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Abstract

With the increasing attention of renewable energy development in distribution power
sys- tem, artificial intelligence (Al) can play an indispensiable role. In this thesis, a series
of artificial intelligence based methods are studied and implemented to further enhance the
performance of power system operation and control.

Due to the large volume of heterogeneous data provided by both the customer and the
grid side, a big data visualization platform is built to feature out the hidden useful knowl-
edge for smart grid (SG) operation, control and situation awareness. An open source cluster
calculation framework with Apache Spark is used to discover big data hidden information.
The data is transmitted with an Open System Interconnection (OSI) model to the data visu-
alization platform with a high-speed communication architecture. Google Earth and Global
Geographic Information System (GIS) are used to design the visualization platform and
realize the results.

Based on the data visualization platform above, the external manifestation of the data
is studied. In the following work, I try to understand the internal hidden information of the
data. A short-term load forecasting approach is designed based on support vector regression
(SVR) to provide a higher accuracy load forecasting for the network reconfiguration. The
nonconvexity of three-phase balanced optimal power flow is relaxed to an optimal power
flow (OPF) problem with the second-order cone program (SOCP). The alternating direction

method of multipliers (ADMM) is used to compute the optimal power flow in distributed



manner. Considering the reality of distribution systems, a three-phase unbalanced distrib-
tion system is built, which consists of the hourly operation scheduling at substation level
and the minutes power flow operation at feeder level. The operaion cost of system with
renewable generation is minimized at substation level. The stochastoc distribution model
of renewable generation is simulated with a chance constraint, and the derived deterministic
form is modeled with Gaussian Mixture Model (GMM) with genetic algorithm-based ex-
pectationmaximization (GAEM). The system cost is further reduced with OPF in real-time
(RT) scheduling. The semidefinite programming (SDP) is used to relax the nonconvexity
of the three-phase unbalanced distribution system into a convex problem, which helps to
achieve the global optimal result. In the parallel manner, the ADMM is realizing getting
the results in a short time.

Clouds have a big impact on solar energy forecasting. Firstly, a convolutional neural
network based mathod is used to estimate the solar irradiance, Secondly, the regression
results are collected to predict the renewable generation. After that, a novel approach is
proposed to capture the Global horizontal irradiance (GHI) conveniently and accurately.
Considering the nonstationary property of the GHI on cloudy days, the GHI capturing is cast
as an image regression problem. In traditional approaches, the image regression problem
is treated as two parts, feature extraction and regression, which are optimized separately
and no interconnections. Considering the nonlinear regression capability, a convolutional
neural network (CNN) based image regression approach is proposed to provide an End-to-
End solution for the cloudy day GHI capturing problem in this paper. For data cleaning, the
Gaussian mixture model with Bayesian inference is employed to detect and eliminate the
anomaly data in a nonparametric manner. The purified data are used as input data for the
proposed image regression approach. The numerical results demonstrate the feasibility and

effectiveness of the proposed approach.
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Chapter 1

Introduction

Artificial Intelligence (Al) was introduced in the mid 1950shich has rapidly evolved
in recent decades. It has been an essential tool, which fad bpplications in humans’
daily life. Particularly useful in commercial and induatrapplications. In the 1890, science
fiction H.G.Wells started exploring the idea of robots anathi@e thinking as human. After
that, in 1956, an Al application is realized to play checked deat most of the humans.
In 2011, Watson is introduced by IBM, which is used for muclmpticated techniques,
such as deep learning. 2015 is a landmark for human reseash Google Clouds, AWS
and others began to start research computer vision, ndéungliage processing and other
analysis tools. There are several methods used to supmorltiechnology. Machine
learning, deep learning, Bayesian Network and Genetic iilyo [1]. Al systems have

been used across many areas of business and industry.

1. Health care: Al enables the doctors to understand thaskseat a deeper level, which
aids to supply insights of the risks. And Internet of Thing$) and surgical robots

have been used.



2. Agriculture: crop monitoring system by Al is set up forrfaer to decide if they
need to water, fertilizer and others. The complex bioldgitablems are solved by

mutation and crossover technology.

3. Finance: banks make credit decision automatically witklefs such as decision tree.
Fraud is easier to spotted with algorithm by financial orgation. One more general
example, humans can make deposits by scanning the checlsmwilt phone with

Al.

4. Travel: Airline companies, hotels and car rentals userAlemand forecasting and
adjust the price automatically. And Al is also used to makedlans with routes,

weather, customer loads and other variables.

5. Power System: An electric power system is a network oftédet components,
which is used to supply, transmit and consume electric powemer systems en-
gineering is a brand of electrical engineering, which aitsosver generation, trans-
mission, distribution. Atrtificial Intelligence (Al) teclmogy becomes popular for
solving different problems in power systems like contrali planning, scheduling
and forecasting, etc. The techniques can used to solveutliffassks faced by appli-
cations in present large power systems. The applicatiohesft techniques has been

successful in many areas of power system engineering.

In recent decades, the increasing demand of world energyresca rapid development
of modern power systems with renewable energy. It is stdlnigu many challenges in
future development of hybrid power system. Due to advastajeyreen energy, such as
economic benefits, almost no pollutions, less maintenaeeged hybrid distributed power
system is a top topic in recent power energy research. Hawexeewable energy is a
highly weather depended resource. Because of that, aitralidistributed power system
combined with renewable energy generation can be satisfatti take the advantages and

avoid disadvantages [2].



Traditional power system is dramatically changing with thpid technology develop-
ment. A large amount of massive heterogeneous data aredprbeind indispensable for
the SG operation. The method on how to choose the usefulniafiion without spatial
information is proposed as an open source cluster framewdnlch is based on Apache
Spark and can be used to effectively collect, store and psodata in parallel manner. The
discovery knowledge is visualized with a Google Earth Blatf, the operators can also
monitor the power system based on that. The network recaafign is used to operate the
power system with limited switches controlling, which aimsmaintain voltage profiles,
reduce system loss. An improved method on load predicticmigogy is used to compute
the load deviations at two scheduled time points, whichnsigd by traditional ways. The
dynamic and efficient network reconfiguration method is $ated based on support vector
regression (SVR). The short-term load forecasting appré@employed to minimize the
error between real and forecasting demand load.

The distribution system markets are attracting more attenh recent research along
with the rapid technology development of the power systeomsitlering the hybrid power
system with high penetration of renewable energy, how toavgefficiency and reliability
of the hybrid power system become a new challenge. Due todbeomic benefits of
renewable energy, a multi-timescale operational apprémskheduled on substation and
feeder level. Different from traditional computation orstribution system, a three-phase
unbalanced distribution system is used to minimize systess. | It should not be ignored
with a desire of high accuracy on optimizing operation cdstd the corrective action is
implemented at substation level. Reselling the redundewepto real-time power system

should be helpful for operation cost optimization.



1.1 Current Research on Data Analysis and Knowledge Discov-

ery

Big data representation and visualization are describ¢8]invhich helps to avoid the
problems, such as visual noise, large image perceptioognvation loss and high rate of
image change [4-10]. In this method, more than one view dlected for each representa-
tion display. However, how many views are needed for eactesgptation display is still a
problem. Recently the challenge of data analysis has risgrtorporation uncertainty into
visual representation, a novel data analysis method ofrtaioty is described in [11]. The
data analysis platform will result an inaccuracy after psscthe data in the pipeline. [12]
construct a visualization framework to analysis the refehip between transmission sys-
tem capacity, scheduled power flows and actual network péaws. It includes the con-
tour of bus, transmission line flow values, power flow vallms,still limited on renewable
energy power generation. For large-scale of electric p@ystem, information visualiza-
tion is necessary for research [13]. Several power systsmailization tools are presented
in [13], which realize 3D data analysis. Effective powerteys always require operators
to analysis and interactive in a short time, presenting #ita th a form for engineers to
assess in an a quick manner is what [12] did. The platform e#m dperators to monitor
and control the system, however, a visualization platfoomldrge scale power system is
still needed. data analysis is an established method arubleaisvidely used because of the
strong data management and knowledge display. [14] propss®e tools on how to visu-
alize the data information of distribution system. A big ambof data analysis methods has
been proposed in the recent decades, there are multiiditenbdel, large-scale transmis-
sion visualization model, while the researching on 3D figtron system visualization is
still limited. In this chapter, | proposed a 3D data analydéform for distribution system,
the campus of University of Denver is used as the test benhlthwhelps to monitor the

load for each building in real time. A lot of machine learnigdated approaches are imple-



mented in power system and related areas [15—-26]. Similgplymization is a large topic,
which contains both convex optimization and non-conveinagation approaches [27-34].
Building a smart grid (SG) with renewable energy generaisoimperative, such as solar
energy, wind power, hydropower, geothermal, bio energy, [86—-37]. Along with the
rapid development of the modern power generation techgptbg new inventions are dra-
matically improving the traditional power systems [37-40Jhe large amount of smart
sensors provide heterogeneous massive data, which aresaegc¢o the smart grid opera-
tion and management. However, the useful knowledge alwagstin the big amount of
the data with less spatial information. In order to figurethetuseful information, an open
source cluster computing framework based on the Apache&Sphwilt to collect, save and
process the big data in parallel manner. And then, the selatdta are transmitted to the
proposed visualization platform. For example, the way tprione the system efficiency
and extend the service life to determine the optimal pasibibwind turbine [41]. Accord-
ing to the analysis of the market research, the service rhgr&e from $3.2 billion in 2010
to $16.9 billion in 2015 [42].

The most important features are used to do the knowledgewdisg are low value

density, large volume and high velocity [41, 43-45].

1. Low value density: in smart grid abnormal data detectimost part of the col-
lected data from operation are general data, the abnorrtaabdly occupy very small

parts [46].

2. Large volume: the various smart sensors with high speagl#zg rate always pro-

duces a large volume of data, which can increase the TB Igvtel BB level [43].

3. High velocity: the rate speed of the smart sensors areasarg. For example, the
synchrophasor measuring device, which measures from 2flesis to 1440 sam-

ples/s [46].



According to the characteristics, the proposed platforiigtiata is described to satisfy

the requirements as follows. Four points are described here

1. Efficient, resilient and distributed data storage skill the collecting heterogeneous

massive data.
2. Error tolerant, high speed, big data processing and zinglyn parallel manner.
3. Streaming processing platform for high speed in reagtifata.

4. Hidden knowledge discovery based on machine learningett the requirements of

different complex projects.

Hadoop is a widely used open-source software, which issetibhy Google file system
in 2003. It is designed for big data processing and disteithigtorage in computer clus-
ters [47,48]. Compared with the traditional approach, Meghite is the critical feature of
Hadoop, it can divide the job into several smaller jobs ara #@éth them in distributed
computer clustering. In each iteration, reloading the diaien disk can cause a longer
time consumption, especially for the iterative paramedgtgnization with machine learn-
ing [48]. Based on the new cluster computing framework, AgaSpark is designed to
reduce the time-consumption on the clusters computatidme iportant advantages of

Apache Spark are as follows [47]
1. Not frequently reload the data from disk for iterativeccéhtions in machine learning.

2. Dividing the task into several smaller jobs and compute résults in distributed

computer clusters.
3. Easy to use in many languages and different operatiorragst

At present, Google Earth is widely used and can be operatatiffarent operation
systems such as Mac OS, Linux, Windows [49]. A Google Eadtfgim is used to achieve

the data analysis with discovered knowledge.

6



The visualized platform is designed to meet the requiremehindependent system
operators (ISOs), customers and the utilities, which asisil) decision support, 2) fore-

casting assessment, 3) operation and control, 4) secudtyletection.

1.2 Current Research on Load Forecasting on SVR

Load forecasting is one of major field of research on powetesyoperation. Many
traditional ways have been tried to obtain good results.50,[an early neural network
is constructed to analysis the relationship between attadl and various features. How-
ever, the early model did not consider some reasons whichleaayoverfitting. Because
of renewable integration, a high accuracy model of loaddaséng has been more and
more important for power planning and operation. A probsiidl electric load forecasting
has been proposed in [51], the emerging technology has m®idered during the load
forecasting process. [52] introduces the definition of stemm load forecasting of power
system. The current load forecasting methods are classifietew forecasting methods,
traditional methods, intelligent methods and classic wesh It is reminded that not only
the historic data is important, but also the right modelcada. [53] proposed an approach
of load forecasting with dynamic pricing for demand side agement. Real time pricing
and peak price are considered in details. There are plentyetfiods considered in the
development of load forecasting. In this chapter, mathmalaand artificial intelligence
computational model is a new trend on solving this problemS®R model is built with
grid traversal to find out the best combination of hyper-paters, which helps to reach
the global minimal in our research.

Network reconfiguration is widely used to decrease systess, loontrol voltage sta-
bility [54-57]. The load prediction technology provide® tlhad deviations between two
time points. Considering the stochastic load deviationigtribution power system, it is
important to set up an efficient and dynamic network recondijon approach [40,58-62].

A support vector regression (SVR) is used to cooperate Wwihnetwork reconfiguration

7



based on short-term load prediction method to minimize yiséesn loss. Most parameters
in SVR can be solved in a convex manner. Several parametdised as hyper-parameters,
cannot be determined in a same time. The optimization of énarpeters are really indis-
pensable of SVR, and dramatically influence the performamek efficiency of the fore-

caster [63—66]. Due to this, a two-steps parameters omtiiniz approach is proposed
with grid traverse algorithm (GTA). According to the disited computation frameworks
in [67—70], the hyper-parameter optimization of SVR is désd with MapReduce to op-

timize the parameters in parallel manner and reduce thalatilin time consumption.

1.3 Current Research on multi-timescale distributed powersys-

tem

With advanced development of power generation technoldigiibution system mar-
kets attracts more and more attention in recent researefY §f1Considering the output of
high penetration renewable energy generation, distohypiower system faces a big chal-
lenge. Many approaches are used to improve the net refiabili[71], a day-ahead market
energy auction is built for distribution system operatitm[74,75], a multi-timescale power
system operation approach is proposed for renewable egerggration. In [76], a storage-
based operation approach is used to decrease the operaibofca distribution power
system with renewable energies. In [72, 77], the optimalajmn methods are proposed
with economic dispatch in distribution system with reneleadnergy. However, all these
studies ignored the system loss, which would significamtfiuence the operation cost. A
multi-timescale operation approach is proposed to receeperation cost. A three-phase
unbalanced OPF is built to reduce the system loss.

In [78], the stochastic programming optimization (SPOMmes many benefits to dis-
tribution systems. The distribution of the forecastingpesris given to generate the error

models, which are formulated as a chance-constraint for iBRIBtribution systems. It is



assumed that there are more than one renewable genera&uediog on certain feeders.
The aggregated error distribution usually includes midt(paussian models, which can be
modeled as the Gaussian mixture model (GMM) [79]. The vai@aussian models indi-
cates the uncertainties of the renewable energies. Theigafgorithm-based expectation
maximization (GAEM) is applied for GMM to determine the ambwf Gaussian models
automatically [80]. According to the this, the chance-¢miat of the renewable generation
is formulated into a deterministic form for further redugithe computation burden [78].
In [81, 82], the variability of the renewable generation gemted by hourly demand re-
sponse with day-ahead scheduling, which is scheduled wtittmnsidering the stochastic
net load deviation within an hour. In [83], a single line mbidstead of three-phase system
is used to compute the system loss, which ignores the thrasepunbalanced configuration
in distribution power systems. Because of the nonconveithe three-phase unbalanced
OPF in distribution system, the heuristic based approagrdposed in [84]. However,
this method hardly avoids to fall into the local minimumswé high computation time-
consumption for a large-scale distribution systems [85h aVoid the issues above, an
inequality constraint is proposed based on semidefinitgraroming (SDP) to relax the
three-phase unbalanced OPF problem. After that, the pedigfosmulation for system loss
is solved in parallel manner with alternating direction hugts of multipliers (ADMM). It

helps to further reduce the total operation cost hourly.

1.4 Current Research on image regression with convolutioria

neural network

Global horizontal irradiance (GHI) ia a critical index whiwe use to predict the output
power of PV generators. In [86], time series forecasting ehtset up for short-term load
forecasting. The logical procedures for model developimigich use the autocorrelation

function helps to obtain a better performance. A novel apgindor daily peak load fore-



casting is proposed in [87], the result shows that the dagkpoad can be forecast in a high
accuracy with artificial neural network. ARMA (autoregreesmoving-average) model is
studied for short-term load forecasting of power systenB8B].[ The Box-Jenkins trans-
fer function is used as a important tool to increase the fmtog accuracy. However, the
time series forecasting model always need continuous metfais chapter, a deep learning
model is built to overcome the non-serial data. [89] set upoaability approach for long-

term load forecasting, the probability distribution of Wwiepeak electricity was predicted
in his method. A deep learning framework is proposed for tstesm load forecasting, a

deep belief model is used to do the hourly load forecastirj§0h

1.5 Organization of thesis and Main Contributions

In Chapter 1, the literature review of the current researohrad renewable energy dis-
tribution power systems are described, which provides dpackd study of the renewable
energy. In Chapter 2, The useful hidden data is transmitterld visualization platform.
The result provides the audience a convenient way to getnfioemation. In Chapter 3,
network reconfiguration is used to operate the power systémam improved load fore-
casting technology based on SVR. In Chapter 4, a multi-ti@esoperational approach
is used on a two level distribution power system, which cstesdf the substation and the
feeder level. The numerical results are obtained from satan on IEEE 123-bus, IEEE-
8500, University of Denver campus distribution power systnd Feeder J1. Feeder J1
is [91] selected for analysis because 1.7 MW of clients owP€dyenerators exists on the
feeder. The system locates in the northeast of US, whichesek800 commercial, small
industrial and residential customers. In Chapter 5, a nappftoach is proposed to capture
the GHI conveniently and accurately. Considering the meali regression capability, a
convolutional neural network (CNN) based image regresajgproach is proposed to pro-
vide an End-to-End solution for the cloudy day GHI captunmgblem. After that, a novel

ensemble learning model is constructed with different rnrechearning and deep learning
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model. An efficient way is introduced to construct the rerf@@&nergy forecasting model.
In Chapter 6, the conclusion and future work is summarized.

Themain contributions of this thesis are:

1. data analysis platforms are constructed for operatoessess the load power and
renewable energy in convenience. The visualization pia$oprovide the operators
a clear understanding of the information in a short time. plagform can be used to
visualize a large volumes of data, which helps the custoteensake decision more
efficiently with less time consumption. Depends on curresearch, it is necessary

for operators to work on this platform.

2. For a distribution system operator, a multi-timescalpragch is proposed based on
a three-phase unbalanced distribution system. With thealapd dispatch of the
substation level, the objective is provided to optimizeghstem cost with renewable
energy. The chance constraint is built based on GMM and GAENMhe feeder
level, the objective is minimizing the system loss. An OP&lyem is formulated for
the three-phase unbalanced system, calculate the rasylgsallel with ADMM. In
the proposed multi-timescales model, the feeder schaglididescribed with higher

time resolution and update frequencies, which can be didamear RT calculation.

3. A big data processing approach is used in renewable eaesgyfor solar irradiation
capturing, which contains big data cleaning and deep legrbased image regres-
sion. Compared with the traditional solar irradiation cajoiy approach, the CNN
based approach is cheap, fast, accurate, and conveniemetddnded for large-area

monitoring.

4. Based on the Dirichlet process, variational inferennd,Bayesian theory, a Gaussian
mixture model with Bayesian inference approach is employkddetermines the

mixture components automatically.
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5. Based on the CNN architecture for classification, a newes=gon CNN architecture
is designed for image regression problem. The input of thpgsed approach is the
image set and the output is the continuous variable set,hwtaa be extended for
multiple regression problems. In future study, the relgteablems, for example, the

large-area PV output forecasting, can be studied basedraesearch.

6. A new ensemble learning model is built for energy forangstcompare with tran-
sitional ensemble learning model. The proposed model anfigire out the most

efficient combination of the machine learning models.
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Chapter 2

Data analysis and data computation

platform of smart grid operation

2.1 Introduction

Recently, with widely spread smart sensors, multidimeraidata such as voltage, cur-
rent, wind direction, wind speed, and solar irradiance cawcdilected in highly simpling
rate over large area. The collected large-volume data ic@ngadarge amount of knowledge
and requires a bunch of new method to process and discoveex&mple, a modern hybrid
power system usually contains high penetration of wind afarswhich is very difficult to
identify its real system operation states with traditiomathods. And traditional methods
are also not suitable for large-volume and high-speed datzeps. Therefore, considering
advanced data-processing and data-driven technologasine learning based approaches
are proposed to discover the hidden information for powstesy operation and control. In
addition, data visualization is a significant indispensatiep for advanced data-processing
and data-driven technologies, which displays rich infdramavividly for both data prepro-

cessing and result analysis.
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Figure 2.1: Main architecture of the proposed big data ptatf

2.2 Architecture of the Platform

2.2.1 Main Architecture

The proposed platform in Fig. 2.1 has four major applicatievhich consists of 1)
forecasting and risk assessment, 2) decision support amdgament, 3) operation and
control, 4) security and protection. The independent sysiperators (ISOs) could ask the

useful knowledge from the proposed platform, respectively

2.2.2 Detailed Architecture

As shown in Fig 2.2, the major architecture of knowledge a@iscy platform contains
several parts such as Data collection, resilient distidbutlataset, Spark master, GIS visu-

alization, and Applications.

1. Resilient Distributed Dataset the major task is to store and process data with su-
pervising of Spark master. On one hand, the work nodes fromrildre working

in parallel. On the other hand, the distributed datasetsivewriginal dataset and
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Figure 2.2: Detail architecture of the proposed big datéqotan.

Applications

store the datasets at distributed data centers. It canegdacommunication burden
to Spark master (It is an advanced big data process engirieh\was been widely
used in both industrial and academic research). In additi@critical data can be

compressed and stored in distributed to increase theamisdf databases [46].

. Spark master. the major task is to collect different types of data in nakwvorld.
In this part, the smart sensors provide the original datenfratural world and the
smart sensors can receive commands from the Spark mastémabasurement time

periods.

. GIS visualization: the data flow of the discovered knowledge is obtained froariSp
master, Python and Matlab are used to generate the KML fitegdoalizing data in
various forms. Based on different kinds of scenarios, majtered architecture is
applied, and different kinds of display forms are used fdfedent research areas

such as operation, control, security, and management.
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Figure 2.3: Architecture of the communication design.

The architecture of communication system in the proposetfgsm is described in

Fig 2.3. The two major layers are: data flow in lower layergliggtion in upper layers.

The standard Open System Interconnection (OSI) model Gstossompare and explain the

corresponding abilities and applications of each layehéndetailed architecture.

1. Network Access The major task of this layer is to build a reliable physicates

or wireless communication connection among the work nodesrdnsmitting and

receiving data. In the data collection part, as shown in F& the smart sensors

are pervasively located. Both wired and wireless commutioica&onnections can be

implemented according to the data volume and transmisgieads



2. Node-to-Node The major task of this layer is to provide addresses for agtvac-
cess devices such as computers, smart sensors, serveendnders, to send and
receive data among the network access devices, deternaimpath of data flow, con-

trol the security and quality of service (QoS).

3. Application and Presentation The major task of this layer is to implement the

complex data structure on the data visualization platform.

2.3 The Spark Based Knowledge Discovery

Apche Spark based computer cluster is used to discover duemiknowledge in the
collected big data, which provides a resilient, fast, arfidative parallel computation plat-
form for many machine learning algorithms such as regrassiassification, recognition,
etc.. [92]. As shown in Fig 2.2, the Apache Spark containgrispore, Spark SQL, Spark
Streaming, Spark GraphX, Spark Mlib.

2.3.1 Spark Core

The Spark Core contains a lot of basic functions such as tedslling, memory man-
agement, fault recovery, etc. [47]. RDD is one of the mosmificant features of Spark
core, which means that many distributed computer nodesdaithbases can be organized
and manipulated in parallel. RDD saves the applicatiorestsiich as check points period-
ically, which means that the system and computation candmeeed quickly after some
work nodes loss or failed. Considering the different regmients from different customers,
multiple tasks can be computed in parallel with the higle&tffre platform. The big data

processing results can be accessed in multiple end usgpectaely.
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2.3.2 Spark SQL

Spark SQL is an efficient package focusing on processing dathsupporting a lot of
data forms [47]. Python is used as the programming langwelgieh also supports a lot of

data forms such as XLS, MAT, etc. [93].

2.3.3 Spark Streaming

Spark Streaming is a useful component for processing thestieaming of data [47].
Compared with Hadoop, which needs to frequently load arwhcetlata from disk, Spark
can save and store the data in memory, which dramaticalhgasing the data processing

speed.

2.4 The Google Earth Based Data Visualization

Many open source visualization tools are used to supporinglsiplatform for the
researchers to integrate any kind of data with their ge@@patoducts [49, 94]. Both of
the two platforms (Google Earth and arcGIS) can be attachdtipte layers with small
editing. For Google Earth, the map and other informationdigplayed in KML format.
Compared with arcGIS, Google Earth is more convenient avid for primer operations.
Google Earth is considered as a better choice to build theepswstem model for DU

campus.

2.5 Results

2.5.1 An Example of Demand Response

The proposed platform can be used to satisfy a variety oémifft requirements for
different users. Fig. 2.4 illustrates the demand respontetiae temperatures and the unit

price in the SG of DU campus. Specifically, demand resporee édectrical power demand
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Figure 2.4: Real-time demand response in DU campus.

shift skill which allow users to shift their loads such aswigsher and washing machine to
avoid high price periods. Massive heterogeneous data Sutehrgerature, electrical price,
voltage, frequency, etc. are collected by the pervasivatgted smart sensors in real-time.
Then the designed platform is used to compute the demandmesp according to different
time periods. The red and blue pyramids indicate the rea-temperature and electricity
price, respectively. The green pyramid denotes the casrelipg demand response in real-

time.

2.5.2 A Description of Renewable Energy-PV

As shown in Fig. 2.5, this model illustrates the ratio betw&&/ generation and total
electrical power consumption. In the red circle, the thré&evbars denote the total power

consumption of three areas in Ritchie Center building. THree red bars indicate the
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Figure 2.5: Real-time PV generation and total electricatgraconsumption on DU campus.

electrical power bought from utility, the white areas not@®d by the red bars are the PV
generations. As shown in Fig. 2.5, the PV generation is dsang, and electrical power
from utility is increasing in a cloudy day. With this reatre information, the customers,

ISO, and power plant can schedule their behaviors and marege correspondingly.

2.5.3 Multivariate Linear Regression Analysis

The multivariate linear regression is used to analyze tmeelagionships between re-
sponse variabl&; and explanatory variableX;, whereY; and X} are time series variables,
andi € {1,2,3,--- } indicates the different types of explanatory variabless the time
index [95]. The response variabg is the load profile of the Daniels College of Business
building. The explanatory variables are collected from KVAf the Daniels College of

Business building including air pressure index 1 in HVAE/{, fan tuning index &?),
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wind tunnel temperature 1X), wind tunnel temperature (), and air pressure index 2
(X}). The regression output is a time series varidbleThe collected data are normalized
between 0 and 1.

Ordinary least squares (OLS) is a widely used to compute deéficients of the ex-
planatory variables, and optimize the squared differefeeeeny; andY;. However,
in the OLS, it is assumed that the error term is a constananee, and ignores the het-
eroscedasticity, which concerns the expectations of tbenrsemoment of the errors [96].
This means the OLS is not a valid estimation approach. Cerisglthe heteroscedasticity
impact, the feasible generalized least squares (FGLS) stimate the errors covariance
matrix to improve the efficiency of the regression. Therefthe FGLS is used to compute

the multivariate linear regression in big data analysig.[96

Table 2.1: Regression Performance (Squared Error)
Original | Normalized
oLS 635 0.457
FGLS| 345 0.342

Table 2.2: The coefficients of explanatory variables with.5G
Xl x| XXX
Coefficient| 0.0251| 0.0826| 0.0857| 0.1719| 0.0318

As shown in Table 2.1, compared to the original data withautralization, the regres-
sion error of the normalized data is much smaller. The regwaserrors of FGLS are less
than the OLS in both original and normalized data regressfkmshown in Table 2.2, the
explanatory variableX;}, wind tunnel temperature 2, have the largest impact; Epdair
pressure index 1, have the smallest impact to the respomisdlesy;, the load profile of

the Daniels College of Business building.
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2.5.4 A consideration to solve the overflow problem in distbution power

system

The test bench of University of Denver is used to describe ti@woperators monitor
the real time system, and discuss the ways to duel with thepgacted happening. 6 main
buildings, which always requires a big load power, are amrsid as the targets to overcome
the problems. They are called Ritchie Center, Law, Sturnmj&s, Newman and Olin Hall.
In the following analysis, Sturm Hall and Ritchie Center ar&nly considered. Bigger size
of the green circle indicates a bigger power flow and smad Bidicates a smaller power
flow. The flowing direction of the green circles represenésgbwer flow direction in lines.

In power system, the power of transmission increases aldatigtee increasing of load
demand. When the load increases to the load equivalent smpedand the system equiva-
lent impedance, the transmitted active power reachesrie(livhen the impedance angle
of the load equivalent impedance and the system equivatgrgdance is opposite to each
other), the power limit obtains the maximum value. on thesptiand, when the load in-
creases beyond the critical point, there will be a voltagi&pse, which results the power
flow does not converge. Because of that, the power flow equatis no solution or a infi-
nite solution. Due to the heavy load on transmission linedigtfibution system, the large
current causes a line heating, which makes line strain.

In Fig. 2.6, the demand load of Sturm Hall increase sharghjckvrequires more energy
from the substation ("G” in the Figure). Based on the limdatof each building and
transmission line, Sturm issues a warning with the shampdyeiasing load demand. The
operators can access the visualization platform to moifitihrere is an issue and which
building has the issue.

In Fig. 2.7, there is another way to remind the operators yogtention on the demand
load of the building. Hourly demand load of Ritchie Centaraase and decrease randomly,
which highly depends on the events hold in the building. Atcwous 8 hour demand load

is shown in the figure, green color of the bar means the rea toad demand is under
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Figure 2.7: System Visualization Platform in Unexpecteii&ion

the maximum threshold, and the red color is warning the apeyao take some actions if
needed. It is convenient for operators to monitor the whalamus in directly. And they

can decide how to due with it if unexpected problems happen.
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There are several methods to avoid the sharply transmittegpreach the limits. The

methods below are used to describe how to deal with the prable

1. Add local renewable generators to satisfy the sharplyease load demand. Based
on research, the sharply increasing demand load alwayshapp the daytime. In-
stalling local PV panels is a potential way to reduce the p@ueply pressure of the
school. Considering the prolonged sunshine of Denver agyl iaatallation of solar
energy, an efficient solar generation system could bendfitthe power transmission
and operation cost. Besides that, solar energy is cleanakitbst no pollution. In
every year, the amount of solar radiation that reaches thike'®aurface is about 130
trillion tons of coal, the largest energy available in therlddoday. It is a big advan-
tage compare with the traditional energy, like coal. How amdiie the uncertainty
of solar energy is a challenge, which requires a high acgusamulation model in

future research work from the operators.

2. Compare with add extra power to the system, demand respopply a way for op-
erators to work as a important role in electric power gridrapen. The operators are
allowed to operate the network by reducing or shift the elgtt usage of peak time
period base on some time series factors, such as the alycice. For example
at school, we can schedule the classes in off-peak periajoid all classes start at
same periods. The problem is that the feasibility of plamfrgperators is doubted

sometime. More constraints are necessary for objectiveehiomin the operators.

After a series operation on the model, Fig. 2.8 shows thesgystorks in a general
situation, the operators need to do nothing with the sysight now. It is clear that the
proposed visualization platform can help operators to tootie system in real and make
decision in a short time. The platform provides a convenigay for observers to get

knowledge from the current power flow.
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Figure 2.8: System Visualization in Monitoring Situation

2.6 Conclusion and Contributions

Data visualization platforms are constructed for opestorassess the load power and
renewable energy in convenience. The results shows a nayabmhow to use the platform
to visualize the real time power flow and monitor the alertyistem.

Themain contributions of this section are:

1. Data visualization platforms are constructed for omegato assess the load power

and renewable energy in convenience.

2. The visualization platforms provide the operators araleaerstanding of the infor-
mation in a short time. The platform can be used to visualizege volumes of data,

which helps the customers to make decision more efficiently.
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Chapter 3

Load forecasting with Support

Vector Regression (SVR)

3.1 Introduction

In modern power system, load forecasting is an indispeasaid for power system
operation and control. In traditional method, auto regvessitegrated moving average
is a widely used tool for time series analysis. Based on tinegression, support vector
regression achieves higher performance with the kerne, tivhich maps the input data

into higher dimensions.

3.2 The Architecture of the Proposed Approach

In the left part of Fig. 3.1, the optimization of the hypergaeters contains Grid
traverse algorithm (GTA) and PSO to avoid be trapped intalladnimum. And the right
part is the distribution network reconfiguration part toidate the forecast results. In the
first step, the global solution space is spitted by the GTA ihie local solution spaces.

In the Map phase, because of the independency among thestosibn spaces, they are
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Figure 3.1: The flowchart of the proposed approach.

traversed by GTA in parallel. In the Reduce phase, one orakleeal solution spaces are
selected with the minimum training errors. In the secong,dige selected local solution
spaces are optimized by the particle swam optimization jR®@e similar manner. The

optimal parameters can be generated after comparison iRedace phase. In the right
part of Fig. 3.1, in the part of distribution system netwodcanfiguration, a three-phase
balanced distribution system model is built with the fosted load profiles. The Second-
order cone programming (SOCP) is used to relax the thresepbalanced optimal power
flow problem into a convex problem. In the Map phase, the ADMMsed to compute the

three-phase balanced optimal power flow in parallel.
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3.3 SVR-Based Short-term Load Forecaster

Based on the architecture design, in this section, a SVReblmd forecaster is de-
signed for short-term distribution system load forecaster, in the next step, the distribu-

tion network reconfiguration demo is used as an example idatalthe forecast results.

3.3.1 SVR Formulation

In this part, the SVR-based short-term load forecastenined by the collected histor-
ical data to get the optimal hyper-parameters. The objdtinction of the Kernel based
SVR can be built to minimize the forecast error with the sadirgin as follows:

1 n
Rrisk = min {_wTW +C Z (521 + 5:1)} (331)

e iy £5,,Cby 2 =

Subject to
L, — f(zi,) <e+ &,
I+ flan) <o+ (3:32)
i, &5, 2 0.

where in (3.3.1)f is a Kernel based regression functian,is a time index,%wTw indi-
cates the flatness of the regression coefficients, the satemds the tube violation(”

is a trade-off coefficient between the first two itergg,and¢;, indicates the two training
errors. In [63], the risk function (3.3.1) with the constiaf3.3.2) can be derived to a dual
problem with Karush-Kuhn-Tucker (KKT) condition. Howeyéhne parameters, C, and

¢ are still need to be determined, which are the critical fa&cto the performance of the
forecaster [63]. The detail derivative of the SVM or SVR atgddual forms can be found
in [63,97]. Then, as shown in Fig. 3.1, a two-step based patemoptimization approach

is designed to compute the optimal parameters.
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3.3.2 Two-step parameter optimization

Because the parameteys C', ande cannot be solved with the convex optimization,
they are be defined as hyper-parameters in [98]. There agesd@pproaches are proposed
for the hyper-parameters such as random search and Gapssaass [98, 99]. Consider-
ing the complexity and feasibility, a grid traverse searelda two-step hyper-parameter

optimization is proposed for the SVR based short-term loaeidasting [64].

First Step: GTA Procedure

As shown in Fig. 3.1, the GTA procedure is the first step for lilgper-parameters

optimization.

1. In the second step, the local solution spaces can be selavdgth the PSO based
approach. The proposed approach is based on the increasimgutation capabil-
ity and new computer cluster cooperation soughs. The thyperiparameters are

initialized with their upper bounds, lower bounds, and gearching steps.

2. Then, a traversing vectdd can be generated as a finite multi-Cartesian product,
which is critical for the Mapreduce procesH,;, is an element irH. For eachi},,
the loss function of SVRR,.;,. can be computed independently. As shown in Fig. 3.1,

they can be computed in parallel to reduce the computatioe. ti

3. Inthe last step, the minimui, ;. is selected. In addition, if severAl;, are selected,

all of them are transmitted to the second step for PSO ofitioiz.

Second Step: PSO Procedure

The PSO procedure is designed as a "fine” optimization forhiger-parameters. It
can be implemented as the scenarios with less time consomijuirements. The accel-

eration coefficients are defined@gsandyp,, #; andf, can be seemed as two independently
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Algorithm 1 GTA for Hyper-parameter Optimization
Objective: Shrink the global solution spaces into one or several Ischition spaces.

Initialization: Hyper-parameters initialization and multi-Cartesiaaduct generation
for the GTA.

Grid Traverse Searching: For each core or each process, assignifheto compute
the R,.;s1., which can be computed in parallel with the Mapreduce model.

Determine Local Solution Space: Collected all the results, and select the local so-
lution spaces with minimun®,.; .

weightiness coefficients. The best historical positionthedest position are defined@
andn{, respectively. And hyper-paramet@r= [y C ¢]. o} (t) andv$! () are the position
and velocity vectors, respectively.
I/% (t) = %(t -1+ @191(77% — a%(t —-1)) (3.3.3a)
+ pabs(n) — all (t - 1)),
all(t) =al(t — 1) + v (1), (3.3.3b)

3

3.4 Distribution System Network Reconfiguration

As shown in the Fig.3.1, the right part is distribution systeetwork reconfiguration,
which a demo to validate the forecasting results. The a@tailformation is described in
this section with numerical results and analysis.

The topology of a distribution system can be represented graph with buses and

branchesg = [V, £]. Then the branch flow model can be built as follows [100, 101].

$i=> Sij— > (Ski — lkizki), (3.4.1a)
J k

Vj =V — Q(Tijpij + xUQij) + (T‘Z-Zj + x?j)lij, (3.4.1b)

lij = (P} + QF)/vj, (3.4.1c)
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Figure 3.2: (a) The IEEE 123-bus based distribution sys{gnthe error distribution of
short-term load forecasting.

wherel;; := |I;|?, v := |Vi|?, Si;, Pij, Qij andz; indicate the complex power flow,

active power, reactive power, and impedance on branch &, S;; = Pi; +iQj, Pij =
|Iij|*r;; andz;; = r;j + ix;;. In the formulations, it can be figured out that the branch flow
model is used to compute in parallel. In the system, the tangge only needs to exchange
the information to its neighbors nodes instead of all ottedas. In traditional ways, the

nodes need to get information from all nodes, which cannothkzed in parallel work.
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Table 3.1: Results of Network Reconfiguration

No. | Scenario Bus No. | Opened Original New Pr,oss Loss Reduction
Switches Pross

1. Load In- 83 TS-3,TS-4 54.2 kW 36.7 kW 32.28 %
creasing

2. Load In- 300 TS-2, TS-3 42.4 KW 31.5kw 25.71 %
creasing

3. Load In- 95 TS-3,TS-4 78.5 kW 67.0 kW 14.65 %
creasing

4, Load In- 49 TS-1, TS-4 17.6 kW 13.4 kW 23.86 %
creasing

5. Load De- 47 TS-2,TS-4 39.4 kW 22.3 kW 43.40 %
creasing

6. Load De- 108 TS-1, TS-4 24.1 kW 20.1 kW 16.59 %
creasing

7. Load De- 250 TS-3,TS-4 29.5 kW 26.8 kW 9.15%
creasing

8. Load De- 56 TS-1, TS-2 35.2 kW 33.7 kW 4.27 %
creasing

During the operation of network reconfigurations, the togglof the distribution sys-
tem is keeping radial and avoid any loops, which are chatiatits of a model using branch
flow model. Considering the characteristics of the threasptbalanced system, the SOCP
relaxation inequalities are represented as follows [100]:1

53512

(%

< lij, (3.4.2)

where (3.4.2) can be used to instead of (3.4.1c) as the ikegsi@onstraints. The objective
function is defined as total line loss as follows. The comstsacontain (3.4.1a), (3.4.1b),
(3.4.2) helps tp define the maximum voltage and power flow. miagimum amount of the

voltage and power flow are important features for solvingpitedlems here.

= Z Py, (3.4.3)

&
‘/;,min < ‘/z < ‘/i,max; (3448.)
Lij < Lijmaa- (3.4.4b)
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rank(A) = N —d, (3.4.5a)

Y aij=N-—d, (3.4.5b)
&
> aij =My —1. (3.4.5¢)
Ex

Considering the ADMM, the objective function (3.4.3) withet constraints (3.4.1a),
(3.4.1b), (3.4.2), (3.4.4a), and (3.4.4b) can be decontpimge a dual problem. The detall
derivatives of the ADMM can be found in [100, 101]. During tharallel traverse of all
statuses of the switches, the topology of the distributigtesn is keeping as radial.

A is the adjacency matrix of the graph d is the number of slack busy is the number

of buses). M, is the number of branches in paff, anda;; is an element ofi:

1, if bus i and bus j are connected,
Qi3 = (346)

0, else.

Considering the limited number of switches, the proposeuiaarh is designed to tra-
verse all the permutations and determine the optimal cordigun of the distribution sys-
tem. For example, the maodified IEEE 123-bus system with &f@# indicates 16 scenarios
with all the permutations of the switches [54].

With the topology constraints discussed above, the nunft@remarios can be reduced
in different scenarios. Then, considering the indepengariceach configuration (per-
mutation), all the permutation can be implemented intoediffit cores or processes and
computed independently, which dramatically reduces tmepeation time and keeps the

convexity to get the guaranteed optimization results.
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3.5 Numerical Results

As shown in Fig. 3.2(a), the test bench is based on the IEEEbLi2istribution
system. Four initially opened tie switches TS-1, TS-2, T&hd TS-4 are added to make

the system topology changeable, and the detail informationbe found in [54,102].

3.5.1 Short-term Load Forecasting

The test load data contains four seasons of one year. Theggo@mpproach is used for
1-hour-ahead sliding window forecasting with 1 second ltdkm. The training data is 5
times as the test data. The distribution of the forecastersis shown in Fig. 3.2(b). The
MAPE is 2.23%, normalized root-mean-square error (NRMSH).03%, and more than

80% of the errors are accumulated between (-3.1%, 3.1%).

3.5.2 Network Reconfiguration

As shown in Table 3.1, considering the load increasing, Xangle, in scenario 1, with
the forecasting results, there is a load increasing 20.318as 83. The system loss reduces
32.28% with the proposed approach. For the load decreafingaxample, in scenario
5, with the forecasting results, there is a load decreastg% in bus 47. The system
loss reduces 43.40% with the proposed approach. The aviesgyesduction for the load
increasing scenarios is 24.13%, the average loss reddotitime load decreasing scenarios

is 18.35%, and the total average for all scenarios is 21.24%.

3.5.3 Comparison

As shown in Table 3.2, compared with the traditional netwedonfiguration approach
with the genetic algorithm (GA), the proposed approach kas tomputation time and
more loss reduction. Furthermore, the proposed approaubris intuitive, and convenient

for implementation in different programming language sastpython and Matlab.
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Table 3.2: Performance comparison

Methods Loss Reduction Computation Time (s
GA based traditiona 17.87% 107
Proposed Approach 21.24% 30

3.6 Conclusion and Contributions

Consider these benefits, an advanced distribution loaddsting approach is pro-
posed for load forecasting. In order to validate the foreoesult, a distribution network
reconfiguration demo is designed to demonstrate the feaaitd efficient of the proposed
approach.

Themain contributions of this section are:

1. The novel method of grid traversal algorithm(GTA) with 86 used to optimize the
loss function with choosing the best hyperparameter coation. SVR is used to

map the nonlinear data into high dimensions.

2. The two level optimized model is released with GTA andiplertswam algorithm,
which helps to figure out the best global minimal results. hid search method

efficiently figure out the best combination of hyper-parasret
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Chapter 4

Multi-timescale distribution system

optimization with renewable energy

4.1 Introduction

With a distribution system, a three phase unbalanced riméiscale approach is pro-
posed. The day-ahead dispatch of the substation level & tosminimize the operation
cost with renewable energy hourly. The uncertainty of reaides energy is simulated with
chance constraints and Gaussian Mixture Model is used talaienthe output of multi-
ple renewable generation for a higher accuracy. Genetiorihgn is used to further in-
crease the accuracy of GMM results by automatically seleetaimount of components.
At the feeder level, an OPF problem is formulated for thedfphase unbalanced system
with considering the reality, the non-convex problem withee variables are relaxed by
semidefinite programming. In the proposed multi-timescat®del, the feeder scheduling
is described with higher time resolution and update freqigsn which can be obtained near

RT calculation.

36



oot | Three-phase Unbalanced
"| Distribution System Model

Rank*

Semidefinite Programming

Historical Data and
Error Distribution

[
T
|
System Data :
Collection I

APiu,h.() + (a.b,c) S V[ -
1’ o o Based Relaxation

Convex Relaxation

o, of" 08 Y v a

Day-ahead Hourly
Scheduling Model

62", Gt ¢

Objective Function with
Chance Constraint

y  Gheh

i
|
i
i
i
|
Objective Function with |
|
i
i
i
i
i
1

: Objective Function of Three-phase
Unbalanced Optimal Power Flow

|

|

|

|

|

|

|

|
8,.V8,P,.1,,2,,5.U,.C, § !
Optimal Power Flow with ADMM | [
|

|

|

|

|

|

|

i

|

Constraints

(k) (k) o (k)
X x A

Deterministic Constraint

6ty |

Results of Day-ahead Hourly
Scheduling

Alternating Direction Method of Multipliers

iV,
I :
l Final Results

Substation Model Feeder Model

Figure 4.1: The flowchart of proposed approach.

4.2 The Flowchart of the Proposed Approach

In this method, multi-timescale stochastic algorithm [[L@3applied to improve the
operation cost of a distribution power system. We have gegdhe configurable stochas-
tic approach with the multi-timescale scheduling procedwhich consists of submodels
including day-ahead power scheduling, real-time powatitigaconstraint and OPF in the
distribution system. The two parts stochastic optimizateimplemented in this method.

As in Fig. 4.1, the proposed approach consists of two pdmsstochastic optimization
for hourly scheduling at the substation, and the threegharbalanced OPF for minutes
operation at feeders. By the proposed two-part framewbekpptimal day-ahead schedul-
ing power purchased from the utilities for the next 24 hoardatermined in the first part.
In the second part, based on the results of the first part, Bfei®computed in minutes to
reduce the system loss and the total system cost within an hothe left part of Fig. 4.1,
the error distribution of the forecast result is given by Historical data of the distribu-

tion renewable generation. Combined with the day-aheadyheaheduling, an objective
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function can be formulated with the chance constraintshferforecast errors. According to
GAEMGMM, the error distribution model can be accurately mied with several Gaussian
components. And the chance constraints can be formulatedhe deterministic forms for
the stochastic optimization. Finally, the optimal hourtjhedule can be determined and the
optimal operation cost is computed at the substation level.

In the right part of Fig. 4.1, at feeder level, a three-phad®lanced optimal power flow
is used to model and compute the distribution system lossnates level. In this method,
the renewable generation such as micro wind turbines anddP®lp derated).5% power
are reserved for the OPF regulation, which aims to minintieeslystem loss. Considering
the nonconvexity of the three-phase unbalanced OPF, SDgeis to relax the problem.
Then, the objective function of system loss can be solvetlt WDMM to further reduce
computation time. Finally, the three-phase unbalanced €&He computed to minimize
the system loss at feeder level.

The total cost is formulated in (4.2.1), which can be presgiais the sum of the opera-

tion cost at the substation level and feeder level:

Ctotal - min(fsub + Bffee) (421)

where the cost of substation and feeder levels ArgXand (f;..), respectively, ang is a
weightness coefficient. Given three different ways to wagkivith 3, the operation cost at
the substation level (feeder level) is attacking more &tianf g > 1 (8 < 1). 5 is defined

as 1, when the two levels are the same important.
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4.3 Day-ahead hourly scheduling at the substation level

4.3.1 Problem formulation

T
fon =Y (PGP + o' G + (6 - of"GT)
= (4.3.1)

+(1-6) - 0;GET)

t={1,2,--- ,T} represents the time intervalsndicates theth time interval and” is
used to describe how many time intervals we have in thistiitua”4 G 4 is the genera-
tion cost of day-ahead scheduling asfétG# is the renewable generation cot: /T GFT
presents the deviation power purchased from RT market ighséte power balance equa-
tion. And (1 — &;) - 0GFT is the corrective action (CA), which indicates the redunidan
energy will be reselled to the market in a lower price. It igiced thatG®' is used to
supply the power consumption at the substation level foffiteepart, which is defined as
97.5% of the total renewable power generation for each hour inrttgghod.

A typical forecasting error model represented by a normsdtitution is used to incor-
porate the uncertainty of renewable generation. Here,ahe forecasting error model is
also represented as normal distribution. The study of tie fd@ecasting is not the major
concentrate in this method, and the hourly forecasted rablewgeneration and the hourly

load forecast are described as:

G" = GF + Gf * Gerr (4.3.2)

GPF =GP+ GPF % Gepra (4.3.3)
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aPt+ Gt +aff = apr

R DA RT
0 <o <oy <o

GRT,min < GET < GRT,max

GDA,min < GDA < GDA,ma:c
S0y =

GRl,min < GRl < GRl,max
>0 >

1 GPA+ Gl <GPF
o =

0 GPA+aGlY >apr

>0 buy power from bulk system
G

< 0 sell power to bulk system

Pr(GPP <GP +G)) =

Pr(pGft — Gl <0) > a
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(4.3.4b)

(4.3.4c)
(4.3.4d)

(4.3.4e)

(4.3.47)

(4.3.49)

(4.3.4h)

(4.3.4i)



The constraints include the modified power balanced equatiarket price limitation,
capacity limits forGFT, GPA,GE'. 4, is a binary variable to describe the relationship
betweenGP4 + GIY andGPE. ltis easy to understand that thg should be the lowest
in case of purchasing the redundant power generation frendaly-ahead market. (4.3.4h)
defines that the demand load will not exceed the sum amouhtaknhewable generation
and the day-ahead power scheduling with a prescribed pitipad. In (4.3.4i), for each
hour, the amount of the used renewable generation for aidbslBould be larger than the

renewable generation at chaneewhere0 < p < 100%.

4.3.2 Genetic-based Expectation Maximization Algorithmdr learning Gaus-

sian Mixture Model

A brief description of the finite GAEMGMM is given below. Theitis used to model
the forecasting error distribution of the renewable getiwna

GMM is an unique form of the finite mixture model. For the finitéxture model in
(4.3.5), it is the sum of more than one compong@i{s> 1) with different weightg(e,,) in

R4, which indicates:

N
p(x®) = enp(z]6,) (4.3.5)
n=1

The weights in (4.3.5) can be calculated in [104] and hasrthétive interpretation to
be non-negativée,, > 0), and the sum equals to Each component in the model obeys to
a normal distribution, which is restricted By = (u,, X,), the matrix of the means vector
and the covariance.

The EM algorithm is used as the standard approach to caictilatparameters of the
mixture model. It consists of an expectation-step (E-steq) a maximization-step (M-

step).
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For E_Step! the Complete da& = {(xh 61)7 (x27 62)7 T (‘Tmn gm)}v {x17 e me}
is known as the observed data and incomplgtejs the component identity of,,. The

algorithm will be ended when thHeg likelihood function in (4.3.6) reaches the convergence.

M N
£@l0) = 3" tog (Y- éulwml6n)) (4.3.6)
m=1 n=1

The posterior probability¢,,) at thel-th iteration is computed as equation below. It is

used to calculate the hidden amount for next step.

®
(1) _ en” P(@m|0m)
&, N0 0 (4.3.7)
Enzl en' D(Tm|0n”)

For M-step, the parameters of the GMM is reestimateq,(ﬁy The parameters can be

updates as the equations below for Gaussian distributions.

M

((141) — Zom=1 Emin (4.3.8)
m
M

1 % (4.3.9)

m=1Smmn

M ) )

E,ngl) _ D m=1 mvn(wniM“" )(@m = pn” ) (4.3.10)

m=15Sm,n

For learning the GMM in [80], the GAEM shows its superiority selecting the num-
ber of components based on the minimun description lengL(\Mriterion. In [105], the
MDL criterion is widely used on selection. Compared with sii@ndard EM, the new algo-
rithm is less sensitive to the initialization. GAEM is cajpmato explore the parameter more
thoroughly, because of its population-based search skikkanwhile, the new algorithm

still remain the property of monotonic convergence as lgefor
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Figure 4.2: Comparisons between GSM, GMM and GAEMGMM: (&) dhiginal aggre-
gated error distribution, (b) the modeled result with GSM anmparing with the original
original aggregated error distribution, (c) the origingfjeegated error distribution is mod-
eled with a GMM consists of 3 GSMs, (d) the GMM fitted result gare with the original
aggregated error distribution, (e) the original aggredjateor distribution is modeled with
a GMM consists of 4 GSMs, (f) the GAEMGMM fitted result compavigh the original
aggregated error distribution.

A comparison with the GSM, GMM, and the GAEMGMM is illustrdteas shown in
Fig. 4.2. Fig. 4.2(b) displays the modeled error distrimitresult by GSM, which cannot
modeled the aggregated error distribution accurately. rébelts of standard GMM with 3
components are shown in Fig. 4.2(c) and Fig. 4.2(d). Becthesstandard GMM cannot
determine the number of the components automatically, vhiso bring some errors in
the error distribution modeling. The GAEMGMM are employedrtodel the original error
distribution in Fig. 4.2(e) and Fig. 4.2(f), which can autttinally determine the number of
the components (like how many clusters in a Gaussian diiit) and reduce the modeling

error in this process instead of the traditional ways.
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Vi — Vorg)?
n= % -100% (4.3.11)
Asin (4.3.11), the ratio of the residual deviatigis used to evaluate the performances
of different approaches, wheke,,, is the envelope of the original forecasting error distri-
bution, andV, is the envelope of the deformed forecasting error model blGgneral
GMM and GAEMGMM. According to (4.3.11), the ratio of the rdsal deviation of GSM

is 2.17%, GMM is 1.27%, the GAEMGMM is 0.13%.

4.3.3 Chance Constraint

According to discussion above, the proposed GAEMGMM is bbp#o accurately
model the aggregated error distribution and determine tmponents number at each
feeder. It can effectively convert the chance-constrafrthe forecasting error model in
(4.3.4h) (4.3.4i) into a deterministic problem.

Because7.,,1 andG.,2 is normally distributed with meafyu, i2), covariancg ;)
for multiple renewable generators and variateg) for load forecast. The joint probability
distribution of the renewable generators can be obtainetheyproposed GAEMGMM
model with a high accuracy, which demonstrates the effigi@idhe proposed approach
further more.

Based on the chance-constraint in (4.3.4h) and (4.3.49 assumed that

y1 =GP —gP4 - g% (4.3.12)
y2 = pG™ — GV (4.3.13)

The expectation and the variance can be calculated as:

E(y) = Gp(1 + po) Pt — GPA - g% (4.3.14)

44



Viy) = G7l w0y (4.3.15)
E(ya) = pGF (1 +m) = GV (4.3.16)
Vi) = GF' £1GF (4.3.17)

According to this, the chance-constraint in (4.3.4h), @)3Xan be converted in a de-

terministic formulation as (4.3.18) and (4.3.19) with thegnsed GMM model.

Pr(y; <0) = @(%ygl)) > 5 (4.3.18)
Pr(y, < 0) = @(%yi)y?)) > a (4.3.19)

Where®(-) indicates the cumulative distribution function of the stard normal distri-

bution. Taking the inverse d(-) helps to rewrite the following analytical formulation.

GW +GP > 071 (7)o GPE + GPF + 1 GPE (4.3.20)

1
G" > & Ha)p((GHTS1GH) 2 + pGF* + pn G (4.3.21)

4.4 Optimal power flow (OPF) and the ADMM based Semidefi-

nite Programming (SDP) relaxation

The network of distribution power system is unbalanceddsiby because of its uneven
distribution over the three phases. And the use of singlegbanerator in the power system
will increase the unbalance additionally. The optimal pofi@v of three phase unbalanced
power system is used to minimize the system loss in minutl.l&here are many factors
can influence the performance of OPF with renewable gensrakor example, the solar
radiance, daily temperature, wind speed and etc. In ordewéocome the problems, a

minute level optimal power flow method is applied on the testdh of distribution network,
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which involves the implementation of three-phase unbadneith branch flow model, non-
convex optimization method and semidefinite relaxatiore fhinee-phase load flow method

results in a non-convex problem, because of the optimizaifdhree different variables.

4.4.1 Alternating Direction Method of Multipliers(ADMM)

Along with blending the decomposability of dual decompgosit ADMM shows the
superior convergence properties of augmented Lagran§l&®}. For a general ADMM

problem, the optimization problem is formulated as below.
min f1(z1) + f2(x2) (4.4.1)

Ajxq + Aszog =
(4.4.2)

xr1 € ICl,l’Q € ’Cg

K1, Ko are defined as convex sets. They are the necessary conddroranvex opti-

mization. Then the objective is augmented as (the consisaas (4.4.2)):

mlin fl(xl) + fg(wg) + g H Ajxq + Aszg — b ”% (4.4.3)

p is a constant and never less than zero, which is used to dédlue objective is a
augmentedp > 0) or standardp = 0) Lagrangian. Then\ is generally defined as the
Lagrange multiplier for the equality constraint in (4.4.2)

After the formula deformation, ADMM repeats the iteratipfer £ = 1,2,3- - -

xgk) = arg min L,(z1, wék_l), )\(k_l)), (4.4.4a)
T

xgk) = arg min Lp(wgk),wg, )\k_l), (4.4.4b)
o

AE) = A1 o420 4 A0 —b). (4.4.4c)
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Refer to [106], ADMM is guaranteed to reach the convergethwgdtsolution with less

restricted conditions. It also helps to reduce the time gomion.

4.4.2 ADMM in Proposed Method

It is modeled as a tree radial topolo§y each bug in this system only has one parent
busU; and a few children buses;. G = (N, N;), whereNp = {0,1,--- ,n} represents
the set of buses); is the set of the distributed lines, which are used to conthecbuses
in Ng. Eachi € N, = {1,2,--- ,n} indicates the line connected from buw its parent
busU;. Compared with bus injection model, branch power flow presichuch more use

for distribution network and stable computation resultsr & three-phase power system,
(aibic)

i

(a,b,c)

the branch power flovs , complex branch currerItE“’b’C), voltage magnitudd/;

a,b,c)

and complex impedan(ﬁg are defined as follows, which expressed as instantaneous

space vectors and indicates the power flow fromdiasits parent bug/; :

St Py QF
Si=|Sb|=|P°|+i|Qb (4.4.5)
Si by Q5
782
L= | |12 (4.4.6)
|75
Vi f?
Vi= [P (4.4.7)
Vil

a7



Q= Q2| = [r2]| +1]|ab (4.4.8)
Qf T s

According to the definition of branch flow model, the netwgris defined as:

V[yz,b,c) :Vz . 2(ri(a,b,c)Pi(a,b,c) + wz(a,b,c)Qz(a,b,c))
: (4.4.9)

a,b,c a,b,c
FL( P+ @)

2

Pi(a,b,c) n Ql(a,b,c) =V,I; (4.4.10)
D (P L) 4 plh) = Pl (1.411)
jel;
Z (Q‘ga’b’C)) _ Iiml(_avbvc) _|_ qi((l,b,C) — an’b’c) (4412)
jeC;
V; S;
€S, (4.4.13)
SH 1,
vV, S;
rank =1 (4.4.14)
S B

Where P and @ (p andg) indicates the bus € Ny (i € Ng). Sy is the root of the
topology with no parent busS andS . are used to describe the hermitian and the positive
semidefinite matrix, respectively. Ar{d)”’ denotes the hermitian transpose of the matrix.
Because the proposed distributed system is radial withuenihase angle of the current
and voltage at each bus, the branch flow model in (4.4.9)4@)4can be regarded as a

complete AC power flow now [106]. The objective function isrfaulated as:
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free =" > / () (4.4.15)

ieNp

subject to: (4.4.9), (4.4.10), (4.4.11), (4.4.12), (43},X4.4.14), (4.4.16a), (4.4.16b)
and (4.4.17).

The OPF problem in (4.4.15) cannot be regarded as a convékeprdoecause of the
rank constraint in (4.4.14). Due to the SDP relaxations @i7]1the rank constraint in
(4.4.14) can be removed and obtain a lower bound for thegdVi¥PF problem in (4.4.18).
It has been improved in [108], the semidefinite relaxed ORxat if the optimal solution

of (4.4.18) still satisfy the rank constraint and the ora@i®PF problem is also optimal.

Vimin < Vi < Vigga, @ € NB (4416&)
Sl(a,b,c) _ (a b,c) + 1 (a b,c). (4416b)
0 < s\ < GR2 (4.4.17)

In (4.4.16a), the magnitude of the voltage obeys to a reddemange. The system
controlling parametesrga’b’c) is used to benefit on reducing the system loss, which is defined
to be provided by the renewable generation and limited ih.1Z). Based on the schedule

results of first step*? is defined a.5% of the total renewable generation and used at

feeder level for step two.

The relaxation OPF formulation is summarized as follows.subjects to: (4.4.9),

(4.4.10), (4.4.11), (4.4.12), (4.4.13), (4.4.16a), (U6h) and (4.4.17).

free ="y / (a.b.c) (4.4.18)

ZGNB
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Table 4.1: Comparison omfor different fitting model
| n (%) | Spring | Summer| Autumn | Winter |
GAEMGMM 0.09 0.13 0.16 0.15
General GMM|| 1.03 1.27 1.44 1.23
GSM 2.39 2.17 2.15 2.10

4.5 Numerical Simulation and Results

4.5.1 Numerical Results Analysis on IEEE 123-bus
Error Distribution Modeling Comparison

The predicted data, actual data, and error distributiorpeoeided by National Renew-
able Energy Laboratory (NREL) [109], which can be modelethwiifferent approaches
as following. In table. 4.1, the proposed method can obtdietter ratio of the residual

deviationn, as defined in (4.3.11), than others.

Day-Ahead Dispatching Cost at the Substation Model

The numerical results for evaluating the proposed methedested based on the IEEE
123-bus system. Four wind turbines (100kW for each) are ected at bus 25, 35, 76 and
105, respectively. The PV panels (400kW in total) are ifestioht bus 28, 47, 49, 57, 64, 93
and 97, which are used to demonstrate that the hybrid povatersycan work efficiently
and reliably with the proposed stochastic approach. Theyhoenewable generation with
the total operation cost is simulated in Fig. 4.3(a), whiedilue (yellow) bars indicates the
wind (solar) power generation hourly in a day. In this calse lower limit of the forecasting
error model in chance-constraint (4.3.4h) is seit®%.

Fig. 4.3(a) describes the total operation cost with andoutiCA, which indicate with
red and green curve, respectively. As shown in Fig. 4.3efzolden, Colorado, a typical
day with a windy night and a sunny daytime is selected with 8dré data. The peak

generation of the wind turbines (blue bars) and PVs (yellansboccur at midnight and
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14.00, respectively. The red line represents the totalatjpey cost with CA, which indicates
the system can resell the redundant power at a lower prid® the current electricity
market. Then, the total operation cost can be reduced wathé¢mefit from the resell. The
total operation costs at 13:00 and 14:00 for both scenawiith @nd without CA) are the
same, which indicates there are no redundant energy to aeskihe CA doesnt occur. The
similar scenarios also occur at 7:00 and 18:00. In the rewt,tthe redundant energy is

resold to the market with a lower price to reduce the totataien cost.

GRT
a= GEL * 100%, (4.5.1a)
t
GPA 1+ GE

The proposed approach is compared with the GSM based appio&ig. 4.3(b) for
24 hours. For each hour, the left bar describes the GSM fittedkirand its corresponding
cost is displayed as the green dashed line.

The right bar describes the GA-EM fitted model and its coiwadjng cost is displayed
as the red dashed line. It is clear that the GA-EM fitted modetains higher accuracy, the
corresponding system operation cost is lower than the myefgeration cost of the GSM
fitted model.

Specifically, in the left bar (with GSM fitted model), the y®il bar denotes th€*” (in
percent, can be computed as (4.5.1) as following) and thésrég’4 + GE. Similarly, in
the right bar, the orange and dark blue bars also indicat&'fieandGP4 + GI* with the
GA-EM fitted model. It is clearly that the orange bar is shottan the yellow bar, which
indicates the GA-EM fitted model contains less errors thenGBM fitted model, and the
system requires less energy from the RT market. It is diffiefeom the signle Gaussian
model and get better results.

Case.1 Different Operation Costs for One Year Data at Substén Level.
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Table 4.2: Comparisons based on Fig. 4.2 at substation level

Average Cost for Each Day($)
Season | Test Days Proposed Method GMM(General)| GSM
Spring | 30 3345.24 3662.58 4102.56
Summer| 30 5170.86 5556.21 6321.99
Autumn | 30 3123.97 3400.02 4112.66
Winter | 30 5456.02 5822.21 6363.42
Table 4.3: Time Consumption Comparison

Method IEEE 13-bus| IEEE 34-bus| IEEE 123-bus

Genetic Algorithm| 210.77 s 243.39s 507.53 s

Interior-Point 7.72s 11.33s 27.67 s

Proposed Method| 1.59 s 3.72s 10.27 s

Based on the discussion above, one year data with four seaseremployed to val-
idate the proposed approach. As shown in Table 4.2, the pesbapproach contains the
minimum cost for spring, summer, autumn, and winter. It immdestrated that with the
high accuracy fitted model, the corresponding operatioh @as be reduced significantly,
which also indicates the related fuel and carbon emissiarbessaved.

Case.2 Total Operation Cost with Different Percentage Limiin Chance Constraint.

The operating cost with theof 95.0% is lower than others. The highest cost is obtained
with v =99.0%. This illustrates that the higher reliability can resulhigher total operation
cost. This is due to that a biggerplaces a stricter constraint th@’4 + G1" is higher or
equal to theGPL in (4.3.4h). On the contrary, the operating cost decrease iflefine a
smaller~ for the system.

As shown in Fig. 4.4, the chance constraint probabilitin (4.3.4h) is set as 95.0%,
97.0%, 99.0% with blue, red, and orange color. It is cledrlt the operating cost with =
95.0% is the lowest among others, and the highest cost is obtailtbcyw 99.0%. These
results illustrate that a high chance constraint prodgbilirequires a high demand 624

in equation (4.3.4h), which indicates the operation coatde increasing.
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Table 4.4: Line Loss Comparison with or without OPF

| kWh | Spring | Summer| Autumn | Winter |
Line Loss with OPF 227 324 226 521
Line Loss without OPH| 316 432 307 657
30 T
- -Loss without OPF B ,’/ \‘\
Loss with OPF ,”’ ~\\\,', \\
20 K . i
X \\
10+ ’,,————-"'/ A
0 | | | |
0 5 10 15 20 25

Time(Hours)

Figure 4.5: The Line Loss of the Distribution System.
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Figure 4.6: Convergence Analysis.

Optimal Power Flow with ADMM

The genetic algorithm (GA) is an artificial intelligence atighm to simulate natural
evolutionary processes. It retains a population of carteidalutions to search for the opti-

mal one.
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Some techniques are used to create candidate, which isaddpy crossover and se-
lection. Genetic algorithm is usually implemented as a asepsimulation method, which
denotes that, for an optimization problem, the abstracessmtation of a number of candi-
date solutions use this algorithm to evolve toward bettlitioms. The evolution starts with
completely random individual populations. In each genenatthe fithess of the all crea-
tures from the current generation is evaluated. Multipt#viidlual(creatures) is randomly
selected (based on their fithess) and generate new poputat@mugh natural selection. The
new generated population will repeat the same procedurertergte the next generation
until satisfying the requirement of the system [110-112pn€§idering the GA approach
implemented in [113, 114], the population size is choser08s @hich is enough to gener-
ate the new generation population with pinpoint accuratye probabilities of performing

crossover and mutation are 0.8 and 0.08, respectively.

4.5.2 Numerical Results Analysis on Feeder J1 model

Feeder J1 is [91] selected for analysis because 1.7 MW aftslivned PV generators
exists on the feeder. The system locates in the northeasBofMdich serves 1300 com-
mercial, small industrial and residential customers. €leme 58 miles of primary lines.
The topology of system is shown in Fig. 4.7. From the figure,RV system is located at
the south of the feeder. In Fig. 4.8, dark blue indicates dkations of customers, yellow
dots indicate the existing PV on the feeder. PV plants attallesl to support a small town
with a population less than 1000. The surrounding area ofdve like farms are served
by Feeder J1. The PV panels(1.7MW in total) are installechasg/ellow dots in Fig. 4.8,
it is used to demonstrate that the proposed hybrid poweesysan work efficiently and
reliable with the stochastic approach. The predicted dattyal data are provided from
Electric Power Research Institute(EPRI), which is an Agariindependent and nonprofit

organization.
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Figure 4.7: Topology of Feeder J1

Error Distribution Modeling Comparison

As defined in (4.3.11), the residual deviatigris calculated to compare the difference
between different simulation models. In table. 4.5, the GABodel achieves a better
ratio than other two ways, which indicates the simulaticsults of GAEM obtain a better
fitted result than others. The reason is that genetic algoris used to find out the suitable
amount of the components with Gaussian Mixture Model efiittye In traditional ways,
the amount of components are always selected by experismoehiman. It sometime lose
the optimal number of the model, the automatic method (G&dgases the opportunity for

obtaining a optimal number instead.
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Figure 4.8: PV Installation of Feeder J1

Day-Ahead Dispatching with Feeder J1 Model The numerical results for evaluate the
proposed method are tested based on the Feeder J1 modelotdlheapacity of 1.7MW
PV generators are installed and Fig. 4.8 shows the locatid?ogenerators. The total
operation cost with and without correct action are simaateboth peak day and off-peak
day. Infig3, hourly renewable energy and load consumptieffied and the total operation
cost is compares between two different situations. As show#ig. 4.9(a), in the northeast
of US, a peak load day is selected with 24 hours. The peak geémeiof PVs occur at 1pm
and 2pm. Orange bar indicates the per-unit value of hourlgwable energy in 24 hours.

Blue bars represents per-unit value of hourly demand ldas clear that load consumption
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Table 4.5: Comparison omfor different fitting model
| n (%) | Spring | Summer| Autumn | Winter |
GAEMGMM 0.08 0.11 0.17 0.11
General GMM|| 1.0 1.12 1.38 1.34
GSM 3.58 3.12 3.19 2.98

reaches the peak load (6MW) at 5pm in a day. Red line is usedderitbe how much the

customers need to pay without correct action(CA) in (4.328 helps to sell the redundant
power back to real time market at a lower prigehourly. It achieves saving extra money
with the forecasting model in any accuracy. The yellow dash tepresents the updated
results the proposed method works, it is clear that totataijmn cost is reduced at 10am,
11lam and etc.. No difference between red and yellow dotsatels no redundant energy is
sold and correct action does not occur.

In Fig. 4.9(b), hourly renewable energy generation and matgumption are simulated
within a off-peak load day of same location. The lowest loadsumption occurs at 1pm,
which is different from the records with only residents. dtbecause that light industrial
customers and commercial customers are considered inytsns. In off-peak day, they
consume more energy at night. Different from the sunny dageiak load situation, the
off-peak load day happens in a cloudy situation in the afienn It is obviously that the
PV generation at 3pm and 4pm are not in steady descent aldhgheitime because of the
clouds. The load consumption continuously reduce from rigidtrio 1 pm. After that, just a
slight increasing of per-unit value of demand load from Qdl8.34. The red line represents
the total operation cost of off-peak day without correciact The hourly operation cost
decreases along with load consumption decreasing and ableweneration increasing.
After 1pm, demand load starts increasing until the midnigtite results demonstrate that
CA can still work well in a off-peak load day. In Fig. 4.9(b)ome randomness happens in
a cloudy day, which reduce the forecasting accuracy of ptiedi model. The big reduced

cost at 1pm indicates the proposed methods helps to redeicgénation cost efficiently.
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Total Operation Cost with/without CA in Peak Day
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Figure 4.9: (a) Total Operation Cost with and without CA iraR®ay. (b) Total Operation
Cost with and without CA in Off-Peak Day.
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Total Operation Cost with Different Percentage Limit in Chance
Constraint
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Figure 4.10: Total Operation Cost with Different Percestagnit in Chance Constraint

Total Operation Cost with Different Percentage Limit in Chance Constrains. Three
different~ of 94%, 96% and98% in (4.3.4h) are selected to analysis the results in Fig..4.10
The operating cost with of 94.0% is lower than others. The highest cost is obtained with
~ = 98.0%. This indicates that higher reliability will lead in a higheperation cost. It is
because that a biggerrequires a stricter constraint th@”4 + G}V is higher or equal to
the GP in (4.3.4h). On the contrary, the operating cost decrease iflefine a smalley

for the system. As shown in Fig. 4.10, chance constraintagiitiby ~ in (4.3.4h) is set as
94.0%, 96.0%, 98.0% with blue, orange, and grey color, sm@dy. It is clearly that the
operating cost withy = 94.0% is the lowest among others, and the highest cost is obtained
with v = 98.0%. These results demonstrates that a higher chance conhgtrabability
requires a high demand 6”4 in equation (4.3.4h), which indicates the operation cost is
also increasing. Because of that, a trade-off between therloperation cost and a higher

system reliability should be considered as a key problerharfdture.
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The Line Loss of Power System
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Figure 4.11: The Line Loss of Power System in Peak Day andP@#k Day

Optimal Power Flow with System Loss The system loss of feeder J1 model in peak
load day and off-peak load day are shown in Fig. 4.11. Theesy$iss without OPF in two
situations are described in blue and grey color, respégti@mmparing to them, the system

loss with OPF in peak day and off-peak day are representeirge and yellow lines.

4.6 Conclusion and Contributions

A multi-timescale three-phase unbalanced approach isopeap The day-ahead power
dispatch of the substation level is used to minimize opematbst with renewable energy in
each hour. The uncertainty of renewable energy is fitted ghtimce constraints. Gaussian
Mixture Model is used to simulate the output of multiple neable generation with a higher
accuracy. At the feeder level, an optimal power flow problerformulated for three-phase
unbalanced system with considering the reality, non-compreblem with three variables

are relaxed by semidefinite programming.
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Themain contributions of this section are:

1. The proposed method is used to optimize the system operetist in two levels,
corrective action in substation level is used to resell #tindant power back to real
time market, which helps to save extra money. In feeder Jevelart of renewable

generation is used for optimal power flow on unbalanceditdigion power system.

2. In substation level, Gaussian Mixture Model with Genéfigorithm is used to simu-
late the output of renewable generation for each bus. Ch@oostraints are used to
fit the uncertainty of renewable energy, which define how nreclewable generation

need to be satisfied in a probability.

3. Infeeder level, three phase unbalanced distributiotesys simulated with ADMM.
Semidefinite programming is used to relax the non conveXitliyeounbalanced model

into convex.

4. Time consumption is one of the impotent indicators to st the model. Com-
pare with other methods, the proposed approach with ADMMiefitly decrease

the calculation time.
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Chapter 5

Improved distribution system
optimization with image regression

and ensemble learning

5.1 Solar Irradiance Capturing in Cloudy Sky Days
—A Convolutional Neural Network Based Image Regression

Approach

5.1.1 Introduction

With a low cost, the penetration of rooftop PV is increasiagtfin recently years,
which can be seemed as an indispensable component for mpdeer system integra-
tion [115-119]. Solar power, especially behind-meterrsptaver forecast is an important
aspect for operating the grid with high level of PV penetratj21, 120]. The Global hori-
zontal irradiance (GHI) is defined as the sum of the totaliveckdirect and diffuse short-
wave solar irradiation on a horizontal plane. It is widelgddo indicate the output power

of PV [21, 120]. In traditional approaches, the local GHI t&ncollected with very expen-

63



|
|
|
| .
Natural : Solar Radiation (a)
Sky | | (Measured)
| |
| Y |
| Expensive measurement devices |
| |
| |
! — [ .
Natural ! Complex Other TIMINwmmng Solar Radiation b
Sky - Physical Model + Information + lid LI _:_> (Computed) (b)
HPC :
|
|
|
|

Feature Further Solar Radiation | (¢)
Natural | —1 » a —I— Engineering + Processing (Computed)
\

Sky

Y
Information Disconnected

. Solar Radiation
Natural | ——» Proposed Deep Learning | —Lp d
a + Based Approach (Computed) (d)

Sky

Outputs

Figure 5.1: The proposed approach compared with the toaditiapproaches.

sive instruments, which are inconvenient to be moved andhaedly be used for large-area
monitoring. For large-area monitoring, the radiative $fen models are widely used. How-
ever, these depend on the complex models and HPC. A deejnigdrased approach, a
CNN-based approach is proposed to capture the GHI conuniemd accurately, which

can also be implemented into large-area monitoring.

1. In traditional approach (a), GHI is routinely measuredjbyund-based radiometers,
e.g. pyranometers, use either thermoelectric or photoetetectors [121]. The re-
liability of this measurements is highly dependent on iltetian scheme, hardware
maintenance, calibration technology and frequency [122e availability of mea-
surements is often restricted by the high cost, which isydwender consideration by

operators.
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2. In traditional approach (b), GHI can be numerically siated! by radiative transfer
models, which account for the atmospheric absorption aaitiestg by air molecules,
aerosols, and clouds [123]. However, accurate simulatfoBHl replies on com-
prehensive measurements or retrievals of atmospheriditemrds and land surface.
Conventional radiative transfer models are often cha#engy computation com-
plexity by solving the radiative transfer equation and éadesng the interactions

between the atmosphere and land surface.

3. In traditional approach (c), the processing approachudes two parts: feature en-
gineering and further processing [19, 124-126]. Featuggnemring is similar as
feature extraction, which extracts the image features different approaches such
as filtering, Fourier transform, principle component asywavelet analysis, and
autoencoder related approaches [125, 127]. The extraetgdrés are the inputs
for next step, which is used for classification, pattern gedtton, anomaly detec-
tion, and regression with different approaches such ashitithrkov model, support
vector machine, neural network, logistical regressiondoen forest, and Bayesian
network [125, 128-131]. The two parts framework in appro@mhs disconnected
and has no communication between them, which results in arlparformance of

[125,132, 133].

4. In approach (d), it provides an End-to-End learning frawm for the image re-
gression task, which combines the feature extraction agigtssion part together to
increase the efficiency and performance. As discussed abw/@ros and Cons of

the 4 methods are summarized and presented in Table I.

In this section, three-month data (minutes level resatutiata) are provided by the
NREL. Considering the huge volume of data, a data cleaningealure is used to elim-
inate the errors and inconsistencies for improving the tirqata quality, which contains

data selection, calibration, missing data reconstrugctilata standardization, and normal-
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Table 5.1: The comparison of different approaches in Fig.1

Approaches Pros Cons
€) The solar irradiation can be meaExpensive device, inconvenient
sured fast and accurately to move, calibration needed,

weather fragile (broken by hailg
and limited observation area

~—

(b) large-area solar irradiation can beComplex physical model and at
computed mosphere model, satellite image
and HPC are needed

(© Can be extended to large-area mon-ow efficiency for parametef
itoring turning and low performance
large training data needed

(d) Fast, accurate, cheap, and can|Harge training data needed
extended to large-area monitoring
conveniently

/ \ CNN Based Results
Start Data Clean Image = End
. Validation
Regression

Figure 5.2: The flowchart of proposed approach.

ization. Gaussian mixture model is an useful method to déecanomaly data, however,
the number of the mixture components is difficult to deteemiBased on the Dirichlet pro-
cess, variational inference, and Bayesian theory, a Gaussixture model with Bayesian
inference approach is employed to determine the numbereofmiltture components au-
tomatically [134—139]. The expectation propagation isyva@milar with the variational

inference, which can be regarded as the same category [384140]. Considering the
real-application in power systems, the important factoescallected by devices to detect
the anomaly data. In cloudy days, the profile of solar irfoliiehas a lot of stochastic
deviations such as abrupt decreasing and increasing, whitcse the deviations of output

power of the PV. With the increasing penetration of PV, thigdadeviations of the PV out-

66



put power result in a series of problems such as voltage t@vjadrequency oscillation,
even unplanned islanding. Based on this [141-145], thegzexgh CNN based image re-
gression model is focusing on building a relationship betwthe input cloudy sky images
and the solar irradiations. Recently, the CNN based imageggsing, especially for image
classification, is developing very fast. In 2012 ImageNeafgkeaScale Visual Recognition
Competition (ILSVRC), the AlexNet (a type of CNN) [146] isqmosed with 16.4 % error
rate, which is considerably better than the previous siatl@achine learning model (sim-
ilar as approach (c) in Fig.5.1.1 with error 25.8 %). Frormtla, the CNN based image
processing is attracting more attention in computer vigioga. In 2014, the VGG with
19 layers and GoogleNet with 22 layer achieved 7.3 % and 6.7rét mte, respectively,
which further demonstrate the capability of CNN in compuwiision processing [147,148].
In 2015, a big improvement is provide by the 152 layers Reshittt 3.57 % error rate,
which is better than human expert (5.1 % error rate) [149].

As shown in the Fig. 5.2, this method consists of three mapmonents: data cleaning,
CNN based image regression, and results validation, whietdascribed as follows. In
Section 5.1.2, data cleaning is introduced with 7 stepstlam8ayesian inference is used to
detect the anomaly data in a nonparametric manner. In $e&tlo3, the CNN based image
regression approach is introduced for solar irradiatigoturéng, and the characteristic of
the proposed CNN architecture is analyzed in detail. Ini®e&.1.4, the numerical results

are presented to validate the proposed approach.

5.1.2 Data cleaning

In machine learning, data cleaning is a significant compmvelnich tremendously af-
fect the performance of whole approach. The original dadadaectly collected from the
devices in NREL's Solar Radiation Research Laboratory. Aswv in Fig. 5.3, the pro-
posed data cleaning approach contains 7 steps: data matgeszalibration, missing data

recovery, data normalization, anomaly detection, datedstal, and data verify and map.
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Figure 5.3: The flowchart of data cleaning in proposed apgroa

Data Merge, Calibration, and Missing Data Recovery

The data merge, calibration, and missing data recoveryxqlaieed together as pre-
data processing for data cleaning. The original data imatuthe GHI data and sky image
data are collected with sample rate 1 sample/min. Becaesgettiod of the sky image is 24
hours. We merge 24 hours data as a section for each day. Reb@USNN is used to build
a regression relationship between the sky images and GHI d&ie original data need to

be calibrated and recovered, and the problem are listedlas$o

1. The sky image camera only capturing the sky image fromseitw sunset, the length

is variant everyday (with some random offsets of the camera)

2. The GHI data are collected 24 hours, but the corresportdimgindex is Greenwich
Mean Time (GMT).The way to get the data match is very impartantraining and

calculation.
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3. There are random sky images and GHI data missing in thenskge series and GHI
data everyday, which cause the mismatching between therslges and GHI data. It
will result incorrect results if we did not care about the métch problems. How
to find out the mismatch image and solar data is very impartdiere will have

incorrect results if the mismatching between image and sofaignored.

The times of sunrise¢;]” and sunset;’ for day i, are collected from National Oceanic
and Atmosphere Administration (NOAA). The accurate lertgghweent;” and¢;’ can be
calculated asAt;, =t77 - t:”, which can be used to eliminate the random offsets of the cam-
era, and delete the useless sky image captured in the nigkh, The corresponding GHI
data can be sectioned witht;,, and the time index is transfered from GMT to Mountain
Time (MT).

In the collected original data, there are missing randomisiages and GHI at some
points. For the missing sky images, the corresponding Git dee deleted to keep the
one to one mapping relationship. Because the sky imagesisaously changing and
the sample rate 1 sample/min is relatively high, the mis&hj data can be recovered by
the spline interpolation as given equation 5.14},;s(t2) is the missing GHI datats ,
indicates the time indey, to discriminate with the missing GHI time, h;, anda;, are

coefficients. Then, the missing GHI data at timecan be recovered.
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Anomaly Detection

Problem Description We collected a large volume of original data from the sky imag
camera and GHI sensors, which contains a lot of anomaly d#$a $hese anomaly data
sets can pollute the input data, and generate irrelevamtniation during the learning pro-
cess [19, 150-153]. As in Fig.5.4, we are focusing on thersotadiance capturing for
the cloudy sky days (causing large deviations of PV outputgr} this means that the sky
images of the sunrise, sunset, and clean days are seemezlaa®thaly data and need to
be cleaned. In oder to detect the anomaly conveniently, &ite are normalized to range
(0, 1) with the approach in [19], and the corresponding skyges are stored and tagged in
a database. A nonparameter and fast anomaly detection dnistemployed to detect the

anomaly data as shown in Fig. 5.4.

Problem formulation As shown in Fig. 5.5, the anomaly detection method is based on
Gaussian mixture model with Bayesian inference [134, 138).1The full joint distribution

can be formulated with it.

p(Xa Z,m, A) = p(X‘Za s A)p(Z’ﬂ')p(ﬂ')p(u’A)p(A) (5.1.2)

where
1. X is the observation sek = {z1,--- ,xnx}. X is collected GHI.
2. Z is the component index sgét={z1,--- ,zy}, total category ig«.
3. 7 is the mixing weights, in Dirichlet process= {m, 72, -+ , Too }-

4. 1 is the mean of the normal distributions. It is with a normatdlbution prior as

shown in Fig. 5.5 with a meamy, and precision matrix.

5. A is the precision matrix. It is a Wishart prior (it is equivaldo a one-dimensional

Wishart distribution [154]) with a scale matri¥, and a degree of freedom.
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Figure 5.4: The selected anomaly sky images taken by diffetevices (a) the sky image
of sunrise, (b) the sky image of sunset, (c) the sky imageifsalby rain and snow, (d) the
sky image of a clean day without any clouds.

In the Gaussian mixture model (GMM), the number of Gauss@amponents gives
the prior distribution estimation of the whole distributiolf the amount of components is
given, the whole distribution can be solved in a conveniesminer. Therefore, the symhal
here is used as a latent variable to indicate the number @#ussian components, which
is formulated as a categorical distribution and its conjeigdistribution is the Dirichlet

distribution.
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Figure 5.5: The graphic model of the Gaussian mixture modtbl Bayesian inference.

Based on (5.1.2), the relationship and probabilities cafolraulated as follows. The

conditional distribution oZ given a mixing weight.

N3 K3

p(Zl=) = [T II =i (5.1.3)

Then, given the latent variablds, i, A, the conditional distribution of the observed data

can be formulated as:

N3 Kj
p(X|Z, 1, A) = TT T N (s lians, Mg Praka (5.1.4)

ns=1kz=1

Here, the Bayesian inference is employed to estimate how clasters are required for
the observation data. It means that the hyperparametefsecgenerated with noninforma-

tive hyperprior distributions. Firstly, the nonparamatitor titled as Dirichlet distribution
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is employed to build the finite Gaussians. Then, the Diricptecess is used to generalize

it into infinite Gaussians. It helps to decide the amount ofigonents automatically.

p(m) = Dir(r|ag) = C(ao) ﬁ o (5.1.5)
k=1
Dir is the Dirichlet distribution. oy is the concentration parameter. Al «y) is
a normalizing item which can be expressed with Gamma Fumetiw also be named as
multivariate Beta function [154, 155]. Then, according $01(2), the Gaussian-Wishart
prior can be introduced for the mearand precision matriXA. The equation below shows
how it works and how it can get the resulig is a mean) is a precision matrix\q is a

scale matrix, and is degree of freedom.

p(p, A) = p(p|A)p(A) (5.1.6a)
K3

= T Nnslto, CoMis) ™ )W (Aks| Ao, v0) (5.1.6b)
ks=1

As shown in (5.1.5), the Dirichlet distribution can be sesrtl@® conjugate prior for
the categorical distribution. To generalize it into infnénd nonparametric distribution,
the Dirichlet process can be seen as its conjugate prior.aFR@mple spac®, G is a
distribution over® with a positive factors, and the Dirichlet process can be generated with

Gy overo.

(G(A1), -+ >G(AK3)) ~ Dir(BGo(Ar), - - >5GO(AK3)) (5.1.73)

G ~ DP(53,Go) (5.1.7b)

where Ak, is a finite measurable partition over, and the positive facto controls the
density ofG [137,156]. Here, the stick-breaking construction is usedtie weightsry, .

m = {m, -+, } indicates the original model to be generalized into infil@ussians
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with Dirichlet process. It is finally realized automatigalielect the components number.

The results demonstrates that automatic selection alwegsadetter performance.

Ty, ~ Beta(1, 3) (5.1.8a)
ks—1
Thy = Thy || (1= 77,) (5.1.8b)

iz=1

Variational Inference The Bayesian theorem based variational inference algorith
employed for the Dirichlet process based Gaussian mixtardets. The posterior distribu-

tion of Z can be computed as the equation below.

log p(Z|X,9) = log p(X, Z|9) — log p(X[¥) (5.1.9)

where is the parameters, and this Bayesian theorem based vadhiiderence provides
a bridge to the likelihood function and prior function, whican also be seemed as a regu-
larization item for the likelihood function.

Here, we introduce, (17), ¢,(W) to be defined as a distribution family, for example,
the exponential distribution family, andis the parameter. Then, according to Jensen’s
equation:

log p(X[9) > Eyllog p(Z, X|9)] — Eqllog,, (Z)] (5.1.10)

where (5.1.10) is the evidence of low bound (ELOB), and theigahe Kullback-Leibler
(KL) divergence betweegq,(Z) andp(Z|X, ), which can be derived as
D(q.(Z)|lp(Z| X, 9))
(5.1.112)
= Fyllog,, (Z)] — Eqllog p(Z, X]9)] + log p(X|¥)
In optimization, we can maximize the ELOB, which is an al&ively option for min-

imizing (5.1.11) [157, 158]. And the detailed informatioancbe found in [134, 136, 137,
156].
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Specifically, the temperature is an indispensable factompmct the efficiency of the
PV, PV battery, and related systems. We also collect cavretipg temperature information
to eliminate the anomaly data as shown in Fig. 5.4. Similainly Zenith angle is a critical
factor for the GHI [159], which is also collected to elimiadahe anomaly data.

After this process, the anomaly data shown in Fig. 5.4 candbected and only the
sky images with clouds can be selected for next step. Thetiheaselected sky images are

merged together with the temporal and GHI information foNCiegression.

5.1.3 Image Regression Problem with Convolutional Neural Btwork
Problem Formulation

After the data cleaning as discussed above, the collecteidnsiges and GHI values are
formed as one-to-one correspondence. Then, an input spacéx;,--- ,xy, } CONSISts
of the collected sky images. Because a sky image is a threendional matrix including
red, green, and blue color, we ugeto denote the-th sky image. The corresponding
output space’ = {y1,--- ,yn, } consists of the collected GHI values, whefés thei-th
GHI value. Given the training samplds = {xi,yi}f\gl, the proposed CNN based image
regression approach aims to find a mapping from images to @Gldésh(-): X — ) with
a predefined cost functiofi: X x ) — R.

From the traditional optimization perspective, in thertnag part, the cost function
C'(h) needs to be minimized with several different approaches siscstochastic gradi-
ent descent (SGD), momentum, and Nesterov momentum, ammsichapter, ADAM is
used [133, 160]. However, different from the traditionatiopzation, in machine learning,
the distribution of the training space is usually differénoim the distribution in the testing
space, which requires a good generalization charactefistihe selected (). If using the
traditional optimization approaches without any revistluming the training, several prob-
lems such as ill-condition, local minimum, cliffs, and etcan dramatically degrade the

testing performance.
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Figure 5.6: The selected normal sky images with some claa)dfey cloud with okta 1 to
2 in a sky image, (b) cloud with okta 3 to 4 in a sky image, (cudlavith okta 5to 6 in a
sky image, (d) cloud with okta 7 to 8 in a sky image.

The architecture of the proposed CNN

After data cleaning, the sky images of normal cloudy dayssatected as shown in
Fig. 5.6. okta is a unit of measurement to describe the clawdrcin meteorology [161].
Compared with the images from ImageNet (a large-scale irdatgbase) [162], as shown

in Fig. 5.6, the patterns of the cloud in the sky images ar@k&m
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Figure 5.7: The architecture of proposed CNN.

As shown in Fig. 5.7, the architecture of the proposed CNNesighed with 5 con-

volution layers, batch normalization, rectified lineartui®eLU) (activation function), and

maxpooling, which is based on the VGG 16 architecture [148].1For each convolutional

block, the detailed design is shown in Fig. 5.7 and describvéige figure.

1. The first step is the convolutional layer. Compared Witk 11 or other7 x 7 percep-
tion fields of Alexnet, filters 08 x 3 in size are implemented to increase the nonlinear
characteristics and reduce the computation load [147, 1A8the same time, the
stride step is set as and padding is also set as which keeps the size of the sky

image for next block processing [133,147,148].
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2. Next is batch normalization, which aims to improve interavariance shift [163].
With the increasing layers of CNN, the distribution of inputhanges gradually.
With batch normalization technique, the distribution sk#éin be reduced, training
speed can be increased, and the data in same scales and mote gat conver-

gence [163].The inference part of the batch normalizatamhe found in [133,163].

3. The third step is active function, it is used to bring noedr characteristics for the
proposed method. Compared with other activation functsush as sigmoid, hy-
berbolic tangenet and Gaussian, Rectifier(ReLU) is morgaruant to compute the
derivative, fewer vanishing gradient, and fewer saturaparts [133]. Specifically,
in this proposed network, the target is solar irraidanceickvmeans all the output

should be positive real numbers. ReLU can meet this reqeineiperfectly [133].

4. The parameter set for convolutional block, for example2, 112, 48), indicates that
the output dimension of the convolutional blocklig x 112, and48 indicates that
there arel8 feature maps (or feature images). This means that the ésatan be se-
lected in different feature maps, which provide a more coier way for the feature

extraction.

5. The last part is max pooling. It is design2s 2 with stride2 x 2, which select the
maximum value over the x 2 part. This part can be regarded as a down-sampling
job. It selects the feature @# 2 and non-overlapping area, reduce the dimensionality

of input, and pass the selected features to next convolbtimsk.

After 5 convolutional blocks, the dimension of the input geds changed frord24 «
224 x3 = 150,528 t0 7+ 7+ 388 = 19, 012, which means that only2.63% data are needed
to represent the features of the original image. Then, tiygubis flatten into a vector and

treated as an input for the fully connected layer wiflo0 neurons for the final regression.
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Learning of the proposed CNN

Last Layer In classification problem, the last layer are softmax atibwafunction and
cross entropy as objective function. Considering the ssgo@ objective, the mean-square-
error is employed as the objective function, and linear fioncis used as activation func-

tion.

1 m
E = 5(g7ina(X{") = y)* + regiz (5.1.12)

whereginq IS the activation function, which is ReLU as shown in Fig..5¢T" is the only
one output in last layemn, y is a general form of the GHI value, amdyg;, is a weighted L2
regularization item. The elastic (combined L1 and L2) cao d&le implemented here, and

F is the loss. Then, the error can be derived as:

m OF m m
51 = m o (gfinal(XI ) - y)g}inal(XI ) (5113)
oxy

where the derivative of ReLU is

1, if xI* >0
g}inal(an) = (5114)
0, otherwise

Hidden Layer In the hidden layer, the error item can be derived as follgwin
=g () whtteytt (5.1.15)
1=1

wherek + 1 indicates the laye” is the error in last layek, w;?l“ is a weight for nodg
for incoming nodd in layerk + 1. And the weight can be derived as:
k+1
OE ;

o = 0o (0G) D wlo (5.1.16)
K I1=1

0"~lis the output for nodein layerk. r is the total number for node

2
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Extended to 2-dimensional CNN The proposed approach is based on CNN and aims
to build a mapping between sky images and GHI values. It reguan extension from 1
dimensional backward propagation to 2 dimensional backwaopagation. The weight

can be computed as

—k1 W1—

— Sk, k=1
- Z Z 11,51 Z1+m g T 5i1,j1 * Ot (5.1.17)
11=0 751=0

wherex indicates a 2-dimensionalHj and W indicates the hight and width of the sky
image) convolution in CNN [133, 160k, x k- is the dimension of the fiIteti/f; indicates
the flipped kernel [164]é ando are the same as defined above. Then, similar with equation

(5.1.13) the error can be computed as:

8 k}l 1k§2 1
=D D Gt fifif( > (5.1.18)

aX” m=0 n=0

wherey is defined as:

k k
Xilm]l Z Z wm n 7,1—|—m ,Jji+n + bzl J1 (5119)

wherebf i, Is the bias for node with position, j; in layer k. In sum, the 2-dimensional

CNN is formulated for the proposed sky image processing.

5.1.4 Results

The image data and GHI data are provided by NREL, which ireduabout thee-month
data in the Autumn of 2016 and Summer of 2017. The samplirggafithe sky imager is
1 sample/min from sunrise to sunset per day. The samplirgofathe GHI measurement

device is also 1 sample/min for 24 hours per day.
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Figure 5.8: Anomaly detection for the GHI data.

Anomaly Detection and Elimination

First, the original GHI data are modeled with the Gaussiatiune model with Bayesian
inference. Compared with the Gaussian mixture model witlBayesian inference (indi-
cated as Single GMM with magenta), the GHI data can be moregalg modeled with
3 Gaussian models instead of 1 Gaussian model. Accordingrteequirements, the GHI
values located in the areas close to 0 and 800 can be corgsmeseinrise, sunset, and clean
sky data. Second, as mentioned above, the Zenith angle mpetature are considered as
useful factors, the Gaussian mixture model with Bayesiferémce are employed to detect
the anomaly data with them. To show the results clearly, dselt of Zenith angle and
temperate are shown separately as in Fig. 5.9 and Fig. Snlihelupper part of Fig. 5.9,

the collected data can be modeled with a single Gaussianlsyodaéich means that a lot
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Figure 5.9: Anomaly detection for the GHI and Zenith Angléada

of useful data are classified into anomaly data side. In theidgart, the collected data
can be modeled with 4 Gaussian models, the anomaly datadicatied corresponding to
the sky images of sunrise and sunset (with the green dots o8 GHI and>0° Zenith
angle). The yellow dots located close to 800 GHI are corneding to the sky images of
clean sky without clouds. Similarly, in the upper part of FAdL0, the collected data can be
modeled with 2 single Gaussian model, which means that & ledeful data are classified
into anomaly data side. In the lower part, the collected databe modeled with 5 Gaus-
sian models, the anomaly data are indicated corresponditig tsky images of sunrise and
sunset (with the yellow dots close to 0 GHI ah@’C' temperature). The light blue dots
located close to 800 GHI are corresponding to the sky imafjelean sky without clouds.

The results shows that GMM model works efficient on that.
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Figure 5.10: Anomaly detection for the GHI and Temperatatad

CNN Based Regression

Considering the limitation of the computer memory (64 GBg tlata (including the sky
images and corresponding GHI values) of 1, 2, 3, 4, and 5 d&yssed as training data,
separately, and 70 randomly selected sky images and condisyg GHI values are used as
testing data. As discussed above, the proposed CNN basge iregression approach aims

to build a mapping relationship from images to GHI vala¢sg: X — ).

Feature Analysis To illustrate clearly the operation manner of CNN, its featanalysis
or content reconstruction is shown in Fig. 5.11. In Fig. L 1itae original figure is shown,
which is extracted from the beginning side of the flowchafim 5.7. Fig. 11(b) is almost
identical with Fig. 11(a), and the small and tiny crinkledigates that the feature and edges
of the clouds are extracted by the CNN. In Fig. 11(c), it isdiethat the edges of the clouds
are selected by the crinkles, which means the features oh#ljer parts are identified and

located in the image. Furthermore, in Fig. 11(d) and Fig.e),the features of the small
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(a) Original

(b) Convl

(c) Conv2

(d) Conv3

(e) Conv4a

Figure 5.11: Feature expression of CNN (a) the original akgge demo, (b) the feature of
convl, (c) the feature of conv2, (d) the feature of conv3tHe)feature of conv4.

parts are also identified and located. In brief, with deepgers in the CNN, more and
more features are extracted in different layers graduaMth the extracted features, the

regression analysis is introduced in next step.
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Figure 5.12: Image regression for GHI with different tramidata length: (a) 1 day data as
training data, (b) 3 day data as training data, and (c) 5 deyatraining data

Regression Analysis As shown in Fig.5.12, the top image regression results afitrg

data with 1, 3, and 5 days are presented in red curves, aneldivegt data are presented with
blue curves. The results of 1 day training data and testing al@® presented in Fig. 5.12
(a), which contains relatively big errors. Specifically,sh®wn with the blue curve, there
are 4 peaks located in samples 20, 25, 65, and 70, which tedicat high solar irradiance
at these time slots. However, with 1 day training data, tealte of the proposed approach

are much lower, which indicates that a big mismatch betwherptoposed approach and
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measured data. In addition, in the samples between 45 tdhéEe ts a big valley in the
testing GHI values. However, as shown in Fig. 5.12 (a), tpased approach also contains
a big error from the measured GHI values. In Fig. 5.12 (a) ntlean absolute percentage
error (MAPE) is 21.8%, which indicates that the 1 day trajndata is not sufficient to
achieve a acceptable result. Compared with Fig. 5.12 (@)dbults presented in Fig. 5.12
(b) and Fig. 5.12 (c) with 3 and 5 days training data contaimlEmerrors. In Fig. 5.12
(b), it is obvious that the peak errors in samples 20, 25, 68,70 are much smaller than
Fig. 5.12 (a), and the valley errors from samples 45 to 65 @ samaller than Fig. 5.12
(a). In Fig. 5.12 (c), the best regression results are ptedenith 5 days training data.
The peak errors and valley errors are very small, and the d&wee and red curve are
almost identical in the rest samples. It presents accunsdge regression results for solar
irradiance capturing. In Fig. 5.12 (b) and Fig. 5.12 (c), W&PE are 12.6% and 8.1%,
which indicates that the regression error is decreasing thié increasing training data

length.

Comparison and discussion

To comprehensive evaluate the proposed approach, sevghainipacted algorithms

are investigated, and the comparison and analysis are st¥atiows.

Benchmark Comparison In[165], the persistence approach is introduced to evelinet
solar irradiance, which is a widely used approach to buieltanchmark data [166]. We
also implement the persistence approach to estimate the is@diance. The MAPE of
the persistence approach is 27.8% and root-mean-squardRMSE) is 29.2%, which are
much larger than the proposed approach with MAPE 8.1% andR81%%. In [166,167].
It requires stationary for the time series. For the cloudysdfata, the MAPE and the RMSE
of the ARIMA approach are 31.2% and and 32.7%, which are asp vigh.
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Comparison With Other Approaches In [168], a image regression approach is pro-
posed to predict solar irradiance with sky image, which ste®f feature extracting and re-
gression model with promising results. The MAPE 8.1% of ttappsed approach is lower
than 21.91% with approach in [168]. In [169], a statisticdwhsurtificial neural network
approach is used to provide solar irradiance forecastirily minimum root-mean-square
error (RMSE) about 15%, which is higher than our proposedagh with 8.7%. In the
review paper [166], a lot of recent solar irradiation cajtyrand forecasting approaches
are collected and analyzed, and the best RMSE is about 108¢h vehalso higher than the
proposed approach. Recently, in [170], a short-term sokadiance forecasting approach is
proposed with satellite and model coupling. In this apphodice sky images are captured
by geostationary satellite and the typical errors rangesram 8.5% to 17.2%, which is
very close but still a little higher than the proposed apphodurthermore, compared with
the high-cost geostationary satellites, the proposedoagpronly requires the sky images,
which can be easily captured by sky imagers, cameras, amdcellphones. In [171], sev-
eral machine learning based approaches are used such ksrieapd model and Spikeslab
model to forecast the solar irradiance. Compared with tbpgsed approach, this proposed
approach uses the measured solar irradiance as input, imdichtes this method is heav-
ily relies on the expensive solar irradiance measuremariteeand not easy to extend on
large-scale solar irradiance capturing. In [172], a sal@diance forecasting approach is
proposed with wavelet-based feature extraction, and gipscach is focusing on the clear-
sky days. Considering the large deviation profile of the PYpoucaused by clouds, the
proposed approach is investigating in the cloudy days, whave larger impacts on power
system operations. The randomness and stochastic chiticdeof the cloud movements
also increase the difficulties of the regression. The waysimguCNN model helps to solve
the problem. We only investigating in the sky images takeih wisible light as a primer
exploration. which indicates other images such as 1@wh2normalization radiance and

R/B ratio mask are ignored. However, according to [166, 168], these images contains
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useful information and can be treated as a good assistaiocmation for image regression.
Beside the Zenith angle and temperature, the other paresrseteh as humidity, air condi-
tion, and solar periods can also be seemed as assistantg fiopthe proposed regression
approach. In this primer exploration, we only collectecethmonth data in the Autumn
of 2016 and Summer of 2017 to validate the proposed apprdadhe next step, we will
collect at least three years of data to further investigatesblar image regression.

As discussed above, the main advantages of the proposesbapmare described one by
one. Compare with the traditional methods, the proposedoaph provide many different

advantages.

1. Compared with the traditional solar irradiation captgrapproaches, the proposed
approach does not require the expensive high-resolutiagés captured by geosta-
tionary satellites. The data collection cost (sky imagdéshe proposed approach is
lower, which indicates that the proposed approach is coemeno be widely used

and extended for very large-scale solar irradiance mangor

2. Compared with the results of benchmark and traditionahime learning approaches,
the proposed approach provides an end-to-end manner toreape solar irradi-
ances. This not only reduces the information loss betweerig#iture engineering
and regression processing, but also improves the learfficgercy of the proposed

approach.

3. In power system operations, the clouds movements cauwgefirandom deviations
of PV outputs, which dramatically impact the health of thevpp systems. The
proposed approach is focusing on the cloudy days solanamad capturing, which
can be extended to PV output regression and power systeilitgtabecasting in the

next step research.
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5.2 Ensemble model design with multiple machine learning adh

deep learning models

As discussed in Chapter 4, one critical issue which impatttedtochastic optimization
performance dramatically is forecasting results. If thfggenance of the forecasting re-
sults can be improved, the total operation cost of the sgithaptimization can be further
reduced. Considering traditional forecasting methodsoingy system forecasting such as
linear regression, support vector regression, and neatalank (also named as multi-layer
perceptron), these machine learning based methods argweemrful but easy to overfit
and usually have similar pattern in feature selection. lanseall these types of methods
only focus on limited features of the target, and other Usaeformation are ignored. En-
semble learning is a method that uses a lot of weak learngesher to reduce the forecast
error and suppress the variance. To use the information @rapsively, a series of en-
semble learning are employed such as random forest, erta dradient boost decision
tree, and Xgboost to improve the forecast performance.hEurtore, based on these en-
semble learning methods, a novel stacking method with tep atchitecture is designed
to further improve the forecast performance. Compare whighgeneral forecasting model
with machine learning, the novel stacking model is used tyais the hidden relation-
ship between different kinds of features. The proposed odstintroduced a new way on
how to efficiently construct a ensemble model with consitgthe different aspects of the
data. After that, the output of first level models are useditther reduce the error between
forecasting and actual results. The proposed model candekassa pre-trained model for
future forecasting work with a high accuracy without expemgost on maintenance.

No matter energy generation, transmission or distribyiimed forecasting is obviously
very important for energy supplier and others. A power laaddasting model in high accu-
racy is essential to energy provider on their daily powenpiag and operation work. Load

forecasting can be regarded as three different categdoleg;term level [173], medium
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level [174] and short-term level [50]. Based on the curr&search, short-term demand

load forecasting is considered currently. It is usuallyxfane hour to one week.

5.2.1 Load forecasting tools

linear regression model Linear regression [175] is a widely used statistical totiks Very
easy to be implemented and employed to model the relatioristiveen different factors
like temperature, zenith angle, kinds of renewable en€fgg output is modeled as linear
combination of inputs. The mathematical affine functionaestn inputs and output3 is

linear parameter weightsis error. X; is the feature inputy is the renewable generation.

y=PF+> BiXi+e (5.2.1)

Support Vector Machine Itis a machine learning technique based on the statiséeaht
ing method. It can be used for classification and regressioblgm, which analyzes the
data and its category by support vectors computation. A S\bdehalways constructs one

or several hyperplane in low, high or infinite dimensionacp

min % (5.2.2)
st.ylw! X +b>1 (5.2.3)

wherew is the normal vector to hyperplarteis the bias X is the input datay indicates the
classification ofX. SVM only focus on the points which are classified corredflgr hard
margin, two parallel hyperplane are figured out, which amdu® separate the different
classes data if the data are linearly separable. Otheriis®/e some other ways to deal
with the problem if the input data is nonlinearly separalliestly, the tolerance parameter
is added to the objective function, which also works as aleegation for the model. The

tolerance parametér indicates how much the model will accept the wrong clasgitioa
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It is easy to see i€ is big enough¢,, will be very small, which means that the model has

a low tolerance on mistakes. It will lead the model to have gmmeralization and high

accuracy. .
mm%z + C;&L (5.2.4)
stylw' X +b>1-¢, (5.2.5)
§n >0 (5.2.6)

Secondly, SVM model can help to find out a linear separabletptane by using kernel
conversion. It aims to solve the problems in a high dimensjmarce if the hyperplane does

not work in low dimension space.

Artificial Neural Network  Artificial Neural Network(ANN) has been used to simulate
the nonlinearly of human thoughts because of its strong cdimgp ability. It has been
found that it can be used to overcome the problem insteadwicibnal form model. The
deeper layers construction of ANN model have been demdedtraith a high ability on
nonlinear problem approximation. Multilayer perceptratwork (MLP) in 5.13 is used
here to simulate the results. In each model, there are $dnidden layers in it. There are
more than one neurons in each layer. Each input is multip§eaeights{;) and the output
of each neuron is decided by active function. The advantagf@somodel is that most of
the forecasting model will not require a function model, bueeds more time on training
and more data on pre-trained the model. The fully connedged-forward(FCFF) model
with an active function. MLP model describes a nonlineaatrehship of weights which
connect the input , hidden layers and the output data. Initrgiof the model, for each
iteration in each epoch, back propagation can be used tdeipita model parameter. In
the forecasting work of the renewable energy, the histoaia dhased supervised learning
method is chosen to figure out the relationship between deénaaa and day temperature,

human events, weather changing. The hourly electric loadegredicted with this model.
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Besides that, several ANN models can be trained in paraligltbe average results ba be
used. It can help reduce the variance of the model. Traredenihg is a good way to solve
the problem with not enough data, the pre-trained modehpeter(weight) are applied and
do fine tuning on the last few layers to modify the result iridetion.

In 5.13, there are 4 feature units at the input layer, 5 at tis¢ fidden layer, 4 at
the second hidden layer, a0l indicates the first neuron dirtitdayer. al2 indicates the
second neuron at the second layer. The first hidden layer watign is as follows. a01,
a02, a03, 04 indicates the parameter of features, the oistflue renewable generation in

the forecasting model; is an active function.

Input layer Hidden layer

Figure 5.13: MLP network.
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a1 = g(wor * a1 + wo2 * ag2 + Wosz * ap3 + Woa * Ap4) (5.2.7)

a12 = g(wi1 * apr + w12 * ag2 + W13 * ag3 + W14 * Ao4) (5.2.8)
a13 = g(wa1 * ap1 + waz * ag2 + wWa3 * Ap3 + Waq * Ao4) (5.2.9)
a14 = g(w31 * ap1 + w32 * ag2 + W33 * ap3 + W34 * Ap4) (5.2.10)
a15 = g(wa1 * ap1 + Wiz * ag2 + Wa3 * A03 + Waq * A4) (5.2.11)

Random Forest Random forest is an ensemble learning with several decist@s. The
average results will be calculated for regression problenasvote results for classification.
Random forest is an famous example for bagging, which meacds #me some of the
samples are collected to train a decision tree. It is oblyadiat | can do parallel work on
training if | need more than one decision tree. And the averagults for regression can
reduce the variance efficiently which help to avoid overfititeA many tests, it has been
demonstrated that only 68.2% sample data has been usedhingrahe rest can be used
for testing, which avoid the cross validation work. One madeantage for decision tree
why we consider random forest as an important role in ourcistng work, the way to
measure the best split point is not the same as other algolike SVM. The information
gain and gini are used to find out the best split points whicmalocare the imbalanced

data.

ID3-maximum information gain  For datasetD, assume there are K categories, the

empirical entropy of DH (D). It can be calculated with the equation below.

K

_ Crl, |Ckl
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=

|Dzk|

‘) (5.2.13)

H(DIA) =Y '|D z '|D|

g(D,A) = H(D) — H(D|A) (5.2.14)

The empirical conditional entropy of feature A to dataset’fDD|A) is computed here.
D; indicates the dataset frol if feature A equals its ith valueD;;, is the kth dataset in

D;. The information gain can be calculated as the equatiombelo

C4.5- maximum information gain ratio The definition of information gain ratio of
feature A to dataset D is defined as below. The cross entrayseis to describe how much

different between the distributions.

_9(D,A)
gr(D, A) HA(D) (5.2.15)
Dl
(5.2.16)
2 |D|
CART - maximum gini  Gini is used to describe the purity of data.
K Ck
Gini(D) =1-» ( 3 (5.2.17)

k=1

Adaboost After testing in some independent models, a new way of enketabrning
model is constructed based on some different individual et®od|t is an efficient way
to avoid overfitting and take more attention on errors. Inngvieration, the model will
reweight the error and each base learner. The weights wilhpare attention on error and
award the base learner who has a high accuracy. It is mudreliff from bagging, which

aims to reduce the bias and cannot be computed in parallel.
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Gradient Boosting Descent Tree(GBDT) The main idea of using GBDT is that a CART
is used to simulate the residual between forecasting valdi¢he real data. In each iteration,
the model aims to reduce the residual and finally eliminat&lie model is selected to set
up with direction of negative gradient. As the industriapligation of GBDT, XGBoost

shows the more obvious advantages and better performaice rasults.

L(g) =Y 1@ y) + > Q) (5.2.18)
) k

Q(f) :7T+%>\||w||2 (5.2.19)

It is easy to see that the loss function of XGBoost has beeeachdstjularization, which
includes the amount and value of the leaf nodes. The resuisssit efficiently increase

the generalize ability of the model on testing data.

LY = Zl(yuzfi(t_l) + fe(z:)) + Qfr) (5.2.20)
i=1

The loss function at time tells us the loss is calculated as the difference between the
real tag and the sum of the forecast tag of time 1 plus new fitted model of timé. The

second order taylor expandion: g is first-order derivativis, the second order derivative.

n

o (f— 1
LW oy (U 5:7Y) + gifi(w) + Shif2(@i)] +Q(f) (5.2.21)
i=1
gi = 5gi(t71)l(yi>gi(t_l)) (5.2.22)
hi = 8% oo (i, 9:47Y) (5.2.23)

Different from GBDT, XGBoost has its approximate algoritton feature and split
points selection, which is much faster than grid search oDGBXGBoost can realize

parallel work in some step of the feature engineering, wtidtey points on industrial use.
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5.3 Methods Analysis

5.3.1 Correlation Analysis

In order to analysis the relationship between different&iof features and target GHl,

the pearson correlation figure is shown. The Figure predbatselationship between dif-

ferent features.

Pearson Correlation of Features and Target_GHI
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Figure 5.14: Pearson Correlation Analysis.
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e cov(X,Y) is the covariance
e o Is the standard deviation of.
e oy IS the standard deviation of.

e X, Y are the feature data of the input.

cov(X,Y) = E[(X — px)(Y — py)]- (5.3.2)
e ux isthe mean ofX.

e uy isthe mean of.

oxOoy

The Pearson correlation can be computed here5.3.3. Codpétte linear analysis,
the Pearson correlation coefficients analysis is more atewn describing the relation-
ships between random variables and stochastic processh ighalso widely used in many
statistic analysis for random distributions. The Pearsmrmetations analysis contains two
critical quantities for random variables: mean and vaganehich indicate the first-order
and second-order variances of the variables.

As shown in Fig. 5.14, 11 features such as 'humidityl’,'cdypel’, cloud type2’,'wind
direction’,’wind speedl’,’wind speed2’ air temperattthumidity2’,’time index’,Zenith
anglel’,Zenith angle2’ are selected as inputs to gendfaePearson correlation coeffi-
cients with the target GHI. In detail, there are severalaaitpoints: It is clear that the
diagonal values are equals to 1, which means that they anéy/higlated to themselves with
equation ( 5.3.3. On the right side, the colored bar indic#tat the numerical value from
1.00 to -1.00 with the color from deep blue to deep red. whitticate the positive rela-

tionships and negative relationships separately. Theshighsolute value indicates a higher
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correlation between these two features. On positive cglakiips, it is clear that the Zenith
angle2 is 0.35. It means the target GHI will increase if thaiffeangle 2 increases. On
negative relationship, it is clear that the cloud typel i§80 It means the target GHI will

decreases if the cloud type2 increases. In large-scale5Rig shows various relationships
from positive to negative. It means our data collection amrg many different aspects of
GHlI related data features and this will benefit the final issiBesides the target analysis,
there are many other interesting relationships, for exanple wind direction is positive

related to time index, which means the wind direction hasgttemporal pattern.

5.3.2 Linear Regression Analysis

Linear Regression is very easy to be implemented and engbkayeodel the relation-
ship between different factors like temperature, wind dpkmds of renewable energy. The
output is modeled as linear combination of inputs, the nrattizal model can be wrote as
affine function between inputs and output. As shown in the Fig5, the linear regression
performance is highly correlated to the Pearson correlaitalysis, because linear regres-
sion only compute the weighted sum of the input features. Higle important feature of
linear regression are cloud type 1, air temp, and zenitheaBglThe right bar is used to
measure how the features contribute to the results. The $ath the weights is 1. The

higher number obey to the bar means the feature plays an mpmtant role in result.

5.3.3 Support Vector Regression Analysis

SVM can be used for classification and regression problenchwdinalyzes the data
and its category by support vectors computation. A SVM madlehys constructs one or
several hyperplane in low, high or infinite dimensional §aas shown in the Fig. 5.16,
the SVR performs better than simple linear regression, wvhis high importance features
on cloud type 1, air temp, and zenith angle 2. SVR has a ketink] tvhich maps the input

features into high-dimensional space.
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Figure 5.15: Feature importance analysis of Linear Regness

The nonlinear mapping dramatically improves its regressaiaod tracking capability for

nonlinear analysis. It is obvious that SVR works much bdttan linear regression on this

forecasting work.

5.3.4 Multi-layer Perceptron Analysis

The MLP model is a construction of fully connection layers ghown in the Fig. 5.17,

similar as SVR, the MLP has high importance features on ctppe 1, air temp, and zenith

angle 2. In MLP, the nonlinear capability is introduced bg Hctive function, which is a

nonlinear and differentiable function. To sum, the lineagression, SVR, and MLP, these

traditional methods have very similar pattern in featulec®n. Because only the some

group of feature data are studied. Therefore, severalrbei¢hods are introduced, and

then all the methods will serve as inputs for the final ensertéarning.
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Figure 5.16: Feature importance analysis of Support Vdgemgression.

5.3.5 Random Forest Analysis

Random forest is an ensemble learning with decision treé® alverage results will
be calculated for regression problems. And the results ednce the variance efficiently
which help to avoid overfitting. As shown in the Fig. 5.18,feliént from the traditional
method, which is only sensitive on one or two input featutke,random forest methods
has several high scores on feature importance analysis. niééans that the random forest
method collects more features from the input data and eesluthe target GHI compre-
hensively. The importance feature for random forest arat@eéimgle2, Cloud typl, and

humidity1.
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Figure 5.17: Feature importance analysis of Multi-layercBptron.

5.3.6 Extra Tree Analysis

A little different from the random forest, all the datasetiged instead of bootstrap of
RF to train the decision tree. As shown in the Fig. 5.19, theadxee methods has several
high scores on feature importance analysis such as hurhidityud typel, air temperature
, zenith angle 1 and zenith angle 2. Compared with randonstfanethod, the extra tree
collects different aspects of input features. This indisdhat our proposed approach collect
the bread information of the input data. With different teat, the ensemble learning

performances better than one or two feature collections.
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Figure 5.18: Feature importance analysis of Random Forest

5.3.7 Adaboost Analysis

It is an efficient way to avoid overfitting and take more afimmton errors. In every

iteration, the model will reweight the error and each basenier. The weights will pay

more attention on error and award the base learner who haghabcuracy. As shown in

the Fig. 5.20, the Adaboost is a type of boost method, whiohregress any kind of curves

with limited error. The key feature of boost technology iegiimate the residual for next

step approximate. On one hand, this technology generaledtiguracy result; on another

hand, this type of method is easy to overfit. As shown in the 5ig0, the importance

feature of Adaboost is only focusing on the zenith angle 2.

102



0.25
0.25
L1}
e
;:'Izj >
5 02 0.2
[« 8
E
5 o1s 0,15
o
8
0.1
o @ D

0.05

. . 0.05

4 > >
% e e <epn <&p.

) Se, > . o I,
€y > - = e, e

Figure 5.19: Feature importance analysis of Extra Tree

5.3.8 GBDT Analysis

It is an efficient way to avoid overfitting and take more at@mton errors. In every
iteration, the model will reweight the error and each basenier. The weights will pay
more attention on error and award the base learner with addghracy. As shown in the
Fig. 5.21, the GBDT method has highest import feature scoabout 0.5. Compared with
the Adaboost method, which focuses on only one feature, BI21Gsplit the pressure into
several different features such as wind speedl, cloud typerfith angle 1. With com-
prehensive feature collections, GBDT performs better thdaboost methods. GBDT is
widely used in current machine learning research. It isdifit from the boosting method,

like adaboost. GBDT pays more attention on the incorrectlt®s
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Figure 5.20: Feature importance analysis of Extra Tree

5.3.9 XGBoost Analysis

As the industrial application of GBDT, XGBoost shows the mobvious advantages
and better performance in our results. As shown in the F&2,5he Xgboost methods has
several high scores on feature importance analysis sudbwastgpel, air temperature , and
zenith angle 2. Compared with Adaboost and GBDT, the Xgbloastetter suppression of
single tree grows and leaf splits, which avoid to focusingoor or two features as shown
above. At the same time, Xgboost is also the method whicloped best in the first level
method. Consider its capability, a lot of ensemble methadaios it as a key method to

improve their final performance.
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Figure 5.21: Feature importance analysis of GBDT.

5.4 Ensemble Learning - Stacking Regression

As discussed above, the basic models such as linear regreS8R, and random forest
contain different characteristics, which perform the imiaoce of different feature. The
performances of the basic models in different feature itgpnmes also indicate that none of
them can comprehensively extract all the features of thaetidata. As shown in Fig. 5.24, a
stacking regression approach is proposed to learn widefy the strong points of the basic
models. Specifically, in the first step, the basic models aegl @0 extract the feature from
the input data. In the second step, a stacking regressidmoohét used to find a nonlinear
relationship between the extracted feature and givendabihe detailed process will be
introduced step by step. The architecture of stacking ssipe is shown in Fig. 5.25 in

detail.
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Figure 5.22: Feature importance analysis of Xgboost.

The upper part indicates the training part, and the lowdripdicate the testing part. In
the training part, the original input data is divided as Kdfformat for training. Each model
uses different training set and prediction set (also be degseralidation set) sequentially.
Then, all the prediction sets are collected as new featunegdxt step process. In this
step, the basic models are employed for feature extradtiahe second step, the extracted
features are treated as input data to train the advanced mddeh can be any regression
models such as MLP, linear regression, and Xgboost. In ttentepart, the large gray
arrows indicate the testing data are predicted by the twidiasic models, which can be seen
as feature extraction for the testing data. The averageisteged to keep the dimension
of the testing data. Last, the trained advanced model is@maglito generate the final

prediction results, which evaluates all the input data catngnsively.
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Figure 5.23: Feature extraction correlations.

5.5 Bootstrapping Based Prediction Intervals Computation

5.5.1 The Theory of Bootstrapping

To quantify the forecast uncertainty of the proposed approde bootstrapping method
is used to compute the prediction intervals. The resamulatg can provide the empirical
distribution from the forecasting results, which also gsrhigh computational cost.

Forn,; forecasting results, the noise variablg can be approximated as the equation

below. j; € {1,2,3,--- ,n1}. U is the approximated function .

&, =) — ¥(). (5.5.1)

Considering the systematic err@ér, can be centered as 5.5.2. The equation shows a

process of iteration of the whole project. In general, eackdehhas its own advantages, it
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Figure 5.24: Major Idea of Stacking Regression.

always prefer some special aspects of the data. And how &ircmha reasonable ensemble
model based on these advantages from different models. rApeged model describe a

efficient way on constructing a stacking model to achieveragrehensive model.

1 &
Ep=Eh—— > (5.5.2)
L Jo=1
wherejs € {1,2,3,--- ,n1}. As shown in Fig. 3.1, in Block 8, the Bootstrap resampling

can be generated as following. The residéfatan be drawn randomly with replacement

from the set{¢;,éa, - - , £,, } wWith the probabilityl /n; as following
* ~ . 7. 1
d;, = & with probability - (5.5.3)

Then the output can be computed as
v o= W(ir) + 07 (5.5.4)

ng iS a given number of bootstrapping replicates generatedobyla (5.5.3) and
(5.5.4). ny is a large number, such as 5,000 or 10,000. According to the dfa_arge
Numbers (LLN) and Central Limit Theorem (CLT), if the numlzdibootstrap replications
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Figure 5.25: Detail Architecture of Stacking Regression.

is large, the forecast errors are normally distributed. To@&1 — 2«) prediction inter-

vals can be computed as equations below. And the paramettrs proposed project are

defined asv.
P{g(cba) <y < 6(@1_a)} =1-2a (5.5.5)

whereg is a function of®,,, which indicates the lower prediction interva) is a function
of ®;_,, which indicates the upper prediction interval. The aldpon of the Bootstrapping

Based Prediction Intervals Computation is shown in Aldponitl.
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Algorithm 2 Bootstrapping Based Prediction Intervals Computation
Objective: Compute the prediction intervals from the prediction tessu

Data Collection: Collect the prediction results.

Residuals Processing: Compute residuals with formula (5.5.1) and re-centerdiesi
als with formula (5.5.2).

Resampling: Resample the residuals with formula (5.5.3) and compiuteith for-
mula (5.5.4). Repeat this step, and generatset of bootstrapping replicates.

Computation of Prediction Intervals: Given a probabilitya, compute the pre-
diction intervalsQ andQ with formula (5.5.5).

Table 5.2: Performance of Proposed Approach

Methods MAPE (%) | Variance
Linear Regression| 21.1 27.5
SVR 17.7 16.9
MLP 17.9 16.4
Random Forest 15.2 14.2
Extra Tree 14.3 15.1
Adaboost 14.1 15.2
GBDT 12.21 13.4
Xgboost 11.8 12.5
Stacking Approach 7.8 7.2

5.5.2 Forecast Results and Statistic Analysis

As shown in Table5.2, all the methods are compared togethirivtean absolute per-
centage error (MAPE) and variance, which indicate the Id#osnd 2 order error in statistic
learning. Specifically, the traditional approach linegression, SVR, and MLP has largest
MAPE and variance. With ensemble learning introduced, th&PHE and variance also
reduced dramatically. Furthermore, based on all theseoappes, the proposed method
performs best with smallest MAPE and variance.

As shown in Fig.5.26, a cloudy day normalized GHI is shownlas lburve. The red

curve is the forecasted GHI with stacking approach. It iarctbat the red curve and blue
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Figure 5.26: One day forecast example of proposed method.

curve are almost identical, except at several large devigioints. With this high accuracy
forecast results as input, the numerical results of stdichagtimization will be presented
in next step. As shown in Fig.5.27 and Table5.2, the proposethod and Xgboost rank
in Top 1 and 2. Compared with Xgboost, the proposed approasisimaller variance, and
higher kurtosis, which indicates the proposed approachiges better results with narrow

confidential intervals.

5.6 Results

The numerical results for evaluating the proposed methobapter 4 with the proposed
ensemble learning forecasting model are tested based tBHERe123-bus system. The PV

panels(55 kw for each) are installed at bus 28, 47, 49, 64n83d.
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5.6.1 Total cost with ensemble learning

The hourly renewable energy generation is predicted wiehptoposed forecasting
model. And the total operation cost are compared in Fig.®0284 hours. For each hour,
the left bar describe the ratio 6tP4 + G (light blue) andGF” (yellow), which is fitted
by multi-timescale model with traditional forecasting nebdThe corresponding total cost
is displayed as a green dashed line. Similarly, the rightdescribes the ratio af’P4 +
GF! (dark blue) and>f" (orange), which is fitted by multi-timescale model with pospd
forecasting model. The corresponding total cost is digiags a red dashed line. It is
clear that the orange part is shorter than the yellow onegwinidicates that the proposed
forecasting model achieves a higher accuracy on hourlyigineg of the renewable energy,
and the system requires less energy from the RT market. Tieeattice between the total

operation cost demonstrates the proposed forecastingothegkduces the operation.

112



o

, 350

T
DA + Rwith Traditional Model
RT Purchased with Traditional Model

||

[

- DA + Rwith Ensemble Learning
(=]

G

—

L
w
P=1
o

RT Purchased with Ensemble Learning
Total Cost
Total Cost with Ensemble Learning

n
w
o

o
o

— N
w (=3
o o
Total operation cost($)

100

The Power Got From RT market(%)

0 = o - 50
U o} 10 19 4l 23
Time(Hours)
Figure 5.28: Total cost with Ensemble learning.
360 T T T 550
- HOU['Y Wind A — Proposed
. . T 1WA ek DY " 2 o o) = MLP
= — L__iHourly PV | gl e & = —s#—  Adaboost |- 500
3 N W - Xghoost @
= — 7
© 240 450 3
2 c
) ] 5]
= - 400 B
§ UU g;-
D120 350 9
@ 3
> - -
o “ I I I i E 300
0 250
0 5 10 15 20 25

Figure 5.29: Total cost with different machine learning migdand proposed model.

5.6.2 Total costs comparison with different machine learmg models

Fig.5.29 describes the total operation cost with diffefemécasting model with ma-
chine learning technology. Multilayer perceptron modeilzoost, XGBoost and the pro-
posed method are used to compare the results. As shown inib.2blden, Colorado,
a typical day with a windy night and sunny daytime is seleatdth 24 hours. The peak

generation of the wind turbines (blue bars) and PVs (yellarsboccurs at midnight and
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14.00, respectively. The total operation cost decreases MLP, adaboost, XGBoost and
the proposed method, which represents MLP obtains a lowestdsting accuracy in this
test, and the stacking forecasting model achieves muchrhbetults on load forecasting.
The reason is that the stacking model is an ensemble leaphitifferent kinds of machine
learning model, it brings the different advantages fromsineral models. And how to find
out the combination of models is a big problem, which helpgéaba high accuracy with

avoid overfitting.

5.7 Conclusion and Contributions

The proposed image regression problem is similar with theeesgimation problem in
computer vision area, which aims to build a map between thatihuman images and the
corresponding ages. In [176], the age estimation is studitda shallow machine learning
model, support vector machine. In [177], a CNN based regmesspproach is proposed
to estimate human age with the images of human face as thé dapa. However, the
proposed multi-output CNN is also a classification problang people with different ages
are classified into different small groups. Therefore, is tthapter, a CNN based image
regression approach is proposed to provide a fast and aecolfar irradiation capturing.

Themain contributions of this method are:

1. A big data processing approach is used in renewable eaeegyfor solar irradiation
capturing, which contains big data cleaning and deep legrbased image regres-
sion. Compared with the traditional solar irradiation cajoiy approach, the CNN
based approach is cheap, fast, accurate, and conveniemetddnded for large-area

monitoring.

2. Based on the Dirichlet process, variational inferenoel, Bayesian theory, a Gaus-
sian mixture model with Bayesian inference approach is eysual to determine the

mixture components automatically. It decides the comptE@mount automatically.
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3. Based on the CNN architecture for classification, a newes=gon CNN architecture
is designed for image regression problem. The input of tlepgsed approach is
the image set and the output is the continuous variable sithwan be extended for
multiple regression problems. According to Deep dreantedlalgorithms, the CNN
working manner is illustrated layer by layer with Figureshigh help researchers

deeply understand the working principle of deep learning.
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Chapter 6

Conclusion and Future Work

A big data visualization platform is designed for engine@rsnonitor the system in
an convenient way, which helps to discover the hidden udefalledge for smart grid
operation, control, and situation awareness. A short-tead forecasting based network
reconfiguration is proposed to reduce the distributionesydbss dynamically. Instead of
the static load measurements at the scheduled time spetshtnt-term load forecasting
approach can provide accurate future load profiles, whictiabas more information for
the network reconfiguration. The whole proposed approadatesigned as a distributed
computation approach. Considering the reality of thregsphunbalanced power system, a
multi-timescale approach is proposed aiming to obtain adrigiccuracy with SDP relax-
ation. The numerical results are calculated in a short tintle parallel work by ADMM.

In order to overcome the missing data in power system, a rsmlal irradiance captur-
ing approach is proposed with a CNN framework. Based on thetrend of artificial
intelligence, a proposed convolution neural network isduwecapture the GHI with the
sky images. Compared with the traditional approaches, ihygosed approach is accurate,
flexible and convenient to be widely deployed for large-agekar irradiance capturing.
Furthermore, the proposed approach can also be used asamatiatand multi-functional

platform for other image regression projects such as tiddiggeothermal power estimation.
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After that, a new stacking model is built for renewable egpdogecasting. The models aims
to set up an efficient way to do the forecasting work of diffeédd@nds of renewable energy.
It has been demonstrated that a reasonable stacking madekb#ve a higher accuracy
in forecasting. Using more artificial intelligence in thesearch of power system will be a
new trend in the next decades.

Based on the research, application of artificial intellicgehas been an active techniques
for power system. After significant successes were achjevgtust be a continuous trend
in next decades. Considering the industrial use of powdesysthe problems of improv-
ing system reliability and dynamic state estimation arewetssl to be solved with Al. Al
is developed with complex computer tools and used to resalvihe above problems. In
power system, many projects consist of different non-fdagsiequirements. Al is a use-
ful way to solve this kind of problem, such as controlling odduency and power flow,
forecasting work for renewable energy, energy tradingedaling for reliability of power
system, transmission expansion, and reactive power. sédsechnology can be used to
closely monitor the consumption of power system equipminisgher accuracy. It is in-
dispensable to achieve a reliable and efficient power supphig amount of research has
demonstrated that deep learning is an emerging technoldfypewerful ability in many
aspects; however, it also contains many problems suchtag point setting, optimizer se-
lection, and architecture design. In the next step, we wllect a bigger dataset, and focus
on improving the training efficiency, reducing the netwodimplexity, and increasing its

capability to provide more useful information for power &y operation and control.
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