 is normally distributed with mean(µ1, µ2), covariance(Σ1)

for multiple renewable generators and variance(σ2
2) for load forecast. The joint probability

distribution of the renewable generators can be obtained bythe proposed GAEMGMM

model with a high accuracy, which demonstrates the efficiency of the proposed approach

further more.

Based on the chance-constraint in (4.3.4h) and (4.3.4i), itis assumed that

y1 = GDL −GDA −GW (4.3.12)

y2 = ρGR1 −GW (4.3.13)

The expectation and the variance can be calculated as:

E(y1) = Gf (1 + µ2)
DL −GDA −GW (4.3.14)
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V (y1) = GDL
f ∗ σ2 (4.3.15)

E(y2) = ρGR1
f (1 + µ1)−GW (4.3.16)

V (y2) = GR
f

T
Σ1G

R
f (4.3.17)

According to this, the chance-constraint in (4.3.4h), (4.3.4i) can be converted in a de-

terministic formulation as (4.3.18) and (4.3.19) with the proposed GMM model.

Pr(y1 6 0) = Φ
(0−E(y1)

V (y1)

)
> γ (4.3.18)

Pr(y2 6 0) = Φ
(0− E(y2)

V (y2)

)
> α (4.3.19)

WhereΦ(·) indicates the cumulative distribution function of the standard normal distri-

bution. Taking the inverse ofΦ(·) helps to rewrite the following analytical formulation.

GW +GDA
> Φ−1(γ)σ2G

DL
f +GDL

f + µ2G
DL
f (4.3.20)

GW
> Φ−1(α)ρ

(
(GR

f )
TΣ1G

R
f

) 1
2 + ρGR1

f + ρµ1G
R1
f (4.3.21)

4.4 Optimal power flow (OPF) and the ADMM based Semidefi-

nite Programming (SDP) relaxation

The network of distribution power system is unbalanced typically because of its uneven

distribution over the three phases. And the use of single phase generator in the power system

will increase the unbalance additionally. The optimal power flow of three phase unbalanced

power system is used to minimize the system loss in minute level. There are many factors

can influence the performance of OPF with renewable generators. For example, the solar

radiance, daily temperature, wind speed and etc. In order toovercome the problems, a

minute level optimal power flow method is applied on the test bench of distribution network,
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which involves the implementation of three-phase unbalanced with branch flow model, non-

convex optimization method and semidefinite relaxation. The three-phase load flow method

results in a non-convex problem, because of the optimization of three different variables.

4.4.1 Alternating Direction Method of Multipliers(ADMM)

Along with blending the decomposability of dual decomposition, ADMM shows the

superior convergence properties of augmented Lagrangians[106]. For a general ADMM

problem, the optimization problem is formulated as below.

min
x

f1(x1) + f2(x2) (4.4.1)

A1x1 +A2x2 = b

x1 ∈ K1, x2 ∈ K2

(4.4.2)

K1,K2 are defined as convex sets. They are the necessary conditionsfor convex opti-

mization. Then the objective is augmented as (the constraint is as (4.4.2)):

min
x

f1(x1) + f2(x2) +
ρ

2
‖ A1x1 +A2x2 − b ‖22 (4.4.3)

ρ is a constant and never less than zero, which is used to decideif the objective is a

augmented(ρ > 0) or standard(ρ = 0) Lagrangian. Thenλ is generally defined as the

Lagrange multiplier for the equality constraint in (4.4.2).

After the formula deformation, ADMM repeats the iterations, for k = 1, 2, 3 · · ·

x
(k)
1 = argmin

x1

Lρ(x1, x
(k−1)
2 , λ(k−1)), (4.4.4a)

x
(k)
2 = argmin

x2

Lρ(x
(k)
1 , x2, λ

k−1), (4.4.4b)

λ(k) = λ(k−1) + ρ(A1x
(k)
1 +A2x

(k)
2 − b). (4.4.4c)
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Refer to [106], ADMM is guaranteed to reach the converged optimal solution with less

restricted conditions. It also helps to reduce the time consumption.

4.4.2 ADMM in Proposed Method

It is modeled as a tree radial topologyG, each busi in this system only has one parent

busUi and a few children busesCi. G = (NB,Nl), whereNB = {0, 1, · · · , n} represents

the set of buses.Nl is the set of the distributed lines, which are used to connectthe buses

in NB. Eachi ∈ NL = {1, 2, · · · , n} indicates the line connected from busi to its parent

busUi. Compared with bus injection model, branch power flow provides much more use

for distribution network and stable computation results. For a three-phase power system,

the branch power flowS(a,b,c)
i , complex branch currentI(a,b,c)i , voltage magnitudeV(a,b,c)

i

and complex impedanceΩ(a,b,c)
i are defined as follows, which expressed as instantaneous

space vectors and indicates the power flow from busi to its parent busUi :

Si =




Sa
i

Sb
i

Sc
i



=




P a
i

P b
i

P c
i



+ i




Qa
i

Qb
i

Qc
i




(4.4.5)

Ii =




|Iai |
2

|Ibi |
2

|Ici |
2




(4.4.6)

Vi =




|V a
i |

2

|V b
i |

2

|V c
i |

2




(4.4.7)
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Ωi =




Ωa
i

Ωb
i

Ωc
i



=




rai

rbi

rci



+ i




xai

xbi

xci




(4.4.8)

According to the definition of branch flow model, the networkG is defined as:

V
(a,b,c)
Ui

=Vi − 2(r
(a,b,c)
i P

(a,b,c)
i + x

(a,b,c)
i Q

(a,b,c)
i )

+ Ii((r
(a,b,c)
i )2 + (x

(a,b,c)
i )2)

(4.4.9)

P
(a,b,c)
i +Q

(a,b,c)
i = ViIi (4.4.10)

∑

j∈Ci

(P
(a,b,c)
j )− Iir

(a,b,c)
i + p

(a,b,c)
i = P

(a,b,c)
i (4.4.11)

∑

j∈Ci

(Q
(a,b,c)
j )− Iix

(a,b,c)
i + q

(a,b,c)
i = Q

(a,b,c)
i (4.4.12)



Vi Si

SH
i Ii


 ∈ S+ (4.4.13)

rank



Vi Si

SH
i Ii


 = 1 (4.4.14)

WhereP andQ (p andq) indicates the busi ∈ NL (i ∈ NB). S0 is the root of the

topology with no parent bus.S andS+ are used to describe the hermitian and the positive

semidefinite matrix, respectively. And(.)H denotes the hermitian transpose of the matrix.

Because the proposed distributed system is radial with unique phase angle of the current

and voltage at each bus, the branch flow model in (4.4.9)-(4.4.12) can be regarded as a

complete AC power flow now [106]. The objective function is formulated as:
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ffee = ̺RT
∑

i∈NB

∫ NT

1
p
(a,b,c)
i (4.4.15)

subject to: (4.4.9), (4.4.10), (4.4.11), (4.4.12), (4.4.13), (4.4.14), (4.4.16a), (4.4.16b)

and (4.4.17).

The OPF problem in (4.4.15) cannot be regarded as a convex problem because of the

rank constraint in (4.4.14). Due to the SDP relaxations in [107], the rank constraint in

(4.4.14) can be removed and obtain a lower bound for the revised OPF problem in (4.4.18).

It has been improved in [108], the semidefinite relaxed OPF isexact if the optimal solution

of (4.4.18) still satisfy the rank constraint and the original OPF problem is also optimal.

Vimin 6 Vi 6 Vimax, i ∈ NB (4.4.16a)

s
(a,b,c)
i = p

(a,b,c)
i + iq

(a,b,c)
i . (4.4.16b)

0 6 s
(a,b,c)
i 6 GR2 (4.4.17)

In (4.4.16a), the magnitude of the voltage obeys to a reasonable range. The system

controlling parameters(a,b,c)i is used to benefit on reducing the system loss, which is defined

to be provided by the renewable generation and limited in (4.4.17). Based on the schedule

results of first step,GR2 is defined as2.5% of the total renewable generation and used at

feeder level for step two.

The relaxation OPF formulation is summarized as follows. Itsubjects to: (4.4.9),

(4.4.10), (4.4.11), (4.4.12), (4.4.13), (4.4.16a), (4.4.16b) and (4.4.17).

ffee = ̺RT
∑

i∈NB

∫ NT

1
p
(a,b,c)
i (4.4.18)
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Table 4.1: Comparison onη for different fitting model
η (%) Spring Summer Autumn Winter

GAEMGMM 0.09 0.13 0.16 0.15
General GMM 1.03 1.27 1.44 1.23
GSM 2.39 2.17 2.15 2.10

4.5 Numerical Simulation and Results

4.5.1 Numerical Results Analysis on IEEE 123-bus

Error Distribution Modeling Comparison

The predicted data, actual data, and error distribution areprovided by National Renew-

able Energy Laboratory (NREL) [109], which can be modeled with different approaches

as following. In table. 4.1, the proposed method can obtain abetter ratio of the residual

deviationη, as defined in (4.3.11), than others.

Day-Ahead Dispatching Cost at the Substation Model

The numerical results for evaluating the proposed method are tested based on the IEEE

123-bus system. Four wind turbines (100kW for each) are connected at bus 25, 35, 76 and

105, respectively. The PV panels (400kW in total) are installed at bus 28, 47, 49, 57, 64, 93

and 97, which are used to demonstrate that the hybrid power system can work efficiently

and reliably with the proposed stochastic approach. The hourly renewable generation with

the total operation cost is simulated in Fig. 4.3(a), where the blue (yellow) bars indicates the

wind (solar) power generation hourly in a day. In this case, the lower limit of the forecasting

error model in chance-constraint (4.3.4h) is set to97.0%.

Fig. 4.3(a) describes the total operation cost with and without CA, which indicate with

red and green curve, respectively. As shown in Fig. 4.3(a), in Golden, Colorado, a typical

day with a windy night and a sunny daytime is selected with 24 hours data. The peak

generation of the wind turbines (blue bars) and PVs (yellow bars) occur at midnight and
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14:00, respectively. The red line represents the total operating cost with CA, which indicates

the system can resell the redundant power at a lower price̺st to the current electricity

market. Then, the total operation cost can be reduced with the benefit from the resell. The

total operation costs at 13:00 and 14:00 for both scenarios (with and without CA) are the

same, which indicates there are no redundant energy to resell and the CA doesnt occur. The

similar scenarios also occur at 7:00 and 18:00. In the rest time, the redundant energy is

resold to the market with a lower price to reduce the total operation cost.

a =
GRT

t

GDL
t

∗ 100%, (4.5.1a)

a =
GDA

t +GR
t

GDL
t

∗ 100%, (4.5.1b)

The proposed approach is compared with the GSM based approach in Fig. 4.3(b) for

24 hours. For each hour, the left bar describes the GSM fitted model and its corresponding

cost is displayed as the green dashed line.

The right bar describes the GA-EM fitted model and its corresponding cost is displayed

as the red dashed line. It is clear that the GA-EM fitted model contains higher accuracy, the

corresponding system operation cost is lower than the system operation cost of the GSM

fitted model.

Specifically, in the left bar (with GSM fitted model), the yellow bar denotes theGRT
t (in

percent, can be computed as (4.5.1) as following) and the rest is GDA
t +GR

t . Similarly, in

the right bar, the orange and dark blue bars also indicate theGRT
t andGDA

t +GR
t with the

GA-EM fitted model. It is clearly that the orange bar is shorter than the yellow bar, which

indicates the GA-EM fitted model contains less errors than the GSM fitted model, and the

system requires less energy from the RT market. It is different from the signle Gaussian

model and get better results.

Case.1 Different Operation Costs for One Year Data at Substation Level.
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Table 4.2: Comparisons based on Fig. 4.2 at substation level

Season Test Days
Average Cost for Each Day($)

Proposed Method GMM(General) GSM
Spring 30 3345.24 3662.58 4102.56
Summer 30 5170.86 5556.21 6321.99
Autumn 30 3123.97 3400.02 4112.66
Winter 30 5456.02 5822.21 6363.42

Table 4.3: Time Consumption Comparison
Method IEEE 13-bus IEEE 34-bus IEEE 123-bus
Genetic Algorithm 210.77 s 243.39 s 507.53 s
Interior-Point 7.72 s 11.33 s 27.67 s
Proposed Method 1.59 s 3.72 s 10.27 s

Based on the discussion above, one year data with four seasons are employed to val-

idate the proposed approach. As shown in Table 4.2, the proposed approach contains the

minimum cost for spring, summer, autumn, and winter. It is demonstrated that with the

high accuracy fitted model, the corresponding operation cost can be reduced significantly,

which also indicates the related fuel and carbon emission can be saved.

Case.2 Total Operation Cost with Different Percentage Limit in Chance Constraint.

The operating cost with theγ of 95.0% is lower than others. The highest cost is obtained

with γ = 99.0%. This illustrates that the higher reliability can result inhigher total operation

cost. This is due to that a biggerγ places a stricter constraint thatGDA
t +GW

t is higher or

equal to theGDL
t in (4.3.4h). On the contrary, the operating cost decrease ifwe define a

smallerγ for the system.

As shown in Fig. 4.4, the chance constraint probabilityγ in (4.3.4h) is set as 95.0%,

97.0%, 99.0% with blue, red, and orange color. It is clearly that the operating cost withγ =

95.0% is the lowest among others, and the highest cost is obtained with γ = 99.0%. These

results illustrate that a high chance constraint probability γ requires a high demand ofGDA
t

in equation (4.3.4h), which indicates the operation cost isalso increasing.
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Figure 4.3: (a) Total Operation Cost with and without the CA.(b) Total Cost with GSM
based approach and proposed approach.
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Table 4.4: Line Loss Comparison with or without OPF
kWh Spring Summer Autumn Winter

Line Loss with OPF 227 324 226 521
Line Loss without OPF 316 432 307 657
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Figure 4.5: The Line Loss of the Distribution System.
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Figure 4.6: Convergence Analysis.

Optimal Power Flow with ADMM

The genetic algorithm (GA) is an artificial intelligence algorithm to simulate natural

evolutionary processes. It retains a population of candidate solutions to search for the opti-

mal one.
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Some techniques are used to create candidate, which is inspired by crossover and se-

lection. Genetic algorithm is usually implemented as a computer simulation method, which

denotes that, for an optimization problem, the abstract representation of a number of candi-

date solutions use this algorithm to evolve toward better solutions. The evolution starts with

completely random individual populations. In each generation, the fitness of the all crea-

tures from the current generation is evaluated. Multiple individual(creatures) is randomly

selected (based on their fitness) and generate new population through natural selection. The

new generated population will repeat the same procedure to generate the next generation

until satisfying the requirement of the system [110–112]. Considering the GA approach

implemented in [113,114], the population size is chosen as 600, which is enough to gener-

ate the new generation population with pinpoint accuracy. The probabilities of performing

crossover and mutation are 0.8 and 0.08, respectively.

4.5.2 Numerical Results Analysis on Feeder J1 model

Feeder J1 is [91] selected for analysis because 1.7 MW of clients owned PV generators

exists on the feeder. The system locates in the northeast of US, which serves 1300 com-

mercial, small industrial and residential customers. There are 58 miles of primary lines.

The topology of system is shown in Fig. 4.7. From the figure, the PV system is located at

the south of the feeder. In Fig. 4.8, dark blue indicates the locations of customers, yellow

dots indicate the existing PV on the feeder. PV plants are installed to support a small town

with a population less than 1000. The surrounding area of thetown like farms are served

by Feeder J1. The PV panels(1.7MW in total) are installed as the yellow dots in Fig. 4.8,

it is used to demonstrate that the proposed hybrid power system can work efficiently and

reliable with the stochastic approach. The predicted data,actual data are provided from

Electric Power Research Institute(EPRI), which is an American independent and nonprofit

organization.
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Figure 4.7: Topology of Feeder J1

Error Distribution Modeling Comparison

As defined in (4.3.11), the residual deviationη is calculated to compare the difference

between different simulation models. In table. 4.5, the GAEM model achieves a better

ratio than other two ways, which indicates the simulation results of GAEM obtain a better

fitted result than others. The reason is that genetic algorithm is used to find out the suitable

amount of the components with Gaussian Mixture Model efficiently. In traditional ways,

the amount of components are always selected by experience from human. It sometime lose

the optimal number of the model, the automatic method (GA) increases the opportunity for

obtaining a optimal number instead.
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Figure 4.8: PV Installation of Feeder J1

Day-Ahead Dispatching with Feeder J1 Model The numerical results for evaluate the

proposed method are tested based on the Feeder J1 model. The total capacity of 1.7MW

PV generators are installed and Fig. 4.8 shows the location of PV generators. The total

operation cost with and without correct action are simulated in both peak day and off-peak

day. In fig3, hourly renewable energy and load consumption are fitted and the total operation

cost is compares between two different situations. As shownin Fig. 4.9(a), in the northeast

of US, a peak load day is selected with 24 hours. The peak generation of PVs occur at 1pm

and 2pm. Orange bar indicates the per-unit value of hourly renewable energy in 24 hours.

Blue bars represents per-unit value of hourly demand load. It is clear that load consumption
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Table 4.5: Comparison onη for different fitting model
η (%) Spring Summer Autumn Winter

GAEMGMM 0.08 0.11 0.17 0.11
General GMM 1.0 1.12 1.38 1.34
GSM 3.58 3.12 3.19 2.98

reaches the peak load (6MW) at 5pm in a day. Red line is used to describe how much the

customers need to pay without correct action(CA) in (4.3.1). CA helps to sell the redundant

power back to real time market at a lower price̺st hourly. It achieves saving extra money

with the forecasting model in any accuracy. The yellow dash line represents the updated

results the proposed method works, it is clear that total operation cost is reduced at 10am,

11am and etc.. No difference between red and yellow dots indicates no redundant energy is

sold and correct action does not occur.

In Fig. 4.9(b), hourly renewable energy generation and loadconsumption are simulated

within a off-peak load day of same location. The lowest load consumption occurs at 1pm,

which is different from the records with only residents. It is because that light industrial

customers and commercial customers are considered in this system. In off-peak day, they

consume more energy at night. Different from the sunny day inpeak load situation, the

off-peak load day happens in a cloudy situation in the afternoon. It is obviously that the

PV generation at 3pm and 4pm are not in steady descent along with the time because of the

clouds. The load consumption continuously reduce from mid night to 1pm. After that, just a

slight increasing of per-unit value of demand load from 0.18to 0.34. The red line represents

the total operation cost of off-peak day without correct action. The hourly operation cost

decreases along with load consumption decreasing and renewable generation increasing.

After 1pm, demand load starts increasing until the midnight. The results demonstrate that

CA can still work well in a off-peak load day. In Fig. 4.9(b), more randomness happens in

a cloudy day, which reduce the forecasting accuracy of predicting model. The big reduced

cost at 1pm indicates the proposed methods helps to reduce the operation cost efficiently.
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(a)

(b)

Figure 4.9: (a) Total Operation Cost with and without CA in Peak Day. (b) Total Operation
Cost with and without CA in Off-Peak Day.
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Figure 4.10: Total Operation Cost with Different Percentage Limit in Chance Constraint

Total Operation Cost with Different Percentage Limit in Chance Constrains. Three

differentγ of 94%, 96% and98% in (4.3.4h) are selected to analysis the results in Fig. 4.10.

The operating cost withγ of 94.0% is lower than others. The highest cost is obtained with

γ = 98.0%. This indicates that higher reliability will lead in a higher operation cost. It is

because that a biggerγ requires a stricter constraint thatGDA
t +GW

t is higher or equal to

theGDL
t in (4.3.4h). On the contrary, the operating cost decrease ifwe define a smallerγ

for the system. As shown in Fig. 4.10, chance constraint probability γ in (4.3.4h) is set as

94.0%, 96.0%, 98.0% with blue, orange, and grey color, respectively. It is clearly that the

operating cost withγ = 94.0% is the lowest among others, and the highest cost is obtained

with γ = 98.0%. These results demonstrates that a higher chance constraint probability γ

requires a high demand ofGDA
t in equation (4.3.4h), which indicates the operation cost is

also increasing. Because of that, a trade-off between the lower operation cost and a higher

system reliability should be considered as a key problem in the future.
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Figure 4.11: The Line Loss of Power System in Peak Day and Off-Peak Day

Optimal Power Flow with System Loss The system loss of feeder J1 model in peak

load day and off-peak load day are shown in Fig. 4.11. The system loss without OPF in two

situations are described in blue and grey color, respectively. Comparing to them, the system

loss with OPF in peak day and off-peak day are represented in orange and yellow lines.

4.6 Conclusion and Contributions

A multi-timescale three-phase unbalanced approach is proposed. The day-ahead power

dispatch of the substation level is used to minimize operation cost with renewable energy in

each hour. The uncertainty of renewable energy is fitted withchance constraints. Gaussian

Mixture Model is used to simulate the output of multiple renewable generation with a higher

accuracy. At the feeder level, an optimal power flow problem is formulated for three-phase

unbalanced system with considering the reality, non-convex problem with three variables

are relaxed by semidefinite programming.
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Themain contributions of this section are:

1. The proposed method is used to optimize the system operation cost in two levels,

corrective action in substation level is used to resell the redundant power back to real

time market, which helps to save extra money. In feeder level, a part of renewable

generation is used for optimal power flow on unbalanced distribution power system.

2. In substation level, Gaussian Mixture Model with GeneticAlgorithm is used to simu-

late the output of renewable generation for each bus. ChanceConstraints are used to

fit the uncertainty of renewable energy, which define how muchrenewable generation

need to be satisfied in a probability.

3. In feeder level, three phase unbalanced distribution system is simulated with ADMM.

Semidefinite programming is used to relax the non convexity of the unbalanced model

into convex.

4. Time consumption is one of the impotent indicators to evaluate the model. Com-

pare with other methods, the proposed approach with ADMM efficiently decrease

the calculation time.
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Chapter 5

Improved distribution system

optimization with image regression

and ensemble learning

5.1 Solar Irradiance Capturing in Cloudy Sky Days

–A Convolutional Neural Network Based Image Regression

Approach

5.1.1 Introduction

With a low cost, the penetration of rooftop PV is increasing fast in recently years,

which can be seemed as an indispensable component for modernpower system integra-

tion [115–119]. Solar power, especially behind-meter solar power forecast is an important

aspect for operating the grid with high level of PV penetration [21, 120]. The Global hori-

zontal irradiance (GHI) is defined as the sum of the total received direct and diffuse short-

wave solar irradiation on a horizontal plane. It is widely used to indicate the output power

of PV [21,120]. In traditional approaches, the local GHI canbe collected with very expen-
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Figure 5.1: The proposed approach compared with the traditional approaches.

sive instruments, which are inconvenient to be moved and canhardly be used for large-area

monitoring. For large-area monitoring, the radiative transfer models are widely used. How-

ever, these depend on the complex models and HPC. A deep learning-based approach, a

CNN-based approach is proposed to capture the GHI conveniently and accurately, which

can also be implemented into large-area monitoring.

1. In traditional approach (a), GHI is routinely measured byground-based radiometers,

e.g. pyranometers, use either thermoelectric or photoelectric detectors [121]. The re-

liability of this measurements is highly dependent on installation scheme, hardware

maintenance, calibration technology and frequency [122].The availability of mea-

surements is often restricted by the high cost, which is always under consideration by

operators.
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2. In traditional approach (b), GHI can be numerically simulated by radiative transfer

models, which account for the atmospheric absorption and scattering by air molecules,

aerosols, and clouds [123]. However, accurate simulation of GHI replies on com-

prehensive measurements or retrievals of atmospheric constituents and land surface.

Conventional radiative transfer models are often challenged by computation com-

plexity by solving the radiative transfer equation and considering the interactions

between the atmosphere and land surface.

3. In traditional approach (c), the processing approach includes two parts: feature en-

gineering and further processing [19, 124–126]. Feature engineering is similar as

feature extraction, which extracts the image features withdifferent approaches such

as filtering, Fourier transform, principle component analysis, wavelet analysis, and

autoencoder related approaches [125, 127]. The extracted features are the inputs

for next step, which is used for classification, pattern recognition, anomaly detec-

tion, and regression with different approaches such as hidden Markov model, support

vector machine, neural network, logistical regression, random forest, and Bayesian

network [125, 128–131]. The two parts framework in approach(c) is disconnected

and has no communication between them, which results in a lower performance of

[125,132,133].

4. In approach (d), it provides an End-to-End learning framework for the image re-

gression task, which combines the feature extraction and regression part together to

increase the efficiency and performance. As discussed above, the Pros and Cons of

the 4 methods are summarized and presented in Table I.

In this section, three-month data (minutes level resolution data) are provided by the

NREL. Considering the huge volume of data, a data cleaning procedure is used to elim-

inate the errors and inconsistencies for improving the input data quality, which contains

data selection, calibration, missing data reconstruction, data standardization, and normal-
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Table 5.1: The comparison of different approaches in Fig.1

Approaches Pros Cons

(a) The solar irradiation can be mea-
sured fast and accurately

Expensive device, inconvenient
to move, calibration needed,
weather fragile (broken by hails)
and limited observation area

(b) large-area solar irradiation can be
computed

Complex physical model and at-
mosphere model, satellite image
and HPC are needed

(c) Can be extended to large-area mon-
itoring

Low efficiency for parameter
turning and low performance,
large training data needed

(d) Fast, accurate, cheap, and can be
extended to large-area monitoring
conveniently

large training data needed

Start Data Clean

CNN Based 

Image 

Regression

Results 

Validation
End

Figure 5.2: The flowchart of proposed approach.

ization. Gaussian mixture model is an useful method to detect the anomaly data, however,

the number of the mixture components is difficult to determine. Based on the Dirichlet pro-

cess, variational inference, and Bayesian theory, a Gaussian mixture model with Bayesian

inference approach is employed to determine the number of the mixture components au-

tomatically [134–139]. The expectation propagation is very similar with the variational

inference, which can be regarded as the same category [134, 136, 140]. Considering the

real-application in power systems, the important factors are collected by devices to detect

the anomaly data. In cloudy days, the profile of solar irradiation has a lot of stochastic

deviations such as abrupt decreasing and increasing, whichcause the deviations of output

power of the PV. With the increasing penetration of PV, the large deviations of the PV out-
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put power result in a series of problems such as voltage deviation, frequency oscillation,

even unplanned islanding. Based on this [141–145], the proposed CNN based image re-

gression model is focusing on building a relationship between the input cloudy sky images

and the solar irradiations. Recently, the CNN based image processing, especially for image

classification, is developing very fast. In 2012 ImageNet Large Scale Visual Recognition

Competition (ILSVRC), the AlexNet (a type of CNN) [146] is proposed with 16.4 % error

rate, which is considerably better than the previous shallow machine learning model (sim-

ilar as approach (c) in Fig.5.1.1 with error 25.8 %). From then on, the CNN based image

processing is attracting more attention in computer visionarea. In 2014, the VGG with

19 layers and GoogleNet with 22 layer achieved 7.3 % and 6.7 % error rate, respectively,

which further demonstrate the capability of CNN in computervision processing [147,148].

In 2015, a big improvement is provide by the 152 layers ResNetwith 3.57 % error rate,

which is better than human expert (5.1 % error rate) [149].

As shown in the Fig. 5.2, this method consists of three major components: data cleaning,

CNN based image regression, and results validation, which are described as follows. In

Section 5.1.2, data cleaning is introduced with 7 steps, andthe Bayesian inference is used to

detect the anomaly data in a nonparametric manner. In Section 5.1.3, the CNN based image

regression approach is introduced for solar irradiation capturing, and the characteristic of

the proposed CNN architecture is analyzed in detail. In Section 5.1.4, the numerical results

are presented to validate the proposed approach.

5.1.2 Data cleaning

In machine learning, data cleaning is a significant component, which tremendously af-

fect the performance of whole approach. The original data are directly collected from the

devices in NREL’s Solar Radiation Research Laboratory. As shown in Fig. 5.3, the pro-

posed data cleaning approach contains 7 steps: data merge, data calibration, missing data

recovery, data normalization, anomaly detection, data standard, and data verify and map.
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Figure 5.3: The flowchart of data cleaning in proposed approach.

Data Merge, Calibration, and Missing Data Recovery

The data merge, calibration, and missing data recovery are explained together as pre-

data processing for data cleaning. The original data including the GHI data and sky image

data are collected with sample rate 1 sample/min. Because the period of the sky image is 24

hours. We merge 24 hours data as a section for each day. Because the CNN is used to build

a regression relationship between the sky images and GHI data. The original data need to

be calibrated and recovered, and the problem are listed as follows:

1. The sky image camera only capturing the sky image from sunrise to sunset, the length

is variant everyday (with some random offsets of the camera).

2. The GHI data are collected 24 hours, but the correspondingtime index is Greenwich

Mean Time (GMT).The way to get the data match is very important for training and

calculation.
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βmiss(t2) =
aj2+1(t2 − t2,j2)

3 + aj2(t2,j2+1 − t2)
3

6hj2
(5.1.1a)

+

(
βj2+1

hj2
−

hj2
6

ai2+1

)
(t2 − tj2) +

(
βj2
hj2

−
hj2
6

ai2

)
(tj2+1 − t2)

(5.1.1b)

hj2 = t2,j2+1 − t2,j2 , and a0 = 0, and an2 = 0 (5.1.1c)

hi2−1aj2−1+2aj2(hi2−1 + hi2) + aj2+1hj2 = 6

(
βj2+1 − βj2

hj2
−

βj2 − βj2−1

hj2−1

)
(5.1.1d)

3. There are random sky images and GHI data missing in the sky image series and GHI

data everyday, which cause the mismatching between the sky images and GHI data.It

will result incorrect results if we did not care about the mismatch problems. How

to find out the mismatch image and solar data is very important. There will have

incorrect results if the mismatching between image and solar are ignored.

The times of sunrisetsri2 and sunsettssi2 for day i2 are collected from National Oceanic

and Atmosphere Administration (NOAA). The accurate lengthbetweentsri2 andtssi2 can be

calculated as:∆ti2 = tssi2 - tsri2 , which can be used to eliminate the random offsets of the cam-

era, and delete the useless sky image captured in the night. Then, the corresponding GHI

data can be sectioned with∆ti2 , and the time index is transfered from GMT to Mountain

Time (MT).

In the collected original data, there are missing random skyimages and GHI at some

points. For the missing sky images, the corresponding GHI data are deleted to keep the

one to one mapping relationship. Because the sky images is continuously changing and

the sample rate 1 sample/min is relatively high, the missingGHI data can be recovered by

the spline interpolation as given equation 5.1.1.βmiss(t2) is the missing GHI data,t2,j2

indicates the time indexj2 to discriminate with the missing GHI timet2, hj2 andaj2 are

coefficients. Then, the missing GHI data at timet2 can be recovered.
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Anomaly Detection

Problem Description We collected a large volume of original data from the sky image

camera and GHI sensors, which contains a lot of anomaly data sets. These anomaly data

sets can pollute the input data, and generate irrelevant information during the learning pro-

cess [19, 150–153]. As in Fig.5.4, we are focusing on the solar irradiance capturing for

the cloudy sky days (causing large deviations of PV output power), this means that the sky

images of the sunrise, sunset, and clean days are seemed as the anomaly data and need to

be cleaned. In oder to detect the anomaly conveniently, the data are normalized to range

(0, 1) with the approach in [19], and the corresponding sky images are stored and tagged in

a database. A nonparameter and fast anomaly detection method is employed to detect the

anomaly data as shown in Fig. 5.4.

Problem formulation As shown in Fig. 5.5, the anomaly detection method is based on

Gaussian mixture model with Bayesian inference [134,136,138]. The full joint distribution

can be formulated with it.

p(X,Z, π, µ,Λ) = p(X|Z, µ,Λ)p(Z|π)p(π)p(µ|Λ)p(Λ) (5.1.2)

where

1. X is the observation set,X = {x1, · · · , xN}. X is collected GHI.

2. Z is the component index setZ = {z1, · · · , zN}, total category isK.

3. π is the mixing weights, in Dirichlet processπ = {π1, π2, · · · , π∞}.

4. µ is the mean of the normal distributions. It is with a normal distribution prior as

shown in Fig. 5.5 with a meanµ0 and precision matrixλ0.

5. Λ is the precision matrix. It is a Wishart prior (it is equivalent to a one-dimensional

Wishart distribution [154]) with a scale matrixΛ0 and a degree of freedomν0.
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(a) (b)

(c) (d)

Figure 5.4: The selected anomaly sky images taken by different devices (a) the sky image
of sunrise, (b) the sky image of sunset, (c) the sky image polluted by rain and snow, (d) the
sky image of a clean day without any clouds.

In the Gaussian mixture model (GMM), the number of Gaussian components gives

the prior distribution estimation of the whole distribution. If the amount of components is

given, the whole distribution can be solved in a convenient manner. Therefore, the symbolZ

here is used as a latent variable to indicate the number of theGaussian components, which

is formulated as a categorical distribution and its conjugate distribution is the Dirichlet

distribution.
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Figure 5.5: The graphic model of the Gaussian mixture model with Bayesian inference.

Based on (5.1.2), the relationship and probabilities can beformulated as follows. The

conditional distribution ofZ given a mixing weight.

p(Z|π) =
N3∏

n3=1

K3∏

k3=1

πznk

k (5.1.3)

Then, given the latent variablesZ, µ,Λ, the conditional distribution of the observed data

can be formulated as:

p(X|Z, µ,Λ) =
N3∏

n3=1

K3∏

k3=1

N (xn3 |µk3 ,Λ
−1
k3

)Zn3,k3 (5.1.4)

Here, the Bayesian inference is employed to estimate how many clusters are required for

the observation data. It means that the hyperparameters canbe generated with noninforma-

tive hyperprior distributions. Firstly, the nonparameticprior titled as Dirichlet distribution
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is employed to build the finite Gaussians. Then, the Dirichlet process is used to generalize

it into infinite Gaussians. It helps to decide the amount of components automatically.

p(π) = Dir(π|α0) = C(α0)

K3∏

k3=1

πα0−1
k3

(5.1.5)

Dir is the Dirichlet distribution. α0 is the concentration parameter. AndC(α0) is

a normalizing item which can be expressed with Gamma Function and also be named as

multivariate Beta function [154, 155]. Then, according to (5.1.2), the Gaussian-Wishart

prior can be introduced for the meanµ and precision matrixΛ. The equation below shows

how it works and how it can get the results.µ0 is a mean,λ0 is a precision matrix,Λ0 is a

scale matrix, andν0 is degree of freedom.

p(µ,Λ) = p(µ|Λ)p(Λ) (5.1.6a)

=

K3∏

k3=1

N (µk3 |µ0, (λ0Λk3)
−1)W(Λk3 |Λ0, ν0) (5.1.6b)

As shown in (5.1.5), the Dirichlet distribution can be seen as the conjugate prior for

the categorical distribution. To generalize it into infinite and nonparametric distribution,

the Dirichlet process can be seen as its conjugate prior. Fora sample spaceΘ, G0 is a

distribution overΘ with a positive factorβ, and the Dirichlet process can be generated with

G0 overΘ.

(G(A1), · · · , G(AK3)) ∼ Dir(βG0(A1), · · · , βG0(AK3)) (5.1.7a)

G ∼ DP (β,G0) (5.1.7b)

whereAK3 is a finite measurable partition overΘ, and the positive factorβ controls the

density ofG [137, 156]. Here, the stick-breaking construction is used for the weightsπk3.

π = {π1, · · · , π∞} indicates the original model to be generalized into infiniteGaussians
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with Dirichlet process. It is finally realized automatically select the components number.

The results demonstrates that automatic selection always give a better performance.

π′
k3

∼ Beta(1, β) (5.1.8a)

πk3 = π′
k3

k3−1∏

i3=1

(1− π′
i3
) (5.1.8b)

Variational Inference The Bayesian theorem based variational inference algorithm is

employed for the Dirichlet process based Gaussian mixture models. The posterior distribu-

tion of Z can be computed as the equation below.

log p(Z|X,ϑ) = log p(X,Z|ϑ)− log p(X|ϑ) (5.1.9)

whereϑ is the parameters, and this Bayesian theorem based variational inference provides

a bridge to the likelihood function and prior function, which can also be seemed as a regu-

larization item for the likelihood function.

Here, we introduceqι(W ), qι(W ) to be defined as a distribution family, for example,

the exponential distribution family, andι is the parameter. Then, according to Jensen’s

equation:

log p(X|ϑ) ≥ Eq[log p(Z,X|ϑ)] − Eq[logqι(Z)] (5.1.10)

where (5.1.10) is the evidence of low bound (ELOB), and the gap is the Kullback-Leibler

(KL) divergence betweenqι(Z) andp(Z|X,ϑ), which can be derived as

D(qι(Z)||p(Z|X,ϑ))

= Eq[logqι(Z)]− Eq[log p(Z,X|ϑ)] + log p(X|ϑ)

(5.1.11)

In optimization, we can maximize the ELOB, which is an alternatively option for min-

imizing (5.1.11) [157, 158]. And the detailed information can be found in [134, 136, 137,

156].
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Specifically, the temperature is an indispensable factor toimpact the efficiency of the

PV, PV battery, and related systems. We also collect corresponding temperature information

to eliminate the anomaly data as shown in Fig. 5.4. Similarly, the Zenith angle is a critical

factor for the GHI [159], which is also collected to eliminate the anomaly data.

After this process, the anomaly data shown in Fig. 5.4 can be detected and only the

sky images with clouds can be selected for next step. Then, all the selected sky images are

merged together with the temporal and GHI information for CNN regression.

5.1.3 Image Regression Problem with Convolutional Neural Network

Problem Formulation

After the data cleaning as discussed above, the collected sky images and GHI values are

formed as one-to-one correspondence. Then, an input spaceX = {x1, · · · ,xN1} consists

of the collected sky images. Because a sky image is a three dimensional matrix including

red, green, and blue color, we usexi to denote thei-th sky image. The corresponding

output spaceY = {y1, · · · , yN1} consists of the collected GHI values, whereyi is thei-th

GHI value. Given the training samplesD = {xi, yi}
N1
i=1, the proposed CNN based image

regression approach aims to find a mapping from images to GHI valuesh(·): X 7→ Y with

a predefined cost functionC: X × Y 7→ R.

From the traditional optimization perspective, in the training part, the cost function

C(h) needs to be minimized with several different approaches such as stochastic gradi-

ent descent (SGD), momentum, and Nesterov momentum, and in this chapter, ADAM is

used [133,160]. However, different from the traditional optimization, in machine learning,

the distribution of the training space is usually differentfrom the distribution in the testing

space, which requires a good generalization characteristic for the selectedh(·). If using the

traditional optimization approaches without any revisionduring the training, several prob-

lems such as ill-condition, local minimum, cliffs, and etc.can dramatically degrade the

testing performance.
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(a) (b)

(c) (d)

Figure 5.6: The selected normal sky images with some clouds (a) few cloud with okta 1 to
2 in a sky image, (b) cloud with okta 3 to 4 in a sky image, (c) cloud with okta 5 to 6 in a
sky image, (d) cloud with okta 7 to 8 in a sky image.

The architecture of the proposed CNN

After data cleaning, the sky images of normal cloudy days areselected as shown in

Fig. 5.6. okta is a unit of measurement to describe the cloud cover in meteorology [161].

Compared with the images from ImageNet (a large-scale imagedatabase) [162], as shown

in Fig. 5.6, the patterns of the cloud in the sky images are simpler.
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Figure 5.7: The architecture of proposed CNN.

As shown in Fig. 5.7, the architecture of the proposed CNN is designed with 5 con-

volution layers, batch normalization, rectified linear unit (ReLU) (activation function), and

maxpooling, which is based on the VGG 16 architecture [147,148]. For each convolutional

block, the detailed design is shown in Fig. 5.7 and describedin the figure.

1. The first step is the convolutional layer. Compared with11∗11 or other7∗7 percep-

tion fields of Alexnet, filters of3∗3 in size are implemented to increase the nonlinear

characteristics and reduce the computation load [147, 148]. At the same time, the

stride step is set as1 and padding is also set as1, which keeps the size of the sky

image for next block processing [133,147,148].
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2. Next is batch normalization, which aims to improve interal covariance shift [163].

With the increasing layers of CNN, the distribution of inputs changes gradually.

With batch normalization technique, the distribution shift can be reduced, training

speed can be increased, and the data in same scales and more easy to get conver-

gence [163].The inference part of the batch normalization can be found in [133,163].

3. The third step is active function, it is used to bring nonlinear characteristics for the

proposed method. Compared with other activation functionssuch as sigmoid, hy-

berbolic tangenet and Gaussian, Rectifier(ReLU) is more convenient to compute the

derivative, fewer vanishing gradient, and fewer saturation parts [133]. Specifically,

in this proposed network, the target is solar irraidance, which means all the output

should be positive real numbers. ReLU can meet this requirement perfectly [133].

4. The parameter set for convolutional block, for example(112, 112, 48), indicates that

the output dimension of the convolutional block is112 ∗ 112, and48 indicates that

there are48 feature maps (or feature images). This means that the features can be se-

lected in different feature maps, which provide a more convenient way for the feature

extraction.

5. The last part is max pooling. It is design as2 ∗ 2 with stride2 ∗ 2, which select the

maximum value over the2 ∗ 2 part. This part can be regarded as a down-sampling

job. It selects the feature of2∗2 and non-overlapping area, reduce the dimensionality

of input, and pass the selected features to next convolutionblock.

After 5 convolutional blocks, the dimension of the input image is changed from224 ∗

224∗3 = 150, 528 to 7∗7∗388 = 19, 012, which means that only12.63% data are needed

to represent the features of the original image. Then, the output is flatten into a vector and

treated as an input for the fully connected layer with1000 neurons for the final regression.
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Learning of the proposed CNN

Last Layer In classification problem, the last layer are softmax activation function and

cross entropy as objective function. Considering the regression objective, the mean-square-

error is employed as the objective function, and linear function is used as activation func-

tion.

E =
1

2
(gfinal(χ

m
1 )− y)2 + regl2 (5.1.12)

wheregfinal is the activation function, which is ReLU as shown in Fig. 5.7. χm
1 is the only

one output in last layerm, y is a general form of the GHI value, andregl2 is a weighted L2

regularization item. The elastic (combined L1 and L2) can also be implemented here, and

E is the loss. Then, the error can be derived as:

δm1 ≡
∂E

∂χm
1

= (gfinal(χ
m
1 )− y)g′final(χ

m
1 ) (5.1.13)

where the derivative of ReLU is

g′final(χ
m
1 ) =





1, if χm
1 > 0

0, otherwise
(5.1.14)

Hidden Layer In the hidden layer, the error item can be derived as following:

δkj = g′(χk
j )

∑

l=1

wk+1
jl δk+1

l (5.1.15)

wherek + 1 indicates the layer,δk is the error in last layerk, wk+1
jl is a weight for nodej

for incoming nodel in layerk + 1. And the weight can be derived as:

∂E

∂wk
ij

= ok−1
i g′(χk

j )

rk+1∑

l=1

wk+1
jl δk+1

l (5.1.16)

ok−1
i is the output for nodei in layerk. r is the total number for nodel.
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Extended to 2-dimensional CNN The proposed approach is based on CNN and aims

to build a mapping between sky images and GHI values. It requires an extension from 1

dimensional backward propagation to 2 dimensional backward propagation. The weight

can be computed as

∂E

∂wk
m′,n′

=

H1−k1∑

i1=0

W1−k2∑

j1=0

δki1,j1o
k−1
i1+m′,j1+n′ = δ̂ki1,j1 ∗ o

k−1
m′,n′ (5.1.17)

where∗ indicates a 2-dimensional (H1 andW1 indicates the hight and width of the sky

image) convolution in CNN [133,160].k1 × k2 is the dimension of the filter,̂δki,j indicates

the flipped kernel [164].δ ando are the same as defined above. Then, similar with equation

(5.1.13) the error can be computed as:

∂E

∂χk
i′,j′

=

k1−1∑

m=0

k2−1∑

n=0

δk+1
i′−m,j′−nw

k+1
m,nf

′

(
χk
i′,j′

)
(5.1.18)

whereχ is defined as:

χk
i1,j1

=
∑

m

∑

n

wl
m,no

k−1
i1+m,j1+n + bki1,j1 (5.1.19)

wherebki1,j1 is the bias for node with positioni1, j1 in layerk. In sum, the 2-dimensional

CNN is formulated for the proposed sky image processing.

5.1.4 Results

The image data and GHI data are provided by NREL, which includes about thee-month

data in the Autumn of 2016 and Summer of 2017. The sampling rate of the sky imager is

1 sample/min from sunrise to sunset per day. The sampling rate of the GHI measurement

device is also 1 sample/min for 24 hours per day.
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Figure 5.8: Anomaly detection for the GHI data.

Anomaly Detection and Elimination

First, the original GHI data are modeled with the Gaussian mixture model with Bayesian

inference. Compared with the Gaussian mixture model without Bayesian inference (indi-

cated as Single GMM with magenta), the GHI data can be more precisely modeled with

3 Gaussian models instead of 1 Gaussian model. According to our requirements, the GHI

values located in the areas close to 0 and 800 can be considered as sunrise, sunset, and clean

sky data. Second, as mentioned above, the Zenith angle and temperature are considered as

useful factors, the Gaussian mixture model with Bayesian inference are employed to detect

the anomaly data with them. To show the results clearly, the result of Zenith angle and

temperate are shown separately as in Fig. 5.9 and Fig. 5.10. In the upper part of Fig. 5.9,

the collected data can be modeled with a single Gaussian models, which means that a lot
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Figure 5.9: Anomaly detection for the GHI and Zenith Angle data.

of useful data are classified into anomaly data side. In the lower part, the collected data

can be modeled with 4 Gaussian models, the anomaly data are indicated corresponding to

the sky images of sunrise and sunset (with the green dots close to 0 GHI and50◦ Zenith

angle). The yellow dots located close to 800 GHI are corresponding to the sky images of

clean sky without clouds. Similarly, in the upper part of Fig. 5.10, the collected data can be

modeled with 2 single Gaussian model, which means that a lot of useful data are classified

into anomaly data side. In the lower part, the collected datacan be modeled with 5 Gaus-

sian models, the anomaly data are indicated corresponding to the sky images of sunrise and

sunset (with the yellow dots close to 0 GHI and10◦C temperature). The light blue dots

located close to 800 GHI are corresponding to the sky images of clean sky without clouds.

The results shows that GMM model works efficient on that.
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Figure 5.10: Anomaly detection for the GHI and Temperature data.

CNN Based Regression

Considering the limitation of the computer memory (64 GB), the data (including the sky

images and corresponding GHI values) of 1, 2, 3, 4, and 5 days are used as training data,

separately, and 70 randomly selected sky images and corresponding GHI values are used as

testing data. As discussed above, the proposed CNN based image regression approach aims

to build a mapping relationship from images to GHI valuesh(·): X 7→ Y.

Feature Analysis To illustrate clearly the operation manner of CNN, its feature analysis

or content reconstruction is shown in Fig. 5.11. In Fig. 11(a), the original figure is shown,

which is extracted from the beginning side of the flowchart inFig. 5.7. Fig. 11(b) is almost

identical with Fig. 11(a), and the small and tiny crinkles indicates that the feature and edges

of the clouds are extracted by the CNN. In Fig. 11(c), it is clearly that the edges of the clouds

are selected by the crinkles, which means the features of themajor parts are identified and

located in the image. Furthermore, in Fig. 11(d) and Fig. 11(e), the features of the small
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Figure 5.11: Feature expression of CNN (a) the original sky image demo, (b) the feature of
conv1, (c) the feature of conv2, (d) the feature of conv3, (e)the feature of conv4.

parts are also identified and located. In brief, with deeper layers in the CNN, more and

more features are extracted in different layers gradually.With the extracted features, the

regression analysis is introduced in next step.
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Figure 5.12: Image regression for GHI with different training data length: (a) 1 day data as
training data, (b) 3 day data as training data, and (c) 5 day data as training data

Regression Analysis As shown in Fig.5.12, the top image regression results of training

data with 1, 3, and 5 days are presented in red curves, and the testing data are presented with

blue curves. The results of 1 day training data and testing data are presented in Fig. 5.12

(a), which contains relatively big errors. Specifically, asshown with the blue curve, there

are 4 peaks located in samples 20, 25, 65, and 70, which indicate that high solar irradiance

at these time slots. However, with 1 day training data, the results of the proposed approach

are much lower, which indicates that a big mismatch between the proposed approach and
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measured data. In addition, in the samples between 45 to 65, there is a big valley in the

testing GHI values. However, as shown in Fig. 5.12 (a), the proposed approach also contains

a big error from the measured GHI values. In Fig. 5.12 (a), themean absolute percentage

error (MAPE) is 21.8%, which indicates that the 1 day training data is not sufficient to

achieve a acceptable result. Compared with Fig. 5.12 (a), the results presented in Fig. 5.12

(b) and Fig. 5.12 (c) with 3 and 5 days training data contain smaller errors. In Fig. 5.12

(b), it is obvious that the peak errors in samples 20, 25, 65, and 70 are much smaller than

Fig. 5.12 (a), and the valley errors from samples 45 to 65 are also smaller than Fig. 5.12

(a). In Fig. 5.12 (c), the best regression results are presented with 5 days training data.

The peak errors and valley errors are very small, and the bluecurve and red curve are

almost identical in the rest samples. It presents accurate image regression results for solar

irradiance capturing. In Fig. 5.12 (b) and Fig. 5.12 (c), theMAPE are 12.6% and 8.1%,

which indicates that the regression error is decreasing with the increasing training data

length.

Comparison and discussion

To comprehensive evaluate the proposed approach, several high impacted algorithms

are investigated, and the comparison and analysis are shownas follows.

Benchmark Comparison In [165], the persistence approach is introduced to evaluate the

solar irradiance, which is a widely used approach to build the benchmark data [166]. We

also implement the persistence approach to estimate the solar irradiance. The MAPE of

the persistence approach is 27.8% and root-mean-square error (RMSE) is 29.2%, which are

much larger than the proposed approach with MAPE 8.1% and RMSE 8.7%. In [166,167].

It requires stationary for the time series. For the cloudy days data, the MAPE and the RMSE

of the ARIMA approach are 31.2% and and 32.7%, which are also very high.
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Comparison With Other Approaches In [168], a image regression approach is pro-

posed to predict solar irradiance with sky image, which consists of feature extracting and re-

gression model with promising results. The MAPE 8.1% of the proposed approach is lower

than 21.91% with approach in [168]. In [169], a statistic based artificial neural network

approach is used to provide solar irradiance forecasting with minimum root-mean-square

error (RMSE) about 15%, which is higher than our proposed approach with 8.7%. In the

review paper [166], a lot of recent solar irradiation capturing and forecasting approaches

are collected and analyzed, and the best RMSE is about 10%, which is also higher than the

proposed approach. Recently, in [170], a short-term solar irradiance forecasting approach is

proposed with satellite and model coupling. In this approach, the sky images are captured

by geostationary satellite and the typical errors ranges are from 8.5% to 17.2%, which is

very close but still a little higher than the proposed approach. Furthermore, compared with

the high-cost geostationary satellites, the proposed approach only requires the sky images,

which can be easily captured by sky imagers, cameras, and even cellphones. In [171], sev-

eral machine learning based approaches are used such as leapForward model and Spikeslab

model to forecast the solar irradiance. Compared with the proposed approach, this proposed

approach uses the measured solar irradiance as input, whichindicates this method is heav-

ily relies on the expensive solar irradiance measurement devices and not easy to extend on

large-scale solar irradiance capturing. In [172], a solar irradiance forecasting approach is

proposed with wavelet-based feature extraction, and this approach is focusing on the clear-

sky days. Considering the large deviation profile of the PV output caused by clouds, the

proposed approach is investigating in the cloudy days, which have larger impacts on power

system operations. The randomness and stochastic characteristics of the cloud movements

also increase the difficulties of the regression. The way on using CNN model helps to solve

the problem. We only investigating in the sky images taken with visible light as a primer

exploration. which indicates other images such as 10-12µm normalization radiance and

R/B ratio mask are ignored. However, according to [166, 168,169], these images contains
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useful information and can be treated as a good assistance information for image regression.

Beside the Zenith angle and temperature, the other parameters such as humidity, air condi-

tion, and solar periods can also be seemed as assistance inputs for the proposed regression

approach. In this primer exploration, we only collected three month data in the Autumn

of 2016 and Summer of 2017 to validate the proposed approach.In the next step, we will

collect at least three years of data to further investigate the solar image regression.

As discussed above, the main advantages of the proposed approach are described one by

one. Compare with the traditional methods, the proposed approach provide many different

advantages.

1. Compared with the traditional solar irradiation capturing approaches, the proposed

approach does not require the expensive high-resolution images captured by geosta-

tionary satellites. The data collection cost (sky images) of the proposed approach is

lower, which indicates that the proposed approach is convenient to be widely used

and extended for very large-scale solar irradiance monitoring.

2. Compared with the results of benchmark and traditional machine learning approaches,

the proposed approach provides an end-to-end manner to capture the solar irradi-

ances. This not only reduces the information loss between the feature engineering

and regression processing, but also improves the learning efficiency of the proposed

approach.

3. In power system operations, the clouds movements cause a lot of random deviations

of PV outputs, which dramatically impact the health of the power systems. The

proposed approach is focusing on the cloudy days solar irradiance capturing, which

can be extended to PV output regression and power system stability forecasting in the

next step research.
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5.2 Ensemble model design with multiple machine learning and

deep learning models

As discussed in Chapter 4, one critical issue which impactedthe stochastic optimization

performance dramatically is forecasting results. If the performance of the forecasting re-

sults can be improved, the total operation cost of the stochastic optimization can be further

reduced. Considering traditional forecasting methods in power system forecasting such as

linear regression, support vector regression, and neural network (also named as multi-layer

perceptron), these machine learning based methods are verypowerful but easy to overfit

and usually have similar pattern in feature selection. It means all these types of methods

only focus on limited features of the target, and other useful information are ignored. En-

semble learning is a method that uses a lot of weak learners together to reduce the forecast

error and suppress the variance. To use the information comprehensively, a series of en-

semble learning are employed such as random forest, extra tree, gradient boost decision

tree, and Xgboost to improve the forecast performance. Furthermore, based on these en-

semble learning methods, a novel stacking method with two step architecture is designed

to further improve the forecast performance. Compare with the general forecasting model

with machine learning, the novel stacking model is used to analysis the hidden relation-

ship between different kinds of features. The proposed methods introduced a new way on

how to efficiently construct a ensemble model with considering the different aspects of the

data. After that, the output of first level models are used to further reduce the error between

forecasting and actual results. The proposed model can be used as a pre-trained model for

future forecasting work with a high accuracy without expensive cost on maintenance.

No matter energy generation, transmission or distribution, load forecasting is obviously

very important for energy supplier and others. A power load forecasting model in high accu-

racy is essential to energy provider on their daily power planning and operation work. Load

forecasting can be regarded as three different categories,long-term level [173], medium
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level [174] and short-term level [50]. Based on the current research, short-term demand

load forecasting is considered currently. It is usually form one hour to one week.

5.2.1 Load forecasting tools

linear regression model Linear regression [175] is a widely used statistical tool. It is very

easy to be implemented and employed to model the relationship between different factors

like temperature, zenith angle, kinds of renewable energy.The output is modeled as linear

combination of inputs. The mathematical affine function between inputs and output.β is

linear parameter weights,ǫ is error.Xi is the feature input,y is the renewable generation.

y = β0 +
∑

βiXi + ǫi (5.2.1)

Support Vector Machine It is a machine learning technique based on the statistical learn-

ing method. It can be used for classification and regression problem, which analyzes the

data and its category by support vectors computation. A SVM model always constructs one

or several hyperplane in low, high or infinite dimensional space.

min
w2

2
(5.2.2)

s.t. y|wTX + b| ≥ 1 (5.2.3)

wherew is the normal vector to hyperplane,b is the bias,X is the input data,y indicates the

classification ofX. SVM only focus on the points which are classified correctly.For hard

margin, two parallel hyperplane are figured out, which are used to separate the different

classes data if the data are linearly separable. Otherwise,I have some other ways to deal

with the problem if the input data is nonlinearly separable.Firstly, the tolerance parameter

is added to the objective function, which also works as a regularization for the model. The

tolerance parameterC indicates how much the model will accept the wrong classification.
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It is easy to see ifC is big enough,ξn will be very small, which means that the model has

a low tolerance on mistakes. It will lead the model to have lowgeneralization and high

accuracy.

min
w2

2
+ C

n∑

i=1

ξn (5.2.4)

s.t. y|wTX + b| ≥ 1− ξn (5.2.5)

ξn ≥ 0 (5.2.6)

Secondly, SVM model can help to find out a linear separable hyperplane by using kernel

conversion. It aims to solve the problems in a high dimensionspace if the hyperplane does

not work in low dimension space.

Artificial Neural Network Artificial Neural Network(ANN) has been used to simulate

the nonlinearly of human thoughts because of its strong computing ability. It has been

found that it can be used to overcome the problem instead of a functional form model. The

deeper layers construction of ANN model have been demonstrated with a high ability on

nonlinear problem approximation. Multilayer perceptron network (MLP) in 5.13 is used

here to simulate the results. In each model, there are several hidden layers in it. There are

more than one neurons in each layer. Each input is multipliedby weights(ωi) and the output

of each neuron is decided by active function. The advantage of this model is that most of

the forecasting model will not require a function model, butit needs more time on training

and more data on pre-trained the model. The fully connectionfeed-forward(FCFF) model

with an active function. MLP model describes a nonlinear relationship of weights which

connect the input , hidden layers and the output data. In training of the model, for each

iteration in each epoch, back propagation can be used to update the model parameter. In

the forecasting work of the renewable energy, the historic data based supervised learning

method is chosen to figure out the relationship between demand load and day temperature,

human events, weather changing. The hourly electric load can be predicted with this model.
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Besides that, several ANN models can be trained in parallel and the average results ba be

used. It can help reduce the variance of the model. Transfer learning is a good way to solve

the problem with not enough data, the pre-trained model parameter(weight) are applied and

do fine tuning on the last few layers to modify the result in validation.

In 5.13, there are 4 feature units at the input layer, 5 at the first hidden layer, 4 at

the second hidden layer, a01 indicates the first neuron at thefirst layer. a12 indicates the

second neuron at the second layer. The first hidden layer computation is as follows. a01,

a02, a03, 04 indicates the parameter of features, the outputis the renewable generation in

the forecasting model.g is an active function.

Figure 5.13: MLP network.
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a11 = g(w01 ∗ a01 + w02 ∗ a02 + w03 ∗ a03 + w04 ∗ a04) (5.2.7)

a12 = g(w11 ∗ a01 + w12 ∗ a02 + w13 ∗ a03 + w14 ∗ a04) (5.2.8)

a13 = g(w21 ∗ a01 + w22 ∗ a02 + w23 ∗ a03 + w24 ∗ a04) (5.2.9)

a14 = g(w31 ∗ a01 + w32 ∗ a02 + w33 ∗ a03 + w34 ∗ a04) (5.2.10)

a15 = g(w41 ∗ a01 + w42 ∗ a02 + w43 ∗ a03 + w44 ∗ a04) (5.2.11)

Random Forest Random forest is an ensemble learning with several decisiontrees. The

average results will be calculated for regression problemsand vote results for classification.

Random forest is an famous example for bagging, which means each time some of the

samples are collected to train a decision tree. It is obviously that I can do parallel work on

training if I need more than one decision tree. And the average results for regression can

reduce the variance efficiently which help to avoid overfit. After many tests, it has been

demonstrated that only 68.2% sample data has been used in training, the rest can be used

for testing, which avoid the cross validation work. One moreadvantage for decision tree

why we consider random forest as an important role in our forecasting work, the way to

measure the best split point is not the same as other algorithm like SVM. The information

gain and gini are used to find out the best split points which donot care the imbalanced

data.

ID3-maximum information gain For datasetD, assume there are K categories, the

empirical entropy of DH(D). It can be calculated with the equation below.

H(D) = −
K∑

k=1

|Ck|

|D|
log2

|Ck|

|D|
(5.2.12)
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H(D|A) =
n∑

i=1

|Di|

|D|
H(Di) =

n∑

i=1

|Di|

|D|

(
−

K∑

k=1

|Dik|

|Di|
log

|Dik|

|Di|

)
(5.2.13)

g(D,A) = H(D)−H(D|A) (5.2.14)

The empirical conditional entropy of feature A to dataset DH(D|A) is computed here.

Di indicates the dataset fromD if feature A equals its ith value.Dik is thekth dataset in

Di. The information gain can be calculated as the equation below.

C4.5- maximum information gain ratio The definition of information gain ratio of

feature A to dataset D is defined as below. The cross entropy isused to describe how much

different between the distributions.

gR(D,A) =
g(D,A)

HA(D)
(5.2.15)

HA(D) = −
n∑

i=1

|Di|

|D|
log2

|Di|

|D|
(5.2.16)

CART - maximum gini Gini is used to describe the purity of data.

Gini(D) = 1−
K∑

k=1

(Ck

D

)2
(5.2.17)

Adaboost After testing in some independent models, a new way of ensemble learning

model is constructed based on some different individual models. It is an efficient way

to avoid overfitting and take more attention on errors. In every iteration, the model will

reweight the error and each base learner. The weights will pay more attention on error and

award the base learner who has a high accuracy. It is much different from bagging, which

aims to reduce the bias and cannot be computed in parallel.
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Gradient Boosting Descent Tree(GBDT) The main idea of using GBDT is that a CART

is used to simulate the residual between forecasting value and the real data. In each iteration,

the model aims to reduce the residual and finally eliminate it. The model is selected to set

up with direction of negative gradient. As the industrial application of GBDT, XGBoost

shows the more obvious advantages and better performance inour results.

L(φ) =
∑

i

l(ŷi, yi) +
∑

k

Ω(fk) (5.2.18)

Ω(f) = γT +
1

2
λ||w||2 (5.2.19)

It is easy to see that the loss function of XGBoost has been added regularization, which

includes the amount and value of the leaf nodes. The results shows it efficiently increase

the generalize ability of the model on testing data.

L(t) =

n∑

i=1

l(yi, ŷi
(t−1) + ft(xi)) + Ω(ft) (5.2.20)

The loss function at timet tells us the loss is calculated as the difference between the

real tag and the sum of the forecast tag of timet − 1 plus new fitted model of timet. The

second order taylor expandion: g is first-order derivative,h is the second order derivative.

L(t) ≃
n∑

i=1

[
l(yi, ŷi

(t−1)) + gift(xi) +
1

2
hif

2
t (xi)

]
+Ω(ft) (5.2.21)

gi = δ
ŷi

(t−1)l(yi, ŷi
(t−1)) (5.2.22)

hi = δ2
ŷi

(t−1) l(yi, ŷi
(t−1)) (5.2.23)

Different from GBDT, XGBoost has its approximate algorithmon feature and split

points selection, which is much faster than grid search of GBDT. XGBoost can realize

parallel work in some step of the feature engineering, whichis key points on industrial use.
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5.3 Methods Analysis

5.3.1 Correlation Analysis

In order to analysis the relationship between different kinds of features and target GHI,

the pearson correlation figure is shown. The Figure presentsthe relationship between dif-

ferent features.

Figure 5.14: Pearson Correlation Analysis.

ρX,Y =
cov(X,Y )

σXσY
. (5.3.1)
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• cov(X,Y ) is the covariance

• σX is the standard deviation ofX.

• σY is the standard deviation ofY .

• X, Y are the feature data of the input.

cov(X,Y ) = E[(X − µX)(Y − µY )]. (5.3.2)

• µX is the mean ofX.

• µY is the mean ofY .

ρX,Y =
E[(X − µX)(Y − µY )]

σXσY
. (5.3.3)

The Pearson correlation can be computed here5.3.3. Compared with linear analysis,

the Pearson correlation coefficients analysis is more accurate on describing the relation-

ships between random variables and stochastic process, which is also widely used in many

statistic analysis for random distributions. The Pearson correlations analysis contains two

critical quantities for random variables: mean and variance, which indicate the first-order

and second-order variances of the variables.

As shown in Fig. 5.14, 11 features such as ’humidity1’,’cloud type1’,’cloud type2’,’wind

direction’,’wind speed1’,’wind speed2’,’air temperature’,’humidity2’,’time index’,’Zenith

angle1’,’Zenith angle2’ are selected as inputs to generatethe Pearson correlation coeffi-

cients with the target GHI. In detail, there are several critical points: It is clear that the

diagonal values are equals to 1, which means that they are highly related to themselves with

equation ( 5.3.3. On the right side, the colored bar indicates that the numerical value from

1.00 to -1.00 with the color from deep blue to deep red. which indicate the positive rela-

tionships and negative relationships separately. The higher absolute value indicates a higher
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correlation between these two features. On positive relationships, it is clear that the Zenith

angle2 is 0.35. It means the target GHI will increase if the Zenith angle 2 increases. On

negative relationship, it is clear that the cloud type1 is -0.58. It means the target GHI will

decreases if the cloud type2 increases. In large-scale, Fig. 5.14 shows various relationships

from positive to negative. It means our data collection contains many different aspects of

GHI related data features and this will benefit the final results. Besides the target analysis,

there are many other interesting relationships, for example, the wind direction is positive

related to time index, which means the wind direction has strong temporal pattern.

5.3.2 Linear Regression Analysis

Linear Regression is very easy to be implemented and employed to model the relation-

ship between different factors like temperature, wind speed, kinds of renewable energy. The

output is modeled as linear combination of inputs, the mathematical model can be wrote as

affine function between inputs and output. As shown in the Fig. 5.15, the linear regression

performance is highly correlated to the Pearson correlation analysis, because linear regres-

sion only compute the weighted sum of the input features. Thehigh important feature of

linear regression are cloud type 1, air temp, and zenith angle 2. The right bar is used to

measure how the features contribute to the results. The sum of all the weights is 1. The

higher number obey to the bar means the feature plays an more important role in result.

5.3.3 Support Vector Regression Analysis

SVM can be used for classification and regression problem, which analyzes the data

and its category by support vectors computation. A SVM modelalways constructs one or

several hyperplane in low, high or infinite dimensional space. As shown in the Fig. 5.16,

the SVR performs better than simple linear regression, which has high importance features

on cloud type 1, air temp, and zenith angle 2. SVR has a kernel trick, which maps the input

features into high-dimensional space.
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Figure 5.15: Feature importance analysis of Linear Regression.

The nonlinear mapping dramatically improves its regression and tracking capability for

nonlinear analysis. It is obvious that SVR works much betterthan linear regression on this

forecasting work.

5.3.4 Multi-layer Perceptron Analysis

The MLP model is a construction of fully connection layers. As shown in the Fig. 5.17,

similar as SVR, the MLP has high importance features on cloudtype 1, air temp, and zenith

angle 2. In MLP, the nonlinear capability is introduced by the active function, which is a

nonlinear and differentiable function. To sum, the linear regression, SVR, and MLP, these

traditional methods have very similar pattern in feature selection. Because only the some

group of feature data are studied. Therefore, several better methods are introduced, and

then all the methods will serve as inputs for the final ensemble learning.
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Figure 5.16: Feature importance analysis of Support VectorRegression.

5.3.5 Random Forest Analysis

Random forest is an ensemble learning with decision trees. The average results will

be calculated for regression problems. And the results can reduce the variance efficiently

which help to avoid overfitting. As shown in the Fig. 5.18, different from the traditional

method, which is only sensitive on one or two input features,the random forest methods

has several high scores on feature importance analysis. This means that the random forest

method collects more features from the input data and evaluates the target GHI compre-

hensively. The importance feature for random forest are Zenith Angle2, Cloud typ1, and

humidity1.
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Figure 5.17: Feature importance analysis of Multi-layer Perceptron.

5.3.6 Extra Tree Analysis

A little different from the random forest, all the dataset isused instead of bootstrap of

RF to train the decision tree. As shown in the Fig. 5.19, the extra tree methods has several

high scores on feature importance analysis such as humidity1, cloud type1, air temperature

, zenith angle 1 and zenith angle 2. Compared with random forest method, the extra tree

collects different aspects of input features. This indicates that our proposed approach collect

the bread information of the input data. With different features, the ensemble learning

performances better than one or two feature collections.
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Figure 5.18: Feature importance analysis of Random Forest

5.3.7 Adaboost Analysis

It is an efficient way to avoid overfitting and take more attention on errors. In every

iteration, the model will reweight the error and each base learner. The weights will pay

more attention on error and award the base learner who has a high accuracy. As shown in

the Fig. 5.20, the Adaboost is a type of boost method, which can regress any kind of curves

with limited error. The key feature of boost technology is toestimate the residual for next

step approximate. On one hand, this technology generate high-accuracy result; on another

hand, this type of method is easy to overfit. As shown in the Fig. 5.20, the importance

feature of Adaboost is only focusing on the zenith angle 2.
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Figure 5.19: Feature importance analysis of Extra Tree

5.3.8 GBDT Analysis

It is an efficient way to avoid overfitting and take more attention on errors. In every

iteration, the model will reweight the error and each base learner. The weights will pay

more attention on error and award the base learner with a highaccuracy. As shown in the

Fig. 5.21, the GBDT method has highest import feature score is about 0.5. Compared with

the Adaboost method, which focuses on only one feature, the GBDT split the pressure into

several different features such as wind speed1, cloud type 2, zenith angle 1. With com-

prehensive feature collections, GBDT performs better thanAdaboost methods. GBDT is

widely used in current machine learning research. It is different from the boosting method,

like adaboost. GBDT pays more attention on the incorrect results.
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Figure 5.20: Feature importance analysis of Extra Tree

5.3.9 XGBoost Analysis

As the industrial application of GBDT, XGBoost shows the more obvious advantages

and better performance in our results. As shown in the Fig. 5.22, the Xgboost methods has

several high scores on feature importance analysis such as cloud type1, air temperature , and

zenith angle 2. Compared with Adaboost and GBDT, the Xgboosthas better suppression of

single tree grows and leaf splits, which avoid to focusing onone or two features as shown

above. At the same time, Xgboost is also the method which performs best in the first level

method. Consider its capability, a lot of ensemble method contains it as a key method to

improve their final performance.
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Figure 5.21: Feature importance analysis of GBDT.

5.4 Ensemble Learning - Stacking Regression

As discussed above, the basic models such as linear regression, SVR, and random forest

contain different characteristics, which perform the importance of different feature. The

performances of the basic models in different feature importances also indicate that none of

them can comprehensively extract all the features of the input data. As shown in Fig. 5.24, a

stacking regression approach is proposed to learn widely from the strong points of the basic

models. Specifically, in the first step, the basic models are used to extract the feature from

the input data. In the second step, a stacking regression method is used to find a nonlinear

relationship between the extracted feature and given labels. The detailed process will be

introduced step by step. The architecture of stacking regression is shown in Fig. 5.25 in

detail.

105



Figure 5.22: Feature importance analysis of Xgboost.

The upper part indicates the training part, and the lower part indicate the testing part. In

the training part, the original input data is divided as K-fold format for training. Each model

uses different training set and prediction set (also be named as validation set) sequentially.

Then, all the prediction sets are collected as new features for next step process. In this

step, the basic models are employed for feature extraction.In the second step, the extracted

features are treated as input data to train the advanced model, which can be any regression

models such as MLP, linear regression, and Xgboost. In the testing part, the large gray

arrows indicate the testing data are predicted by the trained basic models, which can be seen

as feature extraction for the testing data. The average stepis used to keep the dimension

of the testing data. Last, the trained advanced model is employed to generate the final

prediction results, which evaluates all the input data comprehensively.
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Figure 5.23: Feature extraction correlations.

5.5 Bootstrapping Based Prediction Intervals Computation

5.5.1 The Theory of Bootstrapping

To quantify the forecast uncertainty of the proposed approach, the bootstrapping method

is used to compute the prediction intervals. The resamplingdata can provide the empirical

distribution from the forecasting results, which also brings high computational cost.

For n1 forecasting results, the noise variableεj1 can be approximated as the equation

below. j1 ∈ {1, 2, 3, · · · , n1}. Ψ̂ is the approximated function ofΨ.

ε̂j1 = γ(j1)− Ψ̂(j1). (5.5.1)

Considering the systematic error,ε̂j1 can be centered as 5.5.2. The equation shows a

process of iteration of the whole project. In general, each model has its own advantages, it
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Figure 5.24: Major Idea of Stacking Regression.

always prefer some special aspects of the data. And how to construct a reasonable ensemble

model based on these advantages from different models. The proposed model describe a

efficient way on constructing a stacking model to achieve a comprehensive model.

ε̃j1 = ε̂j1 −
1

n1

n1∑

j2=1

ε̂j2 . (5.5.2)

wherej2 ∈ {1, 2, 3, · · · , n1}. As shown in Fig. 3.1, in Block 8, the Bootstrap resampling

can be generated as following. The residualδ∗ can be drawn randomly with replacement

from the set{ε̃1, ε̃2, · · · , ε̃n1} with the probability1/n1 as following

δ∗i1 = ε̃i1 with probability
1

n1
. (5.5.3)

Then the output can be computed as

γ∗i1 = Ψ̂(i1) + δ∗i1 . (5.5.4)

n2 is a given number of bootstrapping replicates generated by formula (5.5.3) and

(5.5.4). n2 is a large number, such as 5,000 or 10,000. According to the Law of Large

Numbers (LLN) and Central Limit Theorem (CLT), if the numberof bootstrap replications
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Figure 5.25: Detail Architecture of Stacking Regression.

is large, the forecast errors are normally distributed. The100(1 − 2α) prediction inter-

vals can be computed as equations below. And the parameters in the proposed project are

defined asα.

P
{
Q(Φα) < γi1 < Q(Φ1−α)

}
= 1− 2α. (5.5.5)

whereQ is a function ofΦα, which indicates the lower prediction interval.Q is a function

of Φ1−α, which indicates the upper prediction interval. The algorithm of the Bootstrapping

Based Prediction Intervals Computation is shown in Algorithm 1.
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Algorithm 2 Bootstrapping Based Prediction Intervals Computation
Objective: Compute the prediction intervals from the prediction results.

Data Collection: Collect the prediction results.

Residuals Processing: Compute residuals with formula (5.5.1) and re-center residu-
als with formula (5.5.2).

Resampling: Resample the residuals with formula (5.5.3) and computeΨ̂ with for-
mula (5.5.4). Repeat this step, and generaten2 set of bootstrapping replicates.

Computation of Prediction Intervals: Given a probabilityα, compute the pre-
diction intervalsQ andQ with formula (5.5.5).

Table 5.2: Performance of Proposed Approach
Methods MAPE (%) Variance
Linear Regression 21.1 27.5

SVR 17.7 16.9

MLP 17.9 16.4

Random Forest 15.2 14.2

Extra Tree 14.3 15.1

Adaboost 14.1 15.2

GBDT 12.21 13.4

Xgboost 11.8 12.5

Stacking Approach 7.8 7.2

5.5.2 Forecast Results and Statistic Analysis

As shown in Table5.2, all the methods are compared together with Mean absolute per-

centage error (MAPE) and variance, which indicate the 1st order and 2 order error in statistic

learning. Specifically, the traditional approach linear regression, SVR, and MLP has largest

MAPE and variance. With ensemble learning introduced, the MAPE and variance also

reduced dramatically. Furthermore, based on all these approaches, the proposed method

performs best with smallest MAPE and variance.

As shown in Fig.5.26, a cloudy day normalized GHI is shown as blue curve. The red

curve is the forecasted GHI with stacking approach. It is clear that the red curve and blue
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Figure 5.26: One day forecast example of proposed method.

curve are almost identical, except at several large deviation points. With this high accuracy

forecast results as input, the numerical results of stochastic optimization will be presented

in next step. As shown in Fig.5.27 and Table5.2, the proposedmethod and Xgboost rank

in Top 1 and 2. Compared with Xgboost, the proposed approach has smaller variance, and

higher kurtosis, which indicates the proposed approach provides better results with narrow

confidential intervals.

5.6 Results

The numerical results for evaluating the proposed method inchapter 4 with the proposed

ensemble learning forecasting model are tested based on theIEEE 123-bus system. The PV

panels(55 kw for each) are installed at bus 28, 47, 49, 64, 93 and 97.
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Figure 5.27: Error Distribution between Proposed Method and Xgboost.

5.6.1 Total cost with ensemble learning

The hourly renewable energy generation is predicted with the proposed forecasting

model. And the total operation cost are compared in Fig.5.28for 24 hours. For each hour,

the left bar describe the ratio ofGDA
t + GR1

t (light blue) andGRT
t (yellow), which is fitted

by multi-timescale model with traditional forecasting model. The corresponding total cost

is displayed as a green dashed line. Similarly, the right bardescribes the ratio ofGDA
t +

GR1
t (dark blue) andGRT

t (orange), which is fitted by multi-timescale model with proposed

forecasting model. The corresponding total cost is displayed as a red dashed line. It is

clear that the orange part is shorter than the yellow one, which indicates that the proposed

forecasting model achieves a higher accuracy on hourly predicting of the renewable energy,

and the system requires less energy from the RT market. The difference between the total

operation cost demonstrates the proposed forecasting method reduces the operation.

112



Figure 5.28: Total cost with Ensemble learning.

Figure 5.29: Total cost with different machine learning models and proposed model.

5.6.2 Total costs comparison with different machine learning models

Fig.5.29 describes the total operation cost with differentforecasting model with ma-

chine learning technology. Multilayer perceptron model, adaboost, XGBoost and the pro-

posed method are used to compare the results. As shown in 5.29, in Golden, Colorado,

a typical day with a windy night and sunny daytime is selectedwith 24 hours. The peak

generation of the wind turbines (blue bars) and PVs (yellow bars) occurs at midnight and
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14:00, respectively. The total operation cost decreases from MLP, adaboost, XGBoost and

the proposed method, which represents MLP obtains a lowest forecasting accuracy in this

test, and the stacking forecasting model achieves much better results on load forecasting.

The reason is that the stacking model is an ensemble learningof different kinds of machine

learning model, it brings the different advantages from theseveral models. And how to find

out the combination of models is a big problem, which helps toget a high accuracy with

avoid overfitting.

5.7 Conclusion and Contributions

The proposed image regression problem is similar with the age estimation problem in

computer vision area, which aims to build a map between the input human images and the

corresponding ages. In [176], the age estimation is studiedwith a shallow machine learning

model, support vector machine. In [177], a CNN based regression approach is proposed

to estimate human age with the images of human face as the input data. However, the

proposed multi-output CNN is also a classification problem,and people with different ages

are classified into different small groups. Therefore, in this chapter, a CNN based image

regression approach is proposed to provide a fast and accurate solar irradiation capturing.

Themain contributions of this method are:

1. A big data processing approach is used in renewable energyarea for solar irradiation

capturing, which contains big data cleaning and deep learning based image regres-

sion. Compared with the traditional solar irradiation capturing approach, the CNN

based approach is cheap, fast, accurate, and convenient to be extended for large-area

monitoring.

2. Based on the Dirichlet process, variational inference, and Bayesian theory, a Gaus-

sian mixture model with Bayesian inference approach is employed to determine the

mixture components automatically. It decides the components amount automatically.
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3. Based on the CNN architecture for classification, a new regression CNN architecture

is designed for image regression problem. The input of the proposed approach is

the image set and the output is the continuous variable set, which can be extended for

multiple regression problems. According to Deep dream related algorithms, the CNN

working manner is illustrated layer by layer with Figures, which help researchers

deeply understand the working principle of deep learning.
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Chapter 6

Conclusion and Future Work

A big data visualization platform is designed for engineersto monitor the system in

an convenient way, which helps to discover the hidden usefulknowledge for smart grid

operation, control, and situation awareness. A short-termload forecasting based network

reconfiguration is proposed to reduce the distribution system loss dynamically. Instead of

the static load measurements at the scheduled time spots, the short-term load forecasting

approach can provide accurate future load profiles, which contains more information for

the network reconfiguration. The whole proposed approach isdesigned as a distributed

computation approach. Considering the reality of three-phase unbalanced power system, a

multi-timescale approach is proposed aiming to obtain a higher accuracy with SDP relax-

ation. The numerical results are calculated in a short time with parallel work by ADMM.

In order to overcome the missing data in power system, a novelsolar irradiance captur-

ing approach is proposed with a CNN framework. Based on the new trend of artificial

intelligence, a proposed convolution neural network is used to capture the GHI with the

sky images. Compared with the traditional approaches, the proposed approach is accurate,

flexible and convenient to be widely deployed for large-areasolar irradiance capturing.

Furthermore, the proposed approach can also be used as an automatic and multi-functional

platform for other image regression projects such as tidal and geothermal power estimation.
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After that, a new stacking model is built for renewable energy forecasting. The models aims

to set up an efficient way to do the forecasting work of different kinds of renewable energy.

It has been demonstrated that a reasonable stacking model can achieve a higher accuracy

in forecasting. Using more artificial intelligence in the research of power system will be a

new trend in the next decades.

Based on the research, application of artificial intelligence has been an active techniques

for power system. After significant successes were achieved, it must be a continuous trend

in next decades. Considering the industrial use of power system, the problems of improv-

ing system reliability and dynamic state estimation are essential to be solved with AI. AI

is developed with complex computer tools and used to resolveall the above problems. In

power system, many projects consist of different non-feasible requirements. AI is a use-

ful way to solve this kind of problem, such as controlling of frequency and power flow,

forecasting work for renewable energy, energy trading; scheduling for reliability of power

system, transmission expansion, and reactive power. AI-based technology can be used to

closely monitor the consumption of power system equipmentsin higher accuracy. It is in-

dispensable to achieve a reliable and efficient power supply. A big amount of research has

demonstrated that deep learning is an emerging technology with powerful ability in many

aspects; however, it also contains many problems such as initial point setting, optimizer se-

lection, and architecture design. In the next step, we will collect a bigger dataset, and focus

on improving the training efficiency, reducing the network complexity, and increasing its

capability to provide more useful information for power system operation and control.
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reinforcement learning with networked agents,”arXiv preprint arXiv:1802.08757,

2018.

[144] K. Zhang, A. Koppel, H. Zhu, and T. Başar, “Global convergence of policy gradi-
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