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Abstract
The variation of facial images in the wild conditions due to head pose, face illumina-

tion, and occlusion can significantly affect the Facial Expression Recognition (FER) per-

formance. Moreover, between subject variation introduced by age, gender, ethnic back-

grounds, and identity can also influence the FER performance. This Ph.D. dissertation

presents a novel algorithm for end-to-end facial expression recognition, valence and arousal

estimation, and visual object matching based on deep Siamese Neural Networks to handle

the extreme variation that exists in a facial dataset. In our main Siamese Neural Networks

for facial expression recognition, the first network represents the classification framework,

where we aim to achieve multi-class classification. The second network represents the ver-

ification framework, where we use pairwise similarity labels to map images to a feature

space where similar inputs are close to each other, and dissimilar inputs are far from each

other. Using Siamese architecture enabling us to obtain powerful discriminative features

by taking full advantage of the training batches via our pairing strategy, and by dynami-

cally transferring the learning from a local-adaptive verification space into a classification

embedding space. These steps enable the algorithm to learn the state of the art features

by optimizing the joint identification-verification embedding space. The verification model

reduces the intra-class variation by minimizing the distance between the extracted features

from the same identity using different strategies. In contrast, the identification model in-

creases the inter-class variation by maximizing the distance between the features extracted

from different classes. When a network is tuned carefully, we can rely on the powerful dis-
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criminative features to generalize the power of the network to unseen images. Further, we

applied our proposed deep Siamese networks on two different challenging tasks in com-

puter vision, valence and arousal estimation and visual object matching. The empirical

results of the valence and arousal Siamese model demonstrate that transferring the learn-

ing from the classification space to the regression space enhances the regression task since

each expression occupies a representation within a specified range of valence and arousal

affect. On the other hand, Siamese model of visual object matching gives a better model

performance since the classification framework helps to increase the inter-class variation in

the verification framework. We evaluated the algorithm using state-of-the-art and challeng-

ing datasets such as AffectNet Mollahosseini et al. (2017), FERA2013 Goodfellow et al.

(2013), categorical EmotioNet Du et al. (2014), and Cifar-100 Krizhevsky et al. (2009).

To the best of our knowledge, this technique is the first to create a powerful recognition

system by taking advantage of the features learned from different objective frameworks.

We achieved comparable results with other deep learning models.
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Chapter 1

Introduction

Automated facial expression recognition (FER) has shown to have positive impacts

and influences on our society as it has been widely used in a range of applications. For

example, it has been utilized in building the next generation of human-machine interac-

tion (HMI) systems such as driver fatigue surveillance, affect-aware social robotics, and

robot-based behavioral therapy. Although extensive research studies have been conducted

towards improving FER systems, the variation of facial images in the wild conditions due to

head pose, face illumination, and occlusion can significantly affect the FER performance.

Moreover, between subject variation introduced by age, gender, ethnic backgrounds, and

identity can influence the FER performance Valstar et al. (2012). Hence, more research

needs to be conducted to address these challenges.

In the last few years, deep learning has outperformed traditional machine learning meth-

ods for visual object recognition. In most of the CNN-based works, softmax function is

used along with the cross-entropy loss to train deep models. However, samples within the

same class are often dispersed due to the high intra-class variation introduced by the above-

mentioned factors. In other words, the intra-class variation can overwhelm the differences

between classes and make designing FER systems more challenging.
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Several researchers have tried to enhance the discriminative power of softmax. For ex-

ample, authors in Liu et al. (2017) proposed the angular softmax (A-softmax) to learn an-

gular discriminative features that have smaller maximal intra-class distances than minimal

inter-class distances. Other researchers utilized well-designed metrics Cao et al. (2013);

Chechik et al. (2009, 2010); Cui et al. (2013); Davis et al. (2007); Globerson and Roweis

(2006); Goldberger et al. (2005); Guillaumin et al. (2009); Lu et al. (2013); Nguyen and

Bai (2010); Qamar and Gaussier (2009); Qamar et al. (2008); Shalev-Shwartz et al. (2004);

Weinberger et al. (2006); Xing et al. (2003); Zheng et al. (2011) instead of softmax to

tackle the intra-class variation by learning distance/similarity metrics such that the features

of the images belonging to the same label become close to each other, while images of

different identities become far from each other. However, one fundamental limitation of

these approaches is that they are often linear and shallow, and rely on hand-crafted image

descriptors, while the inter- and intra-class variation are non-linear and observed only in a

high-dimensional space Sun et al. (2014). Alternatively, with the outstanding performance

of deep learning, non-linear mappings can be achieved with CNNs to automatically learn

discriminative features directly from the samples followed by a simple distance metric such

as Euclidean. In this dissertation, we adopt the deep metric learning as a non-linear trans-

formation to embed images into the feature space.

There are also several works on jointly training a traditional metric loss using soft-

max. For example, authors in Sun et al. (2014) presented the idea of a joint identification-

verification representation but for a verification task rather than an identification task. In

their architecture, the features are learned by using both signals simultaneously. Their work

differs from our approach in a way that both losses are weighted by a hyperparameter. An-

other work McLaughlin et al. (2016) explicitly used a joint identification-verification sys-

tem, but it weighted both costs equally. Therefore, the network was trained to satisfy both

objectives. They found that jointly optimizing both costs is crucial for convergence.

2
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Figure 1.1: An intuitive illustration for constructing ideal features representation of the
face recognition system. Reducing the distance between the examples and increasing it
between the examples and center point (zero vector, local mean, or global mean) leads to
low intra-class variation and high inter-class variation.

We argue that we can do better by adopting deep convolutional Siamese networks that

are controlled by two supervisory loss functions. The verification loss is combined into

the identification loss such that its early contribution to the total loss function can assist

in decreasing the intra-class variation. After training the system for several epochs, we

decay the verification loss until it vanishes, keeping the identification loss 1 targeting the

inter-class variation.

Therefore, to create a reliable and robust supervised metric learning method, the train-

ing procedure should handle the extreme variation that exists in the facial dataset. Addition-

ally, it should be able to integrate a multi-objective loss function to manage the intra/inter-

class variation without increasing the training computational complexity.

In summary, this dissertation proposes a novel representation based on supervised loss

function by using deep Siamese Neural Networks, aiming to decrease the intra-class vari-

ation and increase the inter-class variation to enhance the FER performance, as shown in

Figure 1.1.

1To be consistent with the literature in face recognition; we refer to classification as identification through-
out this dissertation.
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Our major contributions are summarized as follows:

1. A novel deep Siamese Neural Networks that contain an identification framework and

a verification framework.

2. Integrating a multiple-objective loss function in the verification framework to en-

hance the discriminative power of the verification embedding space.

3. Ability to transfer the learning from the verification space to the identification space

to enhance the discriminative power of the identification embedding space.

4. Introducing a novel mining strategy to handle the negative pairs constraints without

additional computational resources and memory requirements.

5. Adapting the local structure for the embedding space by a novel pairing strategy.

The remainder of this dissertation is organized as follows: Chapter 2 reviews the re-

lated literature on metric learning and Siamese Neural Networks. Chapter 3 describes our

proposed Siamese Neural Networks architecture, which includes the identification frame-

work and verification framework. Our data mining strategy and a multi-task metric used in

the verification framework are also described in this chapter. Chapter 4 introduces an end-

to-end algorithm for the valence and arousal estimation using Siamese Neural Networks.

Chapter 5 describes one of Siamese Neural Netowrk applications of image matching with

Cifar-100 dataset. Finally, Chapter 6 concludes the dissertation with some discussions and

suggestions for future work.
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Chapter 2

Related Work

Image-based facial expression recognition systems have been actively studied in the

past few years. Since this dissertation is mainly concerned with developing a metric-based

cost function and Siamese Neural Networks, we briefly review the related works in these

two areas.

2.1 Siamese Neural Networks

Siamese Neural Networks (SNNs) comprise of two identical networks that share the

weights and are joined by an energy function at the top. One of the efficient energy func-

tions used alongside with SNNs is a contrastive energy function, which contains dual terms

to decrease the energy of similar pairs and increase the energy of dissimilar pairs.

Siamese Neural Networks are first introduced in 1994 by Bromley Bromley et al.

(1994), where the authors described an algorithm for a signature verification that is writ-

ten on a pen-input tablet. Since then, SNNs have drawn great attention in many computer

vision applications. One of the most fundamental problems in computer vision that uses

SNNs is visual tracking problems Fan and Ling (2019); Li et al. (2019); Zhang and Peng
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(2019). It aims to estimate the position of an arbitrary target in a video sequence, given

only its location in the initial frame. They formulated object tracking as a matching prob-

lem where a Siamese model aims to learn a similarity function from a large set of data.

Another example is a person re-identification problem Zheng et al. (2019), where a

Siamese architecture is trained to predict the similarity or the distance between two input

images. Moreover, one can find the Siamese Neural Networks trace in video face recogni-

tion Yang et al. (2017), face verification Taigman et al. (2014), localization Tompson et al.

(2015), image descriptors Kumar et al. (2016), zero-shot recognition Kiran Yelamarthi et al.

(2018), one-shot recognition Koch et al. (2015), few-shot recognition Sung et al. (2018),

signature verification Wu et al., sentence similarity Mueller and Thyagarajan (2016), text

similarity Neculoiu et al. (2016), detection Klomp et al. (2019), image segmentation Lu

et al. (2019), and image retrieval Qi et al. (2016).

In this dissertation, we create Siamese networks architecture comprising of two frame-

works: a recognition framework and a verification framework. Specifically, we transfer the

learning from the verification framework into the recognition framework. Each framework

or branch has its own loss function. The identification framework has a cross-entropy loss

function to classify facial emotion into several classes. On the other hand, the batch of in-

puts in the verification framework is resampled as a similar/dissimilar pairs in order to build

a similarity loss function that takes those pairs of input and measure the distance/similarity

between them.

2.2 Metric Learning

Learning an effective metric for the estimation of discriminative features is the core

of a multi-class classification task as it draws the objective of the system. According to

different linear metrics used on feature vectors, one can divide linear Metric Learning into
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two main categories: distance metric learning and similarity metric learning. Despite

their conceptual differences, these two types are formed based on a similar goal. Specif-

ically, to learn a metric such that more discriminative information can be exploited via

mapping features to an embedding space where intra-class samples are close to each other,

and inter-class samples are pushed away from each other.

Distance metric learning, as the name suggests, uses the Euclidean distance to mea-

sure the pairwise relationship between two feature vectors. To name a few, authors in Cui

et al. (2013); Davis et al. (2007); Globerson and Roweis (2006); Goldberger et al. (2005);

Guillaumin et al. (2009); Lu et al. (2013); Shalev-Shwartz et al. (2004); Weinberger et al.

(2006); Xing et al. (2003); Zheng et al. (2011) proposed algorithms to minimize the Eu-

clidean distance between the similar pair and to separate the dissimilar pair with a large

distance. On the other hand, authors in Cao et al. (2013); Chechik et al. (2009); Li et al.

(2013); Nguyen and Bai (2010); Qamar and Gaussier (2009); Qamar et al. (2008) used the

similarity measure to map the images into a discriminative embedding space. For example,

Qamar et al. (2008) formulated the similarity metric learning using Cosine similarity. They

optimized the similarity metric using an online training approach, and they showed that

the Cosine similarity is preferred over the Euclidean distance on several data collection

sets. Along a different line, Cao et al. (2013) developed Similarity Metric Learning by

incorporating both a Mahalanobis distance metric and a bilinear similarity metric, simulta-

neously. The formulation was proven to be a convex optimization problem that guarantees

the existence of its global solution.

The above linear metric learning approaches may suffer from non-linear correlations of

samples. Alternatively, as the discriminative power of kernel trick methods is limited, deep

metric learning approaches Bhattarai et al. (2016); Cui et al. (2016); Duan et al. (2018);

Harwood et al. (2017); Hu et al. (2014, 2015); Huang et al. (2016); Iscen et al. (2018);

Kumar et al. (2016); Liu et al. (2017); Lu et al. (2013, 2015); Movshovitz-Attias et al.
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(2017); Oh Song et al. (2016, 2017); Paisitkriangkrai et al. (2015); Schroff et al. (2015);

Sohn (2016); Taigman et al. (2014); Ustinova and Lempitsky (2016); Wang et al. (2014a,

2017); Wen et al. (2016b) have been proposed to learn a non-linear mapping directly from

the samples. Researchers have adopted five major approaches in this area to achieve a better

performance.

In the first approach, facial images are used along with their identity labels to learn dis-

criminative identification features in a classification framework. Most of these algorithms

use a Deep Convolutional Neural Network (DCNN) architecture along with softmax to

learn discriminative identification features. For Example, VGG-Face model Parkhi et al.

(2015) used various Convolutional Neural Network (CNN) architectures for face identifi-

cation and verification tasks.

In the second approach, researchers tried to enhance the discriminative power of soft-

max function. For example, the authors in Liu et al. (2017) proposed the angular softmax

(A-softmax) to learn angular discriminative features that have smaller maximal intra-class

distance than the minimal inter-class distance.

In the third approach Hu et al. (2014); Lu et al. (2013, 2015), pairs of images (genuine

or impostor) along with the same or not-same label are used to learn a feature embedding

where genuine pairs are closer, and impostor pairs are far apart. In this approach, the total

loss (constructive loss) is composed of two partial loss functions, one for the genuine pair

and the other for the impostor pair. It is designed in such a way that the minimization of

total loss reduces the distance for genuine pairs and increases the distance of impostor pairs.

Along similar line, the authors in Duan et al. (2018); Iscen et al. (2018); Movshovitz-Attias

et al. (2017); Schroff et al. (2015); Ustinova and Lempitsky (2016); Wang et al. (2014a)

introduced a triplet loss to learn the metric using triplet face samples while others such

as Huang et al. (2016) moved towards quadratic loss to learn the metric using four face

samples.
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The fourth approach is similar to the third approach except that instead of computing

the similarity score between pair, triple, or quadratic samples, it learns the embedding

space by comparing more comprehensive pairs that reflect the local or global structure of

the embedding space. For example, the authors in Oh Song et al. (2016) took the full

advantage of training pair examples through introducing a matrix of a pairwise distance

within a batch instead of a vector of a pairwise distance. The authors in Song et al. (2017)

proposed learning an end-to-end framework that is aware of the global structure of the

embedding space and designed to optimize the clustering quality.

In the fifth approach, researchers moved towards joint training of multiple objectives

loss in which they developed an effective feature representation by using multiple signals

as a supervision simultaneously. For example, the authors in Wen et al. (2016b) enhanced

the discriminative power of the learned features by proposing another supervising signal,

named a center loss, to supervise the deep model along with softmax function. The center

loss aims to learn a center for the deep features of each class and minimize the distances

between the class features and corresponding class centers. Authors in McLaughlin et al.

(2016); Sun et al. (2014); Wen et al. (2016a,b) explored using deep learning along with the

face identification and verification signals as supervision.

In this dissertation, we adopt the fifth approach of joint identification-verification rep-

resentation, but we enhance it with the idea of transfer the learning from the verification

system to the identification system. Therefore, instead of weighting both objectives equally

as in McLaughlin et al. (2016) or using a hyperparameter to weight them as in Sun et al.

(2014), we propose a weighting scheme by which the verification signal contributes at the

early training time. Later this signal vanishes while the identification signal is involved

gradually in the system. In our previous work Hayale et al., we presented a method for

embedding two signals, the verification and identification, into a facial expression recog-

nition system using a deep Siamese Neural Networks. We obtained promising results by
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dynamically modulating the verification signal over the identification signal. We further in-

vestigate that idea by integrating a metric that reflects the local structure of the embedding

space and by using a novel pairing strategy to handle negative pairs constraints without

extra computational burdens and memory requirements.

10



Chapter 3

Facial Expression Recognition using

Siamese Neural Networks

Figure 3.1 illustrates a diagram of our proposed Siamese networks architecture. It has

two identical networks sharing the same parameters. The two identical networks perform

a non-linear mapping from the input domain to a high-level embedding space, which is

responsible for creating more discriminative features. For each network, we use the state-

of-the-art DenseNet architecture presented in Huang et al. (2017), although other deep

networks can be used.

The first network represents the classification framework, where we aim to achieve

multi-class classification using a cross-entropy loss function along with softmax function.

While the second network represents the verification framework, where we use the same

or not same labels to map images to a feature space where similar inputs are close to each

other, and dissimilar inputs are far from each other. Our first goal is to achieve a metric

learning scheme through the verification framework that is aware of the local structure of

the embedding space through a novel pairing strategy. The second goal is to achieve a

multi-task metric learning approach in the verification framework in which we will lever-
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Figure 3.1: Main diagram of our proposed architecture.

age the performance of a single task by combining multiple objective losses. The final

features can be more discriminative by using both face identification and verification sig-

nals as supervision signals. In order to achieve that, our third goal is to enable the transfer

learning from the high dimensional features within the verification space to the identifica-

tion space to enhance the identification task objective. Finally, our fourth goal is to exploit

multiple visual features by building an ensemble of various models, in which each model

has a different verification framework. The final model performance is calculated from the

average sum of these model predictions.

We train our network using AffectNet Mollahosseini et al. (2017), FER2013 FER,

and categorical EmotioNet Du et al. (2014) datasets and derive the joint identification-

verification metric using the DCNN features of the training data. Then, given a facial

expression image, we classify the image into different essential expressions based on their

DCNN features and the learned metric. We will provide further details of each component

of our architecture in the following subsections.
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3.1 Identification Framework

The first branch in our network is the identification framework which is achieved by

feeding the features to softmax layer. This layer classifies each image into one of seven

different expressions by giving the probability distribution over the seven classes. Given a

feature vector f with its associated emotion label y, we can derive the probability distribu-

tion as follows:

Pi = P (y = i|f) = expWif∑
k exp

Wkf
(3.1)

where Wi refers to the ith column of softmax weight matrix. The network is then trained to

minimize the cross-entropy loss (identification loss) as defined below:

IdentLoss = −
K∑
i=1

y logPi (3.2)

where y = 0 stands for all classes except for the target class, and K represents the total

number of examples in the dataset. Since the AffectNet and FER2013 datasets are heavily

imbalanced, we utilize the weighted-loss approach presented in Mollahosseini et al. (2017),

while we use the regular cross-entropy loss for EmotiNet-7 and EmotiNet-22 datasets. The

weighted-loss approach weights the loss function for each class according to its relative

proportion in the dataset. In other words, the loss function sets different penalization

weights for under-represented classes and well-represented-classes. We can define the

weighted loss for an identification signal as follows:

Identweighted = −
K∑
i=1

yHi logPi (3.3)

where Hi represents penalization weight for class i.
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3.2 Verification Framework

Traditionally, the usual loss functions used for verification learning are contrastive

loss Chopra et al. (2005); Hadsell et al. (2006) or triplet loss Dong and Shen (2018); Schroff

et al. (2015). Therefore, the training procedure in those approaches relies on creating pos-

itive pairs (similar samples having similar class labels) and negative pairs (dissimilar sam-

ples having different class labels). We briefly introduce our pairing strategy in Section 3.2.1

and the proposed metric for this framework in Section 3.2.2.

3.2.1 Data Mining and Local Structured Pairing

In the verification framework, we train a deep neural network to learn a set of hierarchi-

cal non-linear transformations to project facial images into a feature space, under which the

distance of each positive pair is reduced, and the distance of each negative pair is enlarged.

Therefore, the proposed loss function accepts a pair of positive and negative features to

optimize the similarity or the distance between them.

Consider Pos, and Neg are two sets of all possible positive and negative pairs that can

be generated from the training images that have M categories. Assuming each class has N

number of images, then the total number of pairs are:

Pos =
M∑
i=1

Ni ∗ (Ni − 1) (3.4)

Neg =
M∑
i=1

M∑
j=1

Ni ∗Nj i 6= j (3.5)

With a large volume of data pairs, this results in a slow training convergence. Previous

works Harwood et al. (2017); Iscen et al. (2018); Oh Song et al. (2016); Schroff et al.

(2015); Sohn (2016); Song et al. (2017) have shown that mining strategy plays an essential
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role in Siamese networks training as it relies on only hard negative examples and hard

positive examples to produce gradient with a sufficiently large magnitude. On the other

hand, it can be challenging to determine the “best” representative pairs that can contribute

most to the network convergence. Several approaches tried to tackle these issues through

learning by stochastic gradient descent (SGD) or (online learning) in which they considered

the pairs in each iteration of batches Chechik et al. (2009). Other by learning with carefully

designed pairs, in which all the negative and positive pairs were prepared in advance, which

is very time consuming and difficult to accomplish with large-scale dataset Hadsell et al.

(2006). While other Harwood et al. (2017); Iscen et al. (2018) tended to use a mining

strategy for negative samples in which they picked only the hard negative examples that

produce gradient with large magnitudes.

Before explaining our pairing strategy, we need to have good insight into the feature

space corresponding to these two signals. We use a t-distributed stochastic neighbor em-

bedding (t-SNE)1 to visualize the mentioned feature space as shown in Figure 3.2. Figure

3.2a shows the verification signal with an objective of making the samples sharing the

same class labels close to each other, and pushing the samples that have different class la-

bels away from each other. It shows that the verification signal has succeeded in reducing

the intra-class variation, but it did not enlarge the inter-class variation well. In contrast,

using only an identification signal as shown in Figure 3.2b can enlarge the inter-class vari-

ation significantly Sun et al. (2014). Since the inter-class variation can be optimized via

negative pairs, using an identification signal compensates for the use of negative pairs in

the verification framework. However, instead of neglecting all the negative pairs in the

verification framework, the mining strategy is applied to the negative pairs in which we

generate negative pairs between only the classes that are close to each other. To explore

1t-SNE is a technique used for a non-linear dimensionality reduction for embedding high-dimensional
data into two or three dimensions space, that can then be visualized in a scatter plot.
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epochs 

(a) Verification Signal

epochs 

(b) Identification Signal

epochs 

(c) Both signals

Figure 3.2: Visualization of 2-dimensional features for seven classes of AffecNet dataset
across several epochs. The indices 0 through 6 represent Neutral, Happy, Sadness, Surprise,
Fear, Disgust, and Angry classes, respectively. (a) Illustrates the feature space when using
only the verification signal. It has small intra-class variation; on the other hand, the inter-
class variation is also small, which causes different classes to be close to each other. (b)
Illustrates the feature space using only the identification signal. There is a large inter-class
variation; on the other hand, the intra-class variation is not too small, which causes the
identities that belong to the same class to be far apart from each other. (c) Illustrates the
feature space using both signals where both inter- and intra-class variation are enhanced
eventually.
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the classes that are close to each other, we train a single DenseNet network for multi-class

classification. From Figures 3.2b and 3.7, we can observe that several classes are closer to

each other than other classes (e.g., Neutral with Sadness, Surprise with Fear, and Disgust

with Angry).

3.2.1.1 Full pairing strategy

In this dissertation, instead of the offline pairing approach in which the pairs are built

and fed as a batch of input pairs into two identical networks, we follow the online pairing

approach. We feed a batch of single examples to our verification network then we generate

the pairs from the features directly at the embedding space. Specifically, after a non-linear

mapping to the embedding space, each batch of features will be split into two mini-batches.

Afterward, we generate positive features and negative features from these two mini-batches

by taking each feature from one mini-batch with the corresponding feature from the other

mini-batch, as shown in Figure 3.3a. We name this approach as an Element-wise approach.

Further, we extend this approach to reflect the local structure of the embedding space

by lifting the pairs vector and taking each example from one mini-batch with all examples

from the other mini-batch, as shown in Figure 3.3b. We name this approach as Pair-

wise approach. By leveraging the ideal properties of generated positive and negative pairs,

the training efficiency can be improved, the learned metric becomes robust to intra/inter-

class variation, and the computational cost of offline pairing can be dramatically reduced

through the online pairing. Since both approaches utilize prediction-to-prediction pairing

in which both predictions can be obtained from the current training batch, we designate

both approaches as a Full Pairing strategy.
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(b) Pair-wise mini-batches pairing

Figure 3.3: Full pairing strategies.
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Figure 3.4: Partial positive pairing strategy.

3.2.1.2 Partial pairing strategy

We consider another two pairing strategies where the local mean of each class and

the mean of all classes are involved along with all examples in the batch. We name this

strategy as Partial Pairing strategy as it does not include two predictions in the generated

pairs, and it does not require splitting the batch into two mini-batches. For the first partial

strategy, we consider generating pairs by pairing each example with its local class mean for

positive pairs, as shown in Figure 3.4, and with the local class means of the other classes

for negative pairs as shown in Figure 3.5a. However, instead of considering all the possible

negative pairs between the classes, we consider only the examples for classes close to each

other since the far classes will not produce a potential gradient. We refer to this pairing

strategy as Partial-1.

The second partial strategy involves the pairing between all the examples and the local

mean of all the examples for negative pairs, as shown in Figure 3.5b, along with the same

Partial-1 positive pairing strategy. We refer to this pairing strategy as Partial-2. For this

pairing strategy, we also investigate a global mean and a zero-vector instead of the local

mean. For better comparison in Experiment and Results section in Section 3.4, we name
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(a) Partial-1: prediction to class mean negative pairing.

Training batch 
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of all classes 

(b) Partial-2: prediction to local mean negative pairing.

Figure 3.5: Partial negative pairing strategies.

20



the above approaches as Local-mean Partial-2, Global-mean Partial-2, and Regularized

Partial-2. In summary, our mining strategy includes online pairing that reflects the local

structure of the embedding space besides mining the negative pairs to be only between the

classes that need to be separated by a specified margin.

3.2.2 Multi-task Metric Learning

3.2.2.1 Full-based pairing loss function

We use Euclidean distance and Cosine similarity functions or the combination of both

to design our metric. Since the proposed architecture involves many individual processing

steps, for notational simplicity, we refer to the complete network as a function, f = F (x),

that takes an image x as an input and produces a vector f as an output. In such case, the

Euclidean distance D and Cosine similarity S between two vectors f1, f2 ∈ Rd can be

written as:

D2(f1, f2) = ‖(f1 − f2)‖2 (3.6)

S(f1, f2) =
f1

Tf2
‖f1‖‖f2‖

(3.7)

We propose a multi-task metric learning method to simultaneously learn an Euclidean

distance and a bilinear similarity between all the examples along with the Euclidean dis-

tance between the examples and the local mean of the data. Therefore, to learn an improved

metric function for the verification task containing both, we adopt an energy-based local-

adaptive similarity metric learning algorithm, which is defined as:

Loc-SML(f1, f2, favg) = S(f1, f2)−D(f1, f2)

+ 1/D(f1, favg) + 1/D(f2), favg) (3.8)
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where fAvg represents the local mean of the batch. We call this method a Loc-SML, short

for Similarity Metric Learning enhanced with local structure. Specifically, it learns jointly,

(i) the Euclidean distance as a projection into a low dimensional Euclidean space, (ii) Co-

sine similarity as a projection into a low dimensional Similarity space, (iii) Euclidean dis-

tance between all the examples and the local mean of the examples. By jointly learning

multiple objectives, the information shared between the related tasks can lead to improved

performance.

This Loc-SML loss function is composed of two items, a match loss which acts as a

pulling force and a mismatch loss which acts as a pushing force.

Jmatch =
∑

fifj∈Pos

max(0, 1− Loc-SML) (3.9)

Jmismatch =
∑

fifj∈Neg

max(0, 1 + Loc-SML) (3.10)

Unlike other methods that usually take pairs in the Pos and Neg sets for the whole

training set, Loc-SML contains only similar and dissimilar pairs created from the training

batch by following our novel pairing strategies. More details about our pairing strategies

are mentioned in Section 3.2.1.

Let label = 1 (respectively label = 0) denotes the pairs being similar (respectively

dissimilar), then the total Loc-SML cost is defined as :

Jtotal = label ∗ Jmatch + (1− label) ∗ Jmismatch (3.11)

which can be explained as two constraints:

• When the label = 1, we have 1 − Loc-SML ≤ 0 which means the Loc-SML of a

similar pair should be larger than 1.
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• When the label = 0, we have 1 + Loc-SML ≤ 0, which means the Loc-SML of a

dissimilar pair should be smaller than than -1.

Higher energy indicates high S and low D, which suggests f1 and f2 form a genuine

pair. On the contrary, low energy indicates low S and high D, which suggests f1 and f2

form an imposter pair. Clearly, the term 1/D is not used for the Jmatch as it reflects only

the pushing force in our loss function.

For the first two terms in Equation 3.8 we use the Element-wise full pairing strategy

for the positive and negative pairs (See Figure 3.3a). While for the third and fourth terms

in Equation 3.8, we pair all the examples with the local mean of the data to maximize the

distance between them following the pairing strategy shown in Figure 3.5b. We refer to

this model as Full-LocalMean model.

For the third and fourth terms Equation 3.8, we also investigated using global mean (the

mean of the whole training set) and a zero vector instead of the local mean. We refer to

these models as Full-globalMean and Full-regularized, respectively.

3.2.2.2 Partial-based pairing loss function

We further apply our Partial pairing strategy mentioned in Section 3.2.1.2. In the

Partial-1 model, given a batch of inputs to the verification framework, each batch is pro-

cessed to generate mini-batches F1, F2, . . . , Fk, for k ∈ {1, . . . , K}, which represents the

mini-batches of features belonging to each class from K total number of classes. Then an

average feature favg is calculated for each class. Hence, we can write the Siamese networks

training objective for the positive pair’s loss as follows:

Partialmatch =
K∑
k=1

1

2
‖Fk − f (k)

avg‖2 (3.12)
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where K is the total number of classes in the dataset, ‖Fk − f
(k)
avg‖ is the Euclidean dis-

tance between the mini-batch features of one class and average feature for that class. The

objective encourages the features to be close to their class mean. In contrast, we define

the objective for the negative pairs loss function to enforce the features belonging to close

classes to be separated by a margin m as follows:

Partial1mismatch =
K∑
k=1

1

2
[max(m− ‖Fk − fAvg‖, 0)]2 (3.13)

where K it the total number of classes in the dataset, ‖Fk− fAvg‖ is the Euclidean distance

between the mini-batch features of one class and average feature for the class that is close

to a class Fk. The margin m is set to 2 in all our experiments.

In Partial-2 model, we define the objective for the negative pairs loss function to max-

imize the distance between the features exist in the batch and the local mean of the batch.

This can be written as:

Partial2mismatch =
N∑
i=1

1

2
[max(m− ‖fi − fAvg‖, 0)]2 (3.14)

where N is the total number of features in the batch, ‖fi − fAvg‖ represents the Euclidean

distance between all the features in the batch and the local mean of the batch.

We can drive our final Partial loss function for verification framework as

Partialtotal = label ∗ Partialmatch

+ (1− label) ∗ Partialmismatch (3.15)

where Partialmismatch involves either Partial1mismatch or Partial2mismatch loss function.

label = 1 (respectively label = 0) denotes the pairs being similar (respectively dissimilar).
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3.3 Joint Identification-Verification

The learned features in the identification space are revealed to have a large inter-class

variation as shown in Figure 3.2b. This is attributed to the identification supervisory signal

that tends to pull apart the features of different identities into seven different classes. On

the other hand, in order to generate an effective identification system, we need to enhance

the system with the verification signal, which has shown that it emphasizes the intra-class

variation. We noticed that the early activation of the verification signal improve the cluster-

ing of dataset classes. Consequently, after several epochs, the verification signal vanishes

through a controlled hyperparameter, while the identification signal is activated gradually.

Thus, we can define the overall training loss function, which jointly optimizes the verifica-

tion cost and the identification cost as follows:

Totalloss = (1− α).V erifloss + α.Identweighted α : 0→ 1 (3.16)

α =
1

exp epochnum−shift
10

(3.17)

where V erifloss includes one of the verification models discussed in Section 3.2.2. The

shift factor represents the epoch number at which the V erifloss and Identloss have equal

contributions in the Totalloss. After that, the V erifloss begins to vanish while the Identloss

involves gradually into the network training. Thus we found that satisfying both the verifi-

cation and identification losses by jointly training is crucial for convergence.

Lastly, besides our model in Equation 3.8, we investigate different models that con-

tain either the Euclidean distance or the Cosine similarity. Following that, we employ an

ensemble method to exploit the relations between the tasks and potentially improve the

performance. For Euclidean distance, we follow the approach in McLaughlin et al. (2016),
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which can be written as:

LossEuc(fi, fj) =

 D(fi, fj)
2 i = j

1
2
max(0,m−D(fi, fj))

2 i 6= j
(3.18)

In the same manner, the first part of this equation aims to minimize the distance between

the similar pairs in the target space, while the second part seeks to separate the dissimilar

pairs with a margin m. We refer to this model as Euclidean model.

While for the Cosine similarity we follow the approach mentioned in Qamar and Gaussier

(2009) in which it can be written as :

LossgCosLA(fi, fj) =

 S(fi, fj) ≥ b+ γ i = j

S(fi, fj) ≤ b− γ i 6= j
(3.19)

Ultimately, the underlying assumption of gCosLA loss is that the similarity between

the similar pairs should always be larger than the similarity between the dissimilar pairs.

More precisely, to enhance that assumption, another threshold b has been introduced along

with the margin γ as a specified margin between the dissimilar pairs in the target space.

We refer to this model as gCosLA model. Consequently, a full comparison between all the

models was mentioned in Section 3.4.

Later on, we exploit multiple visual features by building an ensemble of previous mod-

els, in which each model has a different verification framework. The best performance due

to different pairing strategies for each model will be combined with the best performance

for our original Loc-SML model. The model performance is calculated from the average

sum of these model predictions.
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3.4 Experiments and Results

This section presents the evaluation results of the proposed architecture for the facial

expression identification task using the AffectNet, FER2013, and compound EmotiNet

datasets. We introduce the datasets, implementation details for our network, and the ex-

periments in the following subsections.

3.4.1 Datasets

The AffectNet dataset Mollahosseini et al. (2017) is the largest database of the facial

expression that provides a dimensional and categorical representations of emotion. The

database contains about 1M facial images, which is generated by querying several search

engines and manually annotated for the basic facial expressions. Since the test set is not

released, the evaluation protocol is determined according to the provided validation set.

The FER2013 FER database contains a total of 32,295 images of different identities

and 3,592 for the test set. Seven classes are defined in this dataset (i.e., six basic emotions

plus neutral). The size of the images is set to 48 × 48 pixels. The dataset is created using

the Google image search API, and all the faces are automatically registered so that the faces

are centered in the images.

The compound emotion categories (EmotioNet-22) Du et al. (2014) dataset is cre-

ated by combining the basic component categories. Therefore, 22 categorical emotions

are defined, including six basic emotions and 15 compound facial expressions of emo-

tions. For example, a happily surprise emotion is constructed using a happy with a surprise

component throughout combining the muscle movements observed in happiness and sur-

prise. The 22 facial expressions are collected from 230 human subjects. Most ethnicities

and races are represented in the database. A computational model is driven for key fa-

cial point automatic detection, which defines the shape and external/internal features of the
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face. Then, the automatic categorization of basic and compound emotions is utilized using

shape and appearance features. First, we report the results on the six basic emotions plus

the neutral using 1,610 images of the 230 identities. Then we calculate the accuracy for

the 5,060 images corresponding to the 22 categories of the basic and compound emotions

(plus neutral) from 230 identities in the dataset.

3.4.2 Implementation Details

We use DenseNet architecture as our deep CNNs baseline, though other networks can

be utilized. The DenseNet consists of five blocks in which each block has several convo-

lution layers, and each layer is connected to every other layer in a feed-forward fashion.

Thus, each layer receives the feature-maps of all preceding layers. More details about the

baseline architecture are described in Huang et al. (2017).

The AffectNet faces are cropped from images using the bounding box provided in the

AffectNet metadata file, while the faces of other datasets are already cropped. The faces

of all datasets are resized to 256 × 256 pixels except AffectNet dataset, where the faces

are resized to 128× 128 pixels. Additionally, landmark-based face alignment is performed

on AffectNet dataset, while we do not perform any type of alignment on other datasets as

they are already aligned enough. We perform per-image standardization on all datasets that

linearly scales each image to have zero mean and variance equal to one.

Six types of augmentations, such as flip, brightness, contrast, rotation, hue, and satu-

ration, are applied to create more training samples. The network is trained using a batch

size of 32 for all dataset except AffectNet dataset, where the batch size is set to 128. We

use Adam optimizer Kingma and Ba (2014) as an adaptive learning rate optimization algo-

rithm for training our deep neural network. The baseline learning rate is set to 0.001 and

decreased by a factor of 0.1 when the metric stops improving after each ten epochs.
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To get the best computational performance, we use TensorFlow as the most popular and

efficient machine learning tool for training our network. Keras is also used as a high-level

neural networks API (Application Program Interface) that wraps a sequence of complicated

underlying TensorFlow operations. Moreover, we run our experiments on two NVIDIA

1080 Ti GPUs (Graphics Processing Unit) as underlying computing devices.

3.4.3 Experiments

We present the results of different experiments on the three datasets to demonstrate the

effectiveness of our purposed model, which includes our verification framework and our

pairing strategy. We finally compare with state-of-the-art methods for the three datasets.

3.4.3.1 Different identification losses

In the first experiment, we investigate how the weighted-loss affects the learned features

of the under-represented classes. First, we train a single identification network without us-

ing the weighted-loss. Afterward, in the weighted-loss approach, we set different penal-

ization weights for the under-represented classes and well-represented-classes in AffectNet

and Fer2013 datasets. We do not use the weighted-loss on EmotioNet-7 and EmotioNet-

22 datasets as they are balanced datasets. Table 3.1 shows that the accuracy increased for

AffectNet and FER2013 datasets. It can be noticed from the confusion matrices in Fig-

ures 3.6, 3.7, 3.8, and 3.9 that the facial expression recognition validation accuracy for

both datasets increased comparing to the imbalanced approach. The performance for the

under-represented classes like fear and disgust is better with a weighted-loss approach as

this approach penalizes more the misclassified examples from these classes.
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Table 3.1: Validation accuracy (%) with weighted/un-weighted loss for identification
framework.

Methods AffectNet FER2013 EmotioNet-7 EmotioNet-22

Un-weighted loss 56.45 ±0.21 64.48 ±0.04 97.63±0.23 69.29 ±0.58
Weighted loss 61.01 ±0.22 67.89 ±0.20 N/A N/A

Figure 3.6: AffectNet validation confusion matrix for single identification DenseNet net-
work without weighted-loss approach.

Figure 3.7: AffectNet validation confusion matrix for single identification DenseNet net-
work enhanced with a weighted-loss approach.
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Figure 3.8: FER2013 validation confusion matrix for single identification DenseNet net-
work without weighted-loss approach.

Figure 3.9: FER2013 validation confusion matrix for single identification DenseNet net-
work enhanced with a weighted-loss approach.
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Figure 3.10: Training losses for the proposed architecture for AffectNet dataset.
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Figure 3.11: Training losses for the proposed architecture for FER2013 dataset.

3.4.3.2 Enhancing the system with verification framework

In the second experiment, we investigate the effect of integrating the verification signal

into the deep learned features. Table 3.2 and Figure 3.2c clearly shows that using the

verification framework (Loc-SML) along with the identification framework improves the

recognition accuracy on the validation set for all datasets. Figures 3.10 and 3.11 shows

the training losses for our proposed architecture for AffectNet and FER2013 datasets. The

verification loss contributes early, and then after several epochs, the identification loss is

activated gradually. Specifically, the verification loss usually begins with a very small

value and then begins to decrease until it vanishes while the identification loss dominates

the verification loss gradually. As the alpha reaches 1, the identification loss begins to

decrease. The shift value in Equation 3.17 is set to 5 except for AffcetNet dataset where it

is set to 10. Tuning the shift hyperparameter depends on our observation of the verification

loss. A large shift value does not affect the overall accuracy as the verification loss begins to

stabilize to a low value at early epochs. These results prove that the verification information

included in the learned features of the verification framework helps to reduce the intra-class

variation and aids in better generalization for identification task.
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Table 3.2: Validation accuracy (%) when using verification framework along with identifi-
cation framework.

Methods AffectNet FER2013 EmotioNet-7 EmotioNet-22

Single Network 61.01 ±0.22 67.89 ±0.20 97.63 ±0.23 69.29 ±0.58
Siamese (Loc-SML) 64.22 ±0.14 72.63± 0.29 98.41 ±0.40 72.07 ±0.42

3.4.3.3 Investigating our model with local mean vs. global mean and regularized

feature

In the third experiment, we investigate using different approaches for the mean calcu-

lation of our verification energy loss function mentioned in Equation 3.8. We mentioned in

Section 3.2.2.1 that the local means for the batches are computed online while the network

is training. The other approach is to calculate the mean for the whole training data after

completing one epoch and use that mean instead for feature learning optimization. We also

optimize the metric using regularized feature. We compare all these three models with the

original SML model in Cao et al. (2013), which does not have the third and fourth terms of

mean optimization problem mentioned in our Loc-SML loss function in Equation 3.8.

The results in Table 3.3 is interesting as it shows that using the local mean or regularized

feature in our proposed architecture to represent the whole class leads to a better perfor-

mance than using the global mean or the original SML model. Moreover, using the global

mean slows down the training as it needs further computation at the end of each epoch.

Therefore, using the local mean or regularized feature: compensates the dependency on the

global mean, helps to maximize the distance between samples from each class and the local

mean, and thus assists maximizing the inter-class variation.
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Table 3.3: Validation accuracy (%) of Loc-SML model with local mean vs. global mean
and regularized feature.

Methods AffectNet FER2013 EmotioNet-7 EmotioNet-22

Original SML Cao et al. (2013) 56.50 ±0.32 69.16 ±0.21 96.87 ±0.00 67.96 ±0.15
Full-GlobalMean 60.68 ±0.09 68.66 ±0.28 96.45 ±0.97 67.41 ±0.39
Full-LocalMean 63.48 ±0.16 70.49 ±0.24 97.56 ±0.24 69.40 ±0.33

Full-regularized (Loc-SML) 64.22 ±0.14 72.63± 0.29 98.41 ±0.40 72.07 ±0.42

3.4.3.4 Investigating Partial-1 mining strategy with using all classes vs. close classes

for the negative pairs

In the next experiment, we investigate different approaches for Partial-1 mining strat-

egy to verify which approach gives a better performance. In Section 3.2.1.2, we mentioned

Partial-1 mining strategy for negative pairs that enlarges the distance between the classes

that are close to each other. In this experiment, we investigate the power of our mining

strategy by comparing it with other possible approaches. The first approach is to use only

positive pairs without using any negative pairs, while the second approach is to exploit all

the possible negative classes that can be generated from all classes of our datasets. Since

the EmotioNet-22 dataset has 22 classes, we do not utilize all possible negative classes

approach as it will produce many negative losses, and hence it needs more computational

resources and will slow the training process. Table 3.4 shows that both approaches perform

less than our mining strategy of considering only the close classes. This experiment verifies

that the mining strategy plays a vital role in training the Siamese networks.
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Table 3.4: Validation accuracy (%) with different mining strategies for Partial-1 verification
framework.

Methods AffectNet FER2013 EmotioNet-7 EmotioNet-22

Only Positive Partial-1 61.77 ±0.15 69.18 ±0.38 97.20 ±0.67 66.86 ±0.33
All-classes Partial-1 61.65 ±0.37 68.47 ±0.23 96.18 ±0.49 N/A

Close-classes Partial-1 62.59 ±0.34 70.03 ±0.35 97.57 ±0.24 70.70 ±0.73

Table 3.5: Validation accuracy (%) with different mining strategies for Partial-2 verification
framework.

Methods AffectNet FER2013 EmotioNet-7 EmotioNet-22

Gloabl-mean Partial-2 59.49 ±0.57 67.94 ±0.49 96.00 ±0.48 65.82 ±0.31
Local-mean Partial-2 61.78 ±0.44 70.74 ±0.51 96.87 ±0.73 69.46 ±0.09
Regularized Partial-2 62.31 ±0.86 71.47 ±0.05 97.56 ±0.49 70.82 ±0.54

3.4.3.5 Investigating Partial-2 mining strategy with local mean vs. global mean and

regularized feature

In the next experiment, we investigate different approaches for Partial-2 mining strat-

egy to verify which approach gives a better performance. In section 3.2.1.2, we describe

Partial-2 pairing strategy for negative pairs in which we pair the local mean of data with

all examples in the data. In this experiment, we investigate replacing the local mean with

the global mean and regularized feature approach to notice the power of each one. Table

3.5 shows that the strategy of using the local mean or the regularized feature is better than

using global mean.

3.4.3.6 Investigating different models

We investigate using different models which contain either the Euclidean distance (Eu-

clidean model) or Cosine similarity (gCosLA model) along with using the pairing strategy

mentioned in Section 3.2.1. More details about the two models are mentioned in Section
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Table 3.6: Validation accuracy (%) with different models for verification framework.

Methods AffectNet FER2013 EmotioNet-7 EmotioNet-22

Element-wise Euclidean 63.34 ±0.13 71.89±0.11 97.91±0.42 69.54 ±0.40
Element-wise gCosLA 63.37 ±0.31 70.54±0.46 97.91±0.00 70.24±0.40

Pair-wise gCosLA 63.95±0.20 71.70±0.47 97.74±0.24 69.92±0.57
Ours (Loc-SML) 64.22 ±0.14 72.63±0.29 98.41±0.40 72.07 ±0.42
Ensemble method 64.00 73.00 98.95 72.46

3.3. We utilize only the Full pairing strategy for these two models since it has been proved

to have a better performance than a Partial pairing strategy. Moreover, we enhance the

strategy for Cosine similarity model by considering the Pair-wise strategy mentioned in

Section 3.2.1.1 with the Element-wise pairing strategy. We do not use the Pair-wise strat-

egy for our model (Loc-SML model) as it will consume computational resources with any

model that has Euclidean distance function. On the other hand, it is easy to accomplish with

any Cosine similarity model by doing proper matrix multiplication. We apply the equation

in Qamar and Gaussier (2009) for Cosine similarity model and the equation in McLaughlin

et al. (2016) for Euclidean distance model. Table 3.6 shows the results of the two models.

It shows how the Pair-wise is better than the Element-wise pairing strategy for the gCosLA

model. Moreover, it shows how the Loc-SML model has a better performance than either

the Euclidean model or the gCosLA model.

More importantly, we mentioned in Section 3.3 that we will exploit multiple visual

features by building an ensemble of different models, in which each model has a different

verification framework. Afterward, the best performance due to different pairing strategies

for each model will be combined with the best performance for our original model. Table

3.6 shows the results of applying an ensemble on different models. It shows how applying

an ensemble method enhances the results for all datasets except the AffectNet dataset in

which the result was approximately the same.
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3.4.3.7 Comparing our model with state-of-the-art methods

Finally, a comparison with state-of-the-art methods and network architectures for all

datasets is shown in Table 3.7. The state-of-the-art work for AffectNet dataset Mollahos-

seini et al. (2017) is BReG-Net architecture presented in Hasani et al. (2019) along with

weighted-loss. As the table shows, our method achieves better accuracy (64.22%) on Af-

fectNet. Moreover, we evaluated the performance of several famous architectures such as

ResNet, Inception, VGG, MobileNtt, Xception, and InceptionResNet along with weighted-

loss on AffectNet, EmotioNet-7, and EmotioNet-22. Table 3.7 shows the state-of-the-art

work for other datasets like FER2013. It can be seen that by integrating the verification

framework into the identification framework performs better than the state-of-the-art meth-

ods. Therefore, the learned features from both frameworks help to produce more discrimi-

native features for facial expression recognition task.
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Table 3.7: State of the art comparison (%).

Data Algorithms Accuracy(%)

AffectNet

BReG-Net Hasani et al. (2019) 64.04
ResNet He et al. (2016a) 60.74

InceptionV2 Szegedy et al. (2016) 59.93
MobileNet Howard et al. (2017) 61.72

Vgg16 Simonyan and Zisserman (2014) 61.27
Xception Chollet (2017) 59.50

Inception-ResNet Szegedy et al. (2017) 59.59
Ours 64.22

FER2013

Going deeper Mollahosseini et al. 66.40
FER2013 winner Tang (2013) 71.20

Multiple deep network learning Yu and Zhang (2015) 72.08
Adaptive Weighting Xie et al. (2019) 72.67

Hierarchical committee of DCNNs Kim et al. (2016) 72.72
Multi-scale CNNs Zhou et al. (2016) 72.82

Ours 73.008

EmotioNet-7

Nearest-mean classifier Du et al. (2014) 92
Multiclass support vector machine Du et al. (2014) 85.71

ResNet He et al. (2016a) 93.36
InceptionV2 Szegedy et al. (2016) 92.19
MobileNet Howard et al. (2017) 94.14

Vgg16 Simonyan and Zisserman (2014) 96.88
Xception Chollet (2017) 93.75

Inception-ResNet Szegedy et al. (2017) 91.40
Ours 98.958

EmotioNet-22

Nearest-mean classifier Du et al. (2014) 70.3
Multiclass support vector machine Du et al. (2014) 35.27

ResNet He et al. (2016a) 68.75
InceptionV2 Szegedy et al. (2016) 66.02
MobileNet Howard et al. (2017) 66.60

Vgg16 Simonyan and Zisserman (2014) 69.53
Xception Chollet (2017) 62.70

Inception-ResNet Szegedy et al. (2017) 64.06
Ours 72.460
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Chapter 4

Valence and Arousal Estimation in

Facial Images using Siamese Neural

Networks

While the estimation of emotional valence and arousal in the continuous domain could

have several benefits, the current research on automated facial analysis are mostly focused

on predicting discrete/categorical emotion. This work introduces an end-to-end algorithm

for the valence and arousal estimation using Siamese Neural Networks. The key idea of

this approach depends on a multi-task learning (MTL) and transferring learning from one

space to another to leverage the vital information across the tasks. The empirical results

demonstrate that transferring the learning from the classification space to the regression

space enhances the regression task since each expression occupies a representation within

a specified range of valence-arousal affect. We introduce several novel strategies for engag-

ing the two spaces within Siamese Neural Networks, ranging from different classification

models to different methods for transferring the learning from one space to another. We

evaluate the network on AffectNet dataset that contains high variation of facial images in
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Figure 4.1: An Intuitive illustration of facial expression distribution of AffectNet validation
dataset within the 2-dimensional valence-arousal space for single regression network and
Siamese networks. It shows that the Siamese distribution is more similar to the ground
truth distribution than the single regression network distribution.

the categorical and continuous state where comparable results are achieved compared to

state-of-the-art work.

4.1 Overview

Automated facial image analysis has become central in many aspects of our life, such as

daily communications with people, medical diagnostics, commercial advertisements, psy-

chological sessions, human-machine interface, and education field. Although automated

facial analysis has a long history of studies, it is with the recent achievements in collection

of large-scale facial image dataset and progress in deep machine learning methods that the

facial affect analysis with high fidelity becomes available for use in many applications.

The emotion analysis can be characterized through three main categories, namely 1)

discrete emotion recognition of the basic expressions defined by Ekman Ekman and Friesen

(1971) 2) facial Action Units (AUs) detection (e.g., lip tightening and cheek raising) Ek-

man (1997), 3) continuous emotion estimation in circumplex dimensional model (e.g., va-

lence and arousal) Russell (1980). On a similar line with the continuous emotion, several

40



works describe the continuous emotion in three dimensions of valence, arousal, and dom-

inance Verma and Tiwary (2017), while other algorithms describe the continuous emotion

in four dimensions of arousal, valence, power, and expectancy Kim et al. (2011).

Over the last decade, the majority of the research studies were conducted on discrete

emotion recognition or AUs detection. On the other hand, the approaches for modeling

the continuous emotion are limited. One of the reasons is the lack of datasets that provide

continuous labels. With the recent release of the AffectNet dataset and the availability of

continuous annotation, the motivation to investigate the two-dimensional representations

using machine learning methods has gained attention. Our main focus in this dissertation

is on the continuous emotion defined on Russell’s dimensional model of facial affect Rus-

sell (1980). In this model, the emotion are revealed in a two-dimensional space, valence

and arousal. Valance represents the degree of unpleasant-pleasant (x-axis), while arousal

represents the degree of calming-soothing (y-axis) of the expression.

Since the human emotional states of the three preceding tasks of facial affect have

different analytical representation, most studies have examined these tasks individually and

separately from other tasks Khorrami et al. (2016); Kollias and Zafeiriou (2019a); Li et al.

(2017); Lindt et al. (2019). For example, the authors in Lindt et al. (2019) trained a deep

generative model that can be used to manipulate the facial images according to continuous

two-dimensional emotion labels. They conducted a variety of network architectures to

evaluate the valence and arousal of the generated images. The authors in Khorrami et al.

(2016) considered combining convolutional neural networks (CNNs) with recurrent neural

networks (RNNs) to predict the values of valence and arousal and analyze the effect of each

network component on the overall performance.

On the other hand, some studies correlate between the categorical emotion recognition

task and continuous emotion estimation task Handrich et al. (2019); Kollias and Zafeiriou

(2019b); Kollias et al. (2019a); Siqueira (2018). For example, the authors in Siqueira
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(2018) utilized a multi-task learning approach to learn multiple tasks in parallel. They

used triple networks that share the low-level representation for emotion recognition and

valence/arousal estimation simultaneously. They concluded that training multiple related

tasks leads to better generalization and makes the pre-training more efficient. Other studies

correlate between the three tasks together, for example, the authors in Kollias et al. (2019a)

proposed a multi-task single CNN-based network to jointly learn facial action units, cate-

gorical emotion, and dimensional emotion. On a similar line, the authors in Chang et al.

(2017) introduced FATAUVA-Net, which is a deep neural framework for facial attribute

prediction, facial action unit detection, and valence/arousal estimation. The framework is

structured sequentially, taking advantage of the data flow from one task-related layer to the

next layer to enhance the performance of other tasks. Therefore, they applied the AU layer

and facial attribute layer first and used them to estimate the valence and arousal values in

the next layer since both layers are used to reveal the categorical emotion.

In this dissertation, we focus on the joint learning of the valence/arousal regression task

and categorical emotion recognition to enhance the regression problem (see Figure 4.1).

Our motivation behind this strategy comes from the fact that all our basic expressions are

spread in a specific cluster in the circular field space defined by Russell (1980). Accord-

ingly, we believe that the classification space for the categorical emotion recognition has

low intra-class variation, which will enhance the high intra-class variation exists in the

valence-arousal regression space.

Our major contributions are summarized as follows:

1. Develop a novel deep Siamese Neural Networks architecture that contains a regres-

sion framework and a classification framework.

2. Transfer the learning from the classification space to the regression space to enhance

the discriminative power of the regression embedding space.
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3. Introduce several novel strategies for engaging the two spaces within the Siamese

Neural Networks, ranging from different classification models to different methods

for transferring the learning from one space to another.

4.2 Related Work

Discrete facial expression recognition algorithms have been actively studied for several

decades. Since this dissertation is concerned with the joint learning of continuous emotion

and discrete emotion recognition to enhance the regression task, we briefly mention the

latest research on continuous emotion regression.

4.2.1 Feature Representation

Learning discriminative features is the first step in any face recognition system. A large

variety of algorithms are conducted to extract features from still images or video frames

to predict human emotional states. Early works employ handcrafted local features to build

feature representations Glodek et al. (2011); He et al. (2015); Meng and Bianchi-Berthouze

(2011); Meng et al. (2013); Nicolle et al. (2012); Ramirez et al. (2011) for dimensional pre-

dictions of emotional states. For example, the authors in He et al. (2015) concatenated sev-

eral handcrafted features from audio and video input data and fused the features via Deep

Bidirectional Long Short-Term Memory Recurrent Neural Network (DBLSTM-RNN). The

authors in Nicolle et al. (2012) extracted dynamic descriptions of signals from the global-,

local-face appearance, head movements, and voice. They used a correlation-based measure

for the feature selection process and designed a framework for both real-time feature fusion

and regression process.

However, a wide range of visual tasks has shown that training using a Deep Convo-

lutional Neural Network (DCNN) can learn more compact and discriminative representa-
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tions Girshick et al. (2014); Krizhevsky et al. (2012); Papandreou et al. (2017). To this

end, many methods follow deep learning approaches to learn features for the dimensional

emotion task Chen et al. (2017); Hasani and Mahoor (2017); Hasani et al. (2019); Khor-

rami et al. (2016); Kollias and Zafeiriou (2019a); Kollias et al. (2017, 2019b); Li et al.

(2017); Lindt et al. (2019). For example, the authors in Hasani et al. (2019) introduced a

Bounded Residual Gradient Network(BReG-Net) in which they replaced the identity map-

ping in deep Residual networks He et al. (2016b) with a differentiable function. The authors

in Hasani and Mahoor (2017) presented three different deep networks that are a combina-

tion of Inception, ResNet, and LSTM to estimate the values of valence and arousal in the

wild. The authors in Mollahosseini et al. (2017) used Alexnet architecture Krizhevsky et al.

(2012) to estimate the values of valence and arousal. The authors in Li et al. (2017) pre-

sented ensembles of Bi-directional Long Short-Term Memory (Bi-LSTM) networks Graves

et al. (2013) to estimate the values of valence and arousal in the wild. While the authors

of Khorrami et al. (2016); Kollias et al. (2017, 2019b) considered combining CNNs with

RNNs to predict the values of valence and arousal in the wild and analyze the effect of each

network component on the overall performance.

Some approaches are different in the sense that they are mixed between the handcrafted

features and deep learned features. For example, the authors in Al-Hamadi et al. (2016) ex-

tracted the geometrical facial features and then mapped them to a two-dimensional circum-

plex model of valence-arousal affect. On the other hand, the authors in Chen et al. (2017)

compared the performance of engineered features and deep features learned from LSTM-

RNN architecture using acoustic, visual, and textual modalities. They applied multi-task

learning to predict the valence and arousal values simultaneously.

In this dissertation, we follow our previous work in Hayale et al. in which we used

Siamese Neural Networks and introduced our strategy of transferring the the learning from

verification space to identification space to enhance the identification space. In this appli-
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cation, the two identical networks are one for affect estimation and the other for expression

recognition. Both networks are sharing their bottom features extraction and optimized

within a multi-task learning approach through two different metrics. Further, we introduce

multiple strategies for transferring the learning between the two frameworks based on our

objective of reducing the intra-class variation exists in continuous domain of emotional

states.

4.2.2 Multi Task Learning

Most of the study over the past few years used single task learning (STL) approaches

for continuous emotion estimation Khorrami et al. (2016); Kollias and Zafeiriou (2019a);

Li et al. (2017); Lindt et al. (2019). Several approaches moved towards joint learning of

valence and arousal to predict their values simultaneously Chen et al. (2017); Kollias et al.

(2017, 2019b). Most of other approaches were designed for categorical emotion recog-

nition and re-trained on valence/arousal estimation task by replacing the last layer with

one neuron regression layer Barros et al. (2019); Guo et al. (2020); Hasani et al. (2019);

Vielzeuf et al. (2019). Others moved towards fine-tuning the trained network on a different

task. For example, the authors in Siqueira et al. (2020) presented CNN-based Ensembled

with Shared Representation (ESR) model to reduce the cost of ensembling of different

decorrelated deep networks. After training the model for facial expression recognition,

they fine-tuned the model for valence/arousal prediction by adding two neurons on top of

each branch of the ensemble.

On the other hand, some researchers extract different features to enhance the continu-

ous emotion estimation task. For example, the authors in Nicolaou et al. (2011) utilized the

features extracted from facial expression, audio cues, and shoulder gesture and then fuses

those features using Bidirectional Long Short-Term Memory Neural Networks (BLSTM-
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NNs) to enhance the continuous emotion estimation. On a similar line, the authors in Xi-

aohua et al. (2019) proposed two-levels of attention with a two-stage learning framework

which is dedicated to exploit the categorical representation alongside with continuous emo-

tion features and then utilized Bi-directional Recurrent Neural Network(Bi-RNN) to make

full use of the relationship features and to improve performance on dimensional emotion

estimation.

One interesting approach is FATAUVA-Net that is introduced in Chang et al. (2017),

which is a deep neural framework for facial attribute prediction, facial action unit detection,

and valence/arousal estimation. The framework is structured sequentially, taking advantage

of the flow of data from one task-related layer to the next layer to enhance the performance

for other tasks. Therefore, they applied the AU layer and facial attribute layer first and used

them to estimate the valence and arousal values in the next layer since both layers are used

to reveal the categorical emotion. Additionally, the authors in Mehu and Scherer (2015)

showed in their study that the classification of expression into discrete emotion relies on

more general information like the dimensional emotion of valence and arousal in the wild.

Lastly, the researchers moved to multi-task learning approaches to jointly learn paral-

lel tasks together. MTL first was introduced in 1999 by Caruana Caruana (1997). The

authors demonstrated that by sharing a common representation and transferring the knowl-

edge learned across the tasks can improve the learning of the other related tasks. Since

then, more approaches have adopted MTL as the main approach for solving the different

problems Hayale et al.; Pan and Yang (2009); Zhang et al. (2013); Zhang and Yang (2017).

For example, the authors in Handrich et al. (2019) introduced a single CNN network based

on YOLO architecture Redmon and Farhadi (2017) to predict the valence and arousal val-

ues alongside with other tasks like the categorical emotion prediction and bounding box

detection. The authors in Siqueira (2018) utilized a multi-task learning approach by us-

ing triple networks that shared the low-level representation for emotion recognition and
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valence/arousal estimation simultaneously. They concluded that training multiple related

tasks leads to better generalization and make the pre-training more efficient. The authors

in Zhang et al. (2019) introduced PersEmoN, which is a deep Siamese-like network that

shares its low-level features representation to investigate the joint learning of apparent per-

sonality and emotion analysis from facial images. Both branches of the network are opti-

mized within the multi-task learning framework.

On a similar line, the authors in Kollias and Zafeiriou (2019b) proposed a multi-task

CNN-RNN based architecture in which they used the visual and audio data in a Siamese-

like architecture. The information from visual and audio streams are fused through two

layer GRU in which the joint learning is achieved in terms of facial action units, categorical

emotion, and dimensional emotion. The authors in Kollias et al. (2019a) proposed a multi-

task single CNN based network to jointly learn facial action units, categorical emotion, and

dimensional emotion. The authors in Jang et al. (2019) presented the Face-SSD model for

joint learning of multiple face-related tasks like smile detection, facial attributed prediction,

and valence/arousal estimation in the wild. Their network has two branches that are sharing

the low-level feature representation, one for the face detection and the other for the facial

analysis tasks.

Moreover, different than MTL approaches in which both objectives (classification and

regression) are weighted equally, we follow our previous work in Hayale et al. in which

we proposed a weighting scheme to control the contribution in each framework. For the re-

gression task, we transfer the learning from the classification framework into the regression

framework. The classification signal targets the embedding space first at the early training

time then it vanishes gradually. Later, the regression signal contributes gradually to the

facial affect estimation system. In summary, dynamically modulating the classification sig-

nal over the regression signal has the ability to learn effective features representation that

can be obtained by decreasing the intra-class variation through the classification signal.
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Figure 4.2: Main diagram of our proposed architecture.

4.3 Siamese Neural Networks

Our proposed Siamese architecture, as shown in Figure 4.2 consists of two frameworks.

Each framework represents the state-of-art DenseNet network presented in Huang et al.

(2017), although other deep network architectures can be utilized. Both frameworks share

the weights and parameters within their earlier architecture layers and are responsible for

mapping the input images into more discriminative high-level features.

The first network represents the regression framework that is responsible for the va-

lence/arousal estimation task by using the MSE metric as our loss function. The second

network represents the classification framework, in which we aim to achieve the multi-

class classification using a cross-entropy loss function along with softmax function. In this

dissertation we want to explore how discrete emotion representation can be used to enhance

the automated valence/arousal estimation. Therefore, our goal for the regression framework

is to map the input images into an embedding space that has more discriminative features

by using the low intra-class variation existing in the classification framework. Hence, we

aim to achieve a multi-task metric learning approach in which we will leverage the perfor-
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mance of a single task by combining multiple objective losses and transferring the learning

from the learned features of the classification framework to the regression framework.

We train our network using AffectNet Mollahosseini et al. (2017). Then, based on the

deep discriminative features, we estimate the values of valence and arousal in the wild.

Further details of each component of our Siamese networks are provided in the following

subsections.

4.3.1 Regression Framework

The goal of this framework is to predict the emotional states of facial expressions

by mapping the input images into 2-dimensional space of the valence-arousal circum-

plex model. In this framework, the DCNN features obtained from DenseNet network are

mapped to fully connected layer of one neuron to represent the valence/arousal continuous

value. We employ the MSE as our loss function, which is optimized by taking the squared

error of the prediction and the ground truth. Given a feature vector ŷ with its associated

valence/arousal label y, we can derive the MSE loss as follows:

MSE =
1

K

K∑
i=1

(ŷ − y)2 (4.1)

where K represents the total number of samples. The main evaluation metrics that are used

to evaluate our regression framework performance are Root Mean Squar Error (RMSE),

Pearson’s Correlation Coefficient (CC), Concordance Correlation Coefficient (CCC), and

Sign Agreement (SAGR). The RMSE represents a common comparative metric for the

continuous domain and a small value is desired. It can be defined as follows:

RMSE =

√√√√ 1

K

K∑
i=1

(ŷ − y)2 (4.2)
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where ŷ represents the prediction value with y as its associated expression label, and K

represents the total number of samples. The RMSE-based evaluation methods weights

the outliers heavily Bermejo and Cabestany (2001) and do not consider any structural co-

variance information that relates the changes in ŷ and y Nicolaou et al. (2011). The CC

overcomes this problem by including the covariance between these two values as follows:

COR(ŷ, y) =
COV {ŷ, y}

σŷσy
=

1
K

∑K
i=1(ŷ − µŷ)(y − µy)

σŷσy
(4.3)

whereCOV represents the covariance between ŷ and y, σ represents the standard deviation,

and µ stands for the mean value. The CCC is another metric which combines the CC with

the square difference of µŷ and µy. It is defined as follows:

CCC =
2pσŷσy

σ2
ŷ + σ2

y + (µŷ − µy)2
(4.4)

where p represents the Pearson’s Correlation Coefficient (CC). Another important metric

is SAGR which is introduced in Nicolaou et al. (2011) to evaluate the performance of the

regression model depending on the sign agreement between the valence and arousal values.

It is defined as follows:

SAGR =
1

K

K∑
i=1

δ(sign(ŷ), sign(y)) (4.5)

where δ represents the Kronecker delta function that is defined as:

δij =

 1 i = j

0 i 6= j
(4.6)
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4.3.2 Classification Framework

The second branch in our network is the classification framework, in which we use

a second DenseNet network to map the images into high dimensional feature space by

using softmax layer to get the probability distribution of each emotion class over all the

categorical classes. The probability distribution of one class can be defined as follows:

Pi = P (y = i|f) = expWif∑
k exp

Wkf
(4.7)

where Wi refers to the ith column of softmax weight matrix. Accordingly, the network of

the classification framework is trained to minimize the cross-entropy loss as defined below:

lossc = −
K∑
i=1

y logPi (4.8)

where y = 0 stands for all classes except for the target class, and K represents the total

number of examples in the dataset.

For this framework, we investigate four types of models according to the number of

classes that can be constructed throughout the system. The first model is the categorical

emotion classification model in which the objective is to map the facial images into one of

the eights facial emotion classes. The second model classifies the image into four classes

based on the estimation values of valence and arousal in the circumplex dimensional model

as shown below:

Model2out =



class0 V ≥ 0 & A ≥ 0

class1 V < 0 & A ≥ 0

class2 V < 0 & A < 0

class3 V ≥ 0 & A < 0

(4.9)
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(a) Valence Classification (b) Arousal Classification (c) Valence-Arousal Classi-
fication

Figure 4.3: Different classification models.

Table 4.1: Different classification models.

Model-Name Model-Description FC-Neurons

Model 1 Facial Expressions Classification model 8
Model 2 Discrete Valence-Arousal Classification 4
Model 3 Discrete Valence Classification 2
Model 4 Discrete Valence Classification 2

While, the third and fourth model classifies the image into two classes based on either

valence or arousal value as shown below:

Model3out =

 class0 V ≥ 0

class1 V < 0
(4.10)

Model4out =

 class0 A ≥ 0

class1 A < 0
(4.11)

More details about the models are in Table 4.1 and Figure 4.3.
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4.3.3 Joint Regression-Classification Learning

The learned features of both frameworks are revealed to have different characteristics.

The 2-dimensional features in the regression space emphasize valence and arousal varia-

tion, while the learned features in the classification space emphasize the inter- and intra-

class variation that exist between the categorical classes. In order to construct an effective

facial affect estimation system that benefits from both spaces, we join both frameworks

on the top by using a controlling function that controls the contribution of each frame-

work. More precisely, we jointly optimize both frameworks’ costs to the extent that we

can enhance system performance. We observed that the initial activation of the classifica-

tion framework enhances the clustering of valence/arousal learned features of the training

dataset. Consequently, vanishing the classification signal from the system along with grad-

ually integrating the regression signal enhances the overall performance of the system.

Hence, we can derive the overall Siamese loss function as follows:

Totalloss = (1− α).lossc + α.lossr α : 0→ 1 (4.12)

α =
1

exp epochnum−shift
10

(4.13)

where lossr stands for regression loss and represents the loss function for valence/arousal

regression model discussed in Section 4.3.1. On the other hand, lossc stands for classi-

fication loss and represent the loss function for one of the four models discussed in Sec-

tion 4.3.2. According to the above equation, the shift factor acts as a shifting epoch in

which the Siamese networks has an equal contribution from lossr and lossc to Totalloss.

More precisely, after this shifting epoch, the classification signal begins to vanish, and the

regression signal begins to integrate into the system.
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Ultimately, after constructing the Siamese networks by using one of the four classifi-

cation models with the regression model, we employ three strategies for learning Siamese

networks. The first strategy involves learning Siamese networks from scratch without load-

ing the weights from previously learned classification or regression single network. The

second strategy requires loading the weights from the trained single classification network.

Finally, the third strategy requires loading the weights from a trained single regression

network. A full comparison between all the models was mentioned in Section 4.4.3.2.

Accordingly, with the three learning strategies and the four classification models, we

will have 12 types of Siamese networks for Valance/Arousal estimation in the wild, as

shown in Table 4.2.

Later on, we exploit four strategies of engaging the two frameworks into the Siamese

networks by activation and deactivating the α parameter in Equation 4.12. More precisely,

by discarding the α from either signals means we will have a steady signal into the system.

Our first strategy includes keeping both signals steady in the system and notice the per-

formance for the valence/arousal estimation, while the second strategy requires gradually

engaging the regression signal into the system while the classification signal is steady in

the system. The third strategy requires keeping the regression signal steady and vanishing

the classification signal after a while. The fourth strategy require vanishing the classifica-

tion signal while engaging the regression signal gradually in the system. A full comparison

between all the models was mentioned in Section 4.4.3.3.

4.4 Experiments and Results

This section presents the experiments and results achieved by using our proposed ar-

chitecture for facial affect analysis on AffectNet dataset. We introduce the dataset, imple-

mentation details for our network, and the experiments in the following subsections.
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(a) Training valence-arousal distribution for Siamese networks

(b) Validation valence-arousal distribution for Siamese networks

(c) Validation valence-arousal distribution for single regression network

(d) Validation valence-arousal histogram for Siamese networks

Figure 4.4: AffecNet dataset distribution for single and Siamese networks within the
valence-arousal space where the indices 0 through 7 represent Neutral, Happy, Sadness,
Surprise, Fear, Disgust, Angry and Contempt classes, respectively. The distribution for
Siamese networks in (b) reveals small intra-class variation that appear from the clustering
of examples belong to the same class to each other. On the other hand, there is no distinc-
tive distance between different classes for a single regression network in (c), which refers
to high intra-class variation. We show the histogram within the valence-arousal space for
Siamese networks in (d).
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Table 4.2: Different Siamese networks.

Siamese Network1 (Regression) Network2 (Classification) Load-weight

SNN1 V/A model Model1 None
SNN2 V/A model Model1 Model1
SNN3 V/A model Model1 V/A model

SNN4 V/A model Model2 None
SNN5 V/A model Model2 Model2
SNN6 V/A model Model2 V/A model

SNN7 V/A model Model3 None
SNN8 V/A model Model3 Model3
SNN9 V/A model Model3 V/A model

SNN10 V/A model Model4 None
SNN11 V/A model Model4 Model4
SNN12 V/A model Model4 V/A model

4.4.1 Datasets

The AffectNet dataset Mollahosseini et al. (2017) is one of the largest datasets provided

for facial affect analysis. It has about 1M facial images that are provided by dimensional

and categorical representations. The basic facial expressions are annotated manually after

the images are generated by querying several search engines. The evaluation protocol is

achieved on the validation set since the test set is not released.

4.4.2 Implementation Details

DenseNet architecture presented in Huang et al. (2017) is used as our deep CNNs base-

line, though other networks can be utilized. We use the bounding box that is available with

AffectNet dataset files in order to crop the faces from the images. The faces are resized to

106× 106 pixels. Additionally, we perform landmark-based face alignment and per-image
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standardization that linearly scales each image to have zero mean and variance equal to

one.

Seven types of augmentations, such as flip, brightness, contrast, rotation, hue, cropping,

and saturation, are applied to create more training samples. The network is trained using a

batch size of 128. We use Adam optimizer Kingma and Ba (2014) as an adaptive learning

rate optimization algorithm for training our deep neural network. The baseline learning

rate is set to 0.001 and decreased by a factor of 0.1 when the metric stops improving after

every ten epochs.

To get the best computational performance, we use TensorFlow as the most popular and

efficient machine learning tool for training our network. Keras is also used as a high-level

neural networks API (Application Program Interface) that wraps a sequence of complicated

underlying TensorFlow operations. Moreover, we run our experiments on one NVIDIA

1080 Ti GPU (Graphics Processing Unit) as underlying computing devices.

4.4.3 Experiments

We present the results of different experiments on the AffectNet dataset to demonstrate

the effectiveness of our purposed model. We finally compare with state-of-the-art methods.

4.4.3.1 Integrating the single network vs. Siamese networks

In this experiment, we investigated the effect of integrating the classification signal

into the learned features of the regression framework. Table 4.3 clearly shows that the

performance of using the classification framework, along with the regression framework,

improves the valence and arousal prediction on the validation set for the regression frame-

work. Figure 4.5 shows the training losses for our proposed architecture outputs where

the classification loss contributes early, and then after epoch five, the regression loss is
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Table 4.3: Performances of valence and arousal prediction on validation set with Siamese
networks vs. single regression network.

Affect Net RMSE CC CCC SAGR

V
Single 0.4027 ±0.0005 0.6168 ±0.0031 0.5795 ±0.0012 0.7517 ±0.0004
SNN 0.3889 ±0.0007 0.6381 ±0.0010 0.6058 ±0.0010 0.7622 ±0.0019

A
Single 0.353 ±.0000 0.5232 ±0.0001 0.4686 ±0.0003 0.7819 ±0.0001
SNN 0.3444 ±0.0002 0.5606 ±0.0004 0.4973 ±0.0063 0.8006 ±0.0004

Figure 4.5: Training losses for Siamese networks.

activated gradually. These results prove that the classification information included in the

learned features of the classification framework helps to decrease the intra-class variation

in the regression framework.

4.4.3.2 Investigating different classification frameworks along with different learn-

ing strategies

In this experiment, we investigate the effect of integrating different models for clas-

sification framework into Siamese networks (see Table 4.1). More precisely, we want to

examine the effect of clustering the embedding features into several classes on the overall

valence/arousal estimation of the regression framework. Moreover, we will investigate the

three learning strategies of loading the weights into Siamese networks mentioned in Sec-
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Table 4.4: Performance of valence prediction on validation set with different Siamese net-
works.

Siamese RMSE CC CCC SAGR

SNN1 0.3980 ±0.0002 0.6131 ±0.0013 0.5671 ±0.0013 0.7418 ±0.00080
SNN2 0.3889 ±0.0007 0.6381 ±0.0010 0.6058 ±0.0010 0.7622 ±0.00190
SNN3 0.4077 ±0.0004 0.6191 ±0.0014 0.5871 ±0.0012 0.7495 ±0.00110
SNN4 0.4236 ±0.0008 0.5782 ±0.0007 0.5475 ±0.0008 0.7347 ±0.00110
SNN5 0.4132 ±0.0008 0.6104 ±0.0012 0.5649 ±0.0015 0.7431 ±0.00120
SNN6 0.4039 ±0.0003 0.6163 ±0.0015 0.5824 ±0.0014 0.7521 ±0.00050
SNN7 0.4167 ±0.0007 0.5911 ±0.0012 0.5386 ±0.0009 0.7312 ±0.00054
SNN8 0.4088 ±0.00016 0.6086 ±0.0009 0.5688 ±0.00072 0.7399 ±0.00041
SNN9 0.4056 ±0.00088 0.6151 ±0.00043 0.5765 ±0.00047 0.7432 ±0.00083
SNN10 0.4272 ±0.00048 0.5886 ±0.0016 0.532 ±0.00111 0.7232 ±0.00064
SNN11 0.4093 ±0.00047 0.6010 ±0.00117 0.5536 ±0.00085 0.7379 ±0.00120
SNN12 0.4003 ±0.00003 0.6091 ±0.00154 0.5866 ±0.00152 0.7513 ±0.00050

tion 4.3.3. Table 4.4 and Table 4.5 shows that using the FER classification and clustering

the embedding features into more number of classes (8 classes) results in better features

representation than clustering the embedding features into four or two classes. This be-

havior is because each expression is concentrated over a specific range of valence-arousal

dimensional model. However, there is no significant difference between the performances

when using four- or two-class model. It also shows that loading weights of the eight class

classification model into Siamese networks is better than learning from scratch or loading

weights of the regression model into Siamese networks. On the other hand, loading the

weights of four- or two-class model into Siamese networks performs less than loading the

regression model into Siamese networks. This behavior is because the trained network of

four- or two-class classification framework does not have a right cluster for the Neutral

class, which occupies the center of 2-dimensional valence-arousal embedding space.
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Table 4.5: Performance of arousal prediction on validation set with different Siamese net-
works.

Siamese RMSE CC CCC SAGR

SNN1 0.3608 ±0.00042 0.5495 ±0.00105 0.4455 ±0.00148 0.7854 ±0.00130
SNN2 0.3444 ±0.00021 0.5606 ±0.00045 0.4973 ±0.00632 0.8006 ±0.00046
SNN3 0.3582 ±0.00042 0.5533 ±0.00101 0.4594 ±0.00098 0.7851 ±0.00059
SNN4 0.3695 ±0.0002 0.5163 ±0.0009 0.4171 ±0.00113 0.7585 ±0.00105
SNN5 0.3591 ±0.00084 0.5285 ±0.0029 0.4439 ±0.00282 0.7944 ±0.00163
SNN6 0.357 ±0.00055 0.5434 ±0.00121 0.4721 ±0.00184 0.7935 ±0.00041
SNN7 0.3568 ±0.0007 0.5177 ±0.00225 0.432 ±0.00218 0.7829 ±0.00019
SNN8 0.355 ±0.00047 0.5400 ±0.00118 0.4577 ±0.00184 0.7879 ±0.00060
SNN9 0.355 ±0.001 0.5436 ±0.00155 0.4929 ±0.00148 0.8024 ±0.00086
SNN10 0.3581 ±0.00021 0.5205 ±0.00053 0.4296 ±0.00053 0.7651 ±0.00071
SNN11 0.3569 ±0.00052 0.5404 ±0.00158 0.4755 ±0.00161 0.7703 ±0.00075
SNN12 0.3544 ±0.00057 0.5411 ±0.00038 0.4906 ±0.00048 0.7882 ±0.00141

4.4.3.3 Investigating different strategies for coupling the two frameworks

In this experiment, we investigate the best way of engaging both signals into Siamese

networks. As we mentioned in Section 4.3.3, we have four main strategies for engaging

both signals into Siamese networks. Table 4.6 shows that using the fourth strategy of gradu-

ally engaging the regression signal into Siamese networks while vanishing the classification

signal is better than other strategies. However, it also shows that keeping the regression sig-

nal steady or engaging it gradually, does not have a significant effect on the performance

while vanishing the classification signal (third and fourth strategy) have a significant effect

compared with keeping this signal steady (first and second strategy) during training.

4.4.3.4 Comparing our model with state-of-the-art methods

We finally compared with the state-of-the-art methods for this dataset, as shown in Table

4.7. In the state-of-the-art work Hasani et al. (2019), they used the BReG network, which is
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Table 4.6: Performances of valence and arousal prediction on validation set with different
joining strategies.

Effect Strategy RMSE CC CCC SAGR

V

Strategy1 0.409 ±0.0033 0.6044 ±0.0026 0.5603 ±0.0025 0.7433 ±0.0019
Strategy2 0.4061 ±0.0006 0.6135 ±0.0011 0.577 ±0.0012 0.7438 ±0.0010
Strategy3 0.3987 ±.0000 0.6271 ±0.0004 0.597 ±0.0013 0.7477 ±0.0014
Strategy4 0.3889 ±0.0007 0.6381 ±0.0010 0.6058 ±0.0010 0.7622 ±0.0019

A

Strategy1 0.3513 ±0.0105 0.541 ±0.0008 0.4358 ±0.0011 0.7890 ±0.0007
Strategy2 0.3515 ±0.0006 0.54 ±0.0143 0.4726 ±0.0013 0.7892 ±0.0008
Strategy3 0.3463 ±0.00039 0.5644 ±0.0003 0.4843 ±0.0005 0.7913 ±0.0007
Strategy4 0.3444 ±0.0002 0.5606 ±0.0004 0.4973 ±0.0063 0.8006 ±0.0004

a robust architecture that replaced the identity mapping in deep Residual networks He et al.

(2016b) with a differentiable function. As the table shows, our approach of embedding the

classification signal achieves a better performance than other state of the art approaches and

less performance than BReG network. We did not enhance the DenseNet architecture used

in our Siamese networks. Therefore, we believe that building the Siamese networks from

a robust architecture like BReG network can boost the performance. It can be seen that

the combination of regression signal and facial emotion classification signal plays a vital

role in the deep feature representation, and hence the estimation of error for the regression

system decreased.
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Table 4.7: State of the art comparison.

Affect Algorithms RMSE CC CCC SAGR

V

Jang Jang et al. (2019) 0.4406 0.66 0.60 0.74
Lindt Lindt et al. (2019) 0.450 N/A 0.484 0.676
Guo Guo et al. (2020) 0.39 0.61 0.59 0.76

SVR Drucker et al. (1997) 0.55 0.35 0.57 0.30
Hasani Hasani et al. (2019) 0.2597 0.66 0.66 0.73

Our 0.3889 0.6381 0.6058 0.7622

A

Jang Jang et al. (2019) 0.3937 0.54 0.4665 0.7129
Lindt Lindt et al. (2019) 0.411 N/A 00.405 0.708
Guo Guo et al. (2020) 0.37 0.55 0.48 0.76

SVR Drucker et al. (1997) 0.42 0.31 0.68 0.18
Hasani Hasani et al. (2019) 0.3067 0.84 0.82 0.84

Our 0.3444 0.5606 0.4973 0.8006
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Chapter 5

Image Matching with Siamese Neural

Networks

5.1 Overview

The ability to find images that are similar to a query image is a fundamental issue of

several computer vision problems like, image retrieval, object verification, wide-baseline

matching, and duplicate product detection.

Over the last decade, several algorithms have been proposed to improve the accuracy

and performance of image matching applications. In general, these algorithms can be di-

vided into two general categories. The first category involves extracting hand-crafted fea-

tures and learn the similarity metric on top of them to predict whether the pair of images

belong to similar class, or they represent different classes Boureau et al. (2010); Cao et al.

(2011); Chechik et al. (2010); Frome et al. (2007); Taylor et al. (2011); Wang et al. (2014b);

Wengert et al. (2011). For example, the authors in Frome et al. (2007), learned fine-grained

image similarity ranking model on top of the hand-crafted features by learning a distance

function for each input image as a combination of distances between patch-based visual
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features. The performance of these methods depends on the representation power of the

hand-crafted features. On the other hand, the second category is based on deep learning

models, which involve extracting the deep features from neural networks. The current state

of the art shows that deep learning-based approaches have successfully provided great po-

tential for more effective image similarity models than hand-crafted features.

However, the researchers in deep learning-based models followed different approaches

to learn a feature representation so that similar inputs are mapped close to each other in

the feature space, and dissimilar inputs are mapped far from each other. The first approach

Babenko et al. (2014); Chandrasekhar et al. (2016) is to utilize a pre-trained CNN on image

classification problem in image retrieval application. At query time, the feature is extracted

for the query image and compared with the features of all dataset by using the Euclidean

distance metric and associating the proper class label for query image depending on the

closest distance.

The second approach is to learn the similarity directly from image pairs Hadsell et al.

(2006); Melekhov et al. (2016); Taylor et al. (2011); Wang et al. (2014a); Wu et al. (2013).

In this approach, the researchers used Siamese networks and utilized the similarity labels

to learn a feature representation so that similar input pairs are mapped close to each other

and dissimilar input pairs are mapped far from each other in the feature space. This ap-

proach can be further divided into two further approaches depending on how the model

will estimate the similarity score from the pair of images. The first approach Hadsell et al.

(2006); Taylor et al. (2011); Wang et al. (2014a) is based on metric distance function to es-

timate the similarity score directly from a pair of feature vectors, while the other approach

determines the similarity score by using a non-metric similarity network. In this approach,

either they consider the two images of an input pair as a one 2-channel image Zagoruyko

and Komodakis (2015), which is directly fed to the first layer of the network, or the fea-

tures of both input images are concatenated to create one feature vector for pair of inputs
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Han et al. (2015); Tian et al. (2017). For both approaches, the output feature is then given

as input to a top module that consists of a fully connected linear decision layer with one

(matching/non-matchin) output.

Along a different line, there are few researches on integrating the identification network

with any of the verification approaches mentioned above. For example, the author in Sun

et al. (2014) presented the idea of using two identification networks and learn a similarity

metric on the top of these networks. Therefore, the loss function involves two parts, one to

optimize the identification network and the other part to learn the similarity metric directly

from the pair of images. The identification and verification losses are weighted by a hyper-

parameter. Motivated by this approach, this dissertation tries to investigate this approach

with a difference in controlling the way of integrating both frameworks. Instead of learn-

ing a hyperparameter for weighting these two losses, this dissertation involves transferring

the learning from the identification framework to the verification framework by which the

identification signal contributes at the early training time. Later, this signal vanishes while

the verification signal is involved gradually in the Siamese architecture.

5.2 Related Work

In the last years, several methods have been proposed to represent visual information

in images by a set of hand-crafted features such as SIFT Lowe (2004). For a given a query

image, images in the dataset are ranked according to their visual similarity to the query

image. In Bow model Sivic and Zisserman (2003), features such as SIFT Lowe (2004)

are extracted from pair of images, then the similarity of the pair can be computed as a

dot product or histogram intersection of their weighted histograms. Along a similar line,

authors in Cao and Snavely (2012) learned to predict the matching and non-matching input

pairs with small amounts of training data using discriminative learning of BoW model.
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Since the substantial advancement in deep learning using the convolutional neural net-

work (CNN), the features obtained from CNN have become the new state of the art in image

matching problem. At first, several approaches Babenko et al. (2014); Chandrasekhar et al.

(2016) proposed the idea of utilizing a pre-trained network for image classification prob-

lems in image matching. On the other hand, other approaches learn a CNN directly for the

matching task Hadsell et al. (2006); Melekhov et al. (2016); Taylor et al. (2011); Wang et al.

(2014a); Wu et al. (2013). The mainstream architecture in these approaches is the Siamese

and triplet networks. The similarity labels of the pairs are utilized by these networks to

map the pairs into a feature space where similar pairs are close to each other, and dissimilar

pairs are far from each other in the feature space. Moreover, most of these approaches Had-

sell et al. (2006); Taylor et al. (2011); Wang et al. (2014a) used a regular distance function

like Euclidean distance on top of the image pair representation to learn the similarity met-

ric. However, there are several approaches used non-metric similarity function on top of

the image representation Han et al. (2015); Tian et al. (2017); Zagoruyko and Komodakis

(2015). They directly applied the output of the model as a similarity estimation to rank

images accordingly without using any similarity metric. The last fully-connected layer acts

as a decision layer with one (0/1) output, reflecting the pairs being a similar or dissimilar.

In this dissertation, we depend on the Siamese networks to learn directly from the pair

of images, but we enhanced it with the identification signal. Accurately, we transfer the

learning from the identification network into the verification network while we are jointly

training the full architecture. The Siamese networks automatically learns a representation

of the input pairs based on the multiple objective loss function which integrate the iden-

tification loss function with the verification loss function. The identification network will

enhance the model performance since it helps to increase the inter-class variation.
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Figure 5.1: Main diagram of our proposed architecture.

5.3 Model Definition

A diagram of our proposed architecture is shown in Figure 5.1. In our architecture a

pair of images is first processed by a Siamese networks. In this network, two deep convolu-

tional neural networks consisting of 14 layers with identical parameters produce a feature

vector representation for each image. Given a pair of images, the Siamese architecture

learns to map those inputs to a feature space where similar inputs are close and dissimilar

inputs are separated by a margin. In this dissertation, we show that these features can be

more discriminative by using both identification and verification signals as supervision sig-

nals. In addition to that, we can control these two signals to enable transferring the learning

from the high dimensional features within the identification space (in which all the classes

are clustered very well) into the verification space in order to enhance the verification task

objective. Hence, we trained our network on the Cifar-100 dataset and derive the joint

identification-verification metric using the DCNN features. Then, given a pair of input im-

ages, the Siamese model determine if they are similar or not based on their DCNN features

and the learned metric. Further details of each component of our model are introduced in

the following subsections.
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5.3.1 Data Mining

In our Siamese Neural Networks, we trained a deep neural network to learn a set of

hierarchical non-linear transformations to project pair of images into a feature space, under

which the distance of each positive pair is reduced, and the distance of each negative pair

is enlarged. Therefore, the proposed loss function accepts a pair of positive and negative

features to optimize the similarity or the distance between them.

Consider Pos, and Neg are two sets of all possible positive and negative pairs that can

be generated from the training images that have M categories. Assuming each class has N

number of images, then the total number of pairs are:

Pos =
M∑
i=1

Ni ∗ (Ni − 1) (5.1)

Neg =
M∑
i=1

M∑
j=1

Ni ∗Nj i 6= j (5.2)

As we stated in an earlier chapter, the mining strategy plays an essential role in Siamese

networks training as it relies on the best representative pairs to produce gradient with a

sufficiently large magnitude. For this study, we depend on an offline pairing strategy in

which all the negative and positive pairs are prepared in advance. This strategy, compared

to the online pairing strategy that is discussed in Chapter 3, is very time consuming and

difficult to accomplish with a large-scale dataset. With a large volume of data pairs, it will

result in a slow training convergence. Therefore, we design the pairs in such a way that

each class will have an equal number of positive and negative pairs, which is equal to the

number of examples in each class. For example, in Cifar-100 training dataset, each class

has 400 examples. Ultimately, we will have 400 positive pairs and 400 negative pairs. For

the positive pairs, we pair each example with a random example from the same class. On
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the other hand, for the negative pairs, we pair each example with a random example from

other classes. Additionally, for negative pairs, we carefully design them to involve all other

classes. Specifically, each class will be paired with all other classes and with the same

number of negative examples from each class.

5.3.2 Deep Features Representation

The proposed architecture (i.e., Siamese) has two identical networks sharing the same

parameters. For each network, we use the same architecture presented in Clevert et al.

(2015). Further details about this architecture is given in Table 5.1. The network includes

14 layers, followed by one fully connected layer. Each individual layer consists of a con-

volutional layer, a max-pooling layer, and a batch normalization layer. For network reg-

ularization we use five drop-out layers distributed after several layers with the following

drop-out rates [0.1, 0.2, 0.3, 0.4, 0.5]. The max-pooling layer is not activated for some lay-

ers, but for simplicity, we keep it in the graph and the table with a stride equal to one. Each

convolutional layer is followed by an exponential linear unit (ELU) Clevert et al. (2015).

The extracted features are normalized to unit length by using the local response normaliza-

tion Krizhevsky et al. (2012) method. This final step helps us to set the margin to a proper

value in the training when trying to separate the impostor pairs by the specified margin.

When a Siamese model is presented with a pair of images, the networks map the pair

of input images to a pair of feature vectors. These features are learned with two super-

visory signals. The first signal is the verification loss signal in which pair of features are

compared using Euclidean distance. During training, the similar and dissimilar input pairs

are presented on Siamese networks which learn to map those pairs from the same class

to feature vectors that are close to each other, and map the pairs from different classes to

feature vectors that are separated by a margin.
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Table 5.1: The architecture details of DCNN.

Layer Sublayer Filter
size

Input
channel

Output
channel

Strides
(batch,height,
width,depth)

Lyaer1
Conv1 (3, 3) 3 384 (1, 1, 1, 1)
Max1 (2, 2) 1 1 (1, 2, 2, 1)

Lyaer2
Conv2 (1,1) 384 384 (1, 1, 1, 1)
Max2 (1, 1), 1 1 (1, 1, 1, 1)

Lyaer3
Conv3 (2,2) 384 384 (1, 1, 1, 1)
Max3 (1, 1), 1 1 (1, 1, 1, 1)

Lyaer4
Conv4 (2, 2) 384 460 (1, 1, 1, 1)
Max4 (2, 2) 1 1 (1, 2, 2, 1)

Lyaer5
Conv5 (1, 1) 460 460 (1, 1, 1, 1)
Max5 (1, 1) 1 1 (1, 1, 1, 1)

Lyaer6
Conv6 (2, 2) 460 786 (1, 1, 1, 1)
Max6 (2, 2) 1 1 (1, 2, 2, 1)

Lyaer7
Conv7 (1, 1) 786 786 (1, 1, 1, 1)
Max7 (1, 1) 1 1 (1, 1, 1, 1)

Lyaer8
Conv8 (2, 2) 786 896 (1, 1, 1, 1)
Max8 (2, 2) 1 1 (1, 2, 2, 1)

Lyaer9
Conv9 (3, 3) 896 896 (1, 1, 1, 1)
Max9 (1, 1) 1 1 (1, 1, 1, 1)

Lyaer10
Conv10 (2, 2) 896 1024 (1, 1, 1, 1)
Max10 (2, 2) 1 1 (1, 2, 2, 1)

Lyaer11
Conv11 (1, 1) 1024 1024 (1, 1, 1, 1)
Max11 (1, 1) 1 1 (1, 1, 1, 1)

Lyaer12
Conv12 (2, 2) 1024 1152 (1, 1, 1, 1)
Max12 (2, 2) 1 1 (1, 2, 2, 1)

Lyaer13
Conv13 (1, 1) 1152 1152 (1, 1, 1, 1)
Max13 (2, 2) 1 1 (1, 2, 2, 1)

Lyaer14
Conv14 (1, 1) 1152 256 (1, 1, 1, 1)
Max14 (2, 2) 1 1 (1, 2, 2, 1)
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Given a pair of images x1 and x2, each image is processed using the feature extraction

network to generate feature vectors, f1 and f2. Additionally, we refer to their subject

identification labels as y1 and y2 respectively. Hence, we can write the Siamese networks

training objective as a function of the feature vectors as follows:

V erificationloss =


1
2
‖f1 − f2‖2 y1 = y2

1
2
[max(m− ‖f1 − f2‖, 0)]2 y1 6= y2

(5.3)

where ‖f1 − f2‖2 is the Euclidean distance between the feature vectors. When the features

pair are from the same person i.e., y1 = y2 , the objective encourages the features f1 and

f2 to be close. In contrast, for the features pair from different persons i.e.,y1 6= y2 the

objective encourages the features to be separated by a margin m.

The second signal is identification loss function which is achieved by feeding the fea-

tures to softmax layer. This layer classifies each image into one of K different identities

(e.g., K = 100) by giving the probability distribution over the K classes. So given a pair

of features (f1 and f2) with their associated subject identities (y1, y2), we can derive the

probability distribution as follows:

P1 = P (y1 = i|f1) =
expWif1∑
k exp

WkF1
(5.4)

P2 = P (y2 = j|f2) =
expWjf2∑
k exp

WkF2
(5.5)

where Wi and Wj refer to the ith and jth column of softmax weight matrix, respectively.

The network is then trained to minimize the cross-entropy loss (identification-loss) as

defined below:

Ident1 = −
K∑
i=1

yi1 logP
i
1 (5.6)
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Ident2 = −
K∑
j=1

yi2 logP
j
2 (5.7)

where y1, y2 = 0 are for all i ,j except for the target class. In order to generate an effec-

tive verification system, we need to enhance the system with the identification signal that

has very rich inter-class variation. We noticed that the early activating of this signal will

improve the separation of the classes. Then after several epochs, this signal will vanish

through controlled hyperparameter, while the verification signal will be activated gradu-

ally. Therefore, we can define the overall training loss function for a single pair of inputs,

which jointly optimizes the verification cost and the identification cost as follows:

Totalloss = γV erificationloss + (1− γ)(Ident1 + Ident2), γ : 0→ 1 (5.8)

γ =
1

exp epochnum−shift
10

(5.9)

5.4 Experiments and Results

The Cifar100 dataset Krizhevsky et al. (2009) is a computer vision dataset established

for object recognition problem. It has 100 classes, and each class has 600 color images,

500 images for training, and 100 images for testing. The size of the images is set to 32×32

pixels. Each image has two labels, a fine label that represents the class to which it belongs

and a coarse label that represents the super class to which it belongs. Table 5.2 shows the

list of classes included within each super class. However, in our experiments, we used the

fine labels as a training label along with the images for the identification model.

All the images are resized to 64×64 pixels. A zero-centralization process is performed

on our data to center the cloud of data around the origin, which involves subtracting the
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Table 5.2: Cifar-100 super classes.

Super class Classes

aquatic mammals beaver, dolphin, otter, seal, whale
fish aquarium fish, flatfish, ray, shark, trout
flowers orchids, poppies, roses, sunflowers, tulips
food containers bottles, bowls, cans, cups, plates
fruit and vegetables apples, mushrooms, oranges, pears, sweet pep-

pers
household electrical devices clock, computer keyboard, lamp, telephone,

television
household furniture bed, chair, couch, table, wardrobe
insects bee, beetle, butterfly, caterpillar, cockroach
large carnivores bear, leopard, lion, tiger, wolf
large man-made outdoor
things

bridge, castle, house, road, skyscraper

large natural outdoor scenes cloud, forest, mountain, plain, sea
large omnivores and herbi-
vores

camel, cattle, chimpanzee, elephant, kangaroo

medium-sized mammals fox, porcupine, possum, raccoon, skunk
non-insect invertebrates crab, lobster, snail, spider, worm
people baby, boy, girl, man, woman
reptiles crocodile, dinosaur, lizard, snake, turtle
small mammals hamster, mouse, rabbit, shrew, squirrel
trees maple, oak, palm, pine, willow
vehicles 1 bicycle, bus, motorcycle, pickup truck, train
vehicles 2 lawn-mower, rocket, streetcar, tank, tractor
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mean across all three color channels. Moreover, the data dimensions are normalized so

that they are of approximately the same scale, and the minimum/maximum along each

dimension is 0 and 1, respectively.

The network is trained using a batch size of 128. We use Adam optimizer Kingma and

Ba (2014) as an adaptive learning rate optimization algorithm for training our deep neural

networks. The baseline learning rate is set to 0.01 and decreased by a factor of 0.1 when

the metric stops improving after ten epochs. To get the best computational performance,

we use TensorFlow as the most popular and efficient machine learning tool for training our

network. Moreover, we run our experiments on two NVIDIA 1080 Ti GPUs (Graphics

Processing Unit) as underlying computing devices.

We use the t-distributed stochastic neighbor embedding (t-SNE), as shown in figure 5.2

to visualize only five classes from our dataset to explore further what occurs in the Eu-

clidean Distance space. For the verification model shown in figure 5.2a, we noticed that

the clustering does not constructed properly. Even on later epochs, the pattern is the same,

except it will adopt different shapes. Therefore, we concluded that using the verification

signal alone is not very effective in keeping the same identity features close, or keeping the

different identities features far apart. In contrast, the learned features at identification space

are shown to have large inter-class variation, as shown in figure 5.2b. This is attributed to

the supervisory identification signal that tends to pull apart the features of different iden-

tities since they have to be classified into different classes. However, for this model, the

Siamese model is trained for the identification task, not for the verification task. Figure 5.2c

shows the feature embedding space in which the identification signal contributes along with

the first four epoch, while the last five epochs were extracted from later epochs at which

the verification signal was involved. We can see clearly that the combined model performs

better than using only the verification model. Thus, satisfying both the verification loss and

identification loss by jointly training is crucial for convergence.
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(a) Verification Signal

(b) Identification Signal

(c) Both signals

Figure 5.2: Visualization of 2-dimensional features for only five classes of Cifar-100
dataset. (a) Illustrates the feature space when using only a verification signal. It has small
intra-class variation; on the other hand, the inter-class variation is also small, which causes
the different classes to be close to each other. (b) Illustrates the feature space when using
only the identification signal. There is a large inter-class variation; on the other hand, the
intra-class variation is not too small, which causes the identities belonging to the same class
to be far apart from each other. (c) Illustrates the feature space when using both signals,
the features have large inter-class variation and on the same time, the intra-class variation
is small enough to keep the identities belong to same class close to each other.
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Figure 5.3: The distance between similar examples.
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Figure 5.4: The distance between dissimilar examples.

In order to further investigate the inter/intra-class variation within our examples dur-

ing network training, we track the changes of the similar distance and dissimilar distance

while we are training the network. Specifically, we measure the distance between the pairs

of similar inputs (the inputs that belong to the same class) and the distance between the

pairs of dissimilar inputs (the inputs that belong to different classes). Then we average

the distances and update this measure at each epoch. Figure 5.3 and Figure 5.4 show that

we are successfully reducing the distance between similar inputs and increase the distance

between dissimilar inputs.

Finally, we investigate the verification accuracy using three models. The first model is

the identification model, where the Siamese networks are trained for the classification task,

then we measured the verification accuracy depending on their class labels. The second

model involves training our Siamese networks on the verification task, in which the simi-

larity label used along with the images to determine if the two images are similar or dis-
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Figure 5.5: Training Accuracy.
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Figure 5.6: Validation Accuracy.

similar. In the third model, we combine the verification model and the identification model

within the Siamese architecture. As we explained in Section 5.3.2 we integrate the identifi-

cation signal first, then the verification model is integrating gradually. The results shown in

Figures 5.5 and 5.6 are interesting as they show that joint identification-verification model

surpasses the performance of both models alone.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This Ph.D. dissertation presented an end-to-end deep Siamese networks for facial ex-

pression recognition (FER), valence and arousal estimation, and visual object matching.

The facial expression Siamese model is aware of the local structure of the embedding

space and gradually modulates the learning from the local adaptive verification space into

the identification space. The verification model reduced the intra-class variation by mini-

mizing the distance between the extracted features from the same identity using different

strategies. In contrast, the identification model increased the inter-class variation by maxi-

mizing the distance between the features extracted from different identities.

We proved that applying the verification signal first and gradually integrating the iden-

tification signal into Siamese model leads to a better performance and aids in better gen-

eralization for identification task. The early activation of the verification signal improved

the clustering of dataset classes. Consequently, after several epochs, the verification sig-

nal vanishes through controlled hyperparameter, while the identification signal is activated

gradually.
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We also showed how the mining strategy plays an important role to enhance the training

efficiency and the system performance. For example, it showed that using the local mean or

regularized feature in our proposed architecture to represent the whole class leads to a better

performance than using the global mean or the original SML model. Therefore, using the

local mean or regularized feature: compensated the dependency on the global mean, helped

to maximize the distance between samples from the each class and the local mean, and

thus assisted maximizing the inter-class variation. Moreover, our mining strategy showed

that using only positive pairs or positive pairs alongside with all possible negative pairs

performs less than our mining strategy of considering only the close classes (classes close

to each other like Disgust and fear) alongside with positive pairs. Results were evaluated

in three standard datasets for facial emotion recognition and surpass other methods in the

metric learning area.

On the other hand, the empirical results of valence and arousal Siamese model demon-

strated that transferring the learning from the classification space to the regression space

enhanced the regression task since each expression occupies a representation within a spec-

ified range of valence-arousal affect. Further, for this model, we introduced several novel

strategies for engaging the two spaces within the Siamese networks, ranging from different

classification models to different methods for transfer the learning from one space to an-

other. We concluded that using the FER classification model and clustering the embedding

features into more number of classes (eight classes) results in better features representa-

tion than clustering the embedding features into four or two classes. However, there was

no significant difference between the performances when using four- or two-class models.

We also showed that loading weights of the eight-class classification model into Siamese

networks is better than learning from scratch or loading weights of the regression model

into Siamese networks. In contrast, loading the weights of four- or two-class models into

Siamese networks performed less than loading the regression model into Siamese networks.
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In our last Siamese model for image matching, we depend on the Siamese networks to

learn directly from the pair of images, but we enhanced it with the identification signals.

Accurately, we transfer the learning from the identification framework into the verifica-

tion framework. Jointly learning both frameworks gave a better model performance since

the identification framework helped to increase the inter-class variation in the verification

framework.

6.2 Future Work

The preceding results fulfilled in applying the current methodology of Siamese net-

works will lead a further study in this direction. For example, in addition to facial ex-

pression recognition, valence/arousal estimation, and image matching tasks, it could be

interesting to consider a person re-identification system based on deep convolutional fea-

tures extracted from Siamese networks. A person re-identification system aims to retrieve

or recapture a person of interest across multiple non-overlapping cameras or from the same

camera in different occasions in an uncontrolled setting. These types of tasks should be

evaluated on real-world unconstrained faces that have a full pose and illumination variation.

IJB-A dataset is one of the suggestions to use, which captures a wide range of variation and

offers challenges to face detection and face recognition systems. Additionally, it explores

the subject-specific modeling in which it has been designed in a template-based manner.

A template represents a collection of media (image and/or video frames) of an interesting

subject captured in an uncontrolled setting. This strategy was inspired by many real-world

high profile biometric scenarios. For example, the FBI’s most wanted list has various facial

images and video frames from subjects with several different viewpoints. Hence, there are

several pooling and fusion ideas to generate one common vector representation, which can

be broadly divided into three categories: (1) Feature pooling, (2) Similarity score pooling,
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and (3) Image pooling. The template-based approaches also can be handled by building

aggregation model like attention mechanisms into Siamese model. After extracting the

features of every single media from the template, the aggregation model combine the best

representation for each template. This technique will make the architecture learn from the

most useful information that can produce a potential large magnitude of the gradient. Fi-

nally, one of the challenges that should be handled thoroughly; there will be no overlapping

between the training and testing subjects to prevent any trial for subject-specific modeling.

In this case, it is impossible to rely on any classification frameworks that have softmax

layer to enhance the Siamese network’s objectives. Softmax layer will learn to map the

training facial images into different high dimensional space than that of the testing set due

to the non-overlapping issue.

In other words, an effective person re-identification system on the IJB-A dataset re-

quires first handling the extreme variation in this dataset. More precisely, a powerful dis-

criminative model needed to be adopted to increase the inter-class variation and decrease

the intra-class variation as the variation within the same class could overwhelm the differ-

ences between classes and make the face recognition more challenging. Second, it requires

handling the set-to-set matching problem by generating one common feature representation

for each set without increasing the computational and storage cost of template pair com-

parison. Finally, it requires capturing the best representation of the training set and finding

a way to evaluate the trained networks on a testing set subjects that are non-overlapping

with the training set subjects.
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