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Abstract 

Parkinson’s disease (PD) is a neurodegenerative condition and movement disorder that 

appears with symptoms such as tremor, rigidity of muscles and slowness of movements. 

Deep brain stimulation (DBS) is an FDA-approved surgical therapy for essential tremor 

and PD. Despite the fact that DBS substantially alleviates the motor signs of PD, it can 

cause cognitive side effects and speech malfunction mainly due to the lack of adaptivity 

and optimality of the stimulation signal to the patients’ current state. A behavior-adapted 

closed-loop DBS system may reduce the side effects and power consumption by adjusting 

the stimulation parameters to patients’ need.  

Behavior recognition based on physiological feedbacks plays a key role in designing 

the next generation of closed-loop DBS systems. Hence, this dissertation is concentrated 

on: 1. Investigating the capability of local field potential (LFP) signals recorded from 

Subthalamic nucleus (STN) in identifying behavioral activities 2. Developing advanced 

machine learning algorithms to recognize behavioral activities using LFP signals 3. 

Investigating the effects of medication and stimulation pulse on the behavior recognition 

task as well as characteristics of the LFP signal.  

STN-LFP is a great physiological signal candidate since the stimulation device itself 

can record it, eliminating the need for additional sensors. Continuous wavelet transform is 
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utilized for time-frequency analysis of STN-LFPs. Experimental results demonstrate that 

different behaviors create different modulation patterns in STN within the beta frequency 

range.  

A hierarchical classification structure is proposed to perform the behavior classification 

through a multi-level framework. The beta frequency components of STN-LFPs recorded 

from all contacts of DBS leads are combined through an MKL-based SVM classifier for 

behavior classification. Alternatively, the inter-hemispheric synchronization of the LFP 

signals measured by an FFT-based synchronization approach is utilized to pair up the LFP 

signals from left and right STNs. Using these rearranged LFP signals reduces the 

computational cost significantly while keeping the classification ability almost unchanged. 

LFP-Net, a customized deep convolutional neural network (CNN) approach for 

behavior classification, is also proposed. CNNs learn different feature maps based on the 

beta power patterns associated with different behaviors. The features extracted by CNNs 

are passed through fully connected layers, and, then to the softmax layer for classification.  

The effect of medication and stimulation “off/on” conditions on characteristics of LFP 

signals and the behavior classification performance is studied. The beta power of LFP 

signals under different stimulation and medication paradigms is investigated. Experimental 

results confirm that the beta power is suppressed significantly when the patients take 

medication or therapeutic stimulation. The results also show that the behavior classification 

performance is not impacted by different medication or stimulation conditions.    

Identifying human behavioral activities from physiological signals is a stepping-stone 

toward adaptive closed-loop DBS systems. To design such systems, however, there are 
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other open questions that need to be addressed, which are beyond the scope of this 

dissertation, such as developing event-related biomarkers, customizing the parameter of 

DBS system based on the patients’ current state, investigating the power consumption and 

computational complexity of the behavior recognition algorithms. 
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CHAPTER 1 

  INTRODUCTION 

1.1 Parkinson’s Disease  

Parkinson’s disease (PD) is a neurodegenerative disorder that appears with movement 

signs such as tremor, rigidity, and bradykinesia. The signs of PD are usually augmented by 

speech and alternate limb motor tasks [1]. The prevalence of PD increases with aging. 

Although the neurophysiological basis for this disease is not fully elucidated, loss of the 

neurotransmitter dopamine, a key regulator of basal ganglia function, leads to a 

dysfunctional interaction between the cortex and basal ganglia. The loss of dopamine in 

the striatum results in pathological connectivity between members of the basal ganglia 

leading to augmented beta frequency (10–30 Hz) oscillatory power in the local field 

potential (LFP) [2]. 

Primary motor signs of Parkinson’s disease include the following, although not all 

symptoms appear in one patient: 

 Tremor of the hands, arms, legs, jaw and face 

 Bradykinesia or slowness of movement 

 Rigidity of the limbs and trunk 

 Postural instability or impaired balance and coordination 
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1.2 Deep Brain Stimulation  

Deep brain stimulation (DBS) therapy for PD consists of implanting passive electrical 

leads into regions of the basal ganglia such as the Globus Pallidum (GPi) or Subthalamic 

Nuclei (STN). A neuro-stimulation pulse generator capable of generating high-frequency 

(~130-185 Hz) electrical stimulation is implanted subcutaneously to supply the DBS leads 

with therapeutic stimulation [3,4]. Apart from providing relief of the PD symptom 

manifestations, DBS gives a unique opportunity to record in vivo the neural activities in 

deep brain structures through recording local field potential (LFP) signals in surgery [1]. 

This provides an excellent opportunity to investigate the electrical oscillatory activities of 

the brain [5,6].  

Prior to the surgery, magnetic resonance imaging (MRI) or computed tomography (CT) 

scanning is performed on the patient to identify and pinpoint the exact target within the 

brain for surgical implantation [7,8]. The possibility of bleeding or infection during the 

placement of the stimulator is very low. 

Microelectrode recording is sometimes used to monitor the activity of nerve cells in 

the target area more precisely [9]. In general, the most common target areas of the brain 

include thalamus, subthalamic nucleus, and globus pallidus.  

As shown in figure 1.1, the DBS system consists of three components: the lead, the 

extension, and the IPG (implantable pulse generator). The lead is an insulated slim rod 

inserted through a small opening in the skull. The extension is an insulated wire, which 

goes under the skin of the head, neck, and shoulder to connect the lead to the IPG. The IPG 

is usually implanted subcutaneously, which generates the electrical pulse to stimulate 
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specific regions in the brain. In some cases it may be implanted lower in the chest or under 

the skin over the abdomen. The electrical pulses are generated by the IPG and sent via 

extension wire and the lead into the target area in the brain. These therapeutic pulses are 

able to bypass abnormal electrical signals and mitigate PD motor symptoms. 

Generally, DBS uses electrical stimulation to regulate electrical signals in neural 

circuits in the brain to improve PD symptoms. Since the DBS surgery does not make 

dramatic permanent changes in the brain structure, if DBS causes unwanted side effects, 

the implantable pulse generator can be removed, and the DBS procedure can be halted 

which is remarkable advantage of the DBS treatment. In addition, the IPG parameters and 

the characteristics of the stimulation pulse are adjustable without further surgery if the 

persons condition changes. New generation of DBS devices (ActivaTM PC+S) can be 

programmed through a radio device in a completely non-invasive procedure.  

 

 

           

Figure 1.1. A typical DBS system and brain MRI scans for DBS lead implantation. Left shows the MRI 

scan of the brain and the trajectory of DBS lead implantation on the workstation before surgery. Right 

shows a typical implanted DBS system [Medtronic Inc]. 
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The DBS surgery is very effective in reducing the patients’ motor symptoms; however, 

most patients still need to take some levels of medication after the surgery. The dosage of 

medication varies depending on the patient’s condition, but can be considerably reduced in 

most patients. DBS does not improve cognitive symptoms in PD and indeed may worsen 

them, so it is not generally used if there are signs of dementia [10]. 

1.3 Behavior Recognition through Brain Signals 

Deep brain stimulation (DBS) therapy for PD consists of implanting passive electrical 

leads into regions of the basal ganglia such as the Globus Pallidum (GPi) or Subthalamic 

Nuclei (STN). A neuro-stimulation pulse generator capable of generating high-frequency 

(~130-185 Hz) electrical stimulation is implanted subcutaneously to supply the DBS leads 

with therapeutic stimulation [3,4] (Figure 1.2). 

DBS provides a unique opportunity to record in vivo the neural responses through 

acquiring LFP signals [1], allowing the investigation of electrical oscillatory activities of 

the brain [6,11]. Apart from characterizing the neural activity within cortical regions and 

subcortical nuclei [2], human LFP recordings have been used to study the effect of neuro-

stimulation as well as designing primitive closed-loop DBS systems [12-14]. Specifically, 

LFPs recorded from the STN have shown to be robust control signals indicating a change 

in the patients’ state [15,16], correlating with the patients’ PD symptoms, medication level, 

and behavior [1,17,18]. LFP signals are stable over long periods of time [5,19], which is a 

necessary characteristic for a feedback signal in a closed-loop DBS system. 

Recognition of human behavior through neural feedbacks from the brain is a stepping-

stone for designing a closed-loop DBS system that can adaptively change the parameters 
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of the stimulation signals. To this end, electroencephalography (EEG) and LFP signals 

have been used to decode human behavior. Note that an accurate behavior classification 

based on the brain signals is challenging due to poor signal-to-noise ratio [20,21]. 

So far, various EEG-based classification and detection algorithms have been developed 

[22-24]. Event-related potential (ERP)-based classification has been used for designing 

brain computer interfaces (BCI) [25,26]. Several approaches have been proposed for EEG 

classification using support vector machines (SVM) [27,28]. Common spatial pattern 

(CSP) has been one of the most popular approaches for single-trial EEG classification [29-

31]. Many studies have focused on the real-time detection of behavior using EEG and 

electrocorticography (ECoG) data such as P300 detection for spelling [32,33], brain-switch 

based on motor imagery [34], and self-regulation of rhythm [23]. Most recently, deep 

neural networks (DNN) have gained considerable attention for numerous classification and 

regression tasks. A deep belief network (DBN) model was proposed by [35] for binary 

motor imaginary (MI) classification and obtained better performance compared to SVM. 

DBN has also been used in other related studies for anomaly measurement of EEG signals 

[36]. Convolutional neural network (CNN) was used to classify MI using EEG signals [37]. 

CNN and stacked auto-encoders (SAE) was used to classify EEG MI signals [38]. 

 

  

Figure 1.2. DBS targets in the brain. left shows a typical implanted DBS system and right shows three 

different areas in the brain targeted by the DBS lead [Medtronic Inc] 
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  Human behavior classification using STN-LFPs has been studied in the related 

literature. Loukas and Brown [18] proposed an algorithm to predict self-paced hand 

movements based on the oscillatory nature of the STN-LFPs. Santaniello et al. [13] 

designed a primitive closed-loop DBS system capable of adjusting the stimulation 

amplitude. The LFP signals from the ventral intermediate nucleus (VIM) of the thalamus 

were used as the control variable in their closed-loop system. Time-frequency analysis of 

the beta frequency range (f~10–30 Hz) of LFP signals has been used in different studies 

[39-43] to drive SVM or multiple kernel learning (MKL)-based SVM classifiers for human 

behavior recognition purposes. A hybrid model based on combining SVM and hidden 

Markov model (HMM) was proposed in [44] for human behavior classification. In [45] a 

non-linear regression method was developed to measure the inter-hemispheric connectivity 

between LFP signals, aiming at detecting the motor activity of PD patients. 

1.4 Basal Ganglia Modulation with Behavioral Activity 

Analyzing the connectivity of different brain structures and circuitry (Figure 1.3) has 

gain considerable attention in the recent years. As shown in figure 1.3, basal ganglia 

receives information from cerebral cortex, and the outputs return to the frontal cortex or 

the motor systems in the midbrain and the hindbrain. Various areas of cerebral cortex are 

connected to regions of striatum and via pallidus and thalamus return back to the frontal 

cortex. There is a less direct pathway from the striatum via the external pallidus and STN, 

and there is a shorter route from thalamus to striatum that bypasses the cerebral cortex.  
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Among various signals that can be collected from the brain, we focused on the local 

field potentials (LFP) recorded from the STN, as it has been shown that it is a reliable 

candidate for human behavioral analysis as well as the PD conditions over time [1,2]. 

Moreover, STN-LFP is a suitable choice for a closed-loop DBS system since it can be 

recorded and processed without need for any additional sensors attached to the patients. 

LFP is the electric potential recorded in the extracellular space in brain tissue, typically 

using micro-electrodes. Not that, LFPs are different from the electroencephalogram (EEG), 

which is recorded at the surface of the scalp using macro-electrodes. It also differs from 

the electro-corticogram (ECoG), which are recorded from the surface of the brain using 

 

 

Figure 1.3. A typical map of the basal ganglia network and interaction between different brain structures 

inside the basal ganglia. SMA: supplementary motor area; GPe: external globus palidus; STN: 

subthalamic nucleus; CM-PF: centre median-parafascicular; SNc: substantia nigra pars compacta; GPi: 

internal globus pallidus. + and – signs respectively indicates the excitatory and inhibitory effects [46]. 
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large subdural electrodes. On the other hand LFPs are recorded in depth of the cortical 

tissue or other deep brain structures (see figure 1.4 for details).  

It has been shown that the rhythm of Basal ganglia network inside the brain is 

modulated by behavioral activities, which appear by changing the power of oscillations 

[1,2]. Moreover, the time-frequency analysis of STN-LFP signals shows that the beta 

frequency spectral power is suppressed during behavioral tasks, leading to beta oscillations 

gets desynchronized with activity as opposed to its relatively synchronized behavior during  

rest state [1,2]. The continuous spectrum of the brain signals are usually analyzed based on 

several bandwidths, including delta (0.5-3)Hz, theta (3-8)Hz, alpha (8-12)Hz, beta (12-

32)Hz, and gamma (32-100)Hz. Each of these frequency bands corresponds to a specific 

condition. Brainwaves change based on the subject’s current status; slower brainwaves are 

related to tiredness, slowness, sluggishness, or dream. On the other hand, higher 

frequencies are dominant during hyper-alert situations. A typical spectrum of various 

 

  

Figure 1.4. Recording different brain signals. left shows a comparison between different recording setups. 

Right shows the normal recording locations of EEG, ECoG and LFP signals [47]. 
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bandwidth of the brainwave is shown in figure 1.5. Moreover, more details on the different 

bandwidth are given in the followings [48,49]: 

 Delta bandwidth (0.5-3)Hz: Delta-band brainwave is the slowest and loudest 

brainwave. It is generated in deepest meditation and dreamless sleep. Delta 

waves suspend external awareness and are the source of empathy. Healing and 

regeneration are stimulated in this state, and that is why deep restorative sleep 

is so essential to the healing process. 

 Theta bandwidth (3-8)Hz: Theta-band brainwave most often occurs during 

sleep and are also dominant during the deep meditation. It acts as our gateway 

to learning and memory. Theta waves coincides with dream, imagination, 

intuition, and information beyond our normal conscious awareness. It is where 

we hold our fears, troubled history, and nightmares. 

 

Figure 1.5. A typical spectrum of various bandwidth of the brainwave [48] 
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 Alpha bandwidth (8-12)Hz: Alpha-band brainwave is dominant during quiet 

thoughts as well as some meditative states. Alpha is the resting state for the 

brain. Alpha wave assists with mental coordination, calmness, alertness, 

mind/body integration and learning. 

 Beta bandwidth (12-32)Hz: Beta-band brainwave dominates the normal state 

of consciousness when attention is directed towards cognitive tasks and the 

outside world. Beta is a fast activity, when we are alert, attentive, engaged in 

problem solving, decision making, and engaged in focused mental activity.  

 Gamma bandwidth (32-100)Hz: Gamma-band contains the highest frequency 

brainwaves and relates to simultaneous processing of information from 

different brain areas. It passes information rapidly. Gamma was traditionally 

dismissed as “spare brain noise” until it was discovered that it is highly active 

during states of love, altruism, and the higher virtues. Gamma rhythms 

modulate perception and consciousness, and disappears under anesthesia. 

Gamma is also above the frequency of neuronal firing, so how it is generated 

remains a mystery.  

1.5 Goals, Impacts, and Contributions 

DBS alleviates the motor symptoms of PD but may lead to side effects such as impaired 

cognition, speech, gait, and balance [50-53]. DBS therapeutic stimulation is optimized in 

a controlled medical environment, and typically only a single set of static parameters are 

programmed. Over-optimizing DBS therapy for one behavior (e.g., walking) may come at 

a cost such as side effects for another behavior (e.g., talking). An adaptive closed-loop DBS 
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system (Figure 1.6) could provide unique parameters for disparate behavior, providing 

superior therapeutic benefit for the task at the moment, without the cost of compromising 

performance for tasks performed later [54-58]. Therefore, a closed-loop DBS system can 

decrease the side effects (e.g., cognitive and balance disruptions) of the existing open-loop 

DBS systems, which only use constant stimulation parameters such as frequency, pulse 

width, and amplitude. 

Additionally, a closed-loop system may reduce the power consumption of DBS systems 

by switching off/on the implanted pulse generator when needed [12]. Currently, the 

stimulation parameters are set by highly trained clinicians, and the initial programming 

may require multiple clinical visits over several months before achieving optimal 

performance. Over the lifetime of the device, the stimulation parameters may need to be 

adjusted periodically in order to obtain a suitable compromise between maximization of 

the therapeutic improvement and minimization of the stimulation-imposed side effects 

[57,59]. The static nature of current FDA-approved DBS devices are poorly consistent with 

 

 

Figure 1.6. Left and right figures respectively show a typical open-loop and closed-loop DBS system [13]. 
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the dynamic nature of PD since the Parkinsonian symptoms have typically faster dynamics 

than those provided by the adjustments of the DBS therapy [57,58]. 

Hence, developing a closed-loop DBS system capable of adjusting the stimulation 

parameters automatically is of high importance. To this end, recognition of the human 

behavior using the feedback of electrical signals recorded from brain is considered a major 

stepping stone toward such a device. This fact motivated us to take steps toward this 

dissertation. The main objective of our research is to analyze the capabilities of brain 

signals as bio-feedbacks for recognition of human behavior, which plays an important role 

in designing the next generation of adaptive closed-loop systems. Note that behavioral level 

closed-loop DBS system is advantageous due to the fact that for some specific behaviors 

such as “speech” the stimulation can be problematic, and, therefore, behavior recognition 

is essential in developing an efficient closed-loop system. 

The main goals of this dissertation revolve around the following objectives: 

 Developing a reliable feature space using the local field potential (LFP) signal 

recorded from the brain subthalamic region, based on which different 

behavioral activities can be recognized. 

 Developing an efficient classification algorithm to decode the recorded LFP and 

classify the behavior associated with it. 

 Investigating the effects of medication and stimulation pulse on the 

characteristics of the LFP signals as well as its impact on the behavior 

recognition algorithms. 
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To address the aforementioned problems, the main contributions are as follows: 

 Time-frequency analysis of the LFP signals is investigated using continuous 

wavelet transform to design a feature space based on which the behavior 

recognition can be done properly. 

 A hierarchical classification structure is developed to perform the behavior 

classification using LFP signals through a multi-level framework.  

 A multiple kernel learning method is used to combine all bipolar signals 

recorded from two implanted DBS leads inside left and right STNs for each 

behavioral task. An FFT-based synchronization method is developed to 

evaluate the connectivity of the recorded LFPs from both STNs and its impact 

on the behavior classification task.  

 An automated machine learning framework (LFP-Net) using deep 

convolutional neural networks is developed for classification of human 

behavior using the time-frequency representation of STN-LFPs. LFP-Net learns 

different feature maps based on the beta power patterns associated with 

different behaviors, leading to higher classification ability. 

 A separate study is conducted on the effect of medication “off/on” and 

stimulation “off/on” conditions on characteristics of LFP signals as well as the 

behavior classification performance. STN-LFP signals of PD subjects are 

recorded chronically 12-24 months after DBS surgery and used in this study. 

The beta power suppression in LFP signals under different 
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stimulation/medication paradigms is investigated. The behavior classification 

performance is investigated in the presence of stimulation pulse. 

The remainder of this dissertation is organized as follows: chapter 2 presents the STN-

LFP data recording procedure. Moreover, the feature extraction method used in this 

dissertation will be presented in this chapter. A review of the analytical methods used for 

behavior classification will also be given in chapter 2. Chapter 3 elaborates on the proposed 

hierarchical classification approach for behavior classification. Chapter 4 presents the LFP-

Net, the deep learning framework proposed for behavior classification using STN-LFP 

signals. Chapter 5 discusses the effect of medication and stimulation pulse on the behavior 

classification performance. Finally, chapter 6 concludes this dissertation and presents some 

of the possible future work and research roadmap. 
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CHAPTER 2   

DATA RECORDING and ANALYSIS 

METHODS 

2.1 Materials and Data Recording Details 

Three separate datasets were collected during standard of care DBS surgery for 

treatment of idiopathic PD. Two datasets were collected at the Colorado Neurological 

Institute (Denver, CO, USA) and the other dataset was collected at the University of 

Washington (Seattle, WA, USA). All participants provided informed consent in a manner 

approved by their respective Institutional Review Boards (IRB). The recording sessions 

were carried out on each subject using DBS leads (Medtronic 3389, Minneapolis, MN, 

USA) bilaterally implanted in the STN. The DBS lead electrode is a linearly ordered set of 

4 platinum/iridium contacts (numbered from ventral/deep #0 to most dorsal/superficial #3). 

Each contact has a surface area of 6.0 mm2 and an impedance of 1.7 kΩ (mean; 95% CI = 

1.1–2.4 kΩ). Channels were bipolar re-referenced within each brain hemisphere (0–1, 1–

2, 2–3) prior to analysis. A typical Medtronic DBS lead with four contacts as well as a 

coronal view of the DBS implantation in both STNs is shown in figure 2.1. 
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Dataset1 includes two PD subjects recruited for research purposes. In a separate 

surgery, an implantable neuro-stimulator (INS) with additional voltage recording 

capabilities was implanted subcutaneously to provide both standard therapeutic stimulation 

and bilateral local field potential (LFP) recordings [60]. For Dataset1, several postoperative 

INS recordings were chronically performed at 12 and 24 months after DBS lead 

implantation surgery under different medication off/on and stimulation off/on conditions 

(the medication “on” and stimulation “on” cases are separately studied in chapter 5). Two 

different behavioral tasks were designed for Dataset1, including 60 repetitions of cued 

“button press” and “target-reaching” trials performed by left or right hands in each 

recording session (see more details in Table 2.1). The “button press” task consisted of 

pressing a button using either the left or right thumb. The “target-reaching” task required 

the patients to raise their arm to reach a target appearing on the screen in front of their face 

 

Figure 2.1. DBS leads implantation. Top shows a typical DBS lead with four contacts. Bottom left shows 

an atlas representation of the implanted DBS lead. Bottom right shows a coronal scan of the brain 

including two implanted DBS leads inside each STN [2]. 



 

17 

using either the left or right hand. Moreover, for Dataset1, only one bipolar re-referenced 

channel from each hemisphere was selected for recording and analysis (i.e., the channels 

that contained the most prominent peak in beta frequency oscillations were selected for 

further behavioral recordings). 

Dataset2 and 3 include eight PD subjects in total (four subjects each) for whom the data 

recording was performed during the DBS implantation surgery. All subjects underwent 

bilateral recordings and all four contacts of each DBS lead were used for collecting signals. 

The recorded signals were bipolar re-referenced for post-processing purposes. All patients 

were in the off-medication and off-stimulation state and the recordings did not proceed 

until patients were fully awake during the surgery. Four different behavioral tasks were 

designed for Dataset2, including cued “button press”, “target-reaching”, “mouth 

movement”, and “speech” tasks. Dataset3, however, comprises cued “button press” and 

“speech” tasks. The “button press” task for Datasets 2 and 3 was performed in the same 

manner as described for Dataset1. The “speech” task included reciting simple 

Table 2.1. Dataset and recording details. Dataset1 includes several chronical 

recording sessions, so the number of trials is the summation of all sessions. 

Dataset2 and Dataset3 include only one recording session per subject. BP, TR, SP, 

and MM respectively stand for button press, target reaching, speech, and mouth 

movement behavioral activities 

Dataset Subject Fs(Hz) 

# recording 

channels 

(bipolar) 

bandwi

dth(Hz) 
#BP #TR #SP #MM 

Dataset1 
1 422 2 0.5-100 120 120 0 0 

2 422 2 0.5-100 240 239 0 0 

Dataset2 

3 4800 6 1-1000 79 65 43 46 

4 4800 6 1-1000 90 88 45 43 

5 4800 6 1-1000 86 83 45 45 

6 4800 6 1-1000 89 84 45 45 

Dataset3 

7 5000 6 1-1000 30 0 54 0 

8 5000 6 1-1000 45 0 90 0 

9 5000 6 1-1000 45 0 71 0 

10 5000 6 1-1000 30 0 57 0 
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names/phrases displayed on a screen located in front of the patients’ face. The “mouth 

movement” task simply comprised moving the mouth without speech.  The “target-

reaching” task required the patients to raise their arm to reach a target appearing on the 

screen using either the left or right hand. 

Dataset1 was recorded using an Activa PC+S amplifier (ActivaTM PC+S, Medtronic, 

Inc.,), Dataset2 was recorded using a g.USBamp (g.tec, Graz, Austria) amplifier and 

Dataset3 was recorded using a Synamps2 (Neuroscan, Victoria, Australia) amplifier. 

2.2 Time-Frequency Analysis of STN-LFP Signals 

In this dissertation, the time-frequency representation of the recorded LFP signals is 

used to generate the feature space for the behavior classification methods. Note that, the 

time-frequency analysis of various brain signals (e.g., LFP and EEG) has been studied in 

some related literature [1,61]. It has been shown that the time-frequency domain is a better 

feature space to distinguish different human behaviors in comparison with raw signals 

recorded from the brain. Therefore, it can intrinsically improve the classification ability 

due to the more distinctive feature space. As shown in figure 2.2, here, for a LFP epoch 

sample X(c,t) at bipolar contact c and time t, the third-order tensor X(c,f,t) at bipolar contact 

c, frequency f, and time t is obtained by calculating the amplitude of the wavelet transform 

as follows: 
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The complex Morlet mother wavelet Ψ(t) = (1 √πfb⁄ )𝑒𝑥𝑝⁡(−t2 fb⁄ )𝑒𝑥𝑝⁡(j2πfct) (fc is 

the wavelet center frequency and fb is the bandwidth parameter) has extensively been used 
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for biomedical signal processing applications including temporal analysis of the LFP 

signals [61,62]; hence, it is employed as the mother wavelet in this work as well. As we 

are interested in the β frequency band, the scaling variable ‘a’ of the wavelet function is 

set so as to obtain the frequency range f ~ 10-30 Hz (i.e., for the sampling frequency Fs, 

we have  𝑎 = Fs (f 2⁄ )⁄ ). 

Once the feature vectors are obtained, it is common to apply different dimensionality 

reduction approaches to reduce the size of feature vectors. As a result, the computational 

burden of other post-processing data analysis methods decreases considerably. In addition, 

it helps tackle the problem of the curse of dimensionality that may occur in high-

dimensional data spaces. Hence, Principal Component Analysis (PCA) is utilized for 

 

 

Figure 2.2. Wavelet-based feature extraction. From three left and three right bipolar LFP signals, the 

corresponding time-frequency components within the β frequency range are calculated using the 

complex Morlet mother wavelet. These wavelet coefficients are then used as features for human behavior 

classification. 
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dimensionality reduction purposes [63]. Essentially, PCA projects a set of N zero-mean 

input data D = {x𝑖 ∈ 𝑅𝑑}𝑖=1
𝑁  onto a set D′ = {x𝑖 ∈ 𝑅𝑘}𝑖=1

𝑁 , where k≪d is the set of linearly 

uncorrelated variables called principal components. These principal 

components correspond to the leading eigenvectors of the covariance matrix of D, and span 

a subspace that retains the maximum variance of the data. 

2.3 MKL-based SVM Classifier 

In chapter 3, a recently proposed Lp-norm MKL-based SVM classifier [64,65] is 

employed to design a hierarchical behavior classification method. MKL-based SVM 

classifier has successfully been applied on the STN-LFP signals for human behavior 

recognition purposes [40,41] and led to promising results specifically for combining 

multiple feature vectors. Hence, the main properties of the MKL-based SVM classifier are 

presented here. 

In canonical SVM, the parameters of the kernel functions are usually tuned during the 

training phase, and the parameters that lead to the best classification accuracy on the 

validation set are used to classify the test sample. Since different kernels with different 

parameters correspond to different representations of the features, the MKL-based SVM 

classifier employs a combination of various kernel functions to automatically pick the 

optimal parameters. Several realizations of the MKL algorithm have already been 

presented in the literature [64-68]. However, in this study, a recently proposed Lp-norm 

MKL multiclass-SVM [65] is used, which considers both sparse and non-sparse kernel 

combinations within MKL formulation. As a consequence, it provides more flexibility in 

selecting different kernel combinations. The MKL-based SVM classifier learns both the 
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decision boundaries between different classes and kernel combination weights in a single 

optimization problem, improving the discriminant power of the SVM [66,67]. The 

formulation of the generalized Lp-norm MKL optimization problem for binary 

classification case is given as follows: 
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where, φm(∙) maps the feature vector xi to another space based on which the kernel function 

k(∙ , ∙) = ‹φm(∙),φm(∙)› is defined. {ωm}s are the parameters of the decision hyper-planes. M 

and N are the number of kernels and training samples respectively. C is the penalty 

parameter and ξi is the vector of slack variables. The parameter p in Eq. (2.2) is to regularize 

over kernel combination coefficients, which considers both sparse and non-sparse kernel 

combinations within MKL. Finally, yi is the corresponding label of the training sample xi. 

This convex optimization problem is solved using its dual form as follows: 
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where, d = (d1, d2, …, dM)T is the kernel combination vector that controls the weight of 

(||ω||2) in the objective function of Eq. (2.2). α = (α1, α2, …, αN)T is the vector of Lagrangian 
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dual variables corresponding to each training sample. Y = diag(y1, y2, …, yN) is an N×N 

diagonal matrix, and K(m) is the kernel matrix corresponding to the mth kernel function,  

𝐊𝐢,𝐣
(𝐦)

= k(xi, xj). Consequently, the label yz of each test sample z⁡∈⁡RD is obtained by: 
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2.4 Deep Convolutional Neural Network 

In chapter 4, LFP-Net, an automated machine learning framework based on deep 

convolutional neural networks (CNN) is presented and used for behavior classification 

using STN-LFP signals. So, an overview of the CNN architecture is presented here.  

Deep convolutional neural networks have gained considerable attention in recent years 

with so many applications ranging from natural language processing to medical image 

analysis and image classification [69-71]. In contrast to the traditional artificial neural 

network (ANN), which is susceptible to shift and translation distortion, the CNN is both 

shift and translation invariant, making it more robust for classification of visual patterns. 

Essentially, CNNs are multi-layer neural networks composed of several convolution-

pooling layers followed by nonlinearity activation units and fully connected layers. These 

layers are stacked such that the input data is passed through all connected layers to drive 

the output of the network. 

At the convolutional layer, the input data is convolved with trainable filters to generate 

the output feature map. At each given convolutional layer, the kth feature map is obtained 

by applying the corresponding filter as follows: 
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where X and 𝑊𝑘 are respectively the input data and the weights of the kth filter, 𝑏𝑘 is the 

bias term, and 𝑓(∙) is the nonlinear activation function. 

The pooling layer reduces the dimension of the output of the convolutional layer, 

leading to a lower computational burden and preventing the overfitting problem [69]. For 

instance, the max-pooling operation, as one of the well-known pooling operation, selects 

the maximum value of a small neighborhood of each feature map. The fully connected 

layer is fed by the flattened feature map obtained from the convolutional layers. Typically, 

several fully connected layers are stacked after the convolutional layer, where all the 

neurons are connected. However, a portion of connections between different layers may 

randomly be dropped if a dropout procedure is applied after a layer of the network [69]. 

Similar to ANN, the weights and biases of the CNN are calculated using a back-

propagation algorithm [72], where the labeled training set is exposed to the network and 

the error “E” between the desired output and the predicted output by the network is 

calculated. This optimization procedure is done using a gradient descent algorithm such 

that "E” becomes minimized iteratively [72]: 
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where, 𝜂 is the learning rate that controls how fast the network learns during the training 

phase. The learning rate is experimentally set for a specific dataset and network 

architecture to obtain the best performance. 
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2.5 Statistical Analysis Approaches 

In the machine learning context, using a k-fold cross validation approach, a paired 

student’s t-test is usually used to check if the difference in the mean accuracy between the 

two models is statistically significant, e.g. reject the null hypothesis that assumes the two 

samples have the same distribution. In the case of the k-fold cross-validation, however, a 

paired student’s t-test is weakly recommended since the observations in each sample are 

not independent. As part of the k-fold cross-validation procedure, a given observation will 

be used in the training dataset (k-1) times, leading to a high type-I error. Therefore, to 

perform the statistical analysis, two other approaches are used in this dissertation. 

First, a Wilcoxon signed-rank test [73] is employed, which is a nonparametric version 

of the paired student’s t-test. Nonparametric statistical tests make fewer assumptions, such 

as not assuming that the distribution of the skill scores (e.g., the classification accuracy) is 

Gaussian. Therefore, it normally has more power when the expectations of the t-test are 

violated, e.g., independence.  

As mentioned earlier, using the k-fold cross-validation intrinsically violates the 

statistical assumptions of observations being independent; hence, the McNemar’s test [73] 

is alternatively used in this dissertation to compare the performance of different models. In 

contrast to the Wilcoxon method that uses the accuracies obtained from multiple runs of 

each classifier as statistical samples to compare the models, the McNemar’s test is 

calculated based on a single-run classification, which leads to a single p-value per run. The 

McNemar’s test operates on a contingency table calculated based on the predicted labels 

of each classifier.  
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CHAPTER 3   

A Hierarchical Structure for Behavior 

Classification  

In this chapter, a hierarchical classification structure is developed to perform the 

behavior classification from LFP signals through a multi-level framework. At each level, 

the time-frequency representations of all six contacts of the DBS leads are combined 

through an MKL-based SVM classifier to classify five tasks (speech, finger movement, 

mouth movement, target reaching, and random segments). To lower the computational 

cost, the inter-hemispheric synchronization of the LFPs is alternatively used to make three 

pairs out of six bipolar signals. Three classifiers are separately trained at each level of the 

hierarchical approach, which lead to three labels. A fusion function is then developed to 

combine these three labels and determine the label of the corresponding trial. Using all six 

LFPs with the proposed hierarchical approach improves the classification performance. 

Moreover, the synchronization-based method reduces the computational burden 

considerably while the classification performance remains relatively unchanged. 
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3.1 Introduction 

In recent years, classification of the human behavior using LFP signals has been 

addressed in some studies, aiming at providing basis for behavior-adapted closed-loop 

DBS systems. Considering the oscillatory nature of the STN-LFPs, Loukas and Brown [18] 

proposed an algorithm to predict self-paced hand-movements. A pilot research was done 

by Santaniello et al., [13] in which a closed-loop DBS system capable of adjusting the 

stimulation amplitude was developed. The LFP signals from ventral intermediate nucleus 

(VIM) of the thalamus were used as the control variable in their closed-loop system. Time-

frequency analysis of the β frequency range (~10-30 Hz) of the LFP signals has been used 

in different studies [40,41] to drive SVM or multiple kernel learning (MKL)-based SVM 

classifiers for human behavior recognition purposes. An adaptive learning approach using 

LFP signals was proposed in [44], where the authors developed a hybrid model for human 

behavior clustering based on combining SVM and hidden Markov model (HMM). In [45], 

a non-linear regression method was developed to measure the inter-hemispheric 

connectivity between LFP signals, aiming at detecting motor activity, like finger movement 

of the PD patients. 

In this chapter, we focus on human behavior classification using LFP signals recorded 

from the STN regions of the brain. The wavelet decomposition of the acquired signals 

within the β frequency range is used to generate a more distinctive feature space for 

representing different human behaviors [1,74]. In contrast to the previous work [40,41] in 

which just a single or a pair of the bipolar signals are employed in the classification step, 

it is proposed to utilize all recorded bipolar LFP signals (three bipolar LFP signals are 
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recorded from each STN using all four contacts of implanted DBS leads, resulting in six 

bipolar LFP signals from two STNs) to feed an MKL-based SVM classifier for behavior 

recognition purposes. A hierarchical structure capable of performing the behavior 

classification at different levels of resolution, ranging from a coarse level (e.g., action 

recognition) to a finer level (e.g., a sub-category of the motor activity, like finger 

movement) is developed. Such a coarse-to-fine scheme provides a flexible classification 

interface that can easily be terminated at each level of resolution defined by the user. As a 

consequence, it enhances the discrimination ability of the classifier since a fewer number 

of classes requires to be analyzed at each level.  

However, using all six available LFPs potentially tends to increase the computational 

burden due to the size of the feature vectors. To overcome this problem, a classification 

scheme is alternatively proposed that takes advantage of all available data at each level of 

the hierarchical scheme while the computational burden still remains low. To this end, 

considering the synchronized aggregate activity of the LFP signals acquired from the basal 

ganglia [75-78] and inspired by the classification method presented in [41], an FFT-based 

synchronization approach is used to pair up the recorded LFP signals, making three pairs 

out of six available signals for each trial and driving three classifiers. Finally, three 

predicted labels of a single trial are fused through a decision function to estimate the label 

of the input trial at each level of the hierarchical scheme. With this approach, the 

computational burden decreases considerably while the classification performance remains 

relatively unchanged. 
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The remainder of this chapter is organized as follows: first, the proposed methods are 

explained. The experimental results and quantitative assessments are given afterwards. The 

chapter ends with conclusions and some remarks. 

3.2 Methodology 

In this section, the proposed hierarchical classification structure is first introduced, 

which is capable of classifying human behavior at different levels by combining all six 

available bipolar LFPs through an MKL-based SVM classifier. Then, a principled method 

based on an FFT-based synchronization of the LFPs is explained to reorganize six acquired 

signals of each trial. As a result, an alternative data selection method is developed that takes 

advantage of all six LFPs for classification step but in a different implementation scheme. 

3.2.1 Hierarchical Classification Scheme 

As mentioned earlier, the Lp-norm MKL classifier was previously applied on the STN-

LFP signals for human behavior classification purposes [40,41]. Here, a hierarchical 

classification approach is developed, which in contrast to the existing methods is capable 

of performing classification at different levels of resolution. With this approach, a top-

down classification scheme is developed in which the input LFP signals are categorized 

into two major classes at the first level, including “action” and “random” classes. With the 

random class, we refer to those parts of the recorded signal where the subject is in the rest 

position and no specific activity is done. The reason behind using the random segments is 

to train the classifier to recognize other tasks rather than the defined ones. Note that, if the 

entry is classified as the random signal, the classification is terminated at the first level. On 
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the other hand, the classification may continue at a finer level if there is a sub-category for 

the classified sample, and the user desires to classify the input sample in more details to 

further explore the label of the corresponding trial (e.g., motor, non-motor, and etc.). Such 

a coarse-fine classification procedure is depicted in figure 3.1 by a tree-like structure. 

To proceed with the training phase of the classifier based on the proposed hierarchical 

structure, the samples from different sub-categories at finer levels should be combined at 

coarser levels, necessitating a bottom-up procedure to form the training samples. For 

instance, in terms of the “Dataset1” used in this work, the “button press”, “mouth 

movement”, and “target reaching” trials at the third level are combined to generate the 

training samples for the “motor” activity at the second level. Clearly, all the existing 

activities including “motor” and “speech” should be combined at the first level to generate 

the samples belonging to the class “action” versus the class “random”. 

3.2.2 Synchronization-based Approach 

This section presents an alternative channel selection approach that still uses all six 

bipolar LFP channels of each trial but with a different realization. To this end, an FFT-

based synchronization method [79] is employed to pair up the bilateral LFP channels. Thus, 

we first briefly review the main characteristics of this method here, and, then, present our 

proposed scheme. 

3.2.2.1 FFT-based Synchronization Method 

The FFT-based synchronization approach has been used for different analytical 

applications of EEG and LFP signals such as source localization and classification [41,79]. 

It has been shown that some of the acquired LFP signals are inherently less informative 
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than others, likely due to their location in the sensorimotor area of the STN [41]. And, they 

are poorer candidates for other post-processing steps such as behavior classification. The 

FFT-based synchronization has been successfully employed in [41] to specifically address 

the problem of selecting the more informative LFP signals recorded from STNs. 

A typical time-domain signal contains different phase values associated with the 

frequency components of its Fourier expansion. Essentially, with the FFT-based 

synchronization method, the phase values of all frequency components are taken into 

account to obtain a more accurate measure compared to other statistical correlation-based 

methods [79].  

 

Figure 3.1. The proposed hierarchical structure for behavior classification. Left shows an example of a 

three-level classification scheme in a top-button design. Right shows the block diagram of the classification 

procedure. If the classification is terminated at the first level, there is no loop and the predicted label is 

given as the output. Otherwise, the classification may continue at a finer level until there are no more sub-

categories for the predicted label.  
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Let x(t) be a continuous LFP signal acquired from one of the bipolar-referenced 

contacts of an implanted DBS lead, the Fourier representation of the signal and the 

corresponding phase components are given as follows: 
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where, an and bn are the Fourier coefficients of the signal x(t) at the nth frequency 

component and θn is the corresponding phase value. 

The synchronization value between two signals xi(t) and xj(t) is calculated based on the 

phase difference at each frequency component of their Fourier representations. 

Accordingly, the main assumption is that if two signals are synchronous, their 

corresponding phase lag should be almost uniform across all harmonics. This implies that 

for two arbitrary frequency components m and n the phase difference of two almost phase-

synchronous signals becomes [41,79]: 
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Consequently, both the mean and standard deviation of two consecutive phase lag 

values is a small quantity across all harmonics for two nearly synchronous signals. It means 

that, given E(n), 
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the value of the normalized phase synchronization in the range [0,1] is defined as the 

following equation: 

(3.4)                       .
))(())((1

1
))(),((

nEstdnEmean
txtxsync ji
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  

where, mean(·) and std(·) are respectively the average and standard deviation of the 

quantity E(n) calculated across all the frequency components. From this equation, one can 

conclude that the more phase synchronous two signals are the closer to 1 is the value of 

sync(·) and vice versa. Note that, one of the main advantages of the FFT-based 

synchronization approach is that its computational complexity is no more than the FFT 

algorithm itself. 

3.2.2.2 Label Fusion Scheme 

As described in Section 3.2.1, all LFP signals of each trial (i.e., six bipolar signals from 

two implanted DBS leads) are used to generate the corresponding sample for the 

classification stage. In our evaluations, it was observed that using all existing data improves 

the classification performance, but it leads to a higher computational cost due to the size of 

the input data. 

To tackle this limitation, a synchronization-based classification approach along with a 

label fusion function is developed that takes advantage of all recorded bipolar LFP signals 

while no considerable computational cost is imposed. With our approach, the 

synchronization between all acquired bipolar LFP signals is used to pair them up, making 

three pairs out of six available bipolar signals for each trial. This process is done by using 

all existing bipolar LFP signals (three from left and three from right STNs) to calculate 

synchronization values, generating a 3×3 synchronization table with nine values (S11, S12, 



 

33 

…, S33) as shown in figure 3.2. Afterwards, for each of the left bipolar LFPs the 

corresponding LFP signal from the right STNs that obtains the maximum synchronization 

value is chosen to make a single left-right pair, e.g., CH1L-CH2R. This procedure is 

performed for all three left LFPs to get the most synchronous LFP signal from the right 

STN, making three left-right pairs for the classification purpose.  

As a consequence, three classifiers are separately trained, leading to three labels for 

each input trial. In ideal cases, these three labels should be the same since they come from 

a single test sample representing a specific behavior. This implies that a majority voting 

approach is used as the label fusion function to obtain a single label for the corresponding 

input trial. However, a critical situation may occur when all three predicted labels are 

 

Figure 3.2. The proposed synchronization-based classification and label fusion scheme. As seen, the 

synchronization of all six available LFP signals (three from left STN and three from right STN) is first 

calculated. Then, three separate classifiers are trained based on the selected bipolar LFP signals. The label 

of the test sample is obtained through a majority voting approach. Note that, when all predicated labels are 

different, the label obtained by the most synchronous channel is considered as the final label. 
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different. This may happen since some of the bipolar channels are inherently less 

informative, leading to inappropriate data for classification purposes. To address such a tie 

situation, the label resulted from the most synchronous pair of the LFP signals is used as 

the final label. This is consistent with the results reported in [41], where it was shown that 

the most synchronous channels are most informative, providing reliable data for the 

classification purposes. Figure 3.2 shows the proposed synchronization-based 

classification scheme and the label fusion function graphically. 

With the above-described approach, all the available LFP signals associated with each 

trial are used for the behavior classification, but in a way determined by the synchronization 

approach. In other words, a compromise between the most synchronous pair of the LFP 

signals and two other pairs is provided such that a better behavior classification 

performance is achievable. As it will be shown in Section 3.4, the quantitative results of 

this method are comparable to those obtained by combining all six bipolar LFP pairs in a 

single classification problem. However, through this approach, the computational burden 

still remains low. 

In the rest of this chapter, we refer to the proposed method using all six LFPs combined 

at each level of the hierarchical structure as “HirAll”. Moreover, when the term “HirFus” 

is used, it means that the synchronization-based classification scheme and label fusion are 

used at each level of the hierarchical structure. 

3.3 Experiments and Results 

To evaluate the performance of the proposed method in classifying human behavior, 

two separate datasets (Dataset2 and Dataset3), including eight PD subjects underwent DBS 
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surgery are used in our experiments (see Section 2.1). All the subjects were able to comply 

with the experimental paradigm. We excluded trials from our experiments when the 

subjects failed to respond to the cue signals timely (i.e., the timing cutoff was 2 sec). 

As shown in [1,40,41], the time-frequency representation of the LFP signals can best 

discriminate different human behavior, improving the classification performance. Hence, 

the spectrogram of the raw LFP signals are first calculated to generate the feature space for 

the input samples. To this end, using the complex Morlet wavelet, the amplitude of the 

time-frequency components of the acquired data are calculated inside a window defined 

around the onset of each trial. In our experiments, this window includes the wavelet 

coefficients of the β frequency range (f~10-30Hz) calculated within an interval (-1,1) sec 

around each onset. To keep the computational burden low, these feature vectors are down-

sampled by a factor of 100, and, then, PCA is applied on them before exposing the data to 

 

 

Figure 3.3. Comparison of the impact of the FFT, PLV, and Mutual information (MUT-INFO), 

synchronization methods on pairing up the bipolar LFP channels and the classification performance of the 

proposed HirFus approach using MKL-based SVM classifier. As seen, the FFT-based approach is slightly 

trending to better classification performance. 
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the classifier. In our experiments, 95% of the eigenvalues corresponding to the maximum 

variance direction is kept with the PCA calculations. 

As described in Section 3.2.2, an FFT-based synchronization method is used to analyze 

the recorded LFP signals and pair them up for the classification purposes. Inherently, the 

FFT-based synchronization approach takes into account the phase difference between 

respective frequency components of the time sequences, leading to a more accurate 

approach in comparison with statistical-based synchronization methods [79]. To calculate 

the Fourier coefficients, no overlapping window is used in our analysis; rather, the FFT 

algorithm is run using a single window containing the input data. 

It is worthwhile to evaluate the impact of different synchronization approaches on the 

classification accuracy. Figure 3.3 depicts the effect of the phase locking value (PLV) [80], 

mutual information [81,82], and the FFT [79] methods on the classification performance 

of the proposed HirFus approach using MKL-based SVM classifier. As seen, the 

Table 3.1. Comparison of different classification approaches using Dataset2. The best classification 

accuracy, (mean  std )%, is highlighted in each column. the abbreviations “BP”, “MM”, “SP”, “RE”, 

and “RA” respectively stand for “button press”, “mouth movement”, “speech”, “reach” and “random” 

trials. the classifier used in each case is given inside the parentheses.  
 5-class classification 

(BP, MM, RE, SP, 

RA) 

Second Level 

(Speech, Motor, 

Random) 

First Level 

(Action vs 

Random) 

SVM (Linear) 49  7 N/A N/A 

SVM (RBF) 54  8 N/A N/A 

MKL-based SVM 57  5 N/A N/A 
 

HirFus (SVM (Linear)) 55  5 60  5 70  2 

HirFus (SVM (RBF)) 55  4 58  4 70  4 

HirFus (MKL-based SVM) 61  5 64  4 73  3 
 

HirAll (SVM (Linear)) 61  7 64  7 75  5 

HirAll (SVM (RBF)) 50  5 51  5 66  4 

HirAll (MKL-based SVM) 64  4 67  4 75  6 
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classification accuracy is almost equal when the aforementioned methods are used for 

pairing the bipolar LFP signals. For instance, the range of obtained classification accuracies 

is ~0.5% and ~2.5% respectively for Dataset2 and Dataset3. As a consequence, one can 

conclude that all these synchronization methods are approximately employing the same 

bipolar LFP channels for post-processing steps as well as classification. However, as 

shown in figure 3.3, the FFT-based synchronization is trending to better classification 

performance. Therefore, this method have been employed to develop our HirFus approach. 

3.3.1 Classification Performance 

This section compares the classification performance of the presented HirFus and 

HirAll methods with some other classifiers recently proposed for human behavior 

classification purposes using LFP signals [40,41]. The effect of various kernel functions 

on the classification performance is also examined in our experiments, including linear k(x, 

y) = xTy+c, polynomial k(x, y) = (xTy+c)d, and RBF k(x, y) = exp(γ||x–y||2) kernels [66], 

where x and y are two feature vectors, and γ, c, and d are optional constants. In all 

experiments, a leave-one-out cross validation (LOOCV) approach is used to form the 

Table 3.2. Comparison of different classification methods using Dataset3. 

The best classification accuracy, (mean  std )%, is highlighted in each 

column. the abbreviations “BP”, “SP”, and “RA” respectively stand for 

“button press”, “speech” and “random” trials. the classifier used in each 

case is given in the parentheses.  

 3-class classification 

(BP, SP, RA) 

First Level 

(Action vs Random) 

SVM (Linear)  63  10 N/A 

MKL-based SVM  64  9 N/A 
 

HirFus (SVM (Linear))  68  2 71  2 

HirFus (MKL-based SVM) 71  4 76  4 
 

HirAll (SVM (Linear)) 77  5 79  3 

HirAll (MKL-based SVM) 78  6 82  4 
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training and test sets in our assessments [64]. Moreover, in case of the Lp-norm MKL-

based SVM classifier, the parameters C and p are set to C=100 and p=1.5 to achieve the 

suitable classification performance. 

Tables 3.1 and 3.2 respectively show a comparison of different classification methods 

in recognizing the human behavior for Dataset2 and Dataset3. The average and the standard 

deviation of the classification accuracies (mean std)% obtained from all subjects and 

methods are given in these tables. As can be seen, the proposed HirAll method achieves 

the best results in almost all cases. The HirFus approach shows very competitive results to 

those obtained by the HirAll. However, as mentioned earlier, it outperforms the HirAll in 

terms of the computational cost. 

An interesting cross-method comparison can be done for 5-class (Dataset2) and 3-class 

(Dataset3) classification cases. As can be observed from the left column of Tables 3.1 and 

3.2, both the proposed HirAll and HirFus approaches achieve higher classification 

 

 

Figure 3.4. Average confusion matrix of all subjects of Dataset1. Left shows the confusion matrix of the 

single-level MKL-based SVM classifier. Right top and bottom rows respectively show the confusion 

matrix of the proposed HirFus and HirAll approaches at each level of the hierarchical structure. 
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performance than other methods. For example, while the MKL-based SVM classifier 

achieves (57 5)% accuracy with Dataset2 and 5-task classification, the accuracy of this 

classifier is (64 4)% and (61 5)% with the proposed HirAll and HirFus approaches 

respectively. The same performance is obtained when the hierarchical structure is used 

with the SVM classifier. For instance, the SVM classifier achieves (61  7)% and (55

5)% respectively using HirAll and HirFus approaches whereas the classification accuracy 

of the single-level SVM classifier is (49  7)%. 

The results obtained by Dataset3 are given in Table 3.2. As seen, the MKL-based SVM 

classifier reaches an accuracy of (64  9)% for 3-class classification. On the other hand, the 

proposed HirAll and HirFus methods earns (78  6)% and (71 4)% respectively. 

The average confusion matrices of different classification modalities are shown in 

figure 3.4, including the single-level MKL-based SVM classifier, and the proposed HirFus 

and HirAll methods (for the sake of brevity, the confusion matrix of Dataset2 is only shown 

in figure 3.4). As seen, the maximum recognition rate of the single level classification 

belongs to the “reach” category by 70%, while the “button press” and “mouth movement” 

categories have roughly the same accuracy.  

In contrast to the single-level classification approach that gives a specific recognition 

rate for each class, the proposed hierarchical structure can lead to different recognition 

rates, depending on the level of resolution defined for the classification to proceed. For 

instance, if the classification procedure is terminated at the first level of “Action” versus 

“Random” recognition, the accuracy rates of the “Action” label are 86% and 81%, 

respectively for the proposed HirAll and HirFus methods. 
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3.3.2 Computational Cost 

As shown in Tables 3.1 and 3.2, the HirAll approach relatively surpasses the HirFus in 

terms of the classification accuracy. However, it is worth comparing the computational cost 

of different methods to gain insight into their full capability. A suitable trade-off between 

the computational burden and the classification accuracy gives the best setup, which can 

be determined by some restrictions such as power consumption and computational time in 

hardware implementation.  

To compare the execution time, all algorithms were coded in MATLAB 2013a 

(Mathworks Inc., Natick, MA, USA), 64 bit version. All experiments were done on a PC 

with an Intel core i5 processor (3.4GHz) and 8GB of memory. When a test sample comes 

up for classification, three major processing steps need to be done: time-frequency 

calculation in the β frequency range, PCA, and label prediction. Note that all the 

information concerning the synchronization and pairing the bipolar LFPs are given from 

the training phase. Therefore, it is not needed to perform any calculations regarding the 

synchronicity of LFP channels for the corresponding test sample. The approximate 

execution time of the HirAll is given as follows: 1200ms for the calculation of the 

spectrograms of six recorded bipolar LFP signals (three from the left STN and three from 

right STN), 2.4ms for the PCA calculation, and 6.5ms for the label prediction. However, 

the computational time of the same steps for the HirFus are as follows: 400ms for the 

calculation of spectrograms (two spectrograms for each classifier in a pair-wise 

configuration), 0.6ms for the PCA calculation, and 4.2ms for the label predication. 
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3.3.3 Statistical Analysis 

Apart from the computational cost, it is worth comparing the proposed HirFus and 

HirAll methods statistically to find out if their classification ability differs significantly. To 

this end, the aforementioned methods were run 50 times with randomly selected training 

and test sets (3-level classification was used). The McNemar’s statistical test (see Section 

5.2) was applied on the results of each run to compare the classification performance 

between two methods. As a result, 50 p-values were obtained for 50 runs while comparing 

the HirFus and HirAll algorithms. The experimental results showed that only 6 out of 50 

calculated p-values were less than the 0.05 significance level, meaning that the difference 

between the HirFus and HirAll classification methods were not statistically significant. 

3.4 Summary 

The main objective of this chapter was to develop a new method for classification of 

human behavior using LFP signals recorded from STN regions of the brain, providing 

insights for deciphering the intraoperative neural signals in STN DBS response. 

Recognition of human behavior using different brain signals plays an important role in 

designing the next generation of the closed-loop behavior-adapted DBS systems as well as 

brain-computer interfaces.  

The raw LFP data were recorded from all four contacts of each DBS lead implanted in 

the left and right STNs, resulting in six bipolar referenced LFP signals during the recording 

sessions. The proposed classification method was rooted on the time-frequency analysis of 

the acquired signals in the β frequency range (~10-30 Hz). A hierarchical structure was 
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proposed to perform the behavior classification via a multi-level framework, which was 

able to recognize human behavior at different levels of resolution ranging from a coarser 

level, like action recognition to a finer level, like finger movement. An Lp-norm MKL-

based SVM classifier was employed for behavior classification task at each level of the 

proposed hierarchical approach.  

Different combinations of the recorded LFP signals were employed with the introduced 

classification scheme. First, all LFP signals were combined via the MKL formulation to 

recognize the label of the corresponding trial. In spite of its suitable performance, such a 

method increases the computational burden due to the size of the feature vectors.  

To reduce computational costs, a feature selection method was alternatively developed 

that still incorporated all recorded LFP data using a pair-wise strategy. An FFT-based phase 

synchronization approach was used to form three interhemispheric pairs out of six available 

bipolar LFP signals. Three classifiers were then driven at the same time, leading to three 

labels for the corresponding trial. Finally, these labels were passed through a fusion 

function to determine a single label for the input trial. With this approach, the 

computational performance increased significantly while the classification accuracy fell 

slightly. 

Various experiments were carried out on two separate datasets including the LFP 

signals recorded from nine subjects undergoing DBS surgery. Different behavioral tasks 

including button press, mouth movement, speech, target reaching, and random segments 

were considered in our assessments. We compared the classification performance of our 

proposed HirFus and HirAll methods against some state-of-the-art methods used for the 
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human behavior recognition based on the LFP signals. The quantitative results confirmed 

the superiority of our approaches in almost all cases. Moreover, in all evaluations, 

regardless of the employed classifier, applying the hierarchical structure improved the 

classification performance, showing the effectiveness of the proposed approach. 
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CHAPTER 4   

LFP-Net; A Deep Learning Framework 

for Behavior Classification 

This chapter presents LFP-Net, an automated machine learning framework based on 

deep convolutional neural networks (CNN) for classification of human behavior using the 

time-frequency representation of STN-LFPs within the beta frequency range. CNNs learn 

different feature maps based on the beta power patterns associated with different behaviors. 

The features extracted by the CNNs are passed through fully connected layers and then to 

the softmax layer for classification. Our experiments on ten PD patients performing 

different behavioral tasks show that in most cases the proposed LFP-Net outperforms other 

state-of-the-art classification methods. Moreover, compared to well-known deep neural 

networks such as AlexNet, LFP-Net gives a higher accuracy using significantly fewer 

parameters. 

4.1 Introduction 

Most recently, deep neural networks (DNN) have gained considerable attention for 

numerous classification and regression tasks. A deep belief network (DBN) model was 

proposed by [35] for binary motor imaginary (MI) classification and obtained better 
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performance compared to SVM. DBN has also been used in other related studies for 

anomaly measurement of EEG signals [36]. Convolutional neural network (CNN) was used 

to classify MI using EEG signals [37]. CNN and stacked auto-encoders (SAE) was used to 

classify EEG MI signals [38]. 

As mentioned earlier, recognition of the human behavioral activities using the sensed 

bio-signals is one of the key steps in designing the next generation of closed-loop systems 

as well as BCIs. This chapter aims to study the capability of the SNT-LFP neural feedbacks 

in distinguishing basic human activities such as motor and speech tasks. This study 

provides grounds for developing more complicated behavior recognition algorithms 

capable of identifying a broader spectrum of behavioral tasks, paving the path toward the 

long-term goal of designing behaviorally adaptive closed-loop DBS systems. In contrast to 

 

Figure 4.1. The schematic of the proposed classification method.  
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the latest efforts that mainly focused on turning the stimulation pulse “on” and “off”, the 

behavior-adapted systems would be able to identify the patients’ current state to modulate 

a customized stimulation signal consistent with the patients’ need. 

In this chapter, a deep learning framework is introduced for automatic classification of 

human behavior using STN-LFP signals. To the best of our knowledge, it is the first time 

that a deep learning framework is developed using STN-LFP signals for a behavior 

classification task. The beta frequency components (f~10-30 Hz) of the time-frequency 

representation (spectrogram) of the acquired raw LFPs are used to distinguish different 

behavioral tasks. Figure 4.1 shows the schematic of the introduced method. 

The proposed deep neural network framework is composed of six 2D convolutional 

layers, batch normalization units, and three max-pooling layers. The obtained feature map 

from these layers is followed by two fully connected layers to finally drive a softmax 

activation function, assigning a class label to each input spectrogram. In contrast to other 

existing classification methods [39-43] that address the behavior classification task using 

engineered features and traditional classifiers such as SVM, here, a deep neural network 

architecture is proposed to learn the feature space. To evaluate the classification 

performance of the proposed method as well as other related state-of-the-art classification 

approaches, three separate datasets containing different behavioral tasks are employed (see 

Section 2.1). Our experiments show that the proposed deep learning approach significantly 

outperforms other compared methods in terms of classification accuracy.  
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The rest of this chapter is organized as follows: Section 4.2 elaborates on the proposed 

method. Section 4.3 discusses the experimental results and analysis. Finally, Section 4.4 

concludes the chapter with some discussions. 

4.2 Methodology 

This section presents the proposed deep learning architecture for the classification of 

human behavior using the STN-LFP signals. As mentioned earlier, the time-frequency 

representation (spectrogram) of the raw LFP signals in the beta frequency range is used as 

input to feed the network for training, validation, and test phases. The Z-norm 

normalization is applied on each spectrogram based on a 0.5 sec window prior to the 

initiation of each trial. Note that the trial initiation is aligned to a “cue” beep given to 

Table 4.1. Summary of the proposed LFP-Net architecture given by the Keras deep learning library 

Type of layers 

Size of the feature 

map at the output of 

each layer 

Size of the 

convolutional 

filter 

Filter stride 
Number of 

parameters 

Convolutional+ ReLU (254×254×24) (3×3) (1×1) 240 

Batch-normalization (254×254×24) N/A N/A 96 

Convolutional+ ReLU (252×252×48) (3×3) (1×1) 10416 

Max-pooling (126×126×48) N/A N/A 0 

Batch-normalization (126×126×48) N/A N/A 192 

Convolutional+ ReLU (124×124×48) (3×3) (1×1) 20784 

Batch-normalization (124×124×48) N/A N/A 192 

Convolutional+ ReLU (122×122×24) (3×3) (1×1) 10392 

Max-pooling (61×61×24) N/A N/A 0 

Batch-normalization (61×61×24) N/A N/A 96 

Convolutional+ ReLU (59×59×24) (3×3) (1×1) 5208 

Batch-normalization (59×59×24) N/A N/A 96 

Convolutional+ ReLU (57×57×48) (3×3) (1×1) 10416 

Max-pooling (28×28×48) N/A N/A 0 

Batch-normalization (28×28×48) N/A N/A 192 

Flatten 37632 N/A N/A 0 

Fully connected layer 64 N/A N/A 2408512 

Drop-out 64 N/A N/A 0 

Batch-normalization 64 N/A N/A 256 

Fully connected layer 3 N/A N/A 195 
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subjects by a laptop computer inside the experimental environment. All the timing 

information is precisely recorded and synchronized to the LFP time sequence during each 

data recording session.   

Table 4.1 gives a summary of the proposed LFP-Net architecture including all layers, 

the size of inputs and outputs of each layer, and the number of trainable parameters. Figure 

4.2 shows a graphical representation of the proposed architecture. As seen, the proposed 

architecture includes six 2D convolutional layers (24, 48, 48, 24, and 48 filters respectively 

from layer one through layer six), seven batch-normalization units, three max-pooling 

layers, and two fully connected layers (including 64 and 3 units) with 50% dropout. In 

Section 4.3.3, it is discussed how the performance of the LFP-Net is affected by the change 

of the number of convolutional filters and convolutional layers. It is shown that the 

proposed architecture marginally leads to higher performance. 

The shape of the input spectrograms is (height = 256, width = 256, channels = 1). The 

input of each layer is convolved with filters of size (3×3) to output the corresponding 

feature maps. Different numbers of filters are used for each convolutional layer, which 

 

Figure 4.2. The architecture of the proposed LFP-Net. Inputs include the spectrograms associated with 

each trial. The network contains six convolutional+ReLU layers (blue boxes), three max-pooling layers 

(green boxes), and two fully connected layers (yellow box). The batch normalization (red box) is applied 

after each layer as shown by red arrows. The dimension of feature maps is given next to each layer. 
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their weights and biases are trained using the back-propagation procedure. The max-

pooling operation takes place after the second, fourth, and sixth convolutional layers as 

shown in figure 4.2. The size of the max-pooling is (2×2), so the height and width of the 

input feature map are reduced by half after each max-pooling step. Finally, the input 

spectrogram of size (256×256×1) is converted to a feature map of size (28×28×48) after 

six convolutional layers and three max-pooling layers (see Table 4.1). The feature maps 

are then flattened and fed to two back-to-back fully connected layers with 64 and 3 neurons, 

respectively. The last unit has three neurons to address the 3-class classification task under 

consideration in this chapter: button press, target-reaching/speech, and random signal (the 

random segment is used to make the classifier learn how to distinguish between an activity 

and the rest state). Note that, Dataset2 given in Table 2.1 contains four behavioral activities; 

however, for the sake of consistency with Dataset1 and Dataset3, we only use the “button 

press” and “target-reaching” behavioral activates alongside the “random” trial for Dataset2 

to address a 3-class classification problem. Later on, we separately evaluate the 

classification performance with all existing behavioral activities of Dataset2 in Section 4.6 

(Appendix). 

Two types of activation functions are used in this work: (1) rectified linear unit (ReLU) 

and (2) softmax [69]. After each convolutional layer, it is common to employ an activation 

function to add nonlinearity to the network structure. ReLU is a well-known activation 

function used for deep learning applications; hence, it is used here: 
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Moreover, the output layer employs the softmax activation function to compute the 

probability distribution of output classes. In other words, a class label is allocated to the 

input data based on the maximum probability calculated by the softmax function. In terms 

of a k-class classification task, the softmax function gives a probability Pi to each input xi 

as follows [69]: 
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Finally, the cross-entropy loss function and Adam optimizer [83] is used to update the 

trainable variables through the backpropagation procedure. 

4.3 Experiments and Results 

This section presents the results of behavior classification experiments using STN-LFP 

signals with the proposed LFP-Net as well as comparisons with other classifiers.  

4.3.1 Data Description and Classification Details 

To evaluate the classification performance of the proposed LFP-Net, three different 

datasets is employed in our experiments (10 subjects in total) as described in Section 2.1. 

All the subjects were able to comply with the experimental paradigm. We excluded trials 

from our experiments when the subjects failed to respond to the cue signals timely (i.e., 

when the timing cutoff was more than 2 sec).  

The performance of the LFP-Net is compared against the recently proposed approaches 

developed for behavior classification [39] using the STN-LFP signals. The classification 

performance of the proposed method is also compared with the AlexNet [69], which is a 
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well-known deep neural network architecture for classification purposes. The time-

frequency representation of the raw STN-LFPs is calculated based on the amplitude of the 

CWT. A time-window of size (-1,1) sec around the onset of each trial is used to calculate 

the CWT. Moreover, the wavelet coefficients are calculated for the beta frequency range f 

∼⁡(10–30) Hz, where the frequency resolution is chosen to be 0.25 Hz. Finally, the obtained 

spectrograms are resized to (256×256×1) before feeding them to classifiers.  

The aforementioned time-window is defined based on the “onset” corresponding to 

each trial, which is recorded during the data acquisition sessions. For the random trials, 

however, random numbers are generated within the time span of the recorded LFP and 

used them as random onsets to obtain the random segments (time-window). 

In all the experiments, 80% of the calculated spectrograms are randomly selected and 

used as the training set, 10% as a validation set, and the rest 10% as the test set. 10-fold 

cross validation is applied to the training and validation sets to obtain the best-trained 

model for each dataset, which is then applied on the test set to get the classification 

performance. As such, the cross-validation prevents overfitting. The details and 

specifications of each classifier are given as follows: 

LFP-Net: the training phase is done using a batch size of 100, which specifies the 

number of spectrograms passed through the network for updating the weights using the 

backpropagation procedure. The network was trained for 30 epochs, meaning that the 

whole training set was passed through the network 30 times to compute the final weights 

for each cross-validation iteration. Considering the input size and the architecture of the 
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LFP-Net (see Table 4.1), the total number of trainable variables reported by the Keras 

neural network library [84] is equal to 2,466,723.  

AlexNet: for the sake of consistency, the training phase of the AlexNet is done using 

the same number of batch sizes and epochs as given for the LFP-Net. The architecture of 

the AlexNet is as follows: it is composed of five 2D convolutional layers. The numbers of 

filters are 96, 256, 384, 384, and 384 respectively for these layers. The size of the 

corresponding filters is (11×11), (11×11), (3×3), (3×3), and (3×3). Also, ReLU activation 

function is applied after each convolutional layer, followed by a (2×2) max-pooling 

operation and batch normalization units. The extracted feature map is flattened and passed 

through four fully connected networks with 4096, 4096, 1000, and 3 neurons to output the 

class label of the entry. The “softmax” and “Adam” optimizer are applied to update the 

variables of the network in the same manner performed on the LFP-Net. The total number 

of trainable variables reported by the Keras is equal to 31,184,115. 

SVM: in terms of the SVM classifier, the libsvm library is used [85]. All spectrograms 

are first converted to vectors before applying them to the SVM classifier. Moreover, the 

feature vector is down-sampled by a factor of 5 and apply the principal component analysis 

(PCA) dimensionality reduction to obtain the feature vectors for the SVM classifier. In our 

experiments, we observed that the dimensionality reduction and down-sampling 

remarkably improve the performance of the SVM classifier, which is consistent with other 

related work [40-43].  In our experiments, 95% of the eigenvalues corresponding to the 

maximum variance direction is kept with the PCA calculations. The effect of various kernel 

functions on the classification performance is also examined, including linear 𝑘(𝑥, 𝑦) =
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⁡𝑥𝑇𝑦 + 𝑐, and RBF 𝑘(𝑥, 𝑦) = ⁡exp⁡(−‖𝑥 − 𝑦‖2) kernels [64,86], where x and y are two 

feature vectors, and c is an optional constant. The hyper-parameter of the SVM classifier 

‘C’ is set to 1 in order to get the best performance. 

4.3.2 Classification Performance 

The classification ability of the proposed LFP-Net was compared against other methods 

in classifying human behavior using STN-LFPs. All the experiments were performed on a 

server machine with Linux operating system, Intel CI7 3.6 GHz processor, and 54 GB 

RAM. The proposed LFP-Net and AlexNet were implemented using Keras deep learning 

library and deployed on a GeForce GTX 1080 GPU with an 8 GB of memory. 

Table 4.2 shows the classification accuracy (mean±std)% for all ten subjects of 

Datasets-1, 2, and 3 and all classifiers presented in Section 4.3.1. The reported values are 

calculated by repeating the experiments 50 times based on a random selection of the 

training, validation, and test sets and making an average of 50 repetitions. 

Note that all experiments were done in a subject-dependent manner, meaning that the 

classifiers were trained and tested separately for each subject. This is due to the variability 

Table 4.2. The classification accuracy (mean ± std) % of different classifiers. The results are reported 

for subjects 1-10 separately. The best value is highlighted in each column across all subjects. The 

weighted average of all 10 subjects is given in the rightmost column.  

 Subjects 

Classifiers 1 2 3 4 5 6 7 8 9 10 average 

LFP-Net 
89.4

(2.8) 

89.1

(2.3) 
84.7

(3.0) 

84.7

(3.1) 

92.1

(2.7) 

85.87

(3.3) 

91.2

(2.3) 

88.3

(3.5) 

93.7

(2.7) 

85.3

(4.9) 
88.3 

AlexNet 
86.7

(4.2) 
91.1

(2.5) 

84.6

(2.7) 

82.7

(3.4) 

89.8

(2.3) 

84.9 

(3.4) 

87.8

(3.0) 

84.2

(3.1) 

89.8

(3.5) 

79.6

(4.4) 
86.3 

RBF-SVM 
87.1

(3.2) 

80.8

(3.2) 

80.9

(2.8) 

71.2

(3.7) 

83.0

(2.7) 

81.7 

(2.8) 

86.1

(2.5) 

73.7

(2.7) 

82.5

(3.6) 

82.7

(3.3) 
80.4 

Linear-SVM 
86.3

(3.8) 

78.9

(3.1) 

79.2

(2.9) 

67.1

(3.8) 

80.1

(3.1) 

81.5 

(3.0) 

87.8

(2.9) 

75.9

(3.7) 

78.4

(3.1) 

81.6

(4.0) 
78.9 
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observed in the beta band power across different patients, probably because the surgical 

procedure cannot precisely place the clinical electrode in the same brain location across 

different patients. Further, even if the surgical procedure could precisely localize the lead 

in exactly the same neuroanatomical position, there is inherent variability in neuroanatomy 

across patients leading to different neural response. 

As can be seen, the proposed LFP-Net outperforms other compared classifiers in almost 

all cases. The results of the AlexNet are competitive with the proposed method. However, 

in nine out of ten subjects the proposed method achieves better performance as compared 

to the AlexNet. It is worth mentioning that the number of trainable variables of the AlexNet 

is more than 31 million while the LFP-Net needs less than 2.5 million variables to be 

trained. As a result, the proposed method achieves higher performance with a remarkably 

lower computational cost. Figure 4.3 gives the training loss curves for LFP-Net and 

AlexNet. For the sake of brevity, the results of subject 1 (see Tables 2.1, 4.2) are only 

shown in this figure. As seen, the LFP-Net tends to quickly converge to the minimum loss 

near 0 with fewer fluctuations as compared to AlexNet. It suggests that the LFP-Net is a 

       

Figure 4.3. Comparison between the training loss of the LFP-Net and AlexNet. Left shows the average 

loss of 50 runs of LFP-Net (red) and AlexNet (blue) for subject 1. Right only shows the loss for one 

single run. The results are reported for the training set. As seen, the LFP-Net tends to faster convergence 

to the minimum loss near 0 with fewer epochs as compared to AlexNet. 
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more reliable architecture when working with a small training set (e.g., STN-LFP signals) 

since the network converges faster.  

The classification accuracy given by the SVM classifier is less than the proposed 

method in all cases. Whereas the weighted average accuracy of all ten subjects with the 

RBF-kernel and Linear-kernel SVM classifier is about ~80%, the average accuracy of the 

proposed method is ~88%.  

Figure 4.4 shows the weighted average confusion matrix of all subjects for the LFP-

Net and AlexNet. As seen, the recognition rate of the proposed LFP-Net surpasses the 

AlexNet for Dataset2 and Dataset3 in all cases. However, AlexNet shows higher 

performance for Dataset1 only for “button press” and “target-reaching” classes, likely due 

to its higher classification performance on subject 2 (see Table 4.2). Apart from the 

classification accuracy, the sensitivity and specificity of two most competitive methods 

 

Figure 4.4. The confusion matrix of all subjects (the weighted average is shown in each case). The top 

row gives the results of the LFP-Net. The bottom row gives the results of the AlexNet. Left to right 

columns show the results obtained for Dataset1, Dataset2, and Dataset3, respectively.   
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(i.e., LFP-Net and AlexNet) is compared in figure 4.5. As shown, the LFP-Net surpasses 

in most of the cases by a few percent. Note that, since we have a multi-class classification 

problem, a one-vs-all approach was utilized to calculate the sensitivity and specificity 

measures in each case. 

Furthermore, figure 4.6 illustrates the feature maps extracted at each layer of the LFP-

Net for typical “button press” and “speech” trials, which helps assess how the feature maps 

change at different layers of the network. 

4.3.3 Statistical Analysis 

As presented earlier, all experiments are repeated 50 times by selecting a random set 

of training and test sets. As a result, it enables us to perform a statistical analysis on the 

classification accuracies in order to evaluate how significant their differences are.  

 

Figure 4.5. Sensitivity and specificity measures. Top row: comparison between the sensitivity of LFP-

Net (left) and AlexNet (right). Bottom row: comparison between the specificity of the LFP-Net (left) and 

AlexNet (right).  
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First, Wilcoxon signed-rank test [73] is employed. Table 4.3 gives the p-values 

obtained by comparing each pair of classifiers under consideration using the 50 skill scores 

(classification accuracy). As shown, in seven out of ten subjects the LFP-Net is 

significantly better than the AlexNet (p-value < 0.05) while AlexNet is only performing 

better for subject 2. Compared to the SVM classifier, regardless of the kernel function, the 

proposed approach outperforms significantly in all cases.  

As mentioned earlier, using the k-fold cross-validation intrinsically violates the 

statistical assumptions of observations being independent; hence, the McNemar’s test [73] 

is alternatively used to compare the performance of different models. As a result, 50 p-

values are obtained for 50 runs. Table 4.4 shows the number of p-value < 0.05 over 50 runs 

for each case. As can be seen, based on the McNemar’s test, the classification power of the 

LFP-Net and AlexNet are not statistically significant; however, as mentioned earlier, the 

LFP-Net obtains higher classification accuracy in 9 out of 10 subjects with much less 

 

Figure 4.6. Feature maps obtained from each convolutional layer of the LFP-Net for typical behavioral 

tasks: Left “button press” and Right “speech”. For the sake of brevity, only the feature maps of a few 

filters of each layer are shown here. 
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parameters. In terms of the SVM classifier, the LFP-Net reaches a higher performance in 

most of the cases. For instance, in the case of subject 4, the LFP-Net significantly 

outperforms the RBF-SVM and Linear-SVM in 40 and 48 runs out of 50 runs respectively. 

Apart from the subject-dependent analysis described above, it is worth to perform the 

statistical analysis in a across-subject manner. The classification accuracy of 10 subjects 

given in Table 4.2 is compared across different methods. Applying the Wilcoxon signed-

rank test leads to the p-values = 0.016 when comparing the LFP-Net against the AlexNet 

and p-value = 0.006 when comparing the LFP-Net against the RBF-kernel SVM classifier. 

4.3.4 LFP-Net with Different Architectures 

In order to investigate how the classification performance of the proposed architecture 

is affected by the number of filters and convolutional layers, all experiments have been 

repeated by changing the network architecture. 

Table 4.3. The p-values obtained by comparing the 

proposed LFP-Net and other classifiers using Wilcoxon 

signed-rank test. All the classifiers were run 50 times 

with a randomly selected set of training, validation, and 

test set. Wherever the p-value is less than the alpha level 

(0.05) the difference of classification accuracy between 

the compared classifiers is significant, and, therefore is 

highlighted.  
 Classifiers 

Subjects  
LFP-Net vs 

AlexNet 

LFP-Net vs 

Linear-SVM 

LFP-Net vs 

RBF-SVM 

1 9.8E(-5) 1.6E(-5) 1.0E(-4) 

2 4.7E(-4) 7.5E(-10) 7.5E(-10) 

3 7.7E(-1) 1.4E(-9) 2.8E(-8) 

4 9.7E(-3) 7.5E(-10) 7.5E(-10) 

5 9.8E(-6) 7.5E(-10) 7.5E(-10) 

6 8.6E(-2) 3.8E(-8) 5.6E(-8) 

7 2.2E(-6) 2.3E(-6) 3.3E(-9) 

8 8.4E(-7) 7.5E(-10) 7.5E(-10) 

9 4.7E(-8) 7.5E(-10) 7.5E(-10) 

10 2.6E(-7) 1.1E(-5) 4.2E(-4) 
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We observed that increasing the number of layers decreases the classification 

accuracy. For instance, increasing the number of convolutional layers to eight (with 24, 48, 

48, 24, 24, 48, 48, 24 filters) leads to an average accuracy of ~87.5 as compared to  ~88.3 

given by the proposed architecture. In five subjects the classification accuracy is 

significantly better with the proposed architecture and in four subjects the difference is not 

significant.  

On the other hand, decreasing the number of layers to four layers (with 24, 48, 48, 24 

filters) gives an average accuracy of 87.6, while in four subjects the proposed architecture 

outperforms significantly and in five subjects the difference is insignificant.  

Apart from the number of layers, it is worthwhile to evaluate the effect of the 

convolutional filters on the classification performance. In our experiments, it was observed 

that reducing the number of filters results in lower classification accuracy. For example, 

reducing the number of filters by half (12, 24, 24, 12, 12, 24) cause the average 

Table 4.4. Comparing the proposed LFP-Net and other 

classifiers using McNemar’s test. All the classifiers were 

run 50 times with a randomly selected set of training, 

validation, and test set. Since McNemar’s test is 

calculated on a single-run basis, in each case, the 

number of times the calculated p-value < 0.05 is shown 

here, i.e., (#p-value < 0.05) / (50 runs).  
 Classifiers 

Subjects  
LFP-Net vs 

AlexNet 

LFP-Net vs 

Linear-SVM 

LFP-Net vs 

RBF-SVM 

1 2/50 2/50 0/50 

2 3/50 37/50 31/50 

3 0/50 12/50 6/50 

4 6/50 48/50 40/50 

5 6/50 44/50 36/50 

6 2/50 7/50 15/50 

7 5/50 5/50 9/50 

8 8/50 35/50 47/50 

9 6/50 50/50 37/50 

10 10/50 5/50 4/50 
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classification accuracy falls to ~87.4; in four subjects the proposed architecture 

significantly surpasses, while in the rest six subjects the difference is not significant.  

Increasing the number of filters imposes a considerably higher computational burden. 

An out-of-memory message was received from the GPU after doubling the number of 

filters. On the other hand, it was observed that increasing the number of filters does not 

lead to significantly higher performance. For instance, the average classification accuracy 

(88.37) slightly improved compared to the proposed architecture (88.28) when we ran the 

LFP-Net with 32, 55, 55, 32, 32, 55 filters. However, this difference is not significant in 

any of the subjects. Therefore, taking into account the computational burden and the 

classification performance, the proposed architecture leads to the best performance. 

4.4 Summary 

A deep neural network framework was presented to address the task of human 

behavior classification using LFP signals bilaterally recorded from STN of the brain. 

Decoding the brain neural response is crucial in designing the next generation of automatic 

brain-computer interfaces and closed-loop systems, which are aimed to adaptively interact 

with patients and change the therapeutic stimulation parameters based on the patients’ 

current state. 

The proposed classification method was rooted in the deep convolutional neural 

network architecture, which included six CNN layers, three max-pooling layers, and two 

fully connected layers. The softmax activation function was used at the output layer for 

classification of samples. Each CNN layer comprised several convolutional filters to output 

corresponding feature maps. The time-frequency (spectrogram) representation of the raw 
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STN-LFP signals within the beta frequency range (f~10-30 Hz) was used as the input to 

classifiers. The STN-LFPs were recorded from each bipolar re-referenced channel of the 

implanted DBS leads alongside the timing information (“cue” and “onset”) of each trial. 

Different experiments were carried out on the STN-LFPs recorded from ten subjects 

(provided by three separate datasets) diagnosed with Parkinson’s disease (PD). Dataset1 

contained the postoperative LFP recordings for two subjects recorded chronically 12 and 

24 months after DBS surgery, and Datasets 2 and 3 included the intraoperative LFP 

recordings of eight PD subjects. For Datasets 1 and 2, three different behavioral tasks 

including “button press”, “target-reaching”, and “random segment” were considered for 

classification. Dataset3 also contained three classes: “button press”, “speech”, and “random 

segment”. Since the neural response of each subject can be different from others, all 

experiments were performed in a subject-dependent manner.   

The classification performance of the proposed LFP-Net was compared against other 

methods. The quantitative comparisons confirmed that the proposed method outperforms 

in most cases in terms of the classification accuracy. As such, the results of the t-test proved 

that the higher classification performance of the LFP-Net was significant (p-value < 0.05). 

As compared to AlexNet, the proposed LFP-Net architecture obtained better classification 

accuracy in nine out of ten subjects. It is worth mentioning that LFP-Net reached this 

performance with less than 2.5 million trainable variables while AlexNet required more 

than 31 million variables to be trained, meaning that the proposed method imposed a 

considerably less computational burden. 
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4.5 Appendix: LFP-Net with 1D Convolutional Layers 

In this appendix, a different version of the LFP-Net is presented, where the 2D 

convolutional layers are replaced by the 1D convolutional layers. This change is done to 

evaluate the capability of the recorded raw LFP sequences for behavior classification as 

compared to its transformed time-frequency representation used throughout this chapter.  

The architecture of the 1D LFP-Net is similar to figure 4.2; however, the 2D 

convolutional layers are replaced by the 1D layers. Moreover, the input to the network is 

the raw LFP signal in a time window of (-1,1)sec around each trial onset rather than the 

spectrogram. Note that for the convolutional layers, the time-step is set to the Fs /4, where 

Fs is the sampling rate of the data recording (see Table 2.1). Figure 4.7 shows the LFP-Net 

with 1D convolutional layers graphically. 

The classification results of the 1D-conv LFP-Net is given in Table 4.5. Although 

using the raw LFP sequence with the 1D convolutional layers consumes much lesser 

computational power (i.e., it needs about 0.5 million variables to be optimized vs 2.5 

million variables required for the LFP-Net architecture), the classification accuracy drops 

 

Figure 4.7. The schematic of the LFP-Net with 1D convolutional layers. The raw STN-LFP signal 

associated with each trial is used as the input. The network contains six convolutional+ReLU layers (blue 

boxes), three max-pooling layers (green boxes), and two fully connected layers (yellow box). The batch 

normalization (red box) is applied after each layer as shown by red arrows. The dimension of feature 

maps is given next to each layer. 
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sharply. For instance, the average accuracy of 10 subjects is about 47% when using the raw 

LFP sequence with 1D-conv LFP-Net. On the other hand, the average accuracy of the same 

10 subjects reaches about 88% with the original LFP-Net architecture, showing the 

importance of using the frequency components of the LFP signals in recognizing different 

human activities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.5. The classification accuracy (mean ± std) % of the LFP-Net with 1D convolutional 

layers and raw LFP sequence as input versus the original LFP-Net architecture (figure 4.3) 

using spectrogram as input.  

 Subjects 

Classifiers 1 2 3 4 5 6 7 8 9 10 

LFP-Net 

(1D-conv) 

50.1

(2.9) 

45.0

(3.3) 

40.8

(4.6) 

49.1

(4.1) 

49.2

(3.6) 

54.3 

(3.7) 

41.9

(5.4) 

55.8

(4.5) 

37.6

(5.3) 

46.6

(5.3) 

LFP-Net 
89.4

(2.8) 

89.1

(2.3) 

84.7

(3.0) 

84.7

(3.1) 

92.1

(2.7) 

85.87

(3.3) 

91.2

(2.3) 

88.3

(3.5) 

93.7

(2.7) 

85.3

(4.9) 
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4.6 Appendix: Hierarchical LFP-Net 

In this section, the hierarchical classification scheme presented in Chapter 3 is 

extended to work with the LFP-Net as the classifier. In other words, at each level of the 

hierarchical structure, the LFP-Net is employed for the classification task. To evaluate the 

classification performance, Dataset2 is utilized. Note that, originally, Dataset2 contains 4 

different tasks including “button press”, “speech”, “mouth movement”, and “target 

reaching”. However, for the sake of consistency with Dataset1 and Dataset3, we just did 

our analysis using two behavioral tasks including “button press”, “target-reaching”, and 

“random” trial, which lead to a 3-class classification problem. 

In this appendix, all 4 tasks of Dataset2 plus “random” trial are included to evaluate 

the behavior classification using all existing behavioral tasks in Dataset2, leading to a 5-

class classification problem. 

The results of the single level classification is given in Table 4.6 for all subjects 

separately. As seen, the proposed LFP-Net obtains the best results in almost all cases. The 

 

Figure 4.8. The confusion matrix of all subjects (the weighted average is shown in each case) and all 

behavioral tasks given for Dataset2. From left to right the results given by the SVM-RBF, SVM-Linear 

and the LFP-Net are given respectively.   
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weighted average confusion matrix (experiments were repeated 50 times with randomly 

selected samples for each subject) is given in figure 4.8 for a comparison between different 

methods. 

Apart from the single level classification for Dataset2, the hierarchical scheme has 

also been developed for Dataset2 with three classification levels (see chapter 3 for more 

details). The hierarchical scheme is shown in figure 4.9.  

 

Figure 4.9. Schematic of the LFP-Net with hierarchical classification structure 

 

Table 4.6. The classification accuracy (mean ± std) % of different 

classifiers. The results are reported for 4 subjects of Dataset2 separately. 

The best value is highlighted in each column across all subjects.  

 Subjects 

Classifiers 1 2 3 4 

LFP-Net 64.74(3.7) 69.69(1.5) 73.64(2.2) 66.67(2.6) 

RBF-SVM 64.86(2.8) 62.14(3.6) 68.54(4.5) 65.94(1.6) 

Linear-SVM 60.00(4.4) 51.02(5.6) 60.52(2.4) 63.07(2.4) 
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The classification results of the LFP-Net with hierarchical structure is given in Table 

4.7 for each level of classification separately. While the LFP-Net with the hierarchical 

structure shows a few percent lower accuracy as compared to the single level classification 

(see Level 3 of Table 4.7 and Table 4.6), the hierarchical structure intrinsically has the 

flexibility feature. In other words, it gives the user to adjust the classification level based 

on the existing needs. For instance, as shown in Table 4.7, the classification accuracy is 

relatively high when the classification task is terminated in Level 1 or 2.   

 

 

 

 

 

 

 

 

 

Table 4.7. Classification accuracy of the LFP-Net using the hierarchical structure 

given in figure 4.9. The abbreviations “BP”, “MM”, “SP”, “RE”, and “RA” 

respectively stand for “button press”, “mouth movement”, “speech”, “reach” and 

“random” trials.  
 subjects 
 1 2 3 4 

Level 1  

(Action, Random) 
96.38(3.2) 95.92(2.2) 97.92(3.1) 98.76(0.25) 

Level 2 

(Speech, Motor, Random) 
82.48(3.7) 81.53(3.3) 85.10(3.7) 83.99(2.5) 

Level 3  

(BP, MM, RE, SP, RA) 
63.16(1.8) 64.69(4.5) 69.79(3.5) 66.45(4.0) 
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CHAPTER 5   

Effects of Stimulation Pulse and 

Medication on Behavior Classification 

This chapter presents the effects of deep brain stimulation and medication on the 

dynamics of brain local field potential signals used for behavior analysis of patients with 

Parkinson’s disease. Behavior recognition from the LFP signals recorded from the 

subthalamic nucleus has application in developing closed-loop DBS systems, where the 

stimulation pulse is adaptively generated according to subjects’ current behavior. Most of 

the existing studies on behavior recognition that use STN-LFPs are based on the DBS being 

“off”. This chapter discovers how the performance and accuracy of automated behavior 

recognition from the LFP signals are affected under different paradigms of stimulation 

on/off. The notion of beta power suppression in LFP signals is first studied under different 

scenarios (stimulation on/off and medication on/off). Afterward, the accuracy of 

classification methods in predicting human actions using the spectrogram of STN-LFP 

signals is explored. Our experiments on the recorded LFP signals of two subjects confirm 

that the beta power is suppressed when the patients take medication or stimulation. The 

results also show that we can classify different behaviors with a reasonable accuracy even 

when the high-amplitude stimulation is applied. 
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5.1 Introduction 

LFPs recorded from the STN are robust control signals to indicate a change in patient’s 

Moreover, STN-LFPs correlate with symptoms of PD, levodopa medication level, 

behavior, and neuro-stimulation intensity [1,87]. PD symptoms may vary depending on 

patient’s level of attention and behavior, which change the characteristics of STN-LFP 

activity consequently. Therefore, the chronical variability of recorded LFPs ahould be 

investigated to design a robust closed-loop DBS system.  

To this end, we chronically recorded STN-LFP from two PD subjects in the 

medication on/off and stimulation on/off states while the subjects performed different 

motor tasks such as pressing a button and reaching a target. As a consequence, it helps 

explore the dynamics (i.e., change of characteristics) of LFP signals with different 

therapeutic conditions within a long time window. In contrast to the previous chapters, 

where the LFP signals were recorded in the operating room, we use a research-grade 

implantable neuro-stimulator (INS) to bilaterally record LFPs outside the operating room. 

Moreover, as opposed to our work presented in the previous chapters that utilize the LFP 

signals with stimulation/medication “off” condition, this study aims to evaluate the 

capability of human behavior recognition when stimulation/medication is “on”.  

First, the power spectrum density (PSD) of the recorded LFPs is analyzed to compare 

the effect of the medication and stimulation pulse on the increased beta power associated 

with PD. Then, the time-frequency representation of the raw LFP data is used for behavior 

classification with both stimulation/medication “off” and “on” conditions. This provides 
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valuable insight into the reliability of the classification of LFP signals in different 

stimulation/medication conditions. 

The rest of this chapter is organized as follows: Section 5.2 elaborates on the data 

recording sessions. The methodology is presented in Section 5.3. The quantitative results 

are given in Section 5.4. Finally, Section 5.5 comprises discussion and some remarks. 

5.2 Data Recording Details 

Two PD subjects with an implanted DBS lead (Medtronic 3389, Minneapolis, MN, 

USA) in each STN and subcutaneously implanted INS (ActivaTM PC+S, Medtronic Inc.,) 

participated in this study. All participants provided informed consent in a manner approved 

by the HealthOne Institutional Review Board.  

All subjects underwent postoperative data recording sessions. During the behavioral 

recording, two bipolar referenced LFPs, one from each hemisphere, were amplified and 

digitized (Fs ~ 422Hz) by the INS. In the experiments, the bipolar pair of channels 

containing the most prominent peak in beta frequency range was selected for recordings. 

Moreover, the INS generates a stimulation pulse with amplitude ~2.5v, frequency ~140Hz, 

and pulse width ~60μs. 

 

Table 5.1. Dataset and recording details. Dataset includes several chronical recording sessions under 

different stimulation and medication conditions. “CH” shows the number of bipolar re-referenced 

LFP channels recorded for each subject. “BP” and “TR” respectively stand for “button press” and 

“target reaching” behavioral trials. 

 Stim off & 

Med off 

Stim off & 

Med on 

Stim on & 

Med off 

Stim on & 

Med on 

Subject Fs(Hz) # CH 
Bandwidth 

     (Hz) 
BP TR BP TR BP TR BP TR 

1 422 2 0.5-100 120 120 NA NA 120 123 120 127 

2 422 2 0.5-100 120 119 120 120 60 60 120 120 
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Recordings were performed at 12 or 24 months after DBS lead implantation surgery. 

The first recording session was performed while the subjects refrained from taking their 

levodopa medication for at least 12 hours. The second session was performed when the 

subjects were regularly consuming their prescribed medication dosage. On average, 

behavioral tasks included 60 repetitions of cued “button press” and “target reaching” trials 

performed by left or right hands, under various stimulation/medication “off” and “on” 

conditions. The summary of the recording sessions is given in Table 5.1. Also, the 

schematic of the recording sessions is shown in figure 5.1. 

 

 

Figure 5.1. The schematic of the data recording sessions using implanted Medtronic INS system and 

recording setups under different medication and stimulation conditions. 
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5.3 Analysis of Stimulation and Medication Effects 

In this section, first, the effect of the medication and stimulation pulse on the beta power 

will be presented. Then, the feature extraction and classification approach is explained. 

5.3.1 Power Spectrum Density (PSD) Analysis 

To compare the therapeutic effect of medication and stimulation on the increased beta 

power associated with PD, the power spectrum density (PSD) of the recorded LFPs are 

calculated using a Welch’s method with a Hanning window of length nfft = Fs. This 

provides a frequency resolution (Fs / nfft) of 1Hz. The PSD of an LFP signal x(t) is given 

by its corresponding discrete Fourier transform 𝑋(𝑓) coefficients as follows [88]: 

𝑃𝑆𝐷(𝑓) =
1

𝑆 × 𝐹𝑠
|𝑋(𝑓)|2,⁡⁡⁡⁡𝑆 = ⁡∑ 𝜔𝑖

2⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5.1)
𝑁

𝑖=1
 

where, S is the scaling factor defined as the sum of squared weights (ω) of the employed 

window (Hanning window).  

 

Figure 5.2. Comparison of PSDs between stimulation “off” (red) and “on” (blue) cases. As seen, the 

artifact imposed by the stimulation pulse mainly impacts the high frequency range f~(100-180)Hz. At 

the low frequency range, the beta power decreases as a result of the stimulation.  
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The impact of stimulation on the PSD of an exemplary LFP signal is given in figure 

5.2. As shown, there is a significant peak about the stimulation frequency (f~140Hz), which 

has been propagated into its neighbor frequency components f~(100-180)Hz. However, the 

low frequency range is not considerably affected by the stimulation pulse, except for the 

expected therapeutic decrease on the beta power. 

The effect of medication and stimulation pulse on the increased beta power of PD 

patients are shown in figure 5.3 and 5.4 respectively for subject 1 and 2. As can be seen, 

 

Figure 5.3. Effects of medication and stimulation pulse on the increased beta power band associated with 

PD for subject 1. As seen the medication or stimulation pulse tend to decrease the beta power. Top row 

shows the PSD of the “button press” trials and bottom row shows the PSD of “target-reaching” trial. Left 

and right columns respectively correspond to the LFP signal collected from left and right STNs. 
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the increased beta power associated with PD tends to decrease with all behavioral activities 

when patients take medication or therapeutic stimulation pulse.  

5.3.2 Time-Frequency Analysis 

As presented earlier, the time-frequency representation of the raw LFP signals is a 

reliable feature space to distinguish different behaviors. Intrinsically, the frequency 

components of the LFP signals can be impacted when a high-frequency stimulation pulse 

is applied. However, in Section 5.3.1, it has been shown that except for a therapeutic change 

 

Figure 5.4. Effects of medication and stimulation pulse on the increased beta power band associated with 

PD for subject 2. As seen the medication or stimulation pulse tend to decrease the beta power. Top row 

shows the PSD of the “button press” trials and bottom row shows the PSD of “target-reaching” trial. Left 

and right columns respectively correspond to the LFP signal collected from left and right STNs. 
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in the beta power band (i.e., the increased beta power associated with PD decreases when 

the patients take medication or receive therapeutic stimulation), the stimulation signal 

mainly impacts the frequency range around the stimulation frequency (~130-185Hz).  

According to our observations, except for some artifacts that appear at high-frequency 

components (i.e., about the stimulation frequency f~140Hz), the spectrograms obtained 

under stimulation off/on and medication off/on cases almost follow the same patterns 

within the beta frequency range. It suggests that, regardless of the stimulation or medication 

status, the behavior classification task can be done properly as long as the low frequency 

components are used. To compare the change of the beta power pattern of a typical 

spectrogram under different medication and stimulation conditions, figure 5.5 shows the 

average amplitude of the CWT coefficients of 60 trials recorded from subject 1 and “target 

reaching” task (Consider the similarity of the beta power band across three figures). 

5.4 Experiments and Results 

This section is dedicated to the classification performance under various medication 

and stimulation conditions using the presented LFP-Net classifier and the spectrogram as 

inputs. 

 

Figure 5.5. Spectrograms of different stimulation and medication conditions. Left to right respectively 

shows the average spectrogram of 60 “target-reaching” trials under medication “off” stimulation “off”, 

medication “on” and stimulation “off”, and medication “off” and stimulation “on” conditions. Consider 

the similarity of patterns within the beta frequency range (10-30Hz).  
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5.4.1 Classification Performance 

In order to compare the behavior classification performance under different stimulation 

and medication conditions, the LFP-Net (chapter 4) and the recorded dataset (Table 5.1) 

under different conditions are employed:  

1. medication “off” and stimulation “off” 

2. medication “on” and stimulation “off” 

3. medication “off” and stimulation “on” 

The LFP-Net specifications are the same as those given in Chapter 4. A comparison 

between the classification performance under three aforementioned conditions is given in 

Table 5.2. As can be seen, the variation of the classification accuracy is not considerable 

under different stimulation/medication status, confirming that the time-frequency 

representation within the beta frequency band is still a reliable candidate for classification 

task regardless of the stimulation/medication status. For instance, while subject 2 shows 

less than 3% drop on the average accuracy with stimulation “on” condition, subject 1 

obtains more the 3% improvement on the average classification accuracy under stimulation 

“on” condition. 

Table 5.2. The classification accuracy (mean ± std) % of the 

proposed LFP-Net under different stimulation and medication 

condition for Dataset-I (i.e., subject 1 and 2). The average and 

standard deviation of 50 repetitions is given in each case. 

 medication and stimulation condition 

Subjects  
stimulation off 

medication off 

stimulation off 

medication on 

stimulation on 

medication off 

1 89.4(2.8) 92.1(4.0) 93.7(1.7) 

2 89.1(2.3) 88.3(3.3) 86.3(3.6) 
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5.4.2 Statistical Analysis 

In order to statistically compare the classification performance under different 

medication and stimulation conditions, the McNemar’s test (see Section 2.5) is used. As a 

result, 50 p-values are obtained for 50 runs for each medication/stimulation conditions 

associated with Table 5.2. The number of p-value < 0.05 over 50 runs for each case is given 

in Table 5.3. As can be seen, based on the McNemar’s test, the classification power of the 

LFP-Net is not significantly different based on different medication/stimulation conditions, 

which can emphasize that the beta frequency range can still be a reliable candidate for 

behavior classification even if the patients take medication or therapeutic stimulation pulse. 

5.5 Summary 

In this chapter, the effect of the stimulation pulse and medication on the human 

behavior classification and beta power of Parkinson’s disease patients was evaluated. A 

feature space based on the time-frequency representation of the acquired brain subthalamic 

nucleus local field potential signals was developed. Our analysis showed that the beta 

frequency components of LFPs are capable of detecting different human activities even 

when the high-amplitude deep brain stimulation pulse is applied.  

Table 5.3. Comparing the classification performance of the proposed LFP-

Net with different medication/stimulation conditions and McNemar’s 

statistical test. All the classifiers were run 50 times with a randomly selected 

set of training, validation, and test set. Since McNemar’s test is calculated 

on a single-run basis, in each case, the number of times the calculated p-

value < 0.05 is shown here, i.e., (#p-value < 0.05) / (50 runs). 

Subjects  

(stim off, med off)  

vs  

(stim off, med on) 

(stim off, med off)  

vs  

(stim on, med off) 

1 7/50 17/50 

2 2/50 10/50 
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Different experiments were carried out on the LFP signals acquired from two PD 

subjects to classify “button press”, “target reaching” and “random” trials. The performance 

of behavior classification was evaluated under stimulation/medication “off” and “on” 

conditions. The results showed that, regardless of the stimulation/medication status, the 

behavior classification capability remains almost unchanged when the beta frequency 

components of the proposed feature space are used. As a result, there is no need to remove 

the high-frequency artifacts imposed by the stimulation pulse, which essentially requires 

more computational power.  

Furthermore, the effect of stimulation and medication on the beta power of LFP signal 

was separately investigated. The results showed that the stimulation artifact mainly impacts 

the frequency range around the stimulation frequency. Also, the increased beta power 

associated with PD is suppressed significantly when the patients take medication or receive 

therapeutic stimulation. 
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CHAPTER 6   

Conclusion and Future Directions 

6.1 Conclusion and Discussion 

Neuro-stimulation is a neurosurgical procedure that modifies the brain's electrical 

activity to provide potential treatments for a large spectrum of neurological disorders, such 

as Parkinson's disease (PD), essential tremor, depression, seizures, and chronic pain. 

Neuro-stimulation modulates local field potential oscillations in the deep brain nuclei and 

affects cortical and subcortical connections, key to decision-making, learning and cognitive 

association. Considering the effectiveness of brain electrical stimulation techniques in 

elevating patients’ symptoms, they have gained much attention in recent years, leading to 

designing more advanced implantable electrical stimulator devices and brain surgery 

techniques.  

In particular, deep brain stimulation (DBS) is a rapidly growing technique in 

neuroscience community, and is highly used when drug therapy in no longer effective for 

patients. DBS is an FDA-approved therapy for essential tremor and Parkinson’s disease, 

and provides significant benefit over medical therapy. Candidacy for DBS is typically 

determined by balancing the potential quality of life gains from DBS with the potential 
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clinical risks of DBS implantation. Although DBS provides substantial relief of the motor 

signs of PD, it has negative side effects. An empirical question remains regarding the 

effectiveness of the DBS approach caused by lack of additivity and optimality. An adaptive 

DBS system could provide unique parameters for disparate behavior, providing superior 

therapeutic benefit for the task at the moment, without the cost of compromising 

performance for tasks performed later. Furthermore, an adaptive system may also reduce 

power consumption by only turning on the pulse generator when needed. Recognition of 

human behavior through neural feedbacks from the brain is a stepping-stone for designing 

a closed-loop DBS system that can adaptively change the parameters of the stimulation 

signals based on patients’ current condition. 

This dissertation was mainly concentrated on the recognition of human behavioral 

activities through the recorded local field potential (LFP) signals from subthalamical 

nucleus (STN) of PD patients. Note that DBS provides a unique opportunity to record in 

vivo the neural responses through acquiring LFP signals, allowing the investigation of 

electrical oscillatory activities of the brain. Specifically, LFPs recorded from the STN are 

robust control signals indicating a change in the patients’ state, correlating with the 

patients’ PD symptoms, medication level, and behavior. Furthermore, LFP signals are 

stable over long periods, which is a necessary characteristic for a feedback signal in a 

closed-loop DBS system.   

The time-frequency representation of the LFP signal within the beta range (~10-30 Hz) 

is used as feature space to classify behavioral activities. It was observed beta power 

desynchronization during activities followed by an augmentation in majority of subjects’ 
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STN-LFP recordings. Several classifiers were developed to classify different human 

behavioral tasks including, button press, target reaching, mouth movement, and speech. 

A hierarchical structure was proposed to perform the behavior classification via a 

multi-level framework, which is able to recognize human behavior at different levels of 

resolution ranging from a coarser level, like action recognition to a finer level, like finger 

movement. An Lp-norm MKL-based SVM classifier was trained for behavior 

classification task at each level of the proposed hierarchical approach. All bipolar LFP 

signals recorded from both STNs were combined via the MKL formulation to recognize 

the label of the corresponding trial. To reduce computational costs, a feature selection 

method was alternatively developed that still incorporated all recorded LFP data using a 

pairwise strategy. An FFT-based phase synchronization approach was used to form three 

interhemispheric pairs out of six available bipolar LFP signals. Three classifiers were then 

driven at the same time, leading to three labels for the corresponding trial. Finally, these 

labels were passed through a fusion function to determine a single label for the input trial. 

One of the limitations of this work is that it was developed based on the existence of 

all six recorded bipolar STN-LFPs. Although this is feasible in the research environment, 

in practice, only a few of the contacts of the DBS leads (1 or 2 bipolar re-referenced 

contacts) are is used for recording based on the location of the lead and the strength of the 

signals sensed from the lead contacts.  

To address this limitation, presented LFP-Net was presented, which is a deep neural 

network framework for human behavior classification using a single bipolar re-referenced 

LFP signal recorded from either STNs. The proposed classification method was rooted on 
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the deep convolutional neural network architecture, which was composed of six CNN 

layers, three max-pooling layers, and two fully connected layers. The softmax activation 

function was used at the output layer for classification of samples. 

Different experiments were carried out on the STN-LFPs recorded from ten subjects 

diagnosed with Parkinson’s disease (PD). The classification performance of the proposed 

classification methods were compared against other methods. The quantitative 

comparisons confirmed that the proposed methods improve the behavior recognition 

performance in most cases. Specifically, the deep learning classifier showed much higher 

potentials in human behavior recognition using LFP signals as compared to the traditional 

classification approaches (e.g., SVM, KNN, etc) presented in related literature.  

The effect of the stimulation pulse and medication on the human behavior classification 

and beta power of PD patients were also studied. Our analysis showed that the beta 

frequency components of LFPs are capable of detecting different human activities even 

when the high-amplitude deep brain stimulation pulse is applied. The performance of 

behavior classification was evaluated under different stimulation/medication “off/on” 

conditions. The results showed that, regardless of the stimulation/medication status, the 

behavior classification capability remains almost unchanged when the beta frequency 

components are used as feature space. As a consequence, there is no need to remove the 

high-frequency artifacts imposed by the stimulation pulse, which essentially requires more 

computational power. Furthermore, the effect of stimulation and medication on the beta 

power of LFP signal was separately investigated. The results showed that the stimulation 

artifact mainly impacts the frequency range around the stimulation frequency. Also, the 
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increased beta power associated with PD is suppressed significantly when the patients take 

medication or receive therapeutic stimulation. 

6.2 Future Work 

Intelligent closed-loop systems and brain computer interfaces are fast growing areas in 

neuroscience research community and industry. Some of the future research outlines and 

interesting extensions to this work are as follows: 

 Throughout this work the recorded timing information during data collection 

sessions was used to identify the segments of the LFP signals related to each 

task. However, for a behavior-adapted closed-loop system, this timing 

information needs to be detected automatically. So, one interesting extension to 

this work is to develop event-related biomarkers, which will be able to 

automatically detect the event-modulated clues, pinpointing the initiation of 

each event accordingly. 

 A crucial part of designing an adaptive closed-loop system is to adjust the 

parameters of the stimulation signal such as pulse width, stimulation frequency, 

and amplitude based on the patients’ current behavior. So, another future 

direction of this work will be finding the optimum DBS parameters for different 

behaviors and investigate the capability of the pulse generator for changing the 

stimulation parameters automatically. 

 Throughout this research, we used LFP signals as the only brain feedback to 

identify different behavioral activities. Even though we achieved promising 

results, to obtain a perfect classification performance, the information provided 
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by the LFP signals may not be sufficient. So, investigating the feasibility of 

incorporating the other bio-signals such as ECG, EMG, and ECoG alongside 

the LFP signal to obtain a higher behavior recognition performance would be 

another interesting future work. 

 Investigating the power consumption and computational capability of the 

implantable pulse generator is another key future research direction. Although 

the training part of classification algorithms and other required processing steps 

can be done offline, it is important to assess how the computational complexity 

of algorithms can be conducted for online applications and how the battery 

lifetime will be affected by continuous recording of the neural response.  

 Apart from the adaptive closed-loop DBS systems, the results of this work can 

be used for other brain computer interface (BCI) applications, behavior 

recognition based on other brain signals such as EEG and ECoG, and related 

animal studies. 
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