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Abstract

The reduced cross sections for ep deep inelastic scattering have been measured

with the ZEUS detector at HERA at three different centre-of-mass energies, 318,

251 and 225 GeV. From the cross sections, measured double differentially in

Bjorken x and the virtuality, Q2, the proton structure functions FL and F2 have

been extracted in the region 5 × 10−4 < x < 0.007 and 20 < Q2 < 130 GeV2.
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M. Lisovyi, E. Lobodzinska, B. Löhr, R. Mankel10, I.-A. Melzer-Pellmann, S. Miglioranzi11,

A. Montanari, T. Namsoo, D. Notz, A. Parenti, P. Roloff, I. Rubinsky, U. Schneekloth,

A. Spiridonov12, D. Szuba13, J. Szuba14, T. Theedt, J. Tomaszewska15, G. Wolf, K. Wrona,
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1 Introduction

The inclusive e±p deep inelastic scattering (DIS) cross section can, at low virtuality of

the exchanged boson, Q2, be expressed in terms of the two structure functions, F2 and

FL, as

d2σe±p

dxdQ2
=

2πα2Y+

xQ4

[

F2(x,Q
2) − y2

Y+
FL(x,Q2)

]

=
2πα2Y+

xQ4
σ̃(x,Q2, y), (1)

where α is the fine structure constant, x is the Bjorken scaling variable, y is the inelasticity

and Y+ = 1 + (1 − y)2. The quantity σ̃ is referred to as the reduced cross section. The

kinematic variables are related via Q2 = xys, where
√
s is the ep centre-of-mass energy.

The magnitude of FL is proportional to the absorption cross section of longitudinally

polarised virtual photons by protons, FL ∝ σL, while F2 includes also the absorption

cross section for transversely polarised virtual photons, F2 ∝ (σT + σL). At low values of

x and small σL, the ratio R = FL/(F2 − FL) ≈ σL/σT gives the relative strength of the

two components.

HERA measurements of the reduced ep DIS cross section and F2 [1–3] provide the

strongest constraints on the proton parton distribution functions (PDFs) at low x. Within

the DGLAP formalism [4], F2 at low x is dominated by the qq̄ sea distributions while the

scaling violations of F2 reflect the gluon distribution, g(x,Q2), via a convolution with the

splitting function Pqg(x), ∂F2/∂ lnQ2 ∼ αs(Q
2)Pqg(x)⊗ xg(x,Q2), where αs is the strong

coupling constant.

The published values of F2 at low x at HERA required assumptions to be made about FL

or were restricted to the kinematic region where the contribution from FL was sufficiently

suppressed to be neglected. Moreover, gluon distributions extracted from scaling viola-

tions are dependent on the formalism [5] and the order of perturbative expansion [6] used

to calculate the splitting functions. Measurements of the reduced cross section at fixed

(x,Q2) and different y allow F2 and FL to be extracted simultaneously, thereby eliminating

the assumptions about FL when extracting F2. Furthermore, a direct measurement of FL,

which is strongly correlated to the gluon density [7], provides an important consistency

check of the formalism.

A model-independent determination of FL requires the reduced cross section to be mea-

sured at fixed values of x and Q2 for multiple centre-of-mass energies (varying y values).

This method has been previously used to extract FL in fixed-target experiments [8–11] and

recently by the H1 collaboration [12]. The H1 collaboration has also applied extrapolation

methods to determine FL [2, 13].

In this paper, the first ZEUS measurement of FL is presented as well as the most precise

ZEUS measurement of F2 in the kinematic region studied. Comparisons of theoretical
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predictions with the data are also presented.

2 Experimental method

The values of F2 and FL were extracted at fixed x and Q2 by fitting a straight line

to the values of σ̃ against y2/Y+ in the so-called Rosenbluth plot [14]. The method

is based on Eq. 1, which implies that F2(x,Q
2) = σ̃(x,Q2, y = 0) and FL(x,Q2) =

−∂σ̃(x,Q2, y)/∂(y2/Y+), which in turn implies the need for data at fixed (x,Q2) and

different y. At HERA, this can be achieved by varying
√
s.

The precision of this procedure depends on the range available in y2/Y+. This was

maximised by collecting data at the nominal HERA energy,
√
s = 318 GeV, and at√

s = 225 GeV, the lowest attainable energy with adequate instantaneous luminosity.

An intermediate data set was collected at
√
s = 251 GeV.

The variation of
√
s was achieved by varying the proton beam energy, Ep, while keeping

the electron beam energy constant, Ee = 27.5 GeV. Data were collected in 2006 and

2007 with Ep = 920, 575 and 460 GeV, referred to respectively as the high- (HER),

medium- (MER) and low-energy-running (LER) samples. The corresponding integrated

luminosities of the HER, MER and LER samples are 44.5, 7.1 and 13.9 pb−1, respectively.

3 Experimental apparatus

A detailed description of the ZEUS detector can be found elsewhere [15]. A brief outline

of the components most relevant for this analysis is given below.

In the kinematic range of the analysis, charged particles were tracked in the central

tracking detector (CTD) [16] and the microvertex detector (MVD) [17]. These components

operated in a magnetic field of 1.43 T provided by a thin superconducting solenoid. The

CTD drift chamber, consisting of 72 sense wire layers organised into 9 super layers, covered

the polar-angle1 region 15◦ < θ < 164◦. The MVD silicon tracker consisted of a barrel

(BMVD) and a forward (FMVD) section. The BMVD provided polar-angle coverage for

tracks with three measurements from 30◦ to 150◦. The FMVD extended the polar-angle

coverage in the forward region to 7◦.

The high-resolution uranium–scintillator calorimeter (CAL) [18] consisted of three parts:

the forward (FCAL), the barrel (BCAL) and the rear (RCAL) calorimeters. Each part was

1 The ZEUS coordinate system is a right-handed Cartesian system, with the Z axis pointing in the

proton beam direction, referred to as the “forward direction”, and the X axis pointing towards the

centre of HERA. The coordinate origin is at the nominal interaction point.
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subdivided transversely into towers and longitudinally into one electromagnetic section

(EMC) and either one (in RCAL) or two (in BCAL and FCAL) hadronic sections (HAC).

The smallest subdivision of the calorimeter was called a cell. The CAL energy resolutions,

as measured under test-beam conditions, were σ(E)/E = 0.18/
√
E for electrons and

σ(E)/E = 0.35/
√
E for hadrons, with E in GeV.

The rear hadron-electron separator (RHES) [19] consisted of a layer of approximately

10 000 (3×3 cm2) silicon-pad detectors inserted in the RCAL at a depth of approximately

3 radiation lengths. The polar-angle coverage is approximately 131◦ < θ < 173◦. The

small-angle rear tracking detector (SRTD) [20] was attached to the front face of the

RCAL and consisted of two square planes of scintillator strips. The detector covers the

total area of 68 cm×68 cm, with a 20 cm×20 cm cutout in the centre for the beam-pipe.

The polar-angle coverage is 162◦ < θ < 176◦, with full acceptance for 167◦ < θ < 174.5◦.

The small tungsten–scintillator calorimeter located approximately 6 m from the interac-

tion point in the rear direction was referred to as the “6m-tagger” [21]. For scattered

electrons in the energy range from 4.1 to 7.4 GeV, the acceptance was very close to one

with very high purity.

The luminosity was measured using the Bethe-Heitler reaction ep → eγp by a luminosity

detector which consisted of an independent lead–scintillator calorimeter [22] and a mag-

netic spectrometer [23] system. The fractional systematic uncertainty on the measured

luminosity was 2.6%.

4 Event reconstruction and selection

The kinematic region studied spanned 0.09 < y < 0.78 and 20 < Q2 < 130 GeV2, corre-

sponding to 5 × 10−4 < x < 0.007. The event kinematics were evaluated based on the

reconstruction of the scattered electron [24] using

ye = 1 − E ′
e

2Ee

(1 − cos θe) , (2)

Q2
e = 2E ′

eEe (1 + cos θe) , (3)

where θe and E ′
e are the polar angle and energy of the scattered electron, respectively.

Electrons were identified using a neural network based on the moments of the three-

dimensional shower profile of clusters found in the CAL [25]. The quantity E ′
e was re-

constructed using the CAL, and θe was determined using the reconstructed interaction

vertex and scattered electron position in the SRTD or, if outside the SRTD acceptance,

in the RHES. In less than 2% of events, θe could not reliably be determined using the

SRTD+HES system and such events were rejected.
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The quantity δ ≡
∑

i(E − pZ)i was used both in the trigger and in the offline analysis.

The sum runs over all CAL energy deposits. Conservation of energy, E, and longitudinal

momentum, pZ , implies that δ = 2Ee = 55 GeV. Undetected particles that escape through

the forward beam-pipe hole contribute negligibly to δ. Undetected particles that escape

through the rear beam-pipe hole, such as the final-state electron in a photoproduction

event, cause a substantial reduction in δ. Events not originating from ep collisions often

exhibit a very large δ.

A three-level trigger system was used to select events online [15, 26–28]. A dedicated

trigger was developed providing high efficiency for high-y events [29]. The trigger required

an event to have δ > 30 GeV and either an electron candidate with E ′
e > 4 GeV in the

RCAL and outside a 30 cm×30 cm square centred around the beam-pipe, or δθ<165◦ >

20 GeV, where δθ<165◦ denotes δ calculated only from the CAL energy deposits at polar

angles less than 165◦.

Events were selected offline if:

• 42 < δ < 65 GeV;

• the reconstructed interaction vertex fulfilled |Zvtx| < 30 cm;

• the energy of the most probable electron candidate satisfied E ′
e > 6 GeV;

• the event topology was not compatible with an elastic QED Compton (QEDC) event;

• the event timing was consistent with the HERA bunch structure;

• ye < 0.95 and yJB > 0.05, where yJB is the Jacquet–Blondel estimator [30] of y;

• pT,h/pT,e > 0.3, where pT,h and pT,e refer to the transverse momentum of the hadronic

system and electron candidate, respectively.

The projected path of the electron candidate was required to:

• exit the CTD at a radius > 20 cm and hence traverse the MVD fiducial volume and

at least four CTD sense-wire layers, ensuring the possibility of identifying the track;

• enter the RCAL at a radius < 135 cm, missing the inactive region between the RCAL

and BCAL sections.

Hit information from the MVD and CTD was used to identify the tracks of the elec-

tron candidates. The procedure was based on the ratios of the number of observed to

the maximum number of possible hits in the MVD and CTD, denoted fMVD
hit and fCTD

hit ,

respectively:

• fMVD
hit > 0.45;

• fCTD
hit > 0.6.
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This method was used because of the wider polar angular acceptance compared to the

regular tracking capability of the MVD+CTD tracking system. Specifically, for an event

with a nominally placed vertex, the electron candidate can be validated up to an angle of

θe = 169 ◦, compared to θe = 159 ◦ with full tracking. After all cuts the HER, MER and

LER samples contained 819168, 115719 and 205967 events, respectively.

5 Cross section determination

The reduced cross sections in a given (x,Q2) bin were calculated according to

σ̃(x,Q2) =
Ndata −Nbg

MC

NDIS
MC

σ̃SM(x,Q2),

where σ̃SM(x,Q2) is the Standard Model electroweak Born-level reduced cross section and

Ndata, N
bg
MC and NDIS

MC denote, respectively, the number of observed events in the data and

the expected number of background and DIS events from the Monte Carlo (MC). The

CTEQ5D [31] parameterisation of the proton PDF was used when calculating σ̃SM(x,Q2)

as well as in the MC models when evaluating NDIS
MC and Nbg

MC. Specifically, the DIS signal

processes were simulated using the Djangoh 1.6 [32] MC model. After the full event

selection, the background consisted almost entirely of photoproduction events. These

were simulated using the Pythia 6.221 [33] MC model. The additional background

components that were considered were elastic QEDC and mis-reconstructed low-Q2 DIS,

simulated using the Grape-Compton [34] and Djangoh 1.6 MC models, respectively.

The MC events were processed through a full simulation of the ZEUS detector and trigger

system based on Geant 3.21 [35].

The Djangoh and Pythia samples included a diffractive component and first-order

electroweak corrections. The diffractive and non-diffractive components of the Djangoh

sample were scaled to improve the description of the HER, MER and LER ηmax distribu-

tions, where ηmax is equal to the pseudorapidity of the most forward CAL energy deposit.

The electroweak corrections were simulated using the Heracles 4.6 [32,36] MC model.

Their uncertainty was evaluated by comparing the predictions from Heracles to the

higher-order predictions from Hector 1.0 [37]. The predictions were found to agree

to within 0.5%. The hadronic final state of the Djangoh MC was simulated using the

colour-dipole model of Ariadne 4.12 [38] which uses the Lund string model of Jetset

7.4 [39] for the hadronisation.

In order to improve the Monte Carlo description of the photoproduction component, the

contribution from the direct subprocesses was enlarged from 3% (default) to 9% in the

inclusive Pythia sample while contributions by diffractive subprocesses were reduced
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accordingly. This procedure ensured that previous ZEUS results were reproduced [40,41]

and the predicted inclusive Pythia cross section remained unchanged. The predicted

photoproduction cross sections for HER, MER and LER were then validated against

photoproduction data samples selected using the 6m-tagger. The predicted cross sections

were consistent with these data within the ±10% total uncertainty on the data.

Figure 1 shows the distributions of the variables E ′
e and θe within the HER, MER and

LER data sets compared to the combined detector-level predictions from the MC models.

The agreement is good in all cases. According to the MC models, the final data sample

contained 97% DIS signal and 3% background events. The vast majority of the background

events were found at low Q2 and high y; in the most affected kinematic bin, the background

fraction was 16%.

The reduced cross sections, σ̃, were measured from the HER, MER and LER samples in

the kinematic region 0.09 < y < 0.78 and 20 < Q2 < 130 GeV2. The σ̃ are given double

differentially in x and Q2 in Tables 1–3. The σ̃ are also shown at the 6 selected Q2 values

as functions of x in Fig. 2. The cross sections have been compared to DGLAP-predictions

based on the NLO (O(α2
s)) ZEUS-JETS PDF set [42], as well as the prediction for FL ≡ 0.

The QCD prediction with a non-zero FL, describes the data well and is favoured over

FL ≡ 0.

6 Systematic uncertainties

The systematic uncertainty on the reduced cross sections due to the following sources were

evaluated [29] (the numbers in the parentheses are the maximum uncertainty observed in

any one of the reduced cross section bins):

• {δγp}, the ±10% uncertainty on the level of photoproduction background (−2%);

• {δEe
}, the electron energy-scale uncertainty of ±0.5% for E ′

e > 20 GeV, increasing to

±1.9% at E ′
e = 6 GeV(4.4%);

• {δEh
}, the ±2% hadronic energy-scale uncertainty (−4.1%);

• {δeID}, the uncertainty on the electron-finding efficiency, evaluated by loosening (tight-

ening) the criterion applied to the output of the neural network used to select electron

candidates, both for data and MC (±1.8%);

• {δdx, δdy}, the SRTD and HES position uncertainty of ±2 mm in both the horizontal

and vertical directions (±3%);

• {δMVD, δCTD}, the uncertainty on the hit-finding efficiency, evaluated by loosening

(tightening) the hit fraction criteria, both for data and MC (+3.7%);
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• {δdiff}, the ±10% uncertainty on the scale factors applied to the diffractive Djangoh

component (−0.7%).

The one-standard-deviation systematic uncertainties due to each source are listed in

Tables 1–3 for the reduced cross sections at the three different centre-of-mass energies.

All of the uncertainties are symmetric. They are quoted with a sign indicating how the

reduced cross sections would vary given an upwards variation in the electron or hadronic

energy scales, the SRTD and HES positions, the photoproduction cross section or the

diffractive scale factors, or looser selection criteria on the neural network output or MVD

or CTD hit fractions.

The total uncertainty on the normalisation included

• the luminosity uncertainty, which was ±2.6% for all three data sets, of which ±1%

was uncorrelated between the data sets;

• the uncertainty on simulating the interaction-vertex distribution, evaluated by com-

paring the ratio of the number of events with |Zvtx| ≤ 30 cm and |Zvtx| > 30 cm in

data and MC (±0.3%);

• the trigger-efficiency uncertainty (±0.5%).

The luminosity, vertex-distribution and trigger-efficiency uncertainties are perfectly corre-

lated between bins and hence, when added in quadrature, constitute a total normalisation

uncertainty of ±2.7%, of which ±2.5% was correlated between the running periods and

±1.1% uncorrelated. The uncertainty due the electroweak corrections was found to be

negligible.

The total systematic uncertainty in each bin, formed by adding the individual uncer-

tainties in quadrature, is also given in Tables 1–3. This sum also includes the statistical

uncertainty due to the combined MC sample {δunc} and is the only systematic source that

is considered to be uncorrelated between bins. This total systematic uncertainty does not

include the total normalisation uncertainty. Propagation of the systematic uncertainties

to FL, F2 and R is described in the next section.

7 Extraction of FL, F2 and R

In order to extract FL, F2 and R a different binning scheme than that given in Tables 1–3

was applied to the reduced cross sections. Bins in y were chosen such that, for each of the

6 Q2 bins, there were 3 values of x at which the reduced cross sections were measured from

all three data sets. This removed the need to interpolate the data between different points

in the (x,Q2) plane. The structure functions were extracted by performing a simultaneous

7



fit to these 54 measured cross section values using Eq. 1. Prior to fitting, the three data sets

were normalised to their luminosity-weighted average in the restricted kinematic region,

y < 0.3, where the contribution to the reduced cross sections from FL is small. This

procedure resulted in scaling the data by factors of 1.0027 ± 0.0027, 0.9869 ± 0.0051 and

0.9997±0.0039, for the HER, MER and LER data sets, respectively. The spread of these

factors is consistent with the uncorrelated part of the total normalisation uncertainty of

1.1%.

To extract FL and F2, 48 parameters were fit simultaneously: 18 F2 and 18 FL values for

the 18 (x,Q2) points; 3 relative normalisation factors for the HER, MER and LER data

sets and 9 global shifts of systematic uncertainties (δγp, δEe
, δEh

, δeID, δdx, δdy, δMVD, δCTD,

δdiff). The three normalisation factors allowed for variations of the relative normalisation

factors within their remaining uncertainties (see above). The nine global shifts allowed for

changes in the central values of σ̃ in a correlated manner across the (x,Q2) plane according

to the uncertainties listed. The probability distributions for the shifts of the systematic

sources and the relative normalisations were taken to be Gaussian, with standard devi-

ations equal to the corresponding systematic uncertainty. The probability distributions

for the cross sections at each (x,Q2) point were also taken to be Gaussian with standard

deviations given by δstat and δunc added in quadrature. The fit was performed within the

BAT (Bayesian Analysis Toolkit) package [43] which, using a Markov chain MC, scans

the full posterior probability density function in the 48-dimensional parameter space.

Initially, the FL and F2 parameters were left unconstrained and flat prior probabilities

were assumed. The results are given in Table 4, and are labelled with the superscript (1).

The values quoted in the table were evaluated at the point where the probability den-

sity function attains its global maximum. The uncertainty ranges correspond to minimal

68% probability intervals. These ranges represent the full experimental uncertainty, which

comprises statistical as well as systematic uncertainties. The fitted shifts, representing the

correlated variation of the data points according to relative normalisation and correlated

systematic uncertainties, are typically within 0.1 and at most 0.5 standard deviations of

the normalisation or systematic uncertainties. The F2 values typically have uncertainties

of 0.03, while the FL values have uncertainties ranging from 0.1 to 0.2. These F2 mea-

surements are the most precise available from the ZEUS collaboration in the kinematic

region studied here. The results are shown in Fig. 3 together with predictions from the

ZEUS-JETS PDF fit. Good agreement is observed.

Applying constrained priors F2 ≥ 0 and 0 ≤ FL ≤ F2 in the fitting gave marginally

different results as seen in Table 4 (results are denoted with the superscript (2)). For

example, the most probable value for FL at Q2 = 45 GeV2 and x = 0.00153 is now 0, in

which case, a 68% probability upper limit is given.

Further fits to the data were performed to extract FL(Q2), R(Q2), and a single overall
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value of R for the full data set. In each case, the same fitting procedure as described

above was used, but with a reduced number of parameters. To extract FL(Q2), first

r(Q2) was fitted, where r = FL/F2. In fitting r(Q2), a single value of r was taken for

all x points in the same Q2 bin. Only a weak dependence of r on x in a restricted x

range is expected in the NLO DGLAP formalism as well as in phenomenological models.

This prediction is supported by the data within the experimental uncertainties. Flat prior

distributions for r(Q2) were assumed and both unconstrained and constrained fits were

made, with r(Q2) ≥ 0 enforced in the latter. The value of FL(Q2) was then evaluated

as FL(xi, Q
2) = r(Q2)F2(xi, Q

2), where for each Q2 point, xi was chosen such that Q2/xi

was constant, which for
√
s = 225 GeV, corresponds to y = 0.71. The results are given

in Table 5 and the unconstrained values are shown in Fig. 4a. These data are in good

agreement with the results obtained by the H1 collaboration [12].

Values of R(Q2) and an overall value of R were extracted with flat prior distributions.

Both unconstrained and constrained fits were made. In the latter, it was required that

0 ≤ FL(Q2) ≤ F2(Q
2) and 0 ≤ FL ≤ F2. The results from both fits are given in Table 6

and the unconstrained R(Q2) values are shown in Fig. 4b. The uncertainty in the overall

R is not reduced as much as might be expected compared to the uncertainties on R(Q2)

due to the correlation between the values at different Q2. The value of R from both the

unconstrained and constrained fits was R = 0.18+0.07
−0.05.

Figures 4a and 4b also show a comparison of the data with predictions based on the

ZEUS-JETS and CTEQ6.6 [44] NLO and MSTW08 [45] NLO and NNLO2 fits. All these

predictions are based on the DGLAP formalism3. Also shown are predictions from the

NLL BFKL resummation fit from Thorne and White (TW) [48], and the prediction from

the impact-parameter-dependent dipole saturation model (b-Sat) of Kowalski and Watt

based on DGLAP evolution of the gluon density [49]. All of the models are consistent

with the data.

8 Summary

The first measurement of FL(x,Q2) by the ZEUS collaboration is presented, as is the first

measurement of F2(x,Q
2) at low x that does not include assumptions about FL. The F2

values are the most precise available from the ZEUS collaboration in the kinematic region

studied. The extraction of FL and F2 was based on the reduced double-differential cross

2 Based on the NNLO calculations by Moch, Vermaseren and Vogt [46, 47].
3 The conventions used for the CTEQ6.6, ZEUS-JETS and MSTW08 NLO curves are not the same, for

example, FL in CTEQ6.6 is calculated to O(αs) whereas FL in the ZEUS-JETS and MSTW08 fits are

calculated to O(α2
s
) . This accounts for most of the differences.
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sections, σ̃(x,Q2), which were measured for 0.09 < y < 0.78 and 20 < Q2 < 130 GeV2

using data collected at
√
s = 318, 251 and 225 GeV. In addition, FL and the ratio, R,

have been extracted as a function of Q2. An overall value of R = 0.18+0.07
−0.05 was extracted

for the entire kinematic region studied. A wide range of theoretical predictions agree with

the measured FL. The measurements provide strong evidence of a non-zero FL.
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Q2 x y σ̃e+p δstat δsys δunc δγp δEe
δEh

δeID δdx δdy δMVD δCTD δdiff

(GeV2) HER (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

24 1.82 · 10−3 0.13 1.057 1.0 2.5 0.9 0.0 1.0 -0.8 0.0 0.8 0.3 -0.4 1.7 -0.3

24 1.08 · 10−3 0.22 1.234 0.8 2.4 0.8 0.0 1.6 -0.2 0.0 0.2 0.3 -0.6 1.4 -0.3

24 7.63 · 10−4 0.31 1.321 0.8 2.2 0.7 0.0 -0.2 -0.2 0.0 -0.3 0.1 -1.8 1.0 -0.4

24 5.92 · 10−4 0.40 1.410 0.8 1.6 0.7 -0.1 -0.4 -0.3 0.3 -0.7 0.1 -0.3 1.0 -0.4

24 4.93 · 10−4 0.48 1.453 0.8 1.5 0.8 -0.3 0.3 -0.5 -0.1 -0.2 0.1 0.3 0.9 -0.4

24 4.23 · 10−4 0.56 1.448 0.9 2.7 1.0 -0.6 0.4 -0.8 0.6 -0.4 0.2 1.0 1.9 -0.5

24 3.76 · 10−4 0.63 1.452 1.1 2.7 1.2 -0.8 0.1 -1.4 -0.6 0.3 -0.1 0.7 1.4 -0.5

24 3.43 · 10−4 0.69 1.489 1.3 3.6 1.5 -1.2 0.5 -2.4 -0.6 -0.3 -0.1 0.7 1.2 -0.6

24 3.16 · 10−4 0.75 1.521 1.5 5.1 2.0 -2.0 0.4 -3.9 -0.7 0.5 -0.4 1.3 -0.5 -0.7

32 2.43 · 10−3 0.13 1.027 0.6 1.8 0.6 0.0 1.1 -0.6 0.0 -0.5 0.1 -0.8 0.7 -0.2

32 1.43 · 10−3 0.22 1.209 0.6 2.0 0.6 0.0 1.5 -0.2 0.0 -0.6 0.1 -0.5 0.8 -0.3

32 1.02 · 10−3 0.31 1.331 0.7 1.6 0.6 0.0 -0.1 -0.2 0.1 -0.1 -0.1 0.4 1.3 -0.4

32 7.89 · 10−4 0.40 1.388 0.8 1.5 0.7 -0.1 -0.6 -0.2 0.2 0.4 -0.1 0.1 1.0 -0.4

32 6.57 · 10−4 0.48 1.435 0.9 1.7 0.8 -0.2 0.0 -0.3 -0.5 -0.5 -0.1 -0.8 0.8 -0.4

32 5.63 · 10−4 0.56 1.504 1.0 2.2 1.0 -0.4 -0.4 -0.7 0.1 -0.1 -0.2 -1.5 0.6 -0.5

32 5.01 · 10−4 0.63 1.465 1.3 2.6 1.5 -0.7 1.2 -1.3 0.2 -0.1 0.1 -0.6 -0.4 -0.5

32 4.57 · 10−4 0.69 1.522 1.4 3.1 1.6 -0.8 -0.9 -1.8 0.3 -0.3 -0.2 -1.3 -0.4 -0.6

32 4.21 · 10−4 0.75 1.470 1.7 4.4 2.2 -1.7 1.5 -2.5 -0.9 -0.4 0.3 -1.0 -0.7 -0.5

45 3.41 · 10−3 0.13 0.984 0.6 1.6 0.5 0.0 0.9 -0.7 0.0 -0.1 0.1 0.1 1.0 -0.2

45 2.02 · 10−3 0.22 1.151 0.6 2.0 0.5 0.0 1.5 -0.2 0.0 -0.2 -0.2 -0.6 0.9 -0.3

45 1.43 · 10−3 0.31 1.253 0.7 1.4 0.6 0.0 -0.2 -0.1 0.0 -0.3 0.1 -0.7 0.8 -0.4

45 1.11 · 10−3 0.40 1.376 0.9 1.3 0.8 -0.1 -0.5 -0.2 -0.1 -0.4 0.2 0.1 0.7 -0.4

45 9.24 · 10−4 0.48 1.408 1.0 1.8 0.9 -0.1 -1.0 -0.3 -0.2 0.4 0.0 0.5 0.9 -0.5

45 7.92 · 10−4 0.56 1.492 1.1 1.8 1.1 -0.3 -0.2 -0.4 -0.4 0.5 0.1 0.6 0.8 -0.4

45 7.04 · 10−4 0.63 1.483 1.4 2.5 1.5 -0.6 0.4 -1.0 -1.1 0.5 -0.3 0.5 0.3 -0.5

45 6.43 · 10−4 0.69 1.571 1.6 3.1 1.9 -0.8 -0.3 -1.3 0.6 0.5 0.1 1.6 -0.4 -0.5

45 5.92 · 10−4 0.75 1.517 1.8 3.7 2.3 -1.4 0.9 -1.8 0.4 -0.2 0.2 -0.7 -1.2 -0.6

60 4.55 · 10−3 0.13 0.932 0.7 1.7 0.6 0.0 0.9 -0.6 0.0 -0.5 -0.3 -0.6 0.7 -0.1

60 2.69 · 10−3 0.22 1.119 0.7 1.9 0.6 0.0 1.5 -0.1 0.0 -0.4 0.0 -0.7 0.5 -0.3

60 1.91 · 10−3 0.31 1.231 0.9 1.1 0.7 0.0 0.2 -0.1 0.0 -0.2 0.2 0.3 0.6 -0.3

60 1.48 · 10−3 0.40 1.337 1.0 1.6 0.9 0.0 -1.1 -0.2 0.1 -0.6 -0.3 0.3 0.4 -0.4

60 1.23 · 10−3 0.48 1.388 1.2 1.7 1.1 -0.1 -0.5 -0.2 0.3 0.2 0.3 -0.8 -0.6 -0.5

60 1.06 · 10−3 0.56 1.510 1.3 1.8 1.2 -0.2 -0.7 -0.5 0.0 0.3 0.2 -0.8 0.1 -0.4

60 9.39 · 10−4 0.63 1.560 1.7 2.6 1.7 -0.4 0.6 -0.7 0.6 -0.6 0.3 -0.9 -1.0 -0.5

60 8.57 · 10−4 0.69 1.504 1.9 3.1 2.2 -0.9 1.0 -1.3 -0.2 0.1 0.4 -0.5 -0.4 -0.5

60 7.89 · 10−4 0.75 1.586 2.1 3.6 2.2 -0.9 -1.7 -1.6 -0.6 -0.4 -0.3 -0.5 -0.9 -0.6

Continued on Next Page. . .
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Q2 x y σ̃e+p δstat δsys δunc δγp δEe
δEh

δeID δdx δdy δMVD δCTD δdiff

(GeV2) HER (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

80 6.07 · 10−3 0.13 0.884 0.8 1.6 0.6 0.0 0.9 -0.7 0.0 0.1 0.3 -0.7 0.5 -0.1

80 3.59 · 10−3 0.22 1.071 0.8 1.7 0.7 0.0 1.5 -0.2 0.0 -0.3 -0.1 -0.1 0.1 -0.2

80 2.54 · 10−3 0.31 1.204 1.0 1.2 0.8 0.0 -0.2 -0.1 -0.3 -0.1 -0.1 -0.6 -0.2 -0.3

80 1.97 · 10−3 0.40 1.273 1.2 1.2 1.0 -0.1 -0.4 -0.1 0.0 0.0 0.1 0.2 0.1 -0.4

80 1.64 · 10−3 0.48 1.358 1.4 1.6 1.2 -0.1 -0.5 -0.3 0.1 -0.1 -0.3 0.4 0.5 -0.4

80 1.41 · 10−3 0.56 1.463 1.5 1.9 1.4 -0.2 0.5 -0.3 0.2 -0.6 -0.2 0.3 0.5 -0.5

80 1.25 · 10−3 0.63 1.517 1.9 2.1 1.8 -0.1 -0.6 -0.5 -0.3 0.4 -0.1 -0.3 -0.2 -0.5

80 1.14 · 10−3 0.69 1.419 2.2 3.2 2.5 -0.8 0.1 -0.8 0.3 -0.1 -0.5 0.4 1.3 -0.4

80 1.05 · 10−3 0.75 1.436 2.5 4.6 3.2 -1.2 1.9 -1.9 0.6 -0.4 -0.2 0.9 -0.9 -0.5

110 8.34 · 10−3 0.13 0.837 0.9 1.3 0.8 0.0 0.7 -0.7 0.0 -0.2 0.2 -0.1 0.2 -0.1

110 4.93 · 10−3 0.22 1.005 1.0 1.7 0.9 0.0 1.4 -0.2 -0.1 -0.2 -0.2 0.1 0.1 -0.2

110 3.50 · 10−3 0.31 1.157 1.2 1.5 1.0 0.0 -0.5 -0.1 0.1 0.3 0.2 -0.7 -0.6 -0.3

110 2.71 · 10−3 0.40 1.240 1.4 1.5 1.2 -0.1 -0.7 0.1 0.0 -0.3 0.1 0.2 0.2 -0.4

110 2.26 · 10−3 0.48 1.300 1.6 1.9 1.5 -0.2 -0.4 0.0 -0.1 -0.4 0.3 -0.8 -0.3 -0.4

110 1.94 · 10−3 0.56 1.420 1.8 2.0 1.7 -0.2 0.6 -0.2 0.1 -0.7 -0.2 0.0 -0.5 -0.4

110 1.72 · 10−3 0.63 1.409 2.3 3.2 2.4 -0.4 -1.6 -0.3 0.5 0.5 0.1 0.3 -0.7 -0.4

110 1.57 · 10−3 0.69 1.584 2.6 3.5 2.8 -0.7 -0.8 -0.6 0.7 -0.2 -0.3 0.4 1.4 -0.4

110 1.45 · 10−3 0.75 1.717 4.1 5.5 4.6 -0.9 1.5 0.9 1.2 0.8 -0.1 -0.4 -1.7 -0.4

Table 1: The reduced cross section, σ̃, for the reaction e+p → e+X at
√
s = 318GeV .

The first three columns contain the bin centres in Q2, x and y, the next three con-

tain the measured cross section, the statistical uncertainty and the total systematic

uncertainty, respectively. The final ten columns list the uncorrelated, δunc and the

bin-to-bin correlated uncertainties from each systematic source, δγp, δEe
, δEh

, δeID,

δdx, δdy, δMVD, δCTD, δdiff. For details, see Section 6. A further ±2.7% systematic

normalisation uncertainty is not included, of which ±2.5% is correlated between the

running periods and ±1.1% is uncorrelated.
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Q2 x y σ̃e+p δstat δsys δunc δγp δEe
δEh

δeID δdx δdy δMVD δCTD δdiff

(GeV2) MER (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

24 2.91 · 10−3 0.13 0.955 2.4 3.3 1.3 0.0 0.9 -0.7 0.0 1.1 0.5 -1.6 2.0 -0.2

24 1.72 · 10−3 0.22 1.105 2.1 3.0 1.1 0.0 1.6 -0.3 0.2 1.4 -0.3 -1.4 1.1 -0.3

24 1.22 · 10−3 0.31 1.153 2.1 2.1 1.0 0.0 -0.6 -0.2 0.0 -0.3 -0.6 -0.6 1.4 -0.3

24 9.47 · 10−4 0.40 1.267 2.1 2.3 1.0 -0.1 0.1 -0.2 0.5 1.1 0.2 0.8 1.3 -0.4

24 7.89 · 10−4 0.48 1.328 2.2 2.6 1.2 -0.3 -0.7 -0.4 -0.4 -0.3 -0.2 0.7 1.9 -0.4

24 6.76 · 10−4 0.56 1.319 2.4 5.0 1.3 -0.5 0.7 -0.8 0.2 -0.5 0.4 2.8 3.7 -0.4

24 6.01 · 10−4 0.63 1.334 3.0 3.8 1.6 -0.7 -0.3 -1.4 -0.9 1.2 0.6 2.0 1.6 -0.5

24 5.49 · 10−4 0.69 1.432 3.2 3.9 1.8 -1.0 -0.5 -2.0 -0.2 -0.3 0.6 0.8 2.2 -0.6

24 5.05 · 10−4 0.75 1.389 3.9 5.0 2.5 -2.0 -0.8 -3.5 0.9 0.2 0.4 -0.4 0.8 -0.6

32 3.88 · 10−3 0.13 0.909 1.7 2.1 0.8 0.0 1.1 -0.8 0.0 -0.2 -0.1 -0.3 1.3 -0.2

32 2.29 · 10−3 0.22 1.074 1.7 2.4 0.8 0.0 1.6 -0.3 0.1 -0.8 0.2 -0.6 1.1 -0.2

32 1.63 · 10−3 0.31 1.153 1.9 2.9 0.9 -0.1 -0.3 -0.1 0.0 0.8 0.9 1.0 2.3 -0.4

32 1.26 · 10−3 0.40 1.226 2.1 2.2 1.0 -0.1 -0.3 -0.2 0.4 0.1 0.2 0.6 1.6 -0.4

32 1.05 · 10−3 0.48 1.326 2.3 1.9 1.2 -0.2 -0.6 -0.3 -0.1 0.2 0.2 -0.2 1.2 -0.4

32 9.01 · 10−4 0.56 1.270 2.7 2.5 1.4 -0.5 0.6 -0.8 -0.8 -0.8 -0.9 -0.5 0.7 -0.4

32 8.01 · 10−4 0.63 1.381 3.4 2.9 1.9 -0.5 0.6 -1.0 0.6 -1.6 -0.2 0.4 0.5 -0.6

32 7.32 · 10−4 0.69 1.314 3.9 3.7 2.2 -0.9 0.5 -1.7 0.4 0.1 -0.8 -1.7 1.0 -0.5

32 6.73 · 10−4 0.75 1.355 4.5 5.0 2.7 -1.6 1.6 -2.8 -1.1 0.9 -0.3 -1.6 0.3 -0.6

45 5.46 · 10−3 0.13 0.890 1.5 2.4 0.7 0.0 1.2 -0.7 0.0 -0.3 0.3 0.3 1.7 -0.1

45 3.23 · 10−3 0.22 1.037 1.7 2.5 0.8 0.0 1.2 -0.2 0.0 -0.4 0.2 0.9 1.8 -0.2

45 2.29 · 10−3 0.31 1.126 1.9 1.8 0.9 0.0 0.2 -0.1 -0.2 -1.0 -0.5 -0.5 0.8 -0.3

45 1.77 · 10−3 0.40 1.171 2.3 2.5 1.1 -0.1 -0.4 0.1 0.3 -1.5 -0.1 0.6 1.4 -0.4

45 1.48 · 10−3 0.48 1.270 2.7 2.3 1.3 -0.2 -0.5 -0.3 0.3 0.7 0.5 0.4 1.4 -0.5

45 1.27 · 10−3 0.56 1.323 3.0 2.1 1.5 -0.3 -0.5 -0.6 0.1 0.4 -0.8 -0.3 0.6 -0.5

45 1.13 · 10−3 0.63 1.385 3.8 3.3 2.2 -0.6 -0.8 -1.1 1.8 0.4 0.5 0.2 0.3 -0.4

45 1.03 · 10−3 0.69 1.443 4.2 3.7 2.4 -0.8 -0.6 -1.3 0.2 1.1 0.4 1.2 1.6 -0.6

45 9.47 · 10−4 0.75 1.400 4.7 3.8 2.6 -1.0 0.7 -1.9 -1.0 0.6 0.8 0.6 0.5 -0.4

60 7.28 · 10−3 0.13 0.809 1.8 1.9 0.8 0.0 0.9 -0.7 0.0 -0.2 -0.1 0.4 1.2 -0.1

60 4.30 · 10−3 0.22 0.970 2.0 2.2 0.9 0.0 1.4 -0.2 0.0 -0.2 0.5 0.7 1.1 -0.3

60 3.05 · 10−3 0.31 1.123 2.3 1.8 1.1 0.0 -0.6 -0.1 0.0 -0.1 -0.4 0.8 0.9 -0.3

60 2.37 · 10−3 0.40 1.183 2.7 1.6 1.3 0.0 -0.2 -0.1 0.0 0.7 -0.3 -0.2 0.3 -0.4

60 1.97 · 10−3 0.48 1.135 3.3 2.2 1.5 -0.1 0.6 -0.5 0.3 0.7 -0.9 -0.2 -0.5 -0.4

60 1.69 · 10−3 0.56 1.277 3.6 2.9 1.8 -0.3 -1.0 -0.3 -0.1 1.0 0.7 1.4 0.7 -0.4

60 1.50 · 10−3 0.63 1.417 4.4 3.0 2.3 -0.3 1.3 -0.4 0.2 0.6 0.4 0.8 -0.3 -0.5

60 1.37 · 10−3 0.69 1.300 5.2 4.4 3.1 -1.0 1.8 -0.7 0.8 1.5 -1.2 0.5 -0.4 -0.4

60 1.26 · 10−3 0.75 1.446 5.6 4.8 3.1 -0.9 -1.4 -2.1 -0.4 -1.8 -0.7 0.4 -1.1 -0.5

Continued on Next Page. . .

16
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Q2 x y σ̃e+p δstat δsys δunc δγp δEe
δEh

δeID δdx δdy δMVD δCTD δdiff

(GeV2) MER (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

80 9.71 · 10−3 0.13 0.751 2.1 1.7 1.0 0.0 0.8 -0.7 0.0 0.7 0.2 -0.3 0.6 -0.1

80 5.74 · 10−3 0.22 0.947 2.3 1.9 1.1 0.0 1.3 -0.1 0.1 -0.7 -0.2 -0.5 0.3 -0.2

80 4.07 · 10−3 0.31 1.067 2.7 1.4 1.3 0.0 0.4 0.0 0.0 0.4 -0.1 -0.1 0.3 -0.3

80 3.16 · 10−3 0.40 1.106 3.2 2.2 1.5 0.0 -1.4 -0.1 0.3 -0.3 0.5 0.1 0.0 -0.3

80 2.63 · 10−3 0.48 1.170 3.7 2.5 1.8 -0.2 -0.7 -0.3 -0.5 -1.0 0.3 -0.6 -0.8 -0.4

80 2.25 · 10−3 0.56 1.217 4.2 3.4 2.2 -0.4 -0.7 -0.6 0.7 -1.1 -0.4 -1.4 -1.3 -0.3

80 2.00 · 10−3 0.63 1.246 5.5 3.9 2.9 -0.5 0.7 -1.3 0.6 -0.2 -0.4 1.3 1.2 -0.4

80 1.83 · 10−3 0.69 1.274 6.1 4.5 3.7 -1.0 0.3 -0.4 0.8 -1.2 0.7 -0.5 1.5 -0.5

80 1.68 · 10−3 0.75 1.461 6.3 5.3 3.6 -0.8 -2.4 -1.8 -1.2 0.4 -0.1 -0.6 -1.6 -0.6

110 1.33 · 10−2 0.13 0.730 2.4 2.1 1.1 0.0 0.8 -0.6 0.1 -0.7 0.2 1.0 0.7 -0.1

110 7.89 · 10−3 0.22 0.835 2.8 2.3 1.3 0.0 1.4 -0.2 0.1 1.1 0.6 -0.2 -0.4 -0.1

110 5.60 · 10−3 0.31 0.971 3.2 1.7 1.5 0.0 0.4 -0.1 -0.1 0.2 0.4 0.1 -0.3 -0.2

110 4.34 · 10−3 0.40 1.078 3.8 2.5 1.8 0.0 -0.6 -0.1 0.6 -0.6 -0.7 -0.5 -1.1 -0.3

110 3.62 · 10−3 0.48 1.116 4.4 3.5 2.3 -0.2 -2.3 0.0 0.0 -0.3 -0.3 -1.1 0.8 -0.4

110 3.10 · 10−3 0.56 1.192 5.0 4.5 2.7 -0.5 -1.0 -0.4 -1.5 1.3 -0.4 0.6 2.7 -0.5

110 2.75 · 10−3 0.63 1.127 6.6 4.0 3.4 -0.4 1.0 -0.5 0.4 -0.9 0.7 1.2 0.3 -0.5

110 2.51 · 10−3 0.69 1.174 7.7 6.4 4.1 -0.7 -2.7 -1.1 0.4 -0.6 -0.4 -2.4 3.0 -0.2

110 2.31 · 10−3 0.75 1.354 10.9 9.1 6.2 -1.0 4.4 -1.6 0.4 3.3 0.3 -1.6 -2.7 -0.6

Table 2: The reduced cross section, σ̃, for the reaction e+p → e+X at
√
s = 251GeV .

Further details as described in caption of Table 1.
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Q2 x y σ̃e+p δstat δsys δunc δγp δEe
δEh

δeID δdx δdy δMVD δCTD δdiff

(GeV2) LER (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

24 3.64 · 10−3 0.13 0.864 1.8 2.7 0.9 0.0 1.2 -0.8 0.0 0.7 0.7 -1.2 1.4 -0.1

24 2.15 · 10−3 0.22 1.043 1.6 2.8 0.8 0.0 1.7 -0.2 0.0 -0.6 0.3 -0.6 1.8 -0.2

24 1.53 · 10−3 0.31 1.136 1.5 2.0 0.7 0.0 -0.4 -0.2 0.0 -0.4 -0.3 -1.3 1.2 -0.4

24 1.18 · 10−3 0.40 1.184 1.6 2.0 0.7 -0.1 -0.7 -0.3 0.2 -1.0 0.3 -0.6 1.2 -0.4

24 9.86 · 10−4 0.48 1.195 1.7 2.7 0.8 -0.2 -0.2 -0.4 0.1 -0.3 -0.2 1.4 2.1 -0.4

24 8.45 · 10−4 0.56 1.260 1.7 2.0 0.9 -0.3 0.7 -0.7 0.4 -0.8 -0.2 -0.8 0.7 -0.5

24 7.51 · 10−4 0.63 1.256 2.2 3.1 1.3 -0.8 0.3 -1.5 -0.7 -0.3 0.5 -1.8 -0.8 -0.5

24 6.86 · 10−4 0.69 1.260 2.5 3.5 1.6 -1.3 1.3 -1.9 0.3 -0.3 0.5 -0.4 1.3 -0.6

24 6.31 · 10−4 0.75 1.247 2.9 5.6 2.1 -2.0 0.6 -4.1 0.8 -1.1 -0.9 1.2 0.6 -0.6

32 4.85 · 10−3 0.13 0.848 1.3 1.9 0.6 0.0 1.1 -0.8 0.0 -0.4 -0.2 -0.6 1.0 -0.1

32 2.87 · 10−3 0.22 0.977 1.3 2.1 0.6 0.0 1.6 -0.2 0.0 0.2 0.3 -0.5 1.1 -0.2

32 2.04 · 10−3 0.31 1.083 1.4 1.4 0.6 0.0 -0.4 -0.2 0.1 -0.5 0.3 -0.1 0.9 -0.3

32 1.58 · 10−3 0.40 1.153 1.6 1.2 0.7 -0.1 -0.5 -0.2 0.0 -0.2 0.2 -0.1 0.7 -0.3

32 1.31 · 10−3 0.48 1.216 1.8 1.7 0.8 -0.1 -0.6 -0.3 0.1 -0.3 -0.3 -0.7 0.8 -0.4

32 1.13 · 10−3 0.56 1.249 2.0 1.8 1.0 -0.3 0.8 -0.7 -0.5 0.2 0.3 -0.5 0.4 -0.4

32 1.00 · 10−3 0.63 1.252 2.6 2.3 1.5 -0.7 -0.3 -1.1 -0.5 0.4 -0.3 0.9 -0.1 -0.4

32 9.15 · 10−4 0.69 1.387 2.8 3.5 1.7 -0.9 -0.1 -2.1 -0.7 0.5 -0.2 1.1 1.3 -0.5

32 8.41 · 10−4 0.75 1.291 3.3 4.0 2.3 -1.7 0.3 -2.6 0.6 -0.3 -0.3 -0.3 -0.4 -0.6

45 6.83 · 10−3 0.13 0.803 1.2 1.7 0.5 0.0 0.8 -0.7 0.0 0.2 0.1 0.5 1.1 -0.1

45 4.03 · 10−3 0.22 0.942 1.3 2.1 0.6 0.0 1.5 -0.1 0.1 -0.5 -0.2 0.4 1.2 -0.2

45 2.86 · 10−3 0.31 1.057 1.5 1.1 0.7 0.0 -0.1 -0.1 0.1 -0.4 -0.1 0.1 0.7 -0.3

45 2.22 · 10−3 0.40 1.107 1.7 1.5 0.8 -0.1 -0.4 -0.2 0.0 -0.3 -0.3 -0.7 0.7 -0.3

45 1.85 · 10−3 0.48 1.105 2.0 1.4 1.0 -0.2 -0.4 -0.4 0.2 -0.3 -0.1 0.4 0.5 -0.4

45 1.58 · 10−3 0.56 1.260 2.2 2.3 1.2 -0.3 0.1 -0.5 1.0 -0.6 0.2 -1.0 -0.8 -0.4

45 1.41 · 10−3 0.63 1.293 2.8 2.4 1.4 -0.3 -0.7 -1.0 -0.9 0.7 0.3 -0.8 0.4 -0.4

45 1.29 · 10−3 0.69 1.227 3.2 3.0 1.9 -0.8 0.6 -1.5 -0.3 0.7 0.1 -0.4 0.9 -0.5

45 1.18 · 10−3 0.75 1.228 3.7 4.5 2.4 -1.4 -2.1 -2.0 -0.5 -0.3 0.6 -1.0 -1.2 -0.6

60 9.10 · 10−3 0.13 0.746 1.3 1.9 0.6 0.0 1.0 -0.7 0.1 -0.6 0.3 0.5 1.0 -0.1

60 5.38 · 10−3 0.22 0.868 1.5 2.6 0.7 0.0 1.4 -0.2 0.0 -0.3 0.3 1.2 1.7 -0.2

60 3.82 · 10−3 0.31 0.994 1.8 1.1 0.8 0.0 0.2 -0.1 0.1 0.1 0.4 0.3 0.5 -0.3

60 2.96 · 10−3 0.40 1.068 2.1 1.5 0.9 0.0 -0.8 -0.2 -0.1 -0.1 -0.1 0.3 0.6 -0.3

60 2.46 · 10−3 0.48 1.112 2.4 1.6 1.2 -0.2 0.3 -0.2 0.3 0.6 0.2 -0.2 0.5 -0.3

60 2.11 · 10−3 0.56 1.126 2.7 2.3 1.3 -0.3 -0.2 -0.5 0.6 1.1 0.1 -0.3 1.1 -0.4

60 1.88 · 10−3 0.63 1.215 3.4 3.4 1.8 -0.4 1.5 -0.8 0.3 1.8 -0.2 0.6 1.0 -0.4

60 1.71 · 10−3 0.69 1.290 3.7 3.2 2.2 -0.8 0.9 -1.6 -0.4 -0.3 0.5 0.7 -0.7 -0.5

60 1.58 · 10−3 0.75 1.221 4.2 3.7 2.4 -0.9 1.0 -1.9 0.7 -1.0 0.3 0.4 -1.0 -0.4

Continued on Next Page. . .
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Q2 x y σ̃e+p δstat δsys δunc δγp δEe
δEh

δeID δdx δdy δMVD δCTD δdiff

(GeV2) LER (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

80 1.21 · 10−2 0.13 0.708 1.6 1.6 0.7 0.0 0.9 -0.6 0.0 -0.4 -0.2 -0.6 0.4 -0.1

80 7.17 · 10−3 0.22 0.882 1.7 1.8 0.8 0.0 1.5 -0.2 0.1 -0.3 -0.2 -0.4 -0.2 -0.1

80 5.09 · 10−3 0.31 0.954 2.0 1.1 0.9 0.0 -0.2 -0.1 0.1 -0.2 -0.4 -0.3 0.3 -0.2

80 3.94 · 10−3 0.40 1.020 2.4 2.2 1.1 0.0 -1.1 -0.1 0.1 -0.2 -0.5 -1.0 -1.0 -0.3

80 3.29 · 10−3 0.48 1.076 2.8 1.9 1.4 -0.2 -0.6 -0.1 0.1 0.5 -0.5 0.3 0.6 -0.4

80 2.82 · 10−3 0.56 1.101 3.1 3.8 1.6 -0.3 -1.1 -0.4 1.0 0.2 0.4 2.3 2.0 -0.3

80 2.50 · 10−3 0.63 1.113 4.0 3.2 2.0 -0.3 -0.6 -0.7 0.6 -1.0 -0.3 -0.5 -1.7 -0.4

80 2.29 · 10−3 0.69 1.074 4.8 5.2 3.4 -1.4 1.6 -1.7 1.0 -1.1 -0.5 1.0 2.1 -0.4

80 2.10 · 10−3 0.75 1.241 4.8 4.9 2.9 -0.9 1.9 -1.1 -1.6 -1.5 -1.3 -0.3 -1.8 -0.5

110 1.67 · 10−2 0.13 0.666 1.8 1.4 0.8 0.0 0.7 -0.7 0.1 -0.4 0.1 -0.4 -0.3 -0.1

110 9.86 · 10−3 0.22 0.812 2.0 1.9 0.9 0.0 1.4 -0.1 -0.2 0.1 -0.5 -0.4 0.2 -0.2

110 7.00 · 10−3 0.31 0.853 2.4 1.8 1.1 0.0 0.2 -0.1 -0.1 0.6 0.3 0.9 0.9 -0.2

110 5.42 · 10−3 0.40 0.964 2.9 2.4 1.2 0.0 -1.4 -0.1 0.1 0.8 0.6 1.0 0.4 -0.3

110 4.52 · 10−3 0.48 1.053 3.2 1.9 1.5 -0.1 -0.5 -0.2 0.5 -0.6 0.1 0.5 -0.4 -0.3

110 3.87 · 10−3 0.56 1.026 3.8 3.1 1.7 -0.2 0.4 -0.3 -1.8 -0.9 -0.2 0.6 -1.2 -0.4

110 3.44 · 10−3 0.63 1.086 4.9 3.9 2.8 -0.7 -0.9 -0.6 -0.4 -1.2 0.4 1.7 -0.9 -0.5

110 3.14 · 10−3 0.69 1.141 5.4 4.3 3.2 -0.7 0.5 -0.8 -0.1 1.3 0.5 1.9 1.2 -0.4

110 2.89 · 10−3 0.75 0.916 9.4 7.6 5.2 -1.0 -1.8 -1.4 1.5 1.7 3.0 -1.1 -2.8 -0.4

Table 3: The reduced cross section, σ̃, for the reaction e+p → e+X at
√
s = 225GeV .

Further details as described in caption of Table 1.
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Q2 x F
(1)
L

F
(2)
L

F
(1)
2 F

(2)
2

(GeV2)

24 6.67 · 10−4 0.29+0.11
−0.11 0.31+0.14

−0.08 1.403+0.025
−0.025 1.404+0.029

−0.022

24 8.16 · 10−4 0.25+0.13
−0.13 0.27+0.14

−0.11 1.340+0.029
−0.029 1.341+0.030

−0.028

24 1.08 · 10−3 0.46+0.22
−0.22 0.47+0.29

−0.14 1.260+0.028
−0.028 1.261+0.035

−0.020

32 8.89 · 10−4 0.18+0.11
−0.11 0.20+0.14

−0.07 1.397+0.023
−0.023 1.398+0.028

−0.018

32 1.09 · 10−3 0.26+0.13
−0.13 0.27+0.14

−0.10 1.324+0.021
−0.021 1.324+0.023

−0.019

32 1.43 · 10−3 0.27+0.19
−0.19 0.28+0.22

−0.13 1.229+0.023
−0.023 1.229+0.027

−0.016

45 1.25 · 10−3 0.14+0.11
−0.11 0.15+0.12

−0.07 1.324+0.024
−0.024 1.324+0.029

−0.018

45 1.53 · 10−3 −0.11+0.13
−0.13 0.00+0.10

−0.00 1.233+0.022
−0.022 1.246+0.027

−0.010

45 2.02 · 10−3 0.37+0.19
−0.19 0.38+0.24

−0.13 1.173+0.022
−0.022 1.173+0.028

−0.016

60 1.67 · 10−3 0.16+0.12
−0.12 0.17+0.13

−0.09 1.326+0.029
−0.029 1.326+0.034

−0.021

60 2.04 · 10−3 0.19+0.15
−0.15 0.21+0.17

−0.11 1.211+0.025
−0.025 1.211+0.030

−0.017

60 2.69 · 10−3 0.27+0.21
−0.21 0.28+0.24

−0.14 1.145+0.024
−0.024 1.145+0.030

−0.015

80 2.22 · 10−3 0.18+0.13
−0.13 0.19+0.15

−0.09 1.256+0.029
−0.029 1.256+0.034

−0.022

80 2.72 · 10−3 0.38+0.17
−0.17 0.39+0.19

−0.14 1.213+0.027
−0.027 1.214+0.032

−0.022

80 3.59 · 10−3 0.12+0.22
−0.22 0.13+0.19

−0.13 1.082+0.022
−0.022 1.081+0.029

−0.010

110 3.06 · 10−3 0.33+0.15
−0.15 0.34+0.18

−0.12 1.254+0.033
−0.033 1.255+0.039

−0.028

110 3.74 · 10−3 0.31+0.18
−0.18 0.33+0.21

−0.15 1.136+0.029
−0.029 1.138+0.035

−0.023

110 4.93 · 10−3 0.01+0.25
−0.25 0.03+0.25

−0.03 1.022+0.026
−0.026 1.022+0.037

−0.006

Table 4: The measured values of FL and F2 at 18 separate (x,Q2) points. The
quoted uncertainties include both the statistical and systematic sources, whereas a
±2.5% correlated normalisation uncertainty is not included on the FL and F2 val-
ues. The (1) superscript indicates an unconstrained fit whereas the (2) superscript
indicates that the constraints F2 ≥ 0 and 0 ≤ FL ≤ F2 were enforced by the prior.

Q2 F
(1)
L

F
(2)
L

(GeV2)

24 0.30+0.09
−0.09 0.30+0.10

−0.07

32 0.22+0.09
−0.09 0.22+0.09

−0.07

45 0.10+0.08
−0.08 0.10+0.07

−0.07

60 0.18+0.09
−0.09 0.18+0.10

−0.08

80 0.24+0.10
−0.10 0.23+0.11

−0.09

110 0.28+0.12
−0.12 0.28+0.13

−0.11

Table 5: The single values of FL extracted in each Q2 bin. The quantities are
quoted such that Q2/x was constant for each value, which corresponds to y = 0.71
for

√
s = 225 GeV. The quoted uncertainties include both the statistical and sys-

tematic sources, although a ±2.5% normalisation uncertainty is not included. The
(1) superscript indicates an unconstrained fit whereas the (2) superscript indicates
that the constraints F2 ≥ 0 and 0 ≤ FL ≤ F2 were enforced in the prior.
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Q2 R(1) R(2)

(GeV2)

24 0.27+0.14
−0.07 0.27+0.15

−0.06

32 0.18+0.12
−0.05 0.18+0.12

−0.05

45 0.08+0.11
−0.05 0.08+0.10

−0.04

60 0.16+0.13
−0.07 0.16+0.13

−0.07

80 0.23+0.17
−0.09 0.23+0.17

−0.08

110 0.29+0.23
−0.12 0.29+0.22

−0.12

Table 6: The single values of R extracted in each Q2 bin. Other details as in the
caption to Table 5, although no additional ±2.5% normalisation uncertainty need
be included.
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Figure 1: Detector-level distributions of the energy, E ′
e, and polar angle, θe, of the

scattered electron candidates within the HER, MER and LER data sets compared to
the combined MC predictions (MC DIS+BG). The background only MC is labelled
MC BG. The vertical dashed-line represents the E ′

e cut. The θe distributions are
shown for E ′

e ≥ 6GeV.
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Figure 2: The reduced cross sections at 6 values of Q2 as a function of x for the
three centre-of-mass energies. The points represent the ZEUS data from the HER
(�), MER (N) and LER (•), respectively. The solid lines represent the predicted
reduced cross sections, using the ZEUS-JETS PDFs. The dashed lines represent
the predicted reduced cross sections when FL is set to zero. The points and lines
are shifted by c (see top right) for clarity. The inner error bars represent the sta-
tistical uncertainty. The outer error bars represent the statistical plus systematic
uncertainties added in quadrature. A further ±2.7% systematic normalisation un-
certainty is not included.
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Figure 3: FL and F2 at 6 values of Q2 as a function of x. The points represent the
ZEUS data for FL (•) and F2 (N), respectively. The error bars on the data represent
the combined statistical and systematic uncertainties. The error bars on F2 are
smaller than the symbols. A further ±2.5% correlated normalisation uncertainty is
not included. The DGLAP-predictions for FL and F2 using the ZEUS-JETS PDFs
are also shown. The bands indicate the uncertainty in the predictions.
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Figure 4: Values of (a) FL and (b) R as a function of Q2. The error bars
on the data represent the combined statistical and systematic uncertainties. A
further ±2.5% correlated normalisation uncertainty is not included. The shaded
band labelled ZEUS average represents the 68% probability interval for the overall R.
The lines represent various model predictions (see text for details).
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