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Abstract  

 

 When following a plot in a story, categorization is something that humans do 

without even thinking; whether this is simple classification like “This is science fiction” or 

more complex trope recognition like recognizing a Chekhov's gun or a rags to riches 

storyline, humans group stories with other similar stories. Research has been done to 

categorize basic plots and acknowledge common story tropes on the literary side, however, 

there is not a formula or set way to determine these plots in a story line automatically. This 

paper explores multiple natural language processing techniques in an attempt to 

automatically compare and cluster a fictional story into categories in an unsupervised 

manner. The aim is to mimic how a human may look deeper into a plot, find similar 

concepts like certain words being used, the types of words being used, for example an 

adventure book may have more verbs, as well as the sentiment of the sentences in order to 

group books into similar clusters.  
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Text 

 

Introduction: 

 

Storytelling has been a cornerstone of society since the early days of the human race. 

Cave drawings detailing animals and themes of survival date back to the Chauvet cave in 

France from 30,000 years (Mendoza, 2015). Storytelling continued to evolve mainly as 

oral tradition until around 9,000 years ago when the earliest known written stories were 

transcribed. The first written stories were manually transcribed, whether on paper, stone or 

clay. Writing began as drawings, but over time changed into prose (Mendoza, 2015). In 

ancient Greece, where the earliest inscriptions date from 770 to 750 B.C., Scholars suggest 

that "The Iliad" by Homer is the oldest surviving work in the Greek language that 

originated from oral tradition (Mendoza, 2015).  

 

Scholars have pinpointed the invention of fiction, defined as a mode of writing in which 

both author and reader are aware, and know that the other is aware, that the events described 

cannot be known to have happened, to 12th century England (Ashe, 2018). During this 

time, there was a general increase in economic prosperity across Europe among the 

aristocratic elites. This, along with the Roman Catholic Church pushing a new focus on 

interiority and selfhood, among other things, led to the creation of the first known fictional 
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works (Ashe, 2018). Around 1155, a Norman clerk called Wace presented a long poem to 

Eleanor of Aquitaine. This poem was a French translation of Geoffrey of Monmouth’s 

History of the Kings of Britain (c. 1136), a long work of Latin prose that purports to recount 

the history of Britain. In these poems, the most prevalent hero was King Arthur, the 

conqueror of most of Europe, before treachery forced him to return to a civil war which 

led to the ultimate downfall of his people (Ashe, 2018). When Wace translated Geoffrey’s 

Latin into French verse, he took the opportunity to elaborate and embellish on the 

descriptions of Arthur’s court. In doing this, he transformed the historical poems into 

fictional narratives, meaning the characters were known to both the author and the reader 

as being something that could not have existed in reality (Ashe, 2018).  

 

 

From here, fiction continued to build and evolve until becoming what we know of 

today: by the time of the Elizabethan Age, religious inspiration was becoming distinct from 

scientific fact, truth was something to be proven by observation and experiment, and the 

aesthetic event was a self-conscious production (Doctorow, 2006). This is where William 

Shakespeare comes in and changes the way fiction is told from the writing of his plays, 

which portray fictional storyworlds. Shakespeare wrote about timeless themes such as life 

and death, youth versus age, love and hate, fate and free will, to name but a few. Not only 

did Shakespeare change structures of fictional writing, but he also invented around 1700 

words which we still use in everyday English today.  He often changed nouns into verbs, 

verbs into adjectives, connecting words together and coming up with wholly original ones
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too (Celtic English Academy, 2017). From here, fiction continues to evolve: Mark Twain, 

a famous author in the 19th Century, said that he never wrote a book that didn’t write itself 

(Doctrow, 2006). Henry James, an American-British author regarded as a key transitional 

figure between literary realism and literary modernism, in his essay “The Art of Fiction,” 

describes this empowerment as “an immense sensibility … that takes to itself the faintest 

hints of life … and converts the very pulses of the air into revelations.” What the novelist 

is finally able to do, James says, is “to guess the unseen from the seen.” (Doctorow, 2006). 

Modern fiction continues to build off of the foundation set by key authors throughout 

history. In fact, according to Cristopher Booker, an English journalist and author, there are 

only seven basic plots that all stories are built from at their core (Booker, 2019).  

 

Booker, who early on in his book The Seven Basic Plots: Why we Tell Stories 

compares the hit 1970s movie Jaws to the 700-1000 A.D. poem Beowulf, outlines the basic 

plots as: Overcoming the Monster, Rags to Riches, The Quest, Voyage and Return, 

Comedy, Tragedy, and Rebirth. He later adds an eighth plot based on detective novels 

(Booker, 2019). In his over seven-hundred-page exploration of fiction and tropes, he goes 

into detail about each of these basic plots and their structure:  

 

Overcoming the Monster plots have five parts: “The Call," where the hero decides 

to defeat evil and may get gifts to help in this endeavor. Next is “Initial Success,” where 

the hero may win a small battle, but the full power of the monster is not yet revealed. After 

is “Confrontation,” where the hero faces their first serious setback. Next is “The Final 

Ordeal," where the hero must face a deadly trial. Lastly there is “Escape or Death," where 
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the hero beats trials and either escapes from or kills the monster. Examples of Overcoming 

the Monster plotlines are: Gilgamesh, Beowulf, Frankenstein, The Longest Day, Live and 

Let Die, Star Wars (1977), among countless others (Booker, 2019). 

 

Rags to Riches plots also have five parts: “Initial Wickedness at Home," where the 

protagonist experiences an original unhappy state, and the reader is introduced to the evil 

figures around them. Next is “Initial Success," where the protagonist is rewarded for a first, 

limited success, as well as the first encounter with the prince or princess when applicable. 

After that there is “The Central Crisis," where everything suddenly goes wrong. Next is 

“The Final Ordeal," where the protagonist emerges from the crisis with character growth. 

All that is left is the last dark figure standing between the protagonist and the end goal. 

Lastly there is “Fulfilment” where the protagonist gets the princess/prince, rules the 

kingdom, etc. Examples of Rags to Riches plotlines are: Aladdin, Cinderella, Some Stories 

of King Artur, Jane Eyre, Great Expectation, among countless others (Booker, 2019). 

 

Similarly, The Quest plots have five parts: “The Call," where life has become 

intolerable for the protagonists and they realize that they need a long journey. Next, there 

is “The Journey," where the heroes and their companions set out across hostile terrain. 

After is “Arrival and Frustration," where the party arrives within sight of their goal, but 

new obstacles arise. Next is “The First Ideals," where the party needs to endure a series 

(often three) of tests. Lastly there is “The Goal” where the party makes their last thrilling 

escape, winning the treasure and an assurance of a better life. Examples of this are: The 

Odyssey, Moby Dick, Water ship Down, Treasure Island, among others (Booker, 2019).  
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Voyage and Return plots also have five key parts: “The Anticipation Stage," where 

the protagonist is in a state which leads to a shattering experience; this is often character 

descriptors like bored, naive, reckless, etc. Next is “The Initial Fascination” where the 

protagonist experiences their first exhilarating exploration. After is “The Frustration 

Stage” where the mood changes to frustration, and oppression. Next is “The Nightmare 

Stage” where the shadow of the aforementioned feelings becomes dominating. Lastly is 

“The Trilling Escape” where the protagonist escapes from the shadow or new world back 

to where they started. The protagonist and reader now get to see how far the protagonist 

has come, what has been learned, and how the protagonist has grown. Examples of these 

plots are: Alice in Wonderland, Goldilocks, The Time Machine, The Wizard of Oz, Peter 

Pan, The Lord of The Flies, among many others (Booker, 2019). 

 

Unlike the aforementioned basic plots, Comedy plots only have three key parts: 

part one, where we see a little world in which people have passed under a shadow of 

confusion, uncertainty, and frustration. Next is part two, where the confusion gets worse. 

Lastly things that were not previously recognized come to light, and perceptions are 

changed. The Shadow gets dispelled, and the world is transformed for the better. Examples 

of Comedies are: A Night in Casablanca, Lysistrata, The Alchemist, The Tempest, Pride 

and Prejudice, The Philadelphia Story, among others (Booker, 2019).  

 

Tragedy plots go back to the five key structure: First is “Anticipation," where the 

hero is incomplete or unfulfilled. Next is “The Dream Stage," where the protagonist 
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becomes committed to a course of action. After is “The Frustration Stage," where things 

begin to go wrong; the hero cannot find rest, and are often compelled towards dark acts. 

Next is “The Nightmare Stage," where things are slipping out of control. Opposition and 

fate are closing in. Lastly is “The Destruction Stage," where the hero dies. Examples of 

this plotline are: Macbeth, Lolita, Dr. Jekyll and Mr. Hyde, Bonnie and Clyde, Romeo and 

Juliet, The Snow Goose, among others (Booker, 2019). 

 

The last basic plot described is Rebirth, which also has five key parts: part one where 

the hero falls under the shadow of the dark power. Next, in part two, things go reasonably 

well for the hero at first. This does not last long as in part three, the threats builds, and the 

hero is seen imprisoned in a state of living death. Next, the threat continues until the dark 

power triumphs. Lastly, the hero experiences redemption, often defeating the dark power. 

Examples of Rebirth plotlines are: Sleeping Beauty, Snow White, A Christmas Carol, Crime 

and Punishment, among others (Booker, 2019). 

 

Reading this book had become the basis for this paper. While many others, namely 

Robert McKee, Joseph Campbell, Vladimir Propp, among others, have discussed the idea 

of plots, Booker’s work was the first that I had read, and thus had been a big inspiration in 

generating the concept for this project. Whether in agreement with Booker’s organization 

or not, reading Booker makes it clear that below the surface of all literature there are key 

similarities that link many works together. Even in a very simplified manner, the way books 

are sorted into categories like Fantasy, Science Fiction, etc. are a way to categorize works 

of literature into broad categories using contextual clues. These clues may be clear to a 
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reader, but there is no formula to decide if a book is a Science Fiction novel or an 

Overcoming the Monster plotline, or any other categorization. While there will likely never 

be an objective way to categorize stories into simplified categories, as inherently, moving 

to broader categories results in the loss of information, but this project intends to explore 

these categories and what structure points in stories could lead to these categorizations by 

a computer model.  

 

Natural Language Processing, or NLP, is a field of Artificial Intelligence that gives 

the machines the ability to read, understand and derive meaning from human languages 

(Yse, 2019). Natural Language processing is a quickly growing field in computer science. 

Fields such as voice-driven assistants like the Amazon Echo, Google Assistant, Siri, etc., 

financial trading, disease prediction, news site pruning for fake news, among many other 

fields are constantly being improved by natural language processing. Despite all of the 

work being done in Natural Language Processing, long form text analysis, especially in the 

field of fiction has not been a focus.  

 

This project aims to use existing practices in Natural Language Processing in order 

to gain insight into what underlying structures lead to our categorization and the writing 

tropes that have been identified. The main practices used are namely unsupervised learning, 

in which classification is done without the help of manual labeling (Radford, 2020), 

sentiment analysis, in which words are categorized as having a positive or negative 

connotation, part of speech tagging, in which words are classified automatically as nouns, 
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verbs, adjectives etc., lemmatization, where words are changed into their root word, data 

cleanup using stopwords, known names, etc., among other practices.  

 

In this project, you will find an exploration of literature, sourced for the open source 

Project Gutenberg, using the aforementioned NLP practices, culminating the eventual 

clustering and categorization of fictional books from a range of categories like Fantasy, 

Adventure, Science Fiction, etc. his paper will explore the results and the limitations of 

current NLP practices in analyzing long form prose.  

 

Related Work 

 

Fictional Book Categorization 

 

Outside of Christopher Booker's analysis shown above, many other researches have 

discussed the categorization of fiction, generally for the optimization of libraries:  

 

In one of the older sources I came across, dating back to 1977, Pejtersen, and 

Annelise Mark discuss the results of user-librarian conversations about fiction recorded 

under everyday library conditions in Danish public libraries in 1973-74, and a further 

analysis of 134 conversations recorded in 1976. It was found that users' subconscious 

classification of fiction can be characterized by means of four dominant dimensions: (1) 

subject matter, including the categories of action and the course of events, psychological 

development and description, and social relations; (2) type of frame, including time and 
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geographical/social environment frames; (3) author's intention, including provision of an 

emotional experience or provision of information; and (4) accessibility, which includes 

readability and physical characteristics of a book (Pejtersen, and Annelise Mark, 1977). 

This was an interesting concept, and gave further proof towards the unconscious 

categorization of fiction, and how fiction may be categorized in an unsupervised manner, 

but by the nature of being based off conversations, categorization is subjective and there 

are no concrete categories defined.  

 

 In a more recent study published in 2007, Vernitski discusses a classification for 

fiction as a scholarly discipline, in contrast to the existing genre classifications used for 

fiction reading. Their paper proposes an intertextuality-oriented classification scheme for 

fiction. While not fully related to this project, this paper was important to forward the 

concept of classification of fiction in new ways based on the content of a text, such as an 

unsupervised algorithm might do. 

 

In 2008, an article by Richard Maker discusses the differences between bookstore 

and library organization and the importance of “the genre stigma." This article mentions 

how readers may believe they do not enjoy Fantasy novels, which, in actuality, will push 

them away from novels that they may enjoy. Again, while this article does not directly 

relate to this project, it gives merit to the idea that there are more classifications than just 

by genre, and that the core structure to a fictional work matters just as much as the setting 

and other clues that would lead to a genre classification.  
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Natural Language Processing 

 

There are many resources relating to natural language processing and text 

classification, however not many relate directly to longform fiction classification. To start, 

the primary resources used in learning the principles of natural language processing were: 

firstly, the textbook Natural Language Processing with Python In which the basic 

principles of natural language processing are taught using the nltk library in Python. Many 

of the concepts used, like sentiment analysis, lemmatization, stopword removal, among 

others were based on the concepts taught in this book. Next, the course “A Code-First 

Introduction to Natural Language Processing” by the fast.ai team was important in building 

a foundational understanding of natural language processing. In this course, concepts like 

tokenization, naive bayes, regex, sentiment analysis, and others are taught with code 

implementations and video lecture recordings. These sources, among others, were 

fundamental in building the knowledge needed for this project.  

 

Beyond works used to teach the principles of natural language processing, there 

were multiple prior experiments that helped to build the foundation for this project as well.  

 

Published works like “Automatic Affect Recognition Using Natural Language 

Processing Techniques and Manually Built Affect Lexicon.” by Cho, Y. H., and K. J. Lee 

and “Linguistic Profiling of Texts Across Textual Genres and Readability Levels. An 

Exploratory Study on Italian Fictional Prose” by Dell’Orletta, Felice, Montemagni, 

Simonetta, and Venturi, Giulia, while dealing with other languages, provided interesting 
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input into what is needed to analyze a longform text. “Automatic Affect Recognition Using 

Natural Language Processing Techniques and Manually Built Affect Lexicon.” uses a 

manually built affect lexicon in order to be able to detect various emotional expressions in 

a Korean textual document. Like many current natural language processing projects, their 

project deals with a smaller source, compared to the large texts used in this project, but 

gave an interesting look into the complexities of emotional analysis, an important piece in 

how humans would categorize texts. “Linguistic Profiling of Texts Across Textual Genres 

and Readability Levels. An Exploratory Study on Italian Fictional Prose” was on the 

surface a more similar project to this project. Long form texts were analyzed and 

categorized into genres. These genres were much more simplified however, namely 

literature, journalism, scientific studies, etc. While their project was based in categorizing 

less complex categories, it was shown that things like the lexicon used, the sentence length, 

the word length, etc. changed throughout different genres. This was promising, as similar 

differences may be apparent in fictional genres as well.  

 

Further work in this field has been done like “Personality Profiling of Fictional 

Characters Using Sense-Level Links between Lexical Resources” by Flekova, Lucie, and 

Iryna Gurevych. In their project, characters from many fictional books were analyzed and 

categorized as introvert or extrovert. To do this, things like actions taken, words used, 

adverbs used, descriptions, etc. were used to generate the group they most fit into. While 

their project deals with a different issue than this project, it shows how parts of speech, 

actions, and words used can accurately give a peek into what makes a character, and this 

may expand into what may make a book a certain genre.  
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Other general natural language processing works were used as references. “NLP on 

spoken documents without ASR” by Mark Dredze, Aren Jansen,  Glen Coppersmith, and 

Ken Church breaks audio speeches into one second long phrases that are then used in 

clustering, a concept that is adapted in this project in the part of speech clustering section. 

Furthermore, sources like “Unsupervised and Semi-supervised Clustering: A Brief Survey” 

by Nizar Grira, Michel Crucianu, Nozha Boujemaa showed the merit and use of 

unsupervised clustering, which was used in this project to classify a large amount of texts 

by their fundamental pieces. 

 

All in all, while there were no sources that were directly built upon for this project, 

many existing projects, often which focused on smaller pieces, showed the use of 

fundamental language used in the classification of fictional works. This project will expand 

on those fundamental ideas, as well as the aforementioned literature-based text 

classification research in order to explore and classify long form fictional pieces by their 

fundamental pieces.  

 

Experimentation 

 

Problem 

 

Here we discuss the initial experimentation performed. Using a set of fictional texts, 

current Natural Language Processing practices are applied to the texts. The purpose is to 
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explore the fundamentals and key similarities between texts. The end goal is to use the 

explored data to categorize the texts, much like how humans would read a work of fiction 

and group it with similar works, without much thought.  

 

In the rest of this section, we describe the experimental setup, and the multiple 

Natural Language Processing practices applied, as well as the observations and analysis of 

the results.  

 

Experimental Design 

 

As previously mentioned, the purpose of this project is to explore the structure of 

long form fictional literature using Natural language Processing practices. The first step 

was to acquire the resources in order to have a varied, relatively large set of data to train, 

test, and analyze.  

 

Setup: 

This project uses Project Gutenberg as the primary data source. Project Gutenberg 

is a library of over 60,000 free eBooks with focus on older works for which U.S. copyright 

has expired (Gutenberg, 2020). The first step was to manually acquire all book IDs in which 

a fictional work is included. These IDs were acquired from digging through the website 

and grabbing IDs as well as the tags given by Project Gutenberg i.e. Fantasy, Historical 

Fiction, etc. Once the IDs were acquired, the Project Gutenberg Python Library was used 
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to load in the full text for all gathered IDs. These texts are organized using a pandas 

dataframe with the text, title, and the project Gutenberg tag. Minor cleanup was needed to 

remove headers and endnotes added by project Gutenberg, and to include only English 

books as an effort to reduce noise in the results. For the language detection, the Python 

library langdetect was used. This library is a port of Nakatani Shuyo's language-detection 

library for Python, which supports fifty five languages.  

 

Part 1: 

 

After the texts were all gathered, the first step was to analyze random sets of books 

to see what potential differences in texts may be. This part is separated from any 

categorization and was included as an exploration of the building blocks of stories using 

Natural Language Processing, to later be used in analysis of the categorization. This was 

done in two parts originally: testing how the parts of speech and the sentiment of words 

may change in the duration of a text. 

 

Both of these sections followed the same structure: First read in the texts. This was 

explored in the above Setup section. Next, punctuation is removed, but not stopwords. 

While in preprocessing it is often commonplace to remove stopwords, for these two pieces, 

stopwords were not removed in order to retain meaning. For example, in sentiment 

analysis, “This movie is not good” could be changed to “movie good” when removing 



 15   

 

stopwords, which has a different sentiment. Lastly, the text is processed, in ways that will 

be later be expanded on, and a dispersion plot is outputted as a visual representation.  

 

For the part of speech section, the nltk Python library was used. The nltk Python 

library is a leading platform for building Python programs to work with human language 

data, providing easy-to-use interfaces to over fifty corpora and lexical resources (nltk, 

2020). Using this library, there is a “part of speech” tagger, where an imputed string will 

result in a list of tuples with the word and the part of speech. The dispersion plot is 

outputted representing a tick for the most common and useful parts of speech, namely 

nouns, verbs, adjectives, adverbs, proper nouns, conjunctions, and personal pronouns (I, 

he, she, etc.) in order of occurrence.  

 

For the sentiment analysis, the nltk Python library was once again used. Using this 

library, and the included vader sentiment analyzer, each sentence in the text was analyzed. 

Using the returned floating-point value for the compound score, sentences are determined 

to be positive, negative or neutral. Sentences were used since context is often important in 

determining sentiment and limiting to words often will not get a fully accurate result. The 

dispersion plot is outputted representing a tick for each of the categories: positive, negative, 

and neutral, in order of occurrence 

 

These plots were outputted for a random selection for each project Gutenberg 

category, for example mystery fiction, science fiction, etc. These plots were used as a basis 

for the next part, as well as in the analysis of the overall results, giving important insight 
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to the data set and how it is structured, as well as the potential differences between 

categories.  

 

Part 2: 

 

 After the original exploration, the next part of this project focuses on the 

categorization of texts. This was split into two sub-sections, both with similar structure: 

the clustering of the texts by their words, and the clustering of texts based on the part of 

speech of the words.  

 

 Both of these sections begin with the same structure: first read in the texts. This 

was explored in the above Setup section. From here, the subsections are handled 

differently.  

 

For the part of speech section, stopwords are not removed for the same reasons 

mentioned in the previous part. The text is split on all punctuation. For each entry, a “word” 

is created from the combined parts of speech. For example, “Bob ate cookies.” Would 

become NNP VB NN for Proper noun, verb then noun, which would result in the “word” 

NNPVBNN.  

 

For the word clustering, additional preprocessing was necessary in order to remove 

some noise from the results. The preprocessing used was to first remove punctuation. This 
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was done by tokenizing the text using the nltk library. Next, stopwords were removed. The 

purpose of this is to remove common words that would add noise to the results, which 

would make interesting words not hold as much weight in clustering. The stopwords used 

were the standard nltk stopword set, expanded slightly with words like “Mr.," “Mrs.," as 

well as some characters like “…” among others. Another step in cleanup was to remove 

common names. The purpose again was to remove words that may overshadow interesting 

words in the results. For example, in Moby Dick, Captain Ahab may be mentioned often. 

Ahab is a word that would not need to be considered in clustering as another book having 

a character with the same name does not denote that they are similar. To do this, a 

dictionary of common names was used to remove occurrences from the text.  

 

Table of Stopwords 

Word Origin 

i nltk 

me nltk 

my nltk 

myself nltk 

we nltk 

our nltk 

ours nltk 

ourselves nltk 

you nltk 

your nltk 

yours nltk 

yourself nltk 



 18   

 

yourselves nltk 

he nltk 

him nltk 

his nltk 

himself nltk 

she nltk 

her nltk 

hers nltk 

herself nltk 

it nltk 

its nltk 

itself nltk 

they nltk 

them nltk 

their nltk 

theirs nltk 

themselves nltk 

what nltk 

which nltk 

who nltk 

whom nltk 

this nltk 

that nltk 

these nltk 

those nltk 

am nltk 

is nltk 

are nltk 

was nltk 

were nltk 
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be nltk 

been nltk 

being nltk 

have nltk 

has nltk 

had nltk 

having nltk 

do nltk 

does nltk 

did nltk 

doing nltk 

a nltk 

an nltk 

the nltk 

and nltk 

but nltk 

if nltk 

or nltk 

because nltk 

as nltk 

until nltk 

while nltk 

of nltk 

at nltk 

by nltk 

for nltk 

with nltk 

about nltk 

against nltk 

between nltk 
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into nltk 

through nltk 

during nltk 

before nltk 

after nltk 

above nltk 

below nltk 

to nltk 

from nltk 

up nltk 

down nltk 

in nltk 

out nltk 

on nltk 

off nltk 

over nltk 

under nltk 

again nltk 

further nltk 

then nltk 

once nltk 

here nltk 

there nltk 

when nltk 

where nltk 

why nltk 

how nltk 

all nltk 

any nltk 

both nltk 
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each nltk 

few nltk 

more nltk 

most nltk 

other nltk 

some nltk 

such nltk 

no nltk 

nor nltk 

not nltk 

only nltk 

own nltk 

same nltk 

so nltk 

than nltk 

too nltk 

very nltk 

s nltk 

t nltk 

can nltk 

will nltk 

just nltk 

don nltk 

should nltk 

now nltk 

man added custom 

men added custom 

ll added custom 

just added custom 

did added custom 
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mr added custom 

sir added custom 

thee added custom 

us added custom 

 

 

Lastly, the words were lemmatized, which is the process of reducing the different 

forms of a word to one single form, for example, reducing “builds," “building," or “built” 

to the base form, referred to as lemma, “build." The purpose of the lemmatization is to 

remove noise in the clustering and make the clustering find matches more easily. The best 

practice for accurate lemmatization is to include the part of speech so that words are best 

changed to be only the root words. For this to be done, the nltk part of speech tagger was 

used, then these were limited to include only nouns, verbs, adjectives, and adverbs. All 

others are simplified to nouns. The purpose of this that lemmatization of nouns is the 

simplest, so there will be fewer unwanted.  

 

After the preprocessing was done, the next steps were similar for both subsections. 

The books were then split into a training set and a testing set. The set was randomly selected 

with sixty percent of texts going to training and forty percent going to testing. The random 

collection was also weighted where each Project Gutenberg category was split into the sets 

with sixty percent to training and forty percent to testing, so that the clustering was trained 

evenly on each category. The purpose of splitting evenly is to avoid having major bias from 

training primarily on a single Project Gutenberg Category. For example, if the 

randomization chose the training set to be mainly science fiction novels, the clusters may 
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have groupings that are not useful in training and would lead to results that do not 

accurately reflect the inherent differences in texts as designed.  

 

Next, the scikit-learn Python library was used for generating clusters in an 

unsupervised manner. Scikit-learn is a Python module for machine learning, which 

includes many built in resources, including unsupervised clustering of data. Using the 

previously generated training sets, clusters are generated for what the unsupervised, 

machine learning algorithm generates as similar texts. These clusters include a list of 

words, which may be actual words or the part of speech “words” from the sources. Each 

word in the cluster has a weight applied to it as well. This is representative of a vector in 

the direction of that cluster, which will later be used to classify data. For the number of 

clusters, inspiration was taken from Christopher Booker, and eight clusters were generated, 

representing his 7 basic plots as well as his additional plot for detective stories.   

 

After clusters are generated, the testing set was then classified into which cluster 

they most fell into. To do this, the text is walked through. For each word pulls the 

classification in the direction of the cluster it appears in depending on the weighting defined 

by the training set. Like is like a set of vectors added to each other. Each word will pull the 

text towards a cluster until the text is fully walked through and the cluster that the text is 

closest to becomes the classification.  

 

The final step was the output of the data. To fully display all of the results, two sets 

of pie charts were generated for each sub-section. Firstly, eight pie charts are generated, 
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one for each cluster, where the ratios between Project Gutenberg categories for each cluster 

is displayed. The purpose of these charts was to analyze patterns between the data in each 

cluster. If each cluster had meaningless data, the pie charts would all look very similar. 

Next, a set of fourteen pie charts are generated, one for each Project Gutenberg category. 

The purpose of these charts was to analyze patterns between categories to see which 

clusters may have dominated each. If a single cluster dominated all categories, we would 

know that there was too much noise to get meaningful results. 

 

Results 

 

In this section, the results of a run of each part of the project are displayed and 

analyzed. For readability purposes, only some charts are included in this section, however 

the full set of all cluster visualizations is available in the later Figures section.  

 

For Part 1, sentiment analysis, fourteen charts were generated, one chart per Project 

Gutenberg Category. An example output is Chart 1.1, shown below: 
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1.1 Example of a Dispersion Plot for Sentiment 

 

 

As seen, for a random book categorized as “fantasy” by Project Gutenberg, the 

words were analyzed as primary positive, with negative words increasing towards the end 

of the file. This does not give any major insight, but makes logical sense as during the 

climax of a story, generally part three and four in Christopher Booker’s basic plots, a more 

intense, dramatic scene could logically be accompanied by an increase in negative words. 

In comparing the sentiment to the parts described by Booker, along with general knowledge 

of Fantasy texts, this sample novel would likely fall into a Voyage and Return or Quest 

plot, where the negative feeling grows with the threat until the end. While this is not 
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anything quantifiable, it gave a good basis that the words and their underlying meaning 

could be creating a story for readers without even including any context from setting.  

 

For Part 1, part of speech analysis, similarly, fourteen charts were generated. An 

example is Chart 1.2, shown below:  

1.2 Example of a Dispersion Plot for Parts of Speech 

 

In this plot, the parts of speech are shown using the nltk tags; nouns, verbs, 

adjectives, adverbs, proper nouns, conjunctions, and personal pronouns are displayed as 

NN, VB, JJ, RB, NNP, CC, and PNP accordingly. Displayed in this example is a randomly 

chosen book from the Project Gutenberg category “Detective Fiction." Shown, Nouns, and 
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Personal pronouns are most prominent in this particular text. This means words like he, 

she, I, as well as nouns that may refer to setting, objects, or people are used often. Again, 

while this does not give quantifiable results, it makes logical sense. A Detective novel often 

would talk about clues, motives etc. This would explain the increased use of personal 

pronouns, and the decreased use of verbs, as these novels are generally not action focused. 

Again, these results give a good basis to how the words and their underlying meaning may 

be creating a story for readers without any context or setting.  

 

 For Part Two, word clustering, after the texts were read in and preprocessed, the 

words were clustered. Below, a table of the top 10 words in each cluster is included.  

Example Phrases from Word Clusters 

Cluster 0: Cluster 1: Cluster 2: Cluster 3: Cluster 4: Cluster 5: Cluster 6: Cluster 7: 

_pat_  one say  lifeboat  say  say one  say 

 _marl_  say  one  boat  one  one would  one 

 entity  would  upon  one  would  would upon  would 

 cetus  could  would  sea  could  could could  could 

 could  upon  thou  ship  like well like like 

 symbol  time  could  slagg  back time said time 

nothingness  two  well  vessel  know little  time back 

 cogito  well  shall  say  time know come know 

 exist  little  time  crew  get like back see 
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 space  great  little  wreck little see great two 

 

While the top 10 words do not give a full picture of each category, some basic 

words dominate the most common words for many categories. This example gives insight 

into what some of the categories might look like. For example, Cluster 3 seems to include 

many nautical words. On first analysis, many books in the adventure Project Gutenberg 

category, or children’s fiction Project Gutenberg category may be categorized into this 

cluster, as many adventure stories include sailing across the seas. Also, some science 

fiction stories with ships may be classified into this category as well. Other insightful 

categories from other runs have been categories that have themes like time, space, or 

science.  

 

 After the original generation of the clusters, the testing set was classified using the 

clusters. 
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2.6 Cluster  

 

 

2.7 Cluster 6 
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Cluster 5 and Cluster 6 are shown above. As seen, Cluster 6 has a large proportion 

of Science fiction stories. This is likely partially because in Project Gutenberg, the largest 

category of fiction included is science fiction, but this cluster implies that, beyond this, 

there are words that are pulling a larger amount of science fiction stories compared to 

others. In contrast, Cluster 5 has a large amount of humor novels as well as children fiction 

compared to science fiction, despite the humor and fiction categories having a much 

smaller set compared to science fiction. This implies that the words in Cluster 5 are much 

more lighthearted compared to Cluster 6 with high intensity categories like adventure, and 

horror joining science fiction. While there is no way to quantify Christopher Booker’s basic 

plots, and the purpose of this project is not to find matches to his groupings, but instead to 

find underlying similarities in longform fiction, this dichotomy resembles the difference 

between the Comedy plot, and a more intense plot like Tragedy. In this example, Cluster 5 

would represent Comedy, including often lighthearted or positive categories like Comedy 

and children’s fiction. As seen in Part One, sentiment is an important underlying 

representation of stories, and Cluster 5 seems to represent a more positive sentiment.  
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2.1 Cluster 0 

 

Cluster 0, shown above, unlike the previously described clusters, does not display 

much information. The ratios within this cluster greatly resemble the ratios between the 

number of books in each section, implying that this category is equally categorizing all 

Project Gutenberg Categories. This is likely due to a large number of common words used 

in all fiction.  
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2.2 Cluster 1 

 

Cluster One, shown above, has a large ratio of Children’s Fiction and Western 

novels. This implies that this cluster may have many words that invoke a lighthearted 

adventure tone, possibly including sections involving characters that may be cowboys. This 

connection makes intuitive sense, as cowboys may be common in both Western novels, as 

well as children’s fiction.  
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2.3 Cluster 2 

 

Cluster 2, shown above, has a large amount of Historical Fiction stories. This is 

notable since, in comparison to others, this category is small. This implies that there may 

be a large amount of words that imply time periods and settings. This would also explain 

the amount of fantasy stories, which often are set in historical times as well. children’s 

fiction, and detective fiction novels may also have historical settings, making further 

intuitive sense.  
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2.4 Cluster 3 

 

Cluster 3, which was discussed in the above section as including many nautical 

words, only includes children’s fiction novels from the testing set. This makes intuitive 

sense, as many children’s fiction novels could include boats, often pirates or other 

adventurers.  
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2.5 Cluster 4 

 

Cluster 4, shown above, has a very large proportion of science fiction. While this 

is likely partially due to the larger ratio of science fiction stories overall, it also implies a 

further similarity between texts in this section making them categorize as similar. Likely, 

this includes common science fiction words, possibly relating to space, time travel, aliens, 

etc.  
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2.8 Cluster 7 

 

Lastly. Cluster 7, shown above, while somewhat following the ratios of the stories 

included in the data set, also has a notably large portion of humor stories, which is a 

relatively small category.  

 

Overall, while the results are not definitively finding similar literary structures in the 

clusters, there are similarities to known categorization, like the aforementioned example.  

 

Next, figure 4.2 and 4.8 are shown and analyzed below.  
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4.2 Children’s Fiction 

 

4.8 Horror 

 

 

Charts for children’s fiction and horror are shown above. As seen, there is little 

crossover between these genres. This makes intuitive sense: children’s fiction often handles 

more upbeat themes, whether that may be more adventure based, or comedy based, by the 
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nature of being “for children," these books will be lighter content. In contrast, horror books 

are often on the opposite side of the spectrum: this may be gore, violence, monsters, etc. 

Thus, it is important that there is not much crossover between these.  

 

 The remaining Project Gutenberg Categories are shown next. There are some 

interesting notes, like how Crime fiction and Detective fiction both are primary Clustered 

into Cluster 5. Furthermore, similarities between categories like Children’s Fiction and 

Western, among others, stand out. 

4.1 Adventure 
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4.3 Crime Fiction 

 

4.4 Detective Fiction 
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4.5 Fantasy 

 

4.6 Gothic Fiction 
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4.7 Historical Fiction 

 

 

4.9 Humor 
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4.10 Mystery Fiction 

 

4.11 Precursors of Science Fiction 
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4.12 Romantic Fiction 

 

4.13 Science Fiction 
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4.14 Western 

 

 

 

There are other important notes that come from these plots: While there are 

seemingly some clusters that catch a plethora of Project Gutenberg Categories, likely due 

to noise in the data, it is important to see differences between these plots showing that the 

categorization is not happening arbitrarily. If the categories were being chosen blindly, 

each Cluster Graph and Category graph would look very similar, representing nothing more 

than the larger number of texts in some categories compared to others.  

 

Overall, despite some noise in the graphs, others represent narratives that make 

intuitive sense, matching not only knowledge of genre classification, but matching 

Booker’s categorizations as well. This is then continued to cluster based on parts of speech, 

mirroring Part One analyzing both sentiment and parts of speech.  
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For Part Two, part of speech clustering, after the texts were read in and 

preprocessed, the part of speech “words” were clustered. Below, a table of the top 10 

“words” in each cluster is included.  

 

Example Phrases from Part of Speech Clusters 

Cluster 0: Cluster 1: Cluster 2: Cluster 3: Cluster 4: Cluster 5: Cluster 6: Cluster 7: 

 nn  nn  nn  nnp nn nn nn  nnp 

 nnp  vbdnnp nnpvbdnnp nn nnp  prp nnp nn 

 nnpvbd  nnp  rb nnpvbd rb nnp prp dtnnvbdrbvb

nvbntovbton

npnnp 

 prp  rb  nnp  prpvbd prp rb rb innnpvbddtjj

nninwdtprpm

dvbrpdtnn 

 

 nns  prp  prp rb nns nns prpvbd prprbvbddtjj

nnrbincdnn 

nnpnnpvbd  nns  nns  prp prpvbd prpvbd  nns nninjjsinrbrbi

nnnpinprpvb

pinnnp 

dtnnvbd  prpvbd  jjnn  nns  jjnn jjnn  jjnn nnsrpdtnnscc

vbdrpinprp 
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 indtnn  jjnn nnprpvbd  jjnn inprp jj  nnpvbd nnpmdvbinn

npvbdvbn 

nnpvbdinprp  uh nnvbdnnp uh  nnpnnp inprp  vbdnnp prpmdvbtovb

prpvbdvbn 

 rb vbddtnn  nnpnnp  nnpnnp vbdnnp  dtnn jj nnnnjjvbdrbc

djjnn 

 

 

While these results are harder to make sense of an immediate glance, on 

investigation some interesting similarities are seen. For example, Cluster 1 has vbdnnp 

fairly high. While this does not clearly show what texts may have phrases like this, it does 

show that phrases beginning with verbs are common in this Cluster. This implies more 

action-based novels may be found here. Another note is Cluster 7, which seems to be filled 

with longer phrases. On original analysis, this implies a category that is mainly catching 

noise from long phrases between punctuation, this category may also catch texts that are 

wordier. For example, older texts seem to have much longer sentences than some modern 

prose.  

 

After the original generation of the clusters, the testing set was classified using the 

clusters. As an example. 3.3, 3.6 will be shown below. 
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3.3 Cluster 2 

 

3.6 Cluster 5 

 

 

  

Shown above are Clusters 2 and 5. Interestingly, Cluster 2 has a very large 

proportion of historical fiction, which stood out since that is a fairly small category ratio 
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wise. Intuitively, categories like Historical Fiction, Detective Fiction, Crime Fiction, and 

others, may have fewer verbs than others, as discussed with Detective Fiction in Part One. 

This is likely the case in this category: many, less action-based novels may be caught here.  

 

Cluster 5 looks very similar to Cluster 6 in the word analysis section, with Science 

fiction and Horror taking top spots, dominated by Science Fiction. While this is not as 

intuitive as the word categorization for these categories, it is an interesting parallel between 

both categorizations, implying subtle similarities between many stories. 

 

3.1 Cluster 0 

 

Cluster 0, shown above, similar to Cluster 0 in the Word Categorization section, 

greatly matches the ratios of each Project Gutenberg Category in the data set. Again, this 

does not portray any meaningful results and is likely the result of common phases used in 

every work of fiction.  
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3.2 Cluster 1 

 

Cluster 1, shown above, is similar to Cluster 0 in the sense that is greatly matches 

the ratios of each Project Gutenberg Category in the data set, however, it is notable that 

Children’s Fiction has a larger proportion, implying a possible increase of action phrases 

in this Cluster, which would likely be common in Children’s Fiction.   
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3.4 Cluster 3 

 

Cluster 3 shown above, similar to Cluster 4 in the above Word Categorization 

section, has a very large proportion of Science Fiction. While this is likely partially due to 

the larger ratio of Science fiction stories overall, it also implies a further similarity between 

texts in this section making them be categorized as similar.  
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3.5 Cluster 4 

 

Cluster 4, shown above, again greatly matches the ratios of each Project Gutenberg 

Category in the data set. Again, this does not portray any meaningful results and is likely 

the result of common phases used in every work of fiction.  

3.7 Cluster 6 
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 Cluster 6, shown above, is very similar to Cluster 3 above, having a very large 

proportion of Science Fiction. Again, while this is likely partially due to the larger ratio of 

Science fiction stories overall, it also implies a further similarity between texts in this 

section making them be categorized as similar.  

3.8 Cluster 7 

 

No matches to testing set in this run. This is likely due to the nature of this Cluster, 

which is many large phrases, as discussed previously.  

 

Overall, despite some flaws which are discussed later, some interesting pictures are 

being painted by these graphs, paralleling the clustering done in the word section. 

 

Next, a similarity between two Gutenberg categories is shown below in figures 5.3 

and 5.4 
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5.3 Crime Fiction 

 

5.4 Detective Fiction 
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 The charts for Crime Fiction and Detective Fiction are shown above. It is clear that 

these two charts are very similar, which intuitively make sense. While these categories are 

not identical by any means, the nature of Detective Fiction dealing with the solving of 

crimes, as well as Crime Fiction dealing with the commitment, and sometimes solving of 

crimes leads to these categories likely being similar.  

 

Shown below are the remaining Project Gutenberg Category charts. There are some 

interesting notes, like both Mystery and Romantic fiction only being categorized as Cluster 

4, as well as similarities like Westerns and Adventure stories being incredibly similar, 

among others.  

 

5.1 Adventure 
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5.2 Children’s Fiction 

 

5.5 Fantasy 
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5.6 Gothic Fiction 

 

5.7 Historical Fiction 
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5.8 Horror 

 

5.9 Humor 
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5.10 Mystery Fiction 

 

5.11 Precursors of Science Fiction 
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5.12 Romantic Fiction 

 

5.13 Science Fiction 
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5.14 Western 

 

 

 Unfortunately, the results for this subsection are not as clear as the word clustering 

sub section. While for some sections, like the above one, the similarities are intuitive, the 

similarities could also be a sign that the clustering is catching a large amount of texts 

regardless of context. This is likely due to the noise caused by common sentence structures 

used regardless of text theme.  

 

Despite the noise and thus uninteresting results of some clusters, there are other 

results that are intuitive and interestingly mirror previous results. While this could be 

coincidental results, it is a basis towards understanding the unseen similarities between 

texts, and an interesting exploration into what leads to fictional text categorization. 
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Conclusion 

 

Overall, this project used Natural Language Processing practices applied to long-

form fictional texts with the purpose of exploration into the building blocks of literature, 

both implicit and explicit.  

 

In Part One, an original exploration into sentiment and the parts of speech in a text 

was done using dispersion plots on random selections of novels. For the parts of speech, it 

was shown that some categories of novels may have different parts of speech used as others. 

For example, shown in this paper was an example of a Detective Fiction novel in which 

there were a larger proportion of nouns than verbs, which not only make intuitive sense, 

but also showed potential that using parts of speech may be useful in categorizing novels. 

For sentiment, it was shown that the sentiment of a novel may change throughout a novel, 

for example, a fantasy novel in which the climax of the story included more negative words. 

Additionally, some categories may generally be more negative than others, for example, 

overall a Comedy or Children’s Fiction Novel may be more positive overall. Again, this 

made intuitive sense and showed potential that sentiment could be used to categorize 

novels, and furthermore could be an interesting shadow of what is happening in a story as 

a whole.  

 

These results were then built upon in Part two, where texts were clustered and 

categorized using either parts of speech or simply the cleaned-up words. The sentiment 

analysis in part one was built upon in the word clustering section. It was shown that often, 
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clusters seemed to not only rely on common words, like ships and other nautical words, 

but also on a general sentiment. It was shown that some categories were filled with 

generally more positive or lighthearted categories like Comedy and Science Fiction, while 

other categories had more negative categories like Science Fiction or horror. The part of 

speech section in Part One was directly built upon in Part Two. These results were much 

less clear, but potential was shown, not only in some categories that have less action being 

grouped together, or parallels to the word categorization section.  

 

Overall, while the clustering and categorization did not have definitive results, 

parallels to both the categories given by Project Gutenberg, as well as the categories 

described by Christopher Booker were shown in the results. The results here support the 

hypothesis that there are underlying structures to fiction that naturally break stories into 

categories, but future work is necessary to fine tune these results and more clearly 

understand what the generated categories may describe.  

 

Future Work 

 

The largest barriers to this project were a lack of data and limitations in the data 

given. In the future, I would like to improve the results by both increasing the data size to 

include more works of fiction. Including other fictional works as well as newer pieces of 

work would greatly improve the accuracy of the results. By increasing the number of books 

available, the training set would be able to more interestingly cluster data and be able to 

move past some of the noise currently captured in the results. Training and testing on data 
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including movie scripts, short stories, modern novels, etc. would give a much more well-

rounded data set and thus may give more interesting results, though it may potentially 

create an unbridgeable genre gap, that would need to be accounted for. Furthermore, having 

a set of books that were formatted more consistently would further improve the training 

set. This consistent formatting would also help with the issue of word meanings and 

sentiments changing throughout time. A potential improvement to this could be only 

sources from a specific era, rather than all eras.  

 

Another continuation of this project would be to categorize the data in a supervised 

manner rather than the unsupervised manner used in this project. With more resources, 

being able to manually categorize all works of fiction the training of the data could include 

the categorization. This would allow for insights into what structurally allows us to 

categorize fiction in this way. While this is a much different project altogether, it is a related 

topic that would be an interesting continuation. This would help with vague categories like 

children’s fiction, adventure, etc. which may be a wide variety of story types, as well as 

categories like detective fiction, crime fiction, and mystery fiction, which could be very 

similar in some cases. 

 

A further continuation from that, would be the inclusion of a wider variety of tropes. 

Some examples may be plot devices like Chekov’s gun, McGuffins, etc. that are commonly 

seen in fiction in novels, movies, TV shows, and more. Being able to identify tropes to this 

specificity would lead to a multitude of improvements in both the fields of literature and 
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natural language processing and would lead to many opportunities to be used and built 

upon. 

 

An eventual, larger scale continuation building from the ability to identify a wide 

variety of tropes would be a tool for writers being able to make more interesting, less 

predictable works. Another potential use would be using the trained data to generate plots 

using the tropes. This would be interesting in generating stories for novels, television, or 

even procedurally generated plots for video games.  

 

All in all, while this project had its own barriers, it is a stepping off point to be built 

upon and as interesting literary exploration. Further tuning of data, and training among 

other improvements would lead to a useful tool for writers of all varieties. I fully intend to 

build off of this project in order to flesh out the project to further explore the complexities 

of fictional literature and the common ground between works. 
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