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with the ZEUS forward plug calorimeter

ZEUS Collaboration

Abstract

Deep inelastic scattering and its diffractive component, ep → e′γ∗p → e′XN ,

have been studied at HERA with the ZEUS detector using an integrated lumi-

nosity of 52.4 pb−1. The MX method has been used to extract the diffractive

contribution. A wide range in the centre-of-mass energy W (37 – 245 GeV),

photon virtuality Q2 (20 – 450 GeV2) and mass MX (0.28 – 35 GeV) is covered.

The diffractive cross section for 2 < MX < 15 GeV rises strongly with W , the

rise becoming steeper as Q2 increases. The data are also presented in terms of

the diffractive structure function, F
D(3)
2 , of the proton. For fixed Q2 and fixed

MX , x
IP
F

D(3)
2 shows a strong rise as x

IP
→ 0, where x

IP
is the fraction of the

proton momentum carried by the Pomeron. For Bjorken-x < 1 · 10−3, x
IP
F

D(3)
2

shows positive logQ2 scaling violations, while for x ≥ 5 · 10−3 negative scaling

violations are observed. The diffractive structure function is compatible with

being leading twist. The data show that Regge factorisation is broken.

http://arxiv.org/abs/0802.3017v2
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B.Y. Oh, A. Raval, J. Ukleja27, J.J. Whitmore28

Department of Physics, Pennsylvania State University, University Park, Pennsylvania

16802 o

Y. Iga

Polytechnic University, Sagamihara, Japan f

G. D’Agostini, G. Marini, A. Nigro
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1 Introduction

The observation of events with a large rapidity gap in deep inelastic electron (positron)

proton scattering (DIS) at HERA by the ZEUS experiment [1] has paved the way for a

systematic study of diffraction at large centre-of-mass energies with a variable hard scale

provided by the mass squared, −Q2, of the virtual photon. Diffraction is defined by the

property that the cross section does not decrease as a power of the centre-of-mass energy.

This can be interpreted as the exchange of a colourless system, the Pomeron, which leads

to the presence of a large rapidity gap between the proton and the rest of the final state,

which is not exponentially suppressed.

Before HERA came into operation, Ingelman and Schlein [2], based on data from UA8 [3,

4], had suggested that the Pomeron may have a partonic structure. Since then, the

H1 and ZEUS experiments at HERA have presented results on diffractive scattering in

photoproduction and deep inelastic electron-proton scattering for many different final

states. In parallel, a number of theoretical ideas and models have been developed in order

to understand the data within the framework of Quantum Chromodynamics (QCD) [5].

Several methods have been employed by H1 and ZEUS for isolating diffractive contribu-

tions experimentally. In the case of exclusive vector-meson production, resonance signals

in the decay mass spectrum combined with the absence of other substantial activity in

the detector have been used [?,6,8]. The contribution from inclusive diffraction has been

extracted using the presence of a large rapidity gap (ηmax method [11]), the detection of

the leading proton [?,10] or the hadronic mass spectrum observed in the central detector

(MX method [12, 13]). The selections based on ηmax or on a leading proton may include

additional contributions from Reggeon exchange. Such contributions are exponentially

suppressed when using the MX method.

In this paper, inclusive processes (Fig. 1),

γ∗p → anything, (1)

and diffractive processes (Fig. 2),

γ∗p → XN, (2)

where N is a proton or a low-mass nucleonic state and X is the hadronic system without

N , are studied. The contribution from diffractive scattering is extracted with the MX

method. Results on the proton structure function F2 and on the diffractive cross section

and structure function are presented for a wide range of centre-of-mass energies, photon

virtualities −Q2 and of mass MX of the diffractively produced hadronic system, using the

data from the ZEUS experiment collected in 1999 and 2000. The results, which will be
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referred to as FPC II, are based on integrated luminosities of 11.0 pb−1 for Q2 = 20 − 40

GeV2 and 52.4 pb−1 for Q2 = 40 − 450 GeV2.

In a previous study, which will be referred to as FPC I [13], results on inclusive and

diffractive scattering were presented for the Q2 values between 2.7 and 55 GeV2 using

an integrated luminosity of 4.2 pb−1. The combined data from the FPC I and FPC II

analyses provide a measurement of the Q2 dependence of diffraction over a range of two

orders of magnitude.

2 Experimental set-up and data set

The data used for this measurement were taken with the ZEUS detector in 1999-2000

when positrons of 27.5 GeV collided with protons of 920 GeV. The detector as well as

the analysis methods are identical to those used for the FPC I study [13]. A detailed

description of the ZEUS detector can be found elsewhere [14, 15]. A brief outline of the

components that are most relevant for this analysis is given below.

Charged particles were tracked in the central tracking detector (CTD) [16], which operated

in a magnetic field of 1.43 T provided by a thin superconducting solenoid. The CTD

consisted of 72 cylindrical drift chamber layers, organised in 9 superlayers covering the

polar-angle region 15◦ < θ < 164◦. The transverse momentum resolution for full-length

tracks was σ(pT )/pT = 0.0058pT ⊕ 0.0065 ⊕ 0.0014/pT , with pT in GeV.

The high-resolution uranium-scintillator calorimeter (CAL [17]) consisted of three parts:

the forward (FCAL), the barrel (BCAL) and the rear (RCAL) calorimeters. Each part was

subdivided transversely into towers and longitudinally into one electromagnetic section

(EMC) and either one (in RCAL) or two (in BCAL and FCAL) hadronic sections (HAC).

The smallest division of the calorimeter was called a cell. The CAL energy resolutions,

as measured under test beam conditions, were σ(E)/E = 0.18/
√

(E) for electrons and

σ(E)/E = 0.35/
√

(E) for hadrons, with E in GeV.

The position of electrons scattered at small angles to the electron-beam direction was

determined including the information from the SRTD [18, 19] which was attached to the

front face of the RCAL and consisted of two planes of scintillator strips. The rear hadron-

electron separator (RHES [20]) was inserted in the RCAL.

In 1998, the forward-plug calorimeter (FPC) [21] was installed in the 20×20 cm2 beam hole

of the FCAL. The FPC was used to measure the energy of particles in the pseudorapidity 1

1 The ZEUS coordinate system is a right-handed Cartesian system, with the Z axis pointing in the

proton direction, referred to as the “forward direction”, and the X axis pointing left towards the

centre of HERA. The coordinate origin is at the nominal interaction point.
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range η ≈ 4.0 − 5.0. The FPC was a lead-scintillator sandwich calorimeter read out by

wavelength-shifter (WLS) fibres and photomultipliers (PMT). A hole of 3.15 cm radius was

provided for the passage of the beams. In the FPC, 15 mm thick lead plates alternated

with 2.6 mm thick scintillator layers. The scintillator layers consisted of tiles forming

towers that were read out individually. The tower cross sections were 24× 24 mm2 in the

electromagnetic and 48×48 mm2 in the hadronic section. The measured energy resolution

for positrons was σE/E = (0.41±0.02)/
√
E⊕0.062±0.002, with E in GeV. When installed

in the FCAL, the energy resolution for pions was σE/E = (0.65±0.02)/
√
E⊕0.06±0.01,

with E in GeV, and the e/h ratio was close to unity.

The luminosity was measured from the rate of the bremsstrahlung process ep → eγp. The

resulting small-angle energetic photons were measured by the luminosity monitor [22], a

lead-scintillator calorimeter placed in the HERA tunnel at Z = −107 m.

A three-level trigger system was used to select events online [14, 15, 23]. The first- and

second-level trigger selections were based on the identification of a scattered positron

with impact point on the RCAL surface outside an area of 36×36 cm2 centred on the

beam axis (“set 1”, integrated luminosity 11.0 pb−1), or outside a radius of 30 cm centred

on the beam axis (“set 2”, integrated luminosity 41.4 pb−1). In the offline analysis the

reconstructed impact point had to lie outside an area of 40×40 cm2 (set 1) or outside a

radius of 32 cm (set 2).

3 Reconstruction of kinematics and event selection

The methods for extracting the inclusive DIS and diffractive data samples are identical

to those applied in the FPC I study [13] and will be described only briefly.

The reaction

e(k) p(P ) → e(k′) + anything,

see Fig. 1, at fixed squared centre-of-mass energy, s = (k + P )2, is described in terms

of Q2 ≡ −q2 = −(k − k′)2, Bjorken-x = Q2/(2P · q) and s ≈ 4EeEp, where Ee and Ep

denote the positron and proton beam energies, respectively. For these data,
√
s = 318

GeV. The fractional energy transferred to the proton in its rest system is y ≈ Q2/(sx).

The centre-of-mass energy of the hadronic final state, W , is given by W 2 = [P + q]2 =

m2
p + Q2(1/x− 1) ≈ Q2/x = ys, where mp is the mass of the proton.

In diffraction, proceeding via

γ∗ p(P ) → X + N(N), (3)
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see Fig. 2, the incoming proton undergoes a small perturbation and emerges either intact

(N = p), or as a low-mass nucleonic state N , in both cases carrying a large fraction, xL, of

the incoming proton momentum. The virtual photon dissociates into a hadronic system

X .

Diffraction is parametrised in terms of the mass MX of the system X , and the mass

MN of the system N . Since t, the four-momentum transfer squared between the incoming

proton and the outgoing system N , t = (P−N)2, was not measured, the results presented

are integrated over t. The measurements performed by ZEUS with the leading proton

spectrometer [10] show that the diffractive contribution has a steeply falling t distribution

with typical |t| values well below 0.5 GeV2.

Diffraction was also analysed in terms of the momentum fraction x
IP

of the proton

carried by the Pomeron exchanged in the t-channel, x
IP

= [(P − N) · q]/(P · q) ≈
(M2

X +Q2)/(W 2 +Q2), and the fraction of the Pomeron momentum carried by the struck

quark, β = Q2/[2(P − N) · q] ≈ Q2/(M2
X + Q2). The variables x

IP
and β are related to

the Bjorken scaling variable, x, via x = βx
IP

.

The events studied are of the type

ep → e′X + rest, (4)

where X denotes the hadronic system observed in the detector and ‘rest’ the particle

system escaping detection through the forward and/or rear beam holes.

The coordinates of the event vertex were determined with tracks reconstructed in the

CTD. Scattered positrons were identified with an algorithm based on a neural network [24].

The direction and energy of the scattered positron were determined from the combined

information given by CAL, SRTD, RHES and CTD. Fiducial cuts on the impact point of

the reconstructed scattered positron on the CAL surface were imposed to ensure a reliable

measurement of the positron energy.

The hadronic system was reconstructed from energy-flow objects (EFO) [25, 26] which

combine the information from CAL and FPC clusters and from CTD tracks, and which

were not assigned to the scattered positron.

If a scattered-positron candidate was found, the following criteria were imposed to select

the DIS events:

• the scattered-positron energy, E ′
e, be at least 10 GeV;

• the total measured energy of the hadronic system be at least 400 MeV;

• yFBJB > 0.006, where yFBJB =
∑

h(Eh − PZ,h)/(2Ee) summed over all hadronic EFOs in

FCAL plus BCAL; or at least 400 MeV be deposited in the BCAL or in the RCAL

outside of the ring of towers closest to the beamline;
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• −54 < Zvtx < 50 cm, where Zvtx is the Z-coordinate of the event vertex;

• 43 <
∑

i=e,h(Ei−PZ,i) < 64 GeV, where the sum runs over both the scattered positron

and all hadronic EFOs. This cut reduces the background from photoproduction and

beam-gas scattering and removes events with large initial-state QED radiation;

• candidates for QED-Compton (QEDC) events, consisting of a scattered-positron can-

didate and a photon candidate, with mass Meγ less than 0.25 GeV and total transverse

momentum less than 1.5 GeV, were removed. A Monte Carlo (MC) study showed that

the number of remaining QEDC events was negligible.

The value of Q2 was reconstructed from the measured energy E ′
e and scattering angle θe

of the positron, Q2 = 2EeE
′
e(1 + cos θe).

In the FPC I analysis, which covered lower Q2 values, the value of W was determined

as the weighted average of the values given by the positron and hadron measurement.

Here, the value of W was reconstructed with the double-angle algorithm (DA) [27] which

relies only on the measurement of the angles of the scattered positron and of the hadronic

system.

The mass of the system X was determined by summing over all hadronic EFOs,

M2
X =

(

∑

Eh

)2

−
(

∑

pX,h

)2

−
(

∑

pY,h

)2

−
(

∑

pZ,h

)2

,

where Ph = (pX,h, pY,h, pZ,h, Eh) is the four-momentum vector of a hadronic EFO. All

kinematic variables used to describe inclusive and diffractive scattering were derived from

MX , W and Q2.

A total of 60 events were found without a vertex, which were due either to cosmic radiation

(45) or to an overlay of cosmic radiation with DIS (15); these events were discarded.

About 630k events for data set 1 and 1.4M events for data set 2 passed the selection

cuts. The kinematic range for inclusive and diffractive events was chosen taking into

account detector resolution and statistics. About 930k events were retained which satisfied

37 < W < 245 GeV and 20 < Q2 < 450 GeV2.

The resolutions of the reconstructed kinematic variables were estimated using MC simu-

lation of diffractive events of the type γ∗p → XN (see Section 4). For the MX , W and

Q2 bins considered in this analysis, the resolutions are approximately the same as for the

FPC I analysis: σ(W )
W

= 1
W 1/2 , σ(Q2)

Q2 = 0.25
(Q2)1/3

and σ(MX )
MX

= c

M
1/3
X

, where c = 0.6 GeV1/3 for

MX < 1 GeV and c = 0.4 GeV1/3 for MX ≥ 1 GeV, with MX ,W in units of GeV and Q2

in GeV2.

Results are presented for seven bins in W , nine bins in Q2 and six bins in MX , as shown

in Table 1.
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4 Monte Carlo simulations

The data were corrected for detector acceptance and resolution, and for radiative effects,

with suitable combinations of several MC models, following the same procedure and using

the same MC models as in the FPC I [13] analysis.

Events from inclusive DIS, including radiative effects, were simulated using the HERA-

CLES 4.6.1 [?] program with the DJANGOH 1.1 [29] interface to ARIADNE 4 [30] and

using the CTEQ4D next-to-leading-order parton distribution functions [31]. In HERA-

CLES, O(α) electroweak corrections are included. The colour-dipole model of ARIADNE,

including boson-gluon fusion, was used to simulate the O(αS) plus leading-logarithmic cor-

rections to the quark-parton model. The Lund string model as implemented in JETSET

7.4 [32] was used by ARIADNE for hadronisation.

Diffractive DIS in which the proton does not dissociate, ep → eXp (including the pro-

duction of ω and φ mesons via ep → eV p, V = ω, φ but excluding ρ0 production), were

simulated with SATRAP, which is based on a saturation model [33] and is interfaced to the

RAPGAP 2.08 framework [34]. SATRAP was reweighted as a function of Q2/(Q2 +M2
X)

and W . The production of ρ0 mesons, ep → eρ0p, was simulated with ZEUSVM [35],

which uses a parametrisation of the measured ρ0 cross sections as well as of the produc-

tion and decay angular distributions [8,36,37]. The QED radiative effects were simulated

with HERACLES. The QCD parton showers were simulated with LEPTO 6.5 [38].

Diffractive DIS in which the proton dissociates, ep → eXN , was simulated with SATRAP

interfaced to the model called SANG [39], which also includes the production of ρ0

mesons. Following the previous experience (FPC I), the mass spectrum of the system

N was generated according to dσ/dM2
N ∝ (1/M2

N) × 0.89
√

MN/4 for MN ≤ 4 GeV, and

dσ/dM2
N ∝ (1/M2

N) × (2.5/MN)0.25 for MN > 4 GeV. This parametrisation was found to

fit the data in the FPC I analysis. The fragmentation of the system N was simulated

using JETSET 7.4.

The parameters of SANG, in particular those determining the shape of the MN spectrum

and the overall normalisation, were checked with a subset of the data. Events in this

subset were required to have a minimum rapidity gap ∆η > ηmin between at least one

EFO and its nearest neighbours, all with energies greater than 400 MeV. Good sensitivity

for double dissociation was obtained with four event samples for the kinematic regions

ηmin = 3.0 , W = 55 − 135 GeV, and ηmin = 4.0, W = 135 − 245 GeV, for Q2 = 40 − 80

GeV2 and 80 − 450 GeV2. The mass of the hadronic system reconstructed from the

energy deposits in FPC+FCAL, MFFCAL, depends approximately linearly on the mass

Mgen
N of the generated system N . Thus, the MFFCAL distribution is sensitive to those

proton dissociative events in which considerable energy of the system N is deposited in

FPC and FCAL. The study showed that this is the case, broadly speaking, when the mass
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of N taken at the generator level is MN > 2.3 GeV. At large MFFCAL, the distribution

is dominated by double dissociation. Figure 3 presents the MFFCAL distributions in four

representative (Q2,W ) regions for the data compared to the Monte Carlo expectations

for Xp, ρ0p, XN and non-diffractive processes. The contribution expected from XN as

predicted by SANG is dominant. Good agreement between the number of events measured

and those predicted is obtained. Since the contribution from diffraction with MN > 2.3

GeV can affect the determination of the slope b for the non-diffractive contribution (see

Section 5) it was subtracted statistically from the data as a function of MX , W and Q2.

Background from photoproduction, estimated with PYTHIA 5.7 [32], was negligible and

was neglected.

The ZEUS detector response was simulated using a program based on GEANT 3.13 [40].

The generated events were passed through the detector and trigger simulations and pro-

cessed by the same reconstruction and analysis programs as the data.

The measured hadronic energies for data and MC were increased by a factor of 1.065 in

order to achieve an average transverse momentum balance between the scattered positron

and the hadronic system. The mass MX reconstructed from the energy-corrected EFOs,

in the MX region analysed, required an additional correction factor of 1.10 as determined

from MC simulation 2.

Good agreement between data and simulated event distributions was obtained for both

the inclusive and the diffractive samples.

5 Determination of the diffractive contribution

The diffractive contribution was extracted from the data using the MX method, which has

been described elsewhere [12] and which has also been used for the FPC I analysis [13].

In the QCD picture of non-peripheral DIS, γ∗p → X + rest, the hadronic system X

measured in the detector is related to the struck quark and ‘rest’ to the proton remnant,

both of which are coloured states. The final-state particles are expected to be uniformly

emitted in rapidity along the γ∗p collision axis and to uniformly populate the rapidity

gap between the struck quark and the proton remnant, as described elsewhere [41]. In

this case, the mass MX is distributed as

dN non−diff

d lnM2
X

= c · exp(b · lnM2
X), (5)

2 The hadrons produced in diffractive events, on average, have lower momenta than those for hadrons

from non-peripheral events, so that their fractional energy loss in the material in front of the calorimeter

is larger.
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where b and c are constants 3. DJANGOH predicts, for non-peripheral DIS, b ≈ 1.9.

The diffractive reaction, γ∗p → XN , on the other hand, has different characteristics.

Diffractive scattering shows up as a peak near xL = 1, the mass of the system X being

limited by kinematics to M2
X/W

2 <∼ 1 − xL. Moreover, the distance in rapidity between

the outgoing nucleon system N and the system X is ∆η ≈ ln(1/(1−xL)), becoming large

when xL is close to one. Combined with the limited values of MX and the peaking of the

diffractive cross section near xL = 1, this leads to a large separation in rapidity between

N and any other hadronic activity in the event. For the vast majority of diffractive

events, the decay particles from the system N leave undetected through the forward

beam hole. For a wide range of MX values, the particles of the system X are emitted

entirely within the acceptance of the detector. Monte Carlo studies show that X can be

reliably reconstructed over the full MX range of this analysis.

Regge phenomenology predicts the shape of the MX distribution for peripheral processes.

Diffractive production by Pomeron exchange in the t-channel, which dominates xL values

close to unity, leads to an approximately constant lnM2
X distribution (b ≈ 0). Figure 4

shows distributions of lnM2
X for the data (from which the contribution from double dis-

sociation with MN > 2.3 GeV, as predicted by SANG, has been subtracted) for low- and

high-W bins at low and high Q2 together with the expectations from MC simulations for

non-peripheral DIS (DJANGOH) and for diffractive processes (SATRAP + ZEUSVM and

SANG for MN < 2.3 GeV). The observed distributions agree well with the expectation for

a non-diffractive component giving rise to an exponentially growing lnM2
X distribution,

and for a diffractive component producing an almost constant distribution in a substan-

tial part of the lnM2
X range. At high W there is a clear signal for a contribution from

diffraction. At low W the diffractive contribution is seen to be small.

The lnM2
X spectra for all (W,Q2) bins studied in this analysis are displayed in Fig. 5.

They are compared with the MC predictions for the contributions from non-peripheral

and diffractive production. The MC simulations are in good agreement with the data. It

can be seen that the events at low and medium values of lnM2
X originate predominantly

from diffractive production.

The assumption of an exponential rise of the lnM2
X distribution for non-diffractive pro-

cesses permits the subtraction of this component and, therefore, the extraction of the

diffractive contribution without assumptions about its exact MX dependence. The distri-

bution is of the form:

dN

d lnM2
X

= D + c · exp(b lnM2
X) for lnM2

X < lnW 2 − η0, (6)

3 Throughout, whenever a logarithm of a quantity with dimensions of energy is used, a normalisation

in units of GeV is implied. For example, lnM2

X
is defined as ln(M2

X
/M2

0
), where M0 = 1 GeV.
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with MX in GeV, D is the diffractive contribution and the second term represents the

non-diffractive contribution. The quantity (lnW 2 − η0) specifies the maximum value of

lnM2
X up to which the exponential behaviour of the non-diffractive contribution holds.

A value of η0 = 2.2 was found from the data. Equation (6) was fitted to the data in the

limited range lnW 2 − 4.4 < lnM2
X < lnW 2 − η0 in order to determine the parameters b

and c. The parameter D was assumed to be constant over the fit range, which is suggested

by Figs. 4 and 5 where at high W and high Q2, dN/ lnM2
X is a slowly varying function

when M2
X > Q2 [42, 43]. However, the diffractive contribution was not taken from the fit

but was obtained from the observed number of events after subtracting the non-diffractive

contribution determined using the fitted values of b and c.

The fit range chosen is smaller than that used for the FPC I analysis (viz. for FPC I:

lnW 2 − 5.6 < lnM2
X < lnW 2 − 2.2). This change takes account of the observation that

at high Q2 and low values of MX diffraction is suppressed, as seen in Fig. 5.

The non-diffractive contribution in the (W,Q2) bins was determined by fitting for every

(W,Q2) interval the lnM2
X distribution of the data from which the contribution of γ∗p →

XN with MN > 2.3 GeV as given by SANG, has been subtracted (see Appendix A and

Tables 2 and 3). A fit of the form of Eq. (6) treating b, c and D as fit variables, was used.

Note that this is a difference compared to the FPC I analysis, where for each (W,Q2)

interval, the same value of b, obtained as an average over all W , Q2 values, was used.

Good fits with χ2 per degree of freedom of about unity were obtained. The value of

the slope b varied typically between 1.4 and 1.9. The statistical error of the diffractive

contribution includes the uncertainties on b and c.

Only bins of MX ,W,Q2, for which the non-diffractive background was less than 50%, were

kept for further analysis.

The MX method used for extracting the diffractive contribution was tested by performing

a “Monte Carlo experiment” in which a sample of simulated non-peripheral DIS events

(DJANGOH) and diffractive events with (SATRAP+ZEUSVM+SANG) and without pro-

ton dissociation (SATRAP + ZEUSVM) was analysed as if it were the data. The resulting

diffractive structure function (as defined in Section 9 below) is shown in Fig. 6 as a func-

tion of x
IP

for the β and Q2 values used in the analysis. Only the statistical uncertainties

are shown. The extracted structure function agrees with the diffractive structure func-

tion used for generating the events which validates the self consistency of the analysis

procedure.

The extraction of the diffractive contribution was also studied for the case of a possible

contribution from Reggeon exchange interfering with the contribution from diffraction.

The amount of Reggeon-Pomeron interference allowed by the data [10] was found to be

smaller than the combined statistical and systematic uncertainties in the present mea-
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surement, see Appendix B.

6 Evaluation of cross sections and systematic uncer-

tainties

The total and diffractive cross sections for ep scattering in a given (W,Q2) bin were

determined from the integrated luminosity, the number of observed events corrected for

background, acceptance and smearing, and corrected to the QED Born level.

The cross sections and structure functions are presented at chosen reference values MXref ,

Wref and Q2
ref . This was achieved as follows: first, the cross sections and structure func-

tions were determined at the weighted average of each (MX , W , Q2) bin. They were then

transported to the reference position using the ZEUS NLO QCD fit [44] in the case of the

proton structure function F2, and the result of the BEKW(mod) fit (see Section 9.4) for

the diffractive cross sections and structure functions. The resulting changes to the cross

section and structure function values from the average to those at the reference positions

were at the 5 – 15% level.

6.1 Systematic uncertainties

A study of the main sources contributing to the systematic uncertainties of the mea-

surements was performed. The systematic uncertainties were calculated by varying the

cuts or modifying the analysis procedure and repeating the full analysis for every varia-

tion. The size of the variations of cuts and the changes of the energy scales were chosen

commensurate with the resolutions or the uncertainties of the relevant variables:

• the acceptance depends on the position measurement of the scattered positron. For

set 1 the cut was increased from 40 × 40 cm2 to 41 × 41 cm2 (systematic uncertainty

1a) and decreased to 39 × 39 cm2 (systematic uncertainty 1b). For set 2, the radius

cut was increased from 32 cm to 33 cm (systematic uncertainty 1a) and decreased to

31 cm (systematic uncertainty 1b). This affected the low-Q2 region. Changes below

1% were observed;

• the measured energy of the scattered positron was increased (decreased) by 2% in the

data, but not in the MC (systematic uncertainties 2a,b). In most cases the changes

were smaller than 1%. For a few bins changes up to 3% were observed. For one bin

at high Q2 and high W , a change of 7% was found;

• the lower cut for the energy of the scattered positron was lowered to 8 GeV (raised to

12 GeV) (systematic uncertainties 3a,b). In most cases the changes were smaller than
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1%. For a few bins changes up to 3% were found. For one bin at high Q2 and high

W , a change of 7% was found;

• to estimate the systematic uncertainties due to the uncertainty in the hadronic energy,

the analysis was repeated after increasing (decreasing) the hadronic energy measured

by the CAL by 2% [19] in the data but not in MC (systematic uncertainties 4a,b).

The changes were below 3%;

• the energies measured by the FPC were increased (decreased) by 10% in the data but

not in MC (systematic uncertainties 5a,b). The changes were below 1%;

• to estimate the uncertainties when the hadronic system h is in one of the transi-

tion regions: beam/(FPC+FCAL) (polar angle of the hadronic system θh < 8◦);

FCAL/BCAL (27◦ < θh < 40◦) or BCAL/RCAL (128◦ < θh < 138◦), the energy of h

was increased in the data by 10% but not in MC (systematic uncertainty 6). This led

to changes below 1%;

• the minimum hadronic energy cut of 400 MeV as well as the cut yJB > 0.006 were

increased by 50% (systematic uncertainty 7). In most cases the changes were below

1%. For a few bins at Q2 ≤ 35 GeV2, changes up to 3% were found;

• in order to check the simulation of the hadronic final state, the selection on
∑

i=e,h(Ei−
PZ,i) was changed from 43 – 64 GeV to 35 – 64 GeV (systematic uncertainty 8), leading

for Q2 = 25, 35 GeV2 to maximum changes at the level of 4%, and to changes up to

6% for Q2 = 320 GeV2.

The above systematic tests apply to the total as well as to the diffractive cross sections.

The following systematic tests apply to the diffractive cross section only:

• the reconstructed mass MX of the system X was increased (decreased) by 5% in the

data but not in the MC (systematic uncertainties 9a,b). Changes below 1% were

observed except for Q2 = 25, 35 GeV2, where decreasing MX led to changes up to 5%

at high y;

• the contribution from double dissociation with MN > 2.3 GeV was determined with

the reweighted SANG simulation and was subtracted from the data. The diffractive

cross section was redetermined by increasing (decreasing) the predicted contribution

from SANG by 30% (systematic uncertainties 10a,b). The resulting changes in the

diffractive cross section were well below the statistical uncertainty;

• the slope b describing the lnM2
X dependence of the non-diffractive contribution (see

Eq. (6)) was increased (decreased) by 0.2 units (systematic uncertainties 11a,b); this

led to an increase (decrease) of the number of diffractive events for the highest MX

value at a given W,Q2 by 1 (1.5) times the size of the statistical uncertainty. For the

lower MX values the changes were smaller.
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The uncertainty in the luminosity measurement was 2% and was neglected. The major

sources of systematic uncertainties for the diffractive cross section, dσdiff/dMX , were found

to be the uncertainties 4a,b; 8; 9a,b, 10a,b; and 11a,b for the largest MX value at a given

value of W . The total systematic uncertainty for each bin was determined by adding the

individual contributions in quadrature.

7 Proton structure function F2 and the total γ∗p cross

section

The differential cross section for inclusive ep scattering mediated by virtual photon ex-

change is given in terms of the structure functions Fi of the proton by

d2σe+p

dxdQ2
=

2πα2

xQ4
[Y F2(x,Q

2) − y2FL(x,Q2)](1 + δr(x,Q
2)), (7)

where Y = 1 + (1 − y)2, F2 is the main component of the cross section which in the DIS

factorisation scheme corresponds to the sum of the momentum densities of the quarks

and antiquarks weighted by the squares of their charges, FL is the longitudinal structure

function and δr is a term accounting for radiative corrections.

In the Q2 range considered in this analysis, Q2 ≤ 450 GeV2, the contributions from Z0

exchange and Z0 - γ interference are at most of the order of 0.4% and were ignored. The

contribution of FL to the cross section relative to that from F2 is given by (y2/Y )·(FL/F2).

For the determination of F2, the FL contribution was taken from the ZEUS NLO QCD

fit [44]. The contribution of FL to the cross section in the highest y (= lowest x) bin of

this analysis was 3.2%, decreasing to 1.3% for the next highest y bin. For the other bins,

the FL contribution is below 1%. The resulting uncertainties on F2 are below 1%.

The measured F2 values are listed in Table 4, and are shown in Fig. 7 together with

those from the FPC I analysis. Here, the F2 values of FPC I measured at Q2 = 27

GeV2 were transported to Q2 = 25 GeV2. Good agreement is observed between the

measurements done at the same values of Q2, namely 25 and 55 GeV2. The data are

compared to the predictions of the ZEUS NLO QCD fit [44] obtained from previous

ZEUS F2 measurements [19]. The fit describes the data well.

The proton structure function, F2, rises rapidly as x → 0 for all values of Q2, the slope

increasing as Q2 increases. The form

F2 = c · x−λ (8)

was fitted for every Q2 bin to the F2 data, requiring x < 0.01 to exclude the region where

valence quarks may dominate. Since, for fixed Q2, the x dependence of F2 is related to the
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W dependence of the total γ∗p cross section, the power λ can be related to the intercept

of the Pomeron trajectory, λ = αIP (0) − 1 (see Section 8.1). For later comparison with

the diffractive results, these αIP values will be referred to as αtot
IP . The resulting values

for c and αtot
IP (0) are listed in Table 5. Figure 8 presents the results from this study

together with those from the FPC I analysis. The parameter αtot
IP (0) rises approximately

linearly with lnQ2 from αtot
IP (0) = 1.155 ± 0.011(stat.)+0.007

−0.011(syst.) at Q2 = 2.7 GeV2, to

1.322 ± 0.017 (statistical and systematic uncertainties added in quadrature) at Q2 = 70

GeV2, substantially above the ‘soft Pomeron’ value of 1.096+0.012
−0.009 deduced from hadron-

hadron scattering data [45]. This is in agreement with previous observations [13, 46, 47].

Since the Pomeron intercept is changing with Q2, the assumption of single Pomeron

exchange cannot be sustained.

The total cross section for virtual photon-proton scattering, σtot
γ∗p ≡ σT (x,Q2)+σL(x,Q2),

where T (L) stands for transverse (longitudinal) photons, was extracted from the mea-

surement of F2 using the relation

σtot
γ∗p =

4π2α

Q2(1 − x)
F2(x,Q

2), (9)

which is valid for 4m2
px

2 ≪ Q2 [48]. The total cross section values are listed in Table 6

for fixed Q2 as a function of W .

The total cross section multiplied by Q2 is shown in Fig. 9 together with the results from

the FPC I analysis. For fixed value of Q2, Q2σtot
γ∗p rises rapidly with W . For Q2 ≤ 14

GeV2, the rise becomes steeper with increasing Q2, while for Q2 ≥ 70 GeV2 the rise

becomes less steep as Q2 increases. The W behaviour of σtot
γ∗p reflects the x dependence

of F2 as x → 0, viz. σtot
γ∗p ∝ W 2(αtot

IP (0)−1).

8 Diffractive cross section

The cross section for diffractive scattering via ep → eXN can be expressed in terms of

the transverse (T) and longitudinal (L) cross sections, σdiff
T and σdiff

L , for γ∗p → XN as

dσdiff
γ∗p→XN(MX ,W,Q2)

dMX

≡ d(σdiff
T + σdiff

L )

dMX

≈ 2π

α

Q2

(1 − y)2 + 1

dσdiff
ep→eXN(MX ,W,Q2)

dMXd lnW 2dQ2
. (10)

Here, a term (1 − y2/[1 + (1 − y)2])σdiff
L /(σdiff

T + σdiff
L ) multiplying (σdiff

T + σdiff
L ) has been

neglected [13, 48–50]. Since y = W 2/s, this approximation reduces the diffractive cross

section for MX < 2 GeV by at most 8% at W < 200 GeV, and by at most 22% in the

highest W bin, 200 – 245 GeV, under the assumption that only longitudinal photons con-

tribute. Since the reduction is always smaller than the total uncertainty of the diffractive
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cross section given by the statistical and systematic uncertainties added in quadrature:

no correction was applied.

8.1 W dependence of the diffractive cross section

The diffractive cross section dσdiff/dMX for γ∗p → XN , MN < 2.3 GeV, corrected

for radiative effects and after transporting the measured values to the reference values

(MX ,W,Q2) using the BEKW(mod) fit (see Section 9.4), is presented in Tables 7 – 12

and Figs. 10 and 11 as a function of W . The results from the FPC I and FPC II analyses

are shown. Where measurements at the same values of Q2 are available, agreement is

observed between the two data sets.

The diffractive cross section dσdiff/dMX varies with MX , W and Q2. For MX = 1.2 GeV,

the diffractive cross section shows a moderate increase with increasing W and a steep re-

duction with Q2, approximately proportional to 1/Q4. For larger MX values, the diffrac-

tive cross section exhibits a substantial rise with increasing W and a less steep decrease

with Q2 roughly proportional to 1/Q2. The diffractive cross section is significant up to

Q2 = 320 GeV2, provided MX = 11 − 30 GeV.

The W dependence was quantified by fitting the form

dσdiff
γ∗p→XN

dMX
= h · (W/W0)

adiff (11)

to the data for each (MX , Q
2) bin with MX < 15 GeV; here W0 = 1 GeV and h, adiff are

free parameters. The adiff values from the FPC I and II analyses are shown in Fig. 12 as

a function of Q2 for different MX intervals. For MX > 4 GeV they range from 0.3 to 0.8

with a trend for adiff to be larger by about 0.2 – 0.4 units when Q2 is above 20 GeV2.

Under the assumption that the diffractive cross section can be described by the exchange

of a single Pomeron, the parameter adiff is related to the Pomeron trajectory averaged over

t: αIP = 1+adiff/4. In the present measurement, the diffractive cross section is integrated

over t, providing t-averaged values of αIP . In the framework of Regge phenomenology, the

cross section for diffractive scattering can be written as [51],

dσ/dt = f(t) · e2(αIP (t)−1)·ln(W/W0)2 , (12)

where f(t) characterises the t dependences of the (γ∗IPγ∗) and (pIPN) vertices. Assuming

dσ/dt ∝ eA·t and αIP (t) = αIP (0)+α′
IP · t leads to αIP (0) = αIP +α′

IP/A. Taking A = 7.9±
0.5(stat.)+0.9

−0.5(syst.) GeV−2, as measured by ZEUS with the leading proton spectrometer
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(LPS) [10] 4, and α′
IP = 0.25 GeV−2 [45], gives αIP (0) ≈ αIP + 0.03 = 1.03 + adiff/4. The

αIP (0) values deduced from diffractive cross sections are denoted as αdiff
IP (0).

The αdiff
IP (0) values for individual MX bins are given in Table 13. The combined results

from FPC I and FPC II for 2 < MX < 15 GeV are given in Table 14 and are shown

in Fig. 8 as a function of Q2 for α′
IP = 0.25 GeV−2 and α′

IP = 0. For Q2 < 20 GeV2,

αdiff
IP (0) is compatible with the soft-Pomeron value, while a substantial rise with Q2 above

the soft-Pomeron value is observed for Q2 > 30 GeV2. The αdiff
IP (0) values lie, however,

consistently below those obtained from F2, with [αdiff
IP (0) − 1]/[αtot

IP (0) − 1] ≈ 0.5 − 0.7.

Since the Pomeron intercept is changing with Q2, the Pomeron observed in deep inelastic

scattering does not correspond to a simple pole in the angular momentum plane.

8.2 MX and Q2 dependences of the diffractive cross section at

fixed W

Figure 13 shows the diffractive cross section multiplied by a factor of Q2 as a function of

MX for W = 220 GeV. For Q2 values up to about 55 GeV2 masses MX below 5 GeV are

prevalent. As Q2 increases, the maximum shifts to larger values of MX .

The Q2 dependence of diffraction was studied in terms of the diffractive cross section

multiplied by the factor Q2 · (Q2 +M2
X) since scaling of the diffractive structure function

implies that the quantity Q2 · (Q2 + M2
X)

dσdiff
γ∗p→XN

dM2
X

(see below) should be independent of

Q2, up to logarithmic terms. Figure 14 and Tables 15, 16, 17 show Q2 ·(Q2+M2
X)

dσdiff
γ∗p→XN

dM2
X

as a function of Q2 separately for MX = 1.2, 3, 6 GeV and MX = 11, 20, 30 GeV. In both

cases the data lie within a band of about ±25% width for fixed Q2 for the MX values

given. For the lower MX region, Q2 · (Q2 + M2
X)

dσdiff
γ∗p→XN

dM2
X

is approximately constant up

to Q2 ≈ 30 − 40 GeV2, followed by a decrease proportional to logQ2. For larger MX

values, the data show a weak dependence on logQ2. A similar behaviour is observed

for lower values of W . Thus, the scaling behaviour of dσdiff
γ∗p→XN/dM

2
X is of the form

1/[Q2(Q2 + M2
X)].

8.3 Diffractive contribution to the total cross section

The relationship between the total and diffractive cross sections can be derived under

certain assumptions. For instance, the imaginary part of the amplitude for elastic scat-

4 This value of A has been determined for x
IP

< 0.01, where diffraction is dominant in the ZEUS

data. Here it is assumed that A for the diffractive contribution remains the same in the region

0.01 < x
IP

< 0.03; x
IP

= 0.03 is the highest value of x
IP

reached in the FPC I and FPC II analyses.
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tering, Aγ∗p→γ∗p(t,W,Q2), at t = 0 can be assumed to be linked to the total cross section

by a generalisation of the optical theorem to virtual photon scattering. Assuming that

σtot
γ∗p ∝ W 2λ and that the elastic and inclusive diffractive amplitudes at t = 0 are purely

imaginary and have the same W and Q2 dependences, then Aγ∗p→γ∗p(t = 0,W,Q2) is

proportional to W 2λ. Neglecting the real part of the scattering amplitudes, the rise of the

diffractive cross section with W should then be proportional to W 4λ, so that the ratio of

the diffractive cross section to the total γ∗p cross section,

rdifftot ≡ σdiff

σtot
=

∫Mb

Ma
dMXdσ

diff
γ∗p→XN,MN<2.3GeV/dMX

σtot
γ∗p

, (13)

should behave as rdifftot ∝ W 2λ.

The ratio rdifftot was determined for all Ma < MX < Mb intervals, with the σtot
γ∗p values

taken from this analysis. The ratio rdifftot is listed in Tables 18 – 23 and is shown in Fig. 15

for the FPC II data, and in Fig. 16 for those from the FPC I analysis. The relative

contribution of diffraction to the total cross section is approximately independent of W .

It is substantial when M2
X > Q2. For Q2 = 25 – 320 GeV2, diffraction with MX < 2 GeV

accounts for about 0.1 to 0.4% of the total cross section, while the MX intervals 15 – 25

GeV and 25 – 35 GeV together account for 3 – 4%.

The ratio r = σdiff(0.28 < MX < 35 GeV,MN < 2.3 GeV)/σtot was evaluated as a

function of Q2 for the highest W bin (200 < W < 245 GeV) which provides the best

coverage in MX . Both FPC I and FPC II data are listed in Table 24 and shown in

Fig. 17. The ratio r is 15.8+1.1
−1.0% at Q2 = 4 GeV2, decreasing to 5.0+0.9

−0.9 % at Q2 = 190

GeV2. The data are well described by the form r = a − b · ln(1 + Q2). Considering

both statistical and systematic uncertainties, the fit yielded a = 0.2069 ± 0.0075 and

b = 0.0320 ± 0.0020, which is shown by the line in Fig. 17. The figure shows that the

ratio r of the diffractive to the total cross section is decreasing logarithmically with Q2.

9 Diffractive structure function of the proton

The diffractive structure function of the proton, F
D(3)
2 (β, x

IP
, Q2), is related to the diffrac-

tive cross section for W 2 ≫ Q2 as follows:

1

2MX

dσdiff
γ∗p→XN(MX ,W,Q2)

dMX

=
4π2α

Q2(Q2 + M2
X)

x
IP
F

D(3)
2 (β, x

IP
, Q2). (14)

With this definition, F
D(3)
2 will include also contributions from longitudinal photons. If

F
D(3)
2 is interpreted in terms of quark densities, it specifies the probability to find, in

a proton undergoing a diffractive reaction, a quark carrying a fraction x = βx
IP

of the

proton momentum.
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9.1 x
IP
F

D(3)
2 as a function of x

IP

Figure 18 shows x
IP
F

D(3)
2 for the FPC II data set as a function of x

IP
for fixed Q2 and

fixed MX , or, equivalently fixed β: x
IP
F

D(3)
2 rises approximately proportional to ln 1/x

IP

as x
IP
→ 0. This rise reflects the increase of the diffractive cross section dσdiff/dMX with

W . Figures 19 and 20 show that the combined FPC I and FPC II data exhibit this rise

for most Q2 values from 2.7 to 320 GeV2. The data are also provided in Tables 25 – 29.

9.2 x
IP
F

D(3)
2 as a function of Q2

The Q2 dependence of x
IP
F

D(3)
2 for fixed β and x

IP
is provided in Tables 30 – 38 and is

presented in Fig. 21 for the FPC I and FPC II data. Fits of the form

x
IP
F

D(3)
2 = c + a · ln(1 + Q2) (15)

yielded the values of c and a given in Table 39 for selected values of x
IP

, β with six or

more data points. Figure 21 and the fit results show that with increasing β the slope a

changes from positive values, corresponding to positive logarithmic scaling violations, to

constancy or negative logarithmic scaling violations. The data are dominated by positive

scaling violations in the region characterised roughly by x
IP
β = x < 1 · 10−3, by negative

scaling violations for x ≥ 5 · 10−3, and by constancy in between.

The data contradict the assumption of Regge factorisation [2], that the diffractive struc-

ture function x
IP
F

D(3)
2 (β, x

IP
, Q2) factorises into a term that depends only on x

IP
and a

second term that depends only on β and Q2. This can be seen in Table 39 which gives

the fit results for fixed β = 0.4 and β = 0.7, where the term a shows a strong dependence

on x
IP

.

The Q2 dependence of x
IP
F

D(3)
2 was also studied for selected values of x

IP
= 0.0001, 0.0003,

0.001, 0.003, 0.01 and of β. These choices of x
IP

and β values were made for the purpose of

comparison with the results from H1 [?]. The values of the diffractive structure function

at these values of x
IP

and β were obtained from those at the measured x
IP

, β values

by using the BEKW(mod) fit to the combined FPC I and FPC II data with a total of

427 measured points (see below). Only points for which the ratio of the transported to

the measured value of x
IP
F

D(3)
2 was within 0.75 – 1.33 were retained, corresponding to

about half of the data sample. Since the x
IP
F

D(3)
2 data from H1 had been determined for

MN < 1.6 GeV while those from this measurement are presented for MN < 2.3 GeV, the

H1 data may have to be increased by a factor of 1.1 to 1.2 for an absolute comparison;

no correction has been applied.

The measurements of x
IP
F

D(3)
2 by ZEUS and by H1 are compared in Figs. 22 – 24 as a

function of Q2 for fixed values of x
IP

and β. For x
IP

= 0.0003 the H1 points at β = 0.27
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and 0.43 are lower than those from ZEUS by 10 – 40% while at β = 0.67 they are in

agreement. For x
IP

= 0.001 and β = 0.08−0.5 the H1 points are lower by about 10 - 30 %

while at β = 0.8 and Q2 ≤ 7 GeV2 they are higher by about 40%. For x
IP

= 0.003 the H1

points at β = 0.027 − 0.43 are lower by about 10 - 30%; at β = 0.67 the H1 results agree

within about 15%. For x
IP

= 0.01 there is good agreement between the two measurements

for most values of β. For x
IP

= 0.03 and β ≤ 0.27 the H1 points agree with those of ZEUS

within the errors, while for β ≥ 0.43 the H1 points are always higher. These differences

are not understood.

9.3 x
IP
F

D(3)
2 as a function of β

The β dependence of x
IP
F

D(3)
2 for the FPC I and FPC II data is shown in Figs. 25 – 27

for fixed x
IP

and Q2. The values of x
IP
F

D(3)
2 at the chosen x

IP
values were obtained from

those at the measured x
IP

values using the BEKW(mod) fit (see below). The diffractive

structure function exhibits a fall towards β = 1 and a broad maximum around β = 0.5.

The broad maximum is approximately of the form β(1− β) as expected when the virtual

photon turns into a qq̄ system. For x
IP
≥ 0.005, x

IP
F

D(3)
2 rises as β → 0 which is suggestive

for the formation of qq̄g states via gluon radiation. For x
IP

= 0.0025 and 0.005 there is

some excess at high β ≥ 0.95. Since here the qq̄ contribution from transverse photons

is expected to be small, the excess suggests diffractive contributions from longitudinal

photons.

9.4 Comparison with the BEKW parametrisation

Further insight into the x
IP
F

D(3)
2 data can be gained with the help of the BEKW parametri-

sation [?] which considers the contributions from the transitions: transverse photon → qq,

longitudinal photon → qq and transverse photon → qqg. In the BEKW parametrisation,

the incoming virtual photon fluctuates into a qq or qqg dipole which interacts with the

target proton via two-gluon exchange. The β spectrum and the scaling behaviour in Q2

are derived from the wave functions of the incoming transverse (T ) or longitudinal (L)

photon on the light cone in the non-perturbative limit. The x
IP

dependence of the cross

section is not predicted by BEKW but is to be determined by experiment. Specifically

x
IP
F

D(3)
2 (β, x

IP
, Q2) = cT · F T

qq + cL · FL
qq + cg · F T

qqg, (16)
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where

F T
qq =

(

x0

x
IP

)nT (Q2)

· β(1 − β), (17)

FL
qq =

(

x0

x
IP

)nL(Q
2)

· Q2
0

Q2 + Q2
0

·
[

ln

(

7

4
+

Q2

4βQ2
0

)]2

· β3(1 − 2β)2, (18)

F T
qqg =

(

x0

x
IP

)ng(Q2)

· ln

(

1 +
Q2

Q2
0

)

· (1 − β)γ. (19)

The contribution from longitudinal photons coupling to qq is limited to β values close to

unity. The qq contribution from transverse photons is expected to have a broad maximum

around β = 0.5, while the qqg contribution becomes important at small β, provided the

power γ is large. The original BEKW parametrisation also includes a higher-twist term

for qq produced by transverse photons. The present data are insensitive to this term, and

it has, therefore, been neglected.

For FL
qq, the term (

Q2
0

Q2 ) provided by BEKW was replaced by the factor (
Q2

0

Q2+Q2
0

) to avoid

problems as Q2 → 0. The powers nT,L,g(Q
2) were assumed by BEKW to be of the form

n(Q2) = n0 +n1 · ln[1+ ln(Q
2

Q2
0

)]. The rise of αIP (0) with lnQ2 observed in the present data

suggested using the form n(Q2) = n0 + n1 ln(1 + Q2

Q2
0

). This modified BEKW form will

be referred to as BEKW(mod). Taking x0 = 0.01 and Q2
0 = 0.4 GeV2, the BEKW(mod)

form gives a good description of the data. According to the fit, the coefficients n0 can be

set to zero, and the coefficient n1 can be assumed to be the same for T , L and g.

The fits of BEKW(mod) to the data from this analysis (FPC II), to the data from the

FPC I analysis and to the combined FPC I and FPC II data led to the results shown in

Table 40.

Figures 19 and 20 compare the x
IP

dependence of the x
IP
F

D(3)
2 (β, x

IP
, Q2) data from the

FPC I and FPC II analyses with the BEKW(mod) fit. The fit gives a good description

of the total of 427 data points.

The measured Q2 and β dependences of the diffractive structure function are also well

reproduced by the BEKW(mod) fit, see Figs. 21, 25 – 27. Based on the BEKW(mod)

fit, the data show that the (qq)T contribution from transverse photons dominates the

diffractive structure function for 0.2 < β < 0.9. In the region β > 0.95, the contribution

from longitudinal photons, (qq)L, is dominant. This reflects, at least in part, the increase

of the contribution from longitudinal compared to transverse photons in the production of

ρ0 mesons [8]. For β ≤ 0.15, the largest contribution is due to gluon emission as described

by the term (qqg)T . These conclusions hold for all Q2 values studied.
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10 Summary and conclusions

Inclusive and diffractive scattering has been measured with data taken in 1999-2000 with

the ZEUS detector augmented by the forward-plug calorimeter (FPC), for Q2 between

25 and 320 GeV2 using an integrated luminosity of 52.4 pb−1. Where appropriate, the

results from a previous study (FPC I) using 4.2 pb−1 and covering the region Q2 = 2.7 –

55 GeV2, were included.

The proton structure function, F2(x,Q
2), shows a rapid rise as x → 0 at all Q2 values.

The rise for the region x < 0.01 has been parametrised in terms of the Pomeron trajectory

αtot
IP (0), showing a rapid increase of αtot

IP (0) ∝ lnQ2 for Q2 values between 2.7 and 70 GeV2.

The total cross section for virtual-photon proton scattering multiplied by Q2, Q2σtot
γ∗p,

shows a rapid rise with increasing W , reflecting the rise of F2 as x → 0; at lower Q2

values (2.7 – 55 GeV2), this rise becomes steeper as Q2 increases. At higher Q2 values,

the trend is reversed.

The diffractive cross section, dσdiff
γ∗p→XN/dMX , MN < 2.3 GeV, was studied as a function

of the hadronic centre-of-mass energy W , of the mass MX of the diffractively produced

system X and for different Q2 values. For MX = 1.2 GeV, the cross section decreases

rapidly with increasing Q2. For larger MX values a strong rise with W is observed

up to MX values of 11 GeV. The intercept of the Pomeron trajectory deduced from

the data rises with increasing Q2 but its size is not as large as observed for F2(x,Q
2),

[αdiff
IP (0) − 1]/[αtot

IP (0) − 1] ≈ 0.5 − 0.7. For fixed Q2, the ratio of the diffractive cross

section for 0.28 < MX < 35 GeV to the total cross section is independent of W . For

W = 200 − 245 GeV this ratio decreases ∝ ln(1 + Q2) from 15.8 ± 0.7(stat.)+0.9
−0.7(syst.)%

at Q2 = 4 GeV2 to 5.0 ± 0.4(stat.)+0.8
−0.8(syst.)% at Q2 = 190 GeV2.

Diffraction has also been studied in terms of the diffractive structure function of the

proton, F
D(3)
2 (β, x

IP
, Q2). For fixed MX , x

IP
F

D(3)
2 shows a strong rise as x

IP
→ 0 for all

Q2 between 2.7 and 320 GeV2. The x
IP

dependence of x
IP
F

D(3)
2 varies only modestly

with Q2. The data show positive scaling violations proportional to lnQ2 in the region

x
IP
β = x < 2 · 10−3, and constancy with Q2 or negative scaling violations proportional

to lnQ2 for x ≥ 2 · 10−3. Therefore, in the Q2 region studied, the diffractive structure

function is consistent with being of leading twist.

The data contradict Regge factorisation: the diffractive structure function F
D(3)
2 (β, x

IP
, Q2)

does not factorise into a term which depends only on x
IP

and a second term which depends

only on β and Q2.

A good description of x
IP
F

D(3)
2 as a function of x

IP
, β and Q2 has been obtained by fit-

ting the data with the BEKW(mod) parametrisation. This fit implies that the region

0.25 < β < 0.9 is dominated by the γ∗ → (qq)T contribution, the region β > 0.95 is
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dominated by the γ∗ → (qq)L term, while the rise of x
IP
F

D(3)
2 as β → 0 results from gluon

emission described by the γ∗ → (qqg)T term.
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Appendix

A Subtraction of the contribution from proton dis-

sociation with MN > 2.3 GeV

The contribution from proton dissociation with MN > 2.3 GeV to the diffractive data

sample was determined with SANG and subtracted from the data sample. Tables 2 and 3

give for every Q2, W , MX bin, for which diffractive cross sections are quoted in Tables 7

– 12, the fraction of events from MN > 2.3 GeV:

N SANG(MN>2.3GeV)

N event −N non−diff −N SANG(MN>2.3GeV)
. (20)

For 84% of the bins, the fraction of events for proton dissociation with MN > 2.3 GeV

that are subtracted, is less than or equal to 20%.

B Extracting the diffractive contribution in the

presence of Reggeon exchange

For this analysis the effect of Reggeon exchange interfering with the diffractive component

was studied. A positive interference between Pomeron (IP ) and Reggeon exchange (IR),

which reproduces the rise observed in the LPS data [10] for xIPF
D(3)
2 as x

IP
> 0.03, can be

achieved by the exchange of the f -meson trajectory. The LPS data were fit to the form

xIPF
D(3)
2 (β, xIP , Q

2) =

[

d1 ·
√

xIPF
D(3)BEKW
2 + d2 ·

√

xIP/0.01

]2

(21)

where xIPF
D(3)BEKW
2 is taken from the fit to the FPC I and FPC II data, see Section 9.5.1,

and the second term represents the Reggeon contribution. The fit to the LPS data yielded

d1 = 0.768 ± 0.020 and d2 = 0.0177 ± 0.0019, with χ2 = 135 for 78 degrees of freedom.

In order to determine the possible contribution from Reggeon exchange and Reggeon-

Pomeron interference (IR2 + 2 · IP · IR) to the diffractive data, Monte Carlo (MC) events

were generated according to

xIPF
D(3)(2IR+IP )
2 (β, xIP , Q

2) = 2d1 · d2 ·
√

xIPF
D(3)BEKW
2 · xIP/0.01 + d22 ·

xIP

0.01
(22)

These MC events were subjected to the same analysis procedure as the data. The Reggeon

plus Reggeon-Pomeron interference contribution (IR2 + 2 · IP · IR) to the diffractive cross

section dσdiff/dMX was found to be smaller than the combined statistical and systematic

uncertainty for all but 3 of the 166 data points. No correction was applied to the data.

23



References

[1] ZEUS Coll., M. Derrick et al., Phys. Lett. B 315, 481 (1993).

[2] G. Ingelman and P.E. Schlein, Phys. Lett. B 152, 256 (1985).

[3] UA8 Coll., A. Brandt et al., Phys. Lett. B 211, 239 (1988).

[4] UA8 Coll., A. Brandt et al., Phys. Lett. B 297, 417 (1992).

[5] J.R. Forshaw, Preprint hep-ph/0611275 (2006).

[6] ZEUS Coll., S. Chekanov et al., Nucl. Phys. B 695, 3 (2004).

[7] ZEUS Coll., S. Chekanov et al., Nucl. Phys. B 718, 2 (2005).

[8] ZEUS Coll., S. Chekanov et al., PMC A 1, 6 (2007).

[9] H1 Coll., C. Aktas et al., Eur. Phys. J. C 48, 715 (2006).

[10] ZEUS Coll., S. Chekanov et al., Eur. Phys. J. C 38, 43 (2004).

[11] H1 Coll., C. Aktas et al., Eur. Phys. J. C 48, 749 (2006).

[12] ZEUS Coll., M. Derrick et al., Z. Phys. C 70, 391 (1996);

ZEUS Coll., J. Breitweg et al., Eur. Phys. J. C 6, 43 (1999).

[13] ZEUS Coll., S. Chekanov et al., Nucl. Phys. B 713, 3 (2005).

[14] ZEUS Coll., U. Holm (ed.), The ZEUS Detector, Status Report (unpublished),

DESY (1993), available on http://www-zeus.desy.de/bluebook/bluebook.html .

[15] ZEUS Coll., M. Derrick et al., Phys. Lett. B 293, 465 (1992).

[16] N. Harnew et al., Nucl. Inst. Meth. A 279, 290 (1989);

B. Foster et al., Nucl. Phys. Proc. Suppl. B 32, 181 (1993);

B. Foster et al., Nucl. Inst. Meth. A 338, 254 (1994).

[17] M. Derrick et al., Nucl. Inst. Meth. A 309, 77 (1991);

A. Andresen et al., Nucl. Inst. Meth. A 309, 101 (1991);

A. Caldwell et al., Nucl. Inst. Meth. A 321, 356 (1992);

A. Bernstein et al., Nucl. Inst. Meth. A 336, 23 (1993).

[18] A. Bamberger et al., Nucl. Inst. Meth. A 401, 63 (1997).

[19] ZEUS Coll., S. Chekanov et al., Eur. Phys. J. C 21, 443 (2001).

[20] A. Dwurazny et al., Nucl. Inst. Meth. A 277, 176 (1989).

[21] A. Bamberger et al., Nucl. Inst. Meth. A 450, 235 (2000).

[22] ZEUS Coll., M. Derrick et al., Z. Phys. C 63, 391 (1994).

24

http://arxiv.org/abs/hep-ph/0611275


[23] W. H. Smith, K. Tokushuku and L. W. Wiggers, Proc. Computing in High-Energy

Physics (CHEPP), Annecy, France, Sept. 1992, C. Verkerk and W. Wojcik (eds.),

p. 222. CERN, Geneva, Switzerland (1992). Also in preprint DESY 92-150B.

[24] H. Abramowicz, A. Caldwell and R. Sinkus, Nucl. Inst. Meth. A 365, 508 (1995).

[25] F. Goebel, Ph.D. Thesis, Hamburg University, Hamburg (Germany),

DESY-THESIS-2001-049 (2001).

[26] G. Briskin, Ph.D. Thesis, Tel Aviv University, Tel Aviv (Israel),

DESY-THESIS-1998-036 (1998).

[27] S. Bentvelsen, J. Engelen and P. Kooijman, Proc. Workshop on Physics at HERA,

W. Buchmüller and G. Ingelman (eds.), Vol. 1, p. 23. Hamburg, Germany, DESY

(1992);
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Q2 (GeV2) 20 - 30 30 - 40 40 - 50 50 - 60 60 - 80 80 - 100 100 - 150 150 - 250 250 - 450

Q2
ref

(GeV2) 25 35 45 55 70 90 120 190 320

W (GeV) 37 - 55 55 - 74 74 - 99 99 - 134 134 - 164 164 - 200 200 - 245

Wref (GeV) 45 65 85 115 150 180 220

MX (GeV) 0.28 - 2 2 - 4 4 - 8 8 - 15 15 - 25 25 - 35

MXref (GeV) 1.2 3 6 11 20 30

Table 1: Binning and reference values for Q2, W and MX .
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Q2 W MX = 1.2 MX = 3 MX = 6 MX = 11 MX = 20 MX = 30

(GeV2) (GeV) (GeV) (GeV) (GeV) (GeV) (GeV) (GeV)

25 45 0.06 0.09

25 65 0.08 0.06 0.11

25 85 0.06 0.06 0.08 0.20

25 115 0.08 0.06 0.08 0.20

25 150 0.09 0.05 0.07 0.17

25 180 0.05 0.05 0.05 0.11 0.23

25 220 0.07 0.04 0.06 0.10 0.20 0.47

35 45 0.04 0.05

35 65 0.02 0.07 0.12

35 85 0.08 0.09 0.09

35 115 0.05 0.07 0.10 0.15

35 150 0.13 0.06 0.07 0.12 0.25

35 180 0.06 0.07 0.06 0.13 0.29

35 220 0.05 0.07 0.06 0.11 0.23 0.36

45 45 0.20

45 65 0.11 0.08 0.13

45 85 0.03 0.06 0.09

45 115 0.06 0.06 0.10 0.17

45 150 0.07 0.08 0.08 0.13 0.33

45 180 0.07 0.03 0.08 0.12 0.24

45 220 0.07 0.05 0.05 0.09 0.15 0.30

55 45 0.09 0.07

55 65 0.20 0.09

55 85 0.08 0.12 0.08

55 115 0.03 0.05 0.09 0.18

55 150 0.10 0.07 0.07 0.11 0.26

55 180 0.11 0.06 0.09 0.12 0.26

55 220 0.07 0.09 0.06 0.08 0.22 0.29

Table 2: Fraction of events from proton dissociation with MN > 2.3 GeV in
the diffractive data sample, as determined with SANG in bins of Q2,W,MX , for
Q2 = 25 − 55 GeV2.
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Q2 W MX = 1.2 MX = 3 MX = 6 MX = 11 MX = 20 MX = 30

(GeV2) (GeV) (GeV) (GeV) (GeV) (GeV) (GeV) (GeV)

70 65 0.00 0.06

70 85 0.06 0.08 0.10

70 115 0.00 0.04 0.08 0.16

70 150 0.13 0.04 0.09 0.11

70 180 0.24 0.03 0.09 0.12 0.22

70 220 0.12 0.07 0.08 0.11 0.17 0.40

90 45 0.00

90 65 0.00 0.04

90 85 0.00 0.13 0.08

90 115 0.03 0.04 0.17 0.18

90 150 0.07 0.07 0.09 0.10 0.27

90 180 0.05 0.12 0.08 0.12 0.25 0.31

90 220 0.08 0.06 0.10 0.09 0.23 0.25

120 65 0.12

120 85 0.00 0.20 0.14

120 115 0.08 0.08 0.06 0.13

120 150 0.00 0.15 0.09 0.18

120 180 0.06 0.10 0.08 0.10 0.21

120 220 0.00 0.05 0.11 0.11 0.23

190 45 0.00 0.00

190 65 0.00 0.00

190 85 0.00 0.29

190 115 0.08 0.11 0.10

190 150 0.00 0.14 0.15 0.17

190 180 0.00 0.18 0.05 0.21 0.18 0.23

190 220 0.00 01 0.12 0.09 0.24 0.34

320 45 0.00

320 85 0.00

320 115 0.00 0.00 0.04

320 150 1.34 0.00 0.05 0.17

320 180 0.00 0.00 0.07 0.03 0.54

320 220 0.00 0.00 0.34 0.10 0.15

Table 3: Fraction of events from proton dissociation with MN > 2.3 GeV in
the diffractive data sample, as determined with SANG in bins of Q2,W,MX , for
Q2 = 70 − 320 GeV2.
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Q2 (GeV2) x F2 ± stat.± syst. Q2 (GeV2) x F2 ± stat.± syst.

25 0.012200 0.609±0.005+0.026
−0.013 90 0.042570 0.514±0.006+0.011

−0.012

25 0.005884 0.768±0.007+0.017
−0.016 90 0.020860 0.639±0.008+0.013

−0.013

25 0.003449 0.895±0.007+0.018
−0.019 90 0.012300 0.756±0.009+0.015

−0.016

25 0.001887 1.054±0.008+0.022
−0.022 90 0.006760 0.919±0.010+0.019

−0.019

25 0.001110 1.259±0.012+0.026
−0.027 90 0.003984 1.104±0.014+0.023

−0.023

25 0.000771 1.360±0.014+0.032
−0.030 90 0.002770 1.229±0.018+0.025

−0.026

25 0.000516 1.464±0.017+0.056
−0.053 90 0.001856 1.359±0.022+0.043

−0.037

35 0.017000 0.575±0.007+0.029
−0.013 120 0.055970 0.491±0.006+0.011

−0.011

35 0.008218 0.734±0.009+0.016
−0.015 120 0.027620 0.590±0.007+0.012

−0.013

35 0.004821 0.891±0.010+0.018
−0.018 120 0.016340 0.717±0.008+0.015

−0.015

35 0.002640 1.022±0.011+0.021
−0.021 120 0.008993 0.884±0.009+0.018

−0.018

35 0.001553 1.165±0.016+0.024
−0.024 120 0.005305 1.046±0.013+0.022

−0.022

35 0.001079 1.303±0.017+0.029
−0.028 120 0.003690 1.150±0.014+0.024

−0.024

35 0.000723 1.496±0.022+0.052
−0.061 120 0.002473 1.312±0.018+0.035

−0.042

45 0.021750 0.584±0.006+0.013
−0.013 190 0.085810 0.430±0.007+0.010

−0.009

45 0.010540 0.692±0.007+0.014
−0.014 190 0.043040 0.533±0.007+0.011

−0.012

45 0.006191 0.832±0.007+0.017
−0.017 190 0.025630 0.631±0.008+0.013

−0.013

45 0.003391 0.975±0.008+0.020
−0.020 190 0.014160 0.773±0.009+0.016

−0.016

45 0.001996 1.156±0.011+0.024
−0.024 190 0.008374 0.947±0.013+0.019

−0.020

45 0.001387 1.276±0.014+0.028
−0.027 190 0.005830 1.046±0.014+0.023

−0.024

45 0.000929 1.484±0.017+0.049
−0.050 190 0.003910 1.121±0.019+0.047

−0.089

55 0.026450 0.552±0.006+0.012
−0.013 320 0.136500 0.378±0.007+0.009

−0.010

55 0.012850 0.672±0.007+0.014
−0.014 320 0.070420 0.449±0.009+0.011

−0.012

55 0.007556 0.802±0.008+0.016
−0.016 320 0.042420 0.528±0.009+0.014

−0.015

55 0.004142 0.973±0.009+0.020
−0.020 320 0.023630 0.639±0.010+0.017

−0.019

55 0.002439 1.170±0.014+0.025
−0.024 320 0.014020 0.757±0.014+0.026

−0.024

55 0.001695 1.323±0.015+0.028
−0.029 320 0.009780 0.907±0.017+0.026

−0.031

55 0.001135 1.440±0.020+0.044
−0.045 320 0.006568 1.058±0.024+0.026

−0.028

70 0.033430 0.542±0.005+0.013
−0.013

70 0.016300 0.658±0.006+0.014
−0.014

70 0.009597 0.775±0.007+0.016
−0.016

70 0.005265 0.952±0.008+0.019
−0.019

70 0.003102 1.142±0.012+0.023
−0.023

70 0.002156 1.257±0.014+0.026
−0.027

70 0.001444 1.419±0.018+0.041
−0.044

Table 4: Proton structure function F2.
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Q2 (GeV2) c αtot
IP (0)

25 0.184 ± 0.015 1.279 ± 0.013

35 0.199 ± 0.016 1.276 ± 0.014

45 0.181 ± 0.019 1.298 ± 0.018

55 0.167 ± 0.017 1.322 ± 0.017

70 0.175 ± 0.016 1.322 ± 0.017

90 0.196 ± 0.031 1.311 ± 0.029

120 0.214 ± 0.032 1.301 ± 0.028

Table 5: The results of the fits of F2 data for x < 0.01 in bins of Q2 to F2(x,Q
2) =

c · x−λ, where αtot
IP (0) = 1 + λ. The errors give the statistical and systematic

uncertainties added in quadrature.
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Q2 W σtot
γ∗p ± stat.± syst. Q2 W σtot

γ∗p ± stat.± syst.

(GeV2) (GeV) (µb) (GeV2) (GeV) (µb)

25 45 2.733 ±0.022+0.118
−0.060 90 45 0.641±0.008+0.014

−0.015

25 65 3.448 ±0.030+0.076
−0.072 90 65 0.797±0.010+0.016

−0.016

25 85 4.016 ±0.033+0.081
−0.048 90 85 0.942±0.011+0.019

−0.020

25 115 4.731 ±0.038+0.097
−0.097 90 115 1.146±0.013+0.023

−0.023

25 150 5.651 ±0.055+0.118
−0.122 90 150 1.376±0.017+0.028

−0.028

25 180 6.104 ±0.061+0.145
−0.135 90 180 1.532±0.022+0.032

−0.032

25 220 6.571 ±0.074+0.252
−0.236 90 220 1.694±0.027+0.053

−0.046

35 45 1.843 ±0.022+0.093
−0.041 120 45 0.459±0.005+0.010

−0.010

35 65 2.353 ±0.030+0.051
−0.048 120 65 0.552±0.007+0.011

−0.012

35 85 2.856 ±0.033+0.058
−0.059 120 85 0.670±0.007+0.041

−0.014

35 115 3.277 ±0.036+0.068
−0.067 120 115 0.827±0.008+0.017

−0.017

35 150 3.735 ±0.050+0.078
−0.077 120 150 0.978±0.012+0.020

−0.020

35 180 4.178 ±0.055+0.093
−0.090 120 180 1.075±0.013+0.022

−0.023

35 220 4.796 ±0.069+0.166
−0.195 120 220 1.227±0.017+0.032

−0.039

45 45 1.457 ±0.014+0.033
−0.032 190 45 0.254±0.004+0.005

−0.006

45 65 1.726 ±0.016+0.036
−0.036 190 65 0.315±0.004+0.007

−0.007

45 85 2.074 ±0.017+0.042
−0.042 190 85 0.373±0.005+0.008

−0.008

45 115 2.431 ±0.019+0.049
−0.050 190 115 0.457±0.005+0.009

−0.009

45 150 2.883 ±0.028+0.059
−0.060 190 150 0.559±0.008+0.011

−0.012

45 180 3.182 ±0.034+0.070
−0.068 190 180 0.618±0.008+0.014

−0.014

45 220 3.701 ±0.042+0.123
−0.124 190 220 0.662±0.011+0.028

−0.052

55 45 1.127 ±0.013+0.025
−0.027 320 45 0.132±0.003+0.003

−0.004

55 65 1.371 ±0.015+0.028
−0.029 320 65 0.158±0.003+0.005

−0.005

55 85 1.637 ±0.017+0.033
−0.033 320 85 0.185±0.003+0.005

−0.005

55 115 1.985 ±0.019+0.040
−0.041 320 115 0.224±0.004+0.006

−0.007

55 150 2.387 ±0.028+0.050
−0.050 320 150 0.265±0.005+0.009

−0.008

55 180 2.699 ±0.031+0.056
−0.059 320 180 0.318±0.006+0.009

−0.011

55 220 2.938 ±0.040+0.090
−0.092 320 220 0.371±0.009+0.009

−0.010

70 45 0.869 ±0.008+0.020
−0.020

70 65 1.055 ±0.010+0.022
−0.022

70 85 1.243 ±0.011+0.025
−0.025

70 115 1.526 ±0.013+0.031
−0.031

70 150 1.831 ±0.019+0.037
−0.037

70 180 2.015 ±0.022+0.042
−0.043

70 220 2.275 ±0.028+0.066
−0.070

Table 6: Total γ∗p cross section σtot
γ∗p.
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MX Q2 W
dσdiff

γ∗p→XN

dMX
MX Q2 W

dσdiff
γ∗p→XN

dMX

± stat. ± syst. ± stat. ± syst.

(GeV) (GeV2) (GeV) (nb/GeV) (GeV) (GeV2) (GeV) (nb/GeV)

1.2 25 45 5.57±0.91+1.21
−2.39 1.2 90 45 0.23±0.10+0.03

−0.08

1.2 25 65 6.39±0.88+0.54
−1.13 1.2 90 65 0.14±0.11+0.07

−0.11

1.2 25 85 8.44±0.98+1.09
−0.97 1.2 90 85 0.11±0.06+0.06

−0.04

1.2 25 115 8.29±1.02+1.36
−1.27 1.2 90 115 0.64±0.20+0.04

−0.13

1.2 25 150 7.02±1.15+1.07
−1.12 1.2 90 150 0.82±0.34+0.21

−0.18

1.2 25 180 10.98±1.50+1.73
−1.31 1.2 90 180 0.97±0.40+0.28

−0.34

1.2 25 220 16.73±2.29+2.58
−2.50 1.2 90 220 0.23±0.13+0.10

−0.03

1.2 35 45 1.95±0.69+1.59
−1.47

1.2 35 65 3.71±0.96+0.56
−0.84

1.2 35 85 2.63±0.69+0.10
−0.21 1.2 120 85 0.09±0.04+0.02

−0.02

1.2 35 115 4.56±0.96+0.45
−1.72 1.2 120 115 0.23±0.10+0.03

−0.09

1.2 35 150 2.33±0.80+0.22
−0.51 1.2 120 150 0.36±0.14+0.14

−0.06

1.2 35 180 3.09±0.93+0.24
−0.21 1.2 120 180 0.27±0.11+0.03

−0.10

1.2 35 220 5.75±1.19+1.12
−0.37 1.2 120 220 0.65±0.23+0.03

−0.01

1.2 45 45 0.77±0.29+0.37
−0.65 1.2 190 45 0.05±0.03+0.00

−0.00

1.2 45 65 0.83±0.26+0.29
−0.32 1.2 190 65 0.03±0.06+0.03

−0.01

1.2 45 85 1.39±0.25+0.26
−0.22 1.2 190 85 0.03±0.06+0.08

−1.65

1.2 45 115 2.21±0.38+0.45
−0.09

1.2 45 150 2.84±0.52+0.36
−0.36

1.2 45 180 2.05±0.48+0.49
−0.35 1.2 190 180 0.60±0.52+0.26

−0.31

1.2 45 220 3.06±0.57+0.67
−0.32 1.2 190 220 0.21±0.14+0.07

−0.00

1.2 55 45 0.62±0.25+0.10
−0.19 1.2 320 45 0.91±1.05+0.02

−0.42

1.2 55 65 0.79±0.25+0.10
−0.32

1.2 55 85 0.75±0.23+0.09
−0.16

1.2 55 115 1.45±0.33+0.12
−0.11

1.2 55 150 2.15±0.60+0.08
−0.12

1.2 55 180 2.08±0.53+0.40
−0.29 1.2 320 180 0.07±0.08+0.00

−0.00

1.2 55 220 1.50±0.40+0.28
−0.28 1.2 320 220 1.26±1.68+0.09

−0.05

1.2 70 65 0.54±0.18+0.10
−0.26

1.2 70 85 0.54±0.16+0.02
−0.08

1.2 70 115 0.74±0.19+0.12
−0.03

1.2 70 150 0.51±0.18+0.08
−0.08

1.2 70 180 0.38±0.20+0.14
−0.06

1.2 70 220 0.72±0.22+0.21
−0.09

Table 7: Cross section for diffractive scattering, γ∗p → XN , MN < 2.3 GeV, for
MX = 1.2 GeV in bins of W and Q2.
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MX Q2 W
dσdiff

γ∗p→XN

dMX
MX Q2 W

dσdiff
γ∗p→XN

dMX

± stat. ± syst. ± stat. ± syst.

(GeV) (GeV2) (GeV) (nb/GeV) (GeV) (GeV2) (GeV) (nb/GeV)

3 25 45 11.68±2.24+4.77
−7.18

3 25 65 27.26±2.25+2.16
−4.40 3 90 65 0.96±0.29+0.22

−0.55

3 25 85 27.78±1.91+2.12
−3.20 3 90 85 1.24±0.27+0.09

−0.21

3 25 115 31.88±2.20+2.66
−1.38 3 90 115 1.26±0.24+0.07

−0.13

3 25 150 42.69±3.18+3.26
−6.22 3 90 150 1.18±0.32+0.36

−0.08

3 25 180 36.24±2.86+4.32
−3.05 3 90 180 1.46±0.32+0.11

−0.21

3 25 220 38.58±2.96+3.01
−3.26 3 90 220 1.74±0.40+0.22

−0.19

3 35 45 6.91±1.54+3.39
−5.27

3 35 65 9.63±1.57+1.37
−1.59 3 120 65 0.12±0.07+0.06

−0.11

3 35 85 10.25±1.40+2.25
−1.90 3 120 85 0.21±0.10+0.11

−0.15

3 35 115 14.69±1.70+1.05
−0.88 3 120 115 0.71±0.15+0.05

−0.08

3 35 150 16.50±2.12+2.63
−0.95 3 120 150 0.40±0.12+0.05

−0.04

3 35 180 18.53±2.23+3.32
−1.48 3 120 180 0.60±0.16+0.11

−0.05

3 35 220 16.35±2.10+1.25
−2.39 3 120 220 0.85±0.19+0.14

−0.21

3 190 45 0.07±0.04+0.02
−0.02

3 45 65 5.45±0.70+0.74
−1.54 3 190 65 0.11±0.07+0.03

−0.05

3 45 85 7.14±0.71+0.63
−1.20 3 190 85 0.03±0.02+0.01

−0.03

3 45 115 8.87±0.73+0.62
−1.31 3 190 115 0.15±0.06+0.04

−0.02

3 45 150 8.90±0.91+1.28
−1.17 3 190 150 0.19±0.07+0.05

−0.05

3 45 180 9.10±0.83+0.73
−1.61 3 190 180 0.05±0.03+0.01

−0.01

3 45 220 9.12±0.88+1.49
−0.96 3 190 220 0.35±0.11+0.02

−0.21

3 55 45 1.98±0.81+0.53
−1.03

3 55 65 2.49±0.60+0.64
−1.34

3 55 85 3.53±0.50+0.35
−0.57 3 320 85 0.01±0.01+0.00

−0.01

3 55 115 4.99±0.58+0.57
−0.64 3 320 115 0.07±0.05+0.00

−0.04

3 55 150 5.26±0.68+0.56
−1.14 3 320 150 0.04±0.08+0.01

−0.02

3 55 180 5.89±0.78+0.60
−0.93 3 320 180 0.12±0.07+0.03

−0.01

3 55 220 4.92±0.71+0.88
−0.90 3 320 220 0.08±0.06+0.00

−0.00

3 70 65 1.36±0.28+0.38
−0.71

3 70 85 1.75±0.25+0.31
−0.40

3 70 115 2.70±0.31+0.27
−0.38

3 70 150 3.03±0.41+0.23
−0.40

3 70 180 3.66±0.48+0.44
−0.55

3 70 220 3.81±0.51+0.63
−0.53

Table 8: Cross section for diffractive scattering, γ∗p → XN , MN < 2.3 GeV, for
MX = 3 GeV in bins of W and Q2.
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MX Q2 W
dσdiff

γ∗p→XN

dMX
MX Q2 W

dσdiff
γ∗p→XN

dMX

± stat. ± syst. ± stat. ± syst.

(GeV) (GeV2) (GeV) (nb/GeV) (GeV) (GeV2) (GeV) (nb/GeV)

6 25 65 22.6±4.3+5.9
−9.7

6 25 85 28.4±1.7+1.8
−2.3 6 90 85 2.9±0.4+0.4

−0.5

6 25 115 35.8±1.9+2.7
−2.6 6 90 115 3.2±0.4+0.6

−0.5

6 25 150 36.1±2.4+1.5
−2.7 6 90 150 4.0±0.5+0.2

−0.3

6 25 180 44.3±2.6+1.3
−1.9 6 90 180 4.2±0.5+0.6

−0.4

6 25 220 48.1±2.7+2.9
−2.3 6 90 220 4.5±0.5+0.4

−0.6

6 35 65 12.5±3.5+3.4
−4.1

6 35 85 18.2±2.0+1.5
−2.9 6 120 85 0.95±0.18+0.39

−0.54

6 35 115 19.5±1.6+1.1
−1.5 6 120 115 2.1±0.2+0.4

−0.3

6 35 150 22.7±2.1+1.1
−0.9 6 120 150 1.8±0.2+0.3

−0.2

6 35 180 27.0±2.3+1.0
−2.3 6 120 180 2.4±0.3+0.2

−0.2

6 35 220 31.5±2.6+2.8
−3.4 6 120 220 2.2±0.3+0.4

−0.1

6 45 65 7.3±1.5+2.2
−3.4

6 45 85 10.3±0.8+0.9
−1.7

6 45 115 11.6±0.7+0.7
−0.9 6 190 115 0.46±0.09+0.08

−0.08

6 45 150 15.6±1.0+0.7
−0.8 6 190 150 0.61±0.12+0.09

−0.07

6 45 180 15.0±0.9+1.2
−0.5 6 190 180 0.63±0.11+0.14

−0.12

6 45 220 20.3±1.1+0.7
−1.6 6 190 220 0.42±0.09+0.12

−0.08

6 55 85 8.2±0.6+0.7
−1.2

6 55 115 8.6±0.6+0.6
−0.6 6 320 115 0.17±0.06+0.03

−0.05

6 55 150 11.5±0.9+1.0
−0.5 6 320 150 0.10±0.05+0.01

−0.03

6 55 180 10.1±0.9+1.0
−0.5 6 320 180 0.16±0.07+0.03

−0.02

6 55 220 15.1±1.1+1.0
−0.7 6 320 220 0.09±0.07+0.06

−0.03

6 70 85 4.0±0.3+0.5
−0.7

6 70 115 5.8±0.4+0.6
−0.6

6 70 150 6.5±0.5+0.9
−0.7

6 70 180 6.7±0.5+0.9
−0.3

6 70 220 7.6±0.6+0.3
−0.8

Table 9: Cross section for diffractive scattering, γ∗p → XN , MN < 2.3 GeV, for
MX = 6 GeV in bins of W and Q2.
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MX Q2 W
dσdiff

γ∗p→XN

dMX
MX Q2 W

dσdiff
γ∗p→XN

dMX

± stat. ± syst. ± stat. ± syst.

(GeV) (GeV2) (GeV) (nb/GeV) (GeV) (GeV2) (GeV) (nb/GeV)

11 25 85 16.6±4.4+4.2
−4.8

11 25 115 16.5±1.2+2.6
−4.0 11 90 115 3.5±0.6+0.6

−0.7

11 25 150 16.8±1.5+2.7
−4.6 11 90 150 4.1±0.4+0.4

−0.4

11 25 180 22.9±1.5+1.4
−1.8 11 90 180 4.7±0.4+0.3

−0.2

11 25 220 24.6±1.6+1.5
−1.6 11 90 220 5.5±0.5+0.4

−0.3

11 35 115 13.0±1.1+1.8
−2.8 11 120 115 2.3±0.2+0.3

−0.6

11 35 150 15.0±1.3+0.7
−1.1 11 120 150 2.6±0.3+0.3

−0.4

11 35 180 13.49±1.5+1.9
−1.3 11 120 180 2.8±0.2+0.2

−0.3

11 35 220 14.4±1.3+1.0
−1.0 11 120 220 3.3±0.3+0.2

−0.2

11 45 115 7.7±0.5+1.1
−1.8 11 190 115 0.81±0.19+0.21

−0.27

11 45 150 10.6±0.6+0.8
−1.2 11 190 150 1.15±0.14+0.11

−0.15

11 45 180 11.7±0.7+0.7
−0.7 11 190 180 1.01±0.13+0.10

−0.09

11 45 220 13.6±0.7+0.8
−0.6 11 190 220 1.35±0.17+0.13

−0.15

11 55 115 6.6±0.8+1.0
−1.3 11 320 115 0.20±0.05+0.05

−0.10

11 55 150 9.4±0.7+0.5
−0.7 11 320 150 0.33±0.07+0.05

−0.05

11 55 180 9.3±0.7+0.7
−1.0 11 320 180 0.44±0.09+0.04

−0.10

11 55 220 10.8±0.7+0.5
−1.0 11 320 220 0.49±0.12+0.04

−0.12

11 70 115 4.2±0.4+0.7
−1.0

11 70 150 6.1±0.5+0.4
−0.6

11 70 180 6.6±0.4+0.3
−0.5

11 70 220 6.6±0.4+0.5
−0.3

Table 10: Cross section for diffractive scattering, γ∗p → XN , MN < 2.3 GeV,
for MX = 11 GeV in bins of W and Q2.
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MX Q2 W
dσdiff

γ∗p→XN

dMX
MX Q2 W

dσdiff
γ∗p→XN

dMX

± stat. ± syst. ± stat. ± syst.

(GeV) (GeV2) (GeV) (nb/GeV) (GeV) (GeV2) (GeV) (nb/GeV)

20 90 150 2.8±0.3+0.7
−0.8

20 25 180 13.8±1.2+2.4
−3.2 20 90 180 3.0±0.5+0.5

−0.4

20 25 220 14.5±1.6+2.1
−2.0 20 90 220 3.3±0.4+0.3

−0.3

20 35 150 9.2±2.4+1.3
−1.4

20 35 180 8.1±2.5+2.2
−2.1 20 120 180 2.1±0.3+0.3

−0.3

20 35 220 9.9±1.1+1.3
−1.8 20 120 220 2.0±0.2+0.2

−0.4

20 45 150 5.3±0.5+1.5
−1.9 20 190 150 0.9±0.1+0.4

−0.3

20 45 180 7.2±0.7+0.8
−1.0 20 190 180 1.1±0.2+0.1

−0.2

20 45 220 9.1±0.6+0.5
−0.7 20 190 220 1.1±0.1+0.1

−0.1

20 55 150 5.2±1.2+1.0
−1.1 20 320 150 0.37±0.08+0.11

−0.11

20 55 180 4.5±0.5+1.0
−1.4 20 320 180 0.23±0.08+0.08

−0.12

20 55 220 5.1±0.4+0.7
−0.8 20 320 220 0.49±0.11+0.08

−0.11

20 70 180 3.8±0.3+0.5
−0.6

20 70 220 4.6±0.4+0.3
−0.8

Table 11: Cross section for diffractive scattering, γ∗p → XN , MN < 2.3 GeV,
for MX = 20 GeV in bins of W and Q2.

MX Q2 W
dσdiff

γ∗p→XN

dMX
MX Q2 W

dσdiff
γ∗p→XN

dMX

± stat. ± syst. ± stat. ± syst.

(GeV) (GeV2) (GeV) (nb/GeV) (GeV) (GeV2) (GeV) (nb/GeV)

30 90 180 2.4±1.3+0.6
−0.9

30 25 220 8.2±3.3+2.7
−2.7 30 90 220 3.4±0.6+0.6

−0.5

30 35 220 6.6±1.1+1.8
−2.2 30 190 180 0.91±0.47+0.19

−0.43

30 45 180 5.5±1.7+1.2
−1.6 30 190 220 1.01±0.15+0.25

−0.25

30 45 220 6.3±1.1+0.9
−1.2

30 55 220 4.6±0.6+0.8
−2.1

30 70 220 2.9±0.7+0.6
−0.7

Table 12: Cross section for diffractive scattering, γ∗p → XN , MN < 2.3 GeV,
for MX = 30 GeV in bins of W and Q2.
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MX (GeV) Q2 (GeV2) αIP (0)

1.2 25 1.150 ± 0.047

1.2 35 1.128 ± 0.091

1.2 45 1.248 ± 0.062

1.2 55 1.214 ± 0.068

3 25 1.142 ± 0.029

3 35 1.156 ± 0.038

3 45 1.132 ± 0.039

3 55 1.174 ± 0.046

3 70 1.241 ± 0.059

3 90 1.126 ± 0.079

6 25 1.167 ± 0.029

6 35 1.198 ± 0.047

6 45 1.216 ± 0.037

6 55 1.198 ± 0.042

6 70 1.178 ± 0.038

6 90 1.149 ± 0.062

6 120 1.189 ± 0.080

11 25 1.190 ± 0.072

11 45 1.234 ± 0.056

11 55 1.183 ± 0.065

11 70 1.172 ± 0.071

11 90 1.219 ± 0.086

Table 13: The value of αIP (0) deduced from the W dependence of the diffractive
cross section, assuming α′

IP = 0.25 GeV−2, for fixed MX and Q2, see text.
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Q2 (GeV2) αIP (0)

2.7 1.112 ± 0.023

4 1.127 ± 0.014

6 1.137 ± 0.015

8 1.109 ± 0.012

14 1.130 ± 0.014

25 1.166 ± 0.028

27 1.195 ± 0.021

45 1.194 ± 0.026

55 1.201 ± 0.035

55 1.185 ± 0.030

70 1.197 ± 0.033

90 1.165 ± 0.044

Table 14: The value of αIP (0) deduced from the W dependence of the diffractive
cross section, assuming α′

IP = 0.25 GeV−2, for fixed 2 < MX < 15 GeV and Q2,
from FPC I and FPC II, see text.
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MX Q2 Q2 · (Q2 +M2
X)

dσdiff
γ∗p→XN

dM2
X

MX Q2 Q2 · (Q2 +M2
X)

dσdiff
γ∗p→XN

dM2
X

(GeV) (GeV2) (µb GeV2) (GeV) (GeV2) (µb GeV2)

1.2 4 4.27±0.44+1.36
−0.79 3 4 4.98±0.33+0.52

−0.53

1.2 6 4.73±0.52+1.10
−1.03 3 6 5.84±0.46+0.53

−0.61

1.2 8 4.44±0.45+0.96
−0.66 3 8 6.01±0.40+0.59

−0.54

1.2 14 4.77±0.45+0.70
−0.67 3 14 6.12±0.40+0.66

−0.58

1.2 25 4.61±0.63+0.95
−0.94 3 25 5.47±0.42+0.60

−0.62

1.2 27 3.07±0.63+0.90
−0.71 3 27 5.58±0.56+0.82

−0.85

1.2 35 3.05±0.63+0.87
−0.66 3 35 4.20±0.54+0.63

−0.82

1.2 45 2.66±0.50+0.77
−0.57 3 45 3.69±0.36+0.70

−0.53

1.2 55 1.83±0.96+1.00
−1.47 3 55 3.88±0.84+1.20

−1.03

1.2 55 1.94±0.51+0.63
−0.63 3 55 2.89±0.42+0.66

−0.67

1.2 70 1.50±0.45+0.63
−0.48 3 70 3.51±0.47+0.75

−0.68

1.2 90 0.78±0.44+0.57
−0.46 3 90 2.59±0.59+0.67

−0.65

1.2 120 3.93±1.37+1.38
−1.37 3 120 2.18±0.49+0.62

−0.73

1.2 190 3.11±2.07+2.32
−2.07 3 190 2.19±0.70+0.72

−1.49

3 320 1.46±1.01+1.01
−1.02

Table 15: The diffractive cross section multiplied by Q2(Q2 + M2
X),

Q2(Q2 + M2
X)dσdiff

γ∗p→XN/dM
2
X , MN < 2.3 GeV, for W = 220 GeVas a function

of Q2 for MX = 1.2 and 3.0 GeV. The first uncertainties are statistical and the
second are the systematic uncertainties.
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MX Q2 Q2 · (Q2 +M2
X)

dσdiff
γ∗p→XN

dM2
X

MX Q2 Q2 · (Q2 +M2
X)

dσdiff
γ∗p→XN

dM2
X

(GeV) (GeV2) (µb GeV2) (GeV) (GeV2) (µb GeV2)

11 2.7 2.30±0.25+0.39
−0.25

6 4 3.53±0.23+0.28
−0.39 11 4 2.43±0.18+0.21

−0.25

6 6 3.99±0.28+0.36
−0.30 11 6 3.39±0.27+0.29

−0.30

6 8 4.14±0.26+0.29
−0.34 11 8 3.26±0.23+0.34

−0.24

6 14 4.31±0.25+0.36
−0.30 11 14 3.70±0.23+0.27

−0.25

6 25 6.11±0.35+0.50
−0.45 11 25 4.07±0.26+0.37

−0.38

6 27 5.78±0.43+0.46
−0.58 11 27 4.07±0.32+0.33

−0.46

6 35 6.52±0.53+0.79
−0.88 11 35 3.57±0.33+0.42

−0.42

6 45 6.16±0.35+0.41
−0.60 11 45 4.40±0.25+0.36

−0.32

6 55 4.35±0.57+0.64
−0.69 11 55 4.46±0.51+0.54

−0.58

6 55 6.30±0.30+0.64
−0.57 11 55 4.76±0.31+0.37

−0.52

6 70 4.71±0.38+0.43
−0.60 11 70 3.98±0.26+0.42

−0.32

6 90 4.22±0.49+0.64
−0.77 11 90 4.78±0.40+0.50

−0.50

6 120 3.50±0.45+0.81
−0.50 11 120 4.30±0.38+0.44

−0.49

6 190 1.50±0.32+0.53
−0.42 11 190 3.62±0.45+0.57

−0.60

11 320 3.12±0.78+0.82
−1.09

Table 16: The diffractive cross section multiplied by Q2(Q2 + M2
X),

Q2(Q2 + M2
X)dσdiff

γ∗p→XN/dM
2
X , MN < 2.3 GeV, for W = 220 GeVas a function of

Q2 for MX = 6 and 11 GeV. The first uncertainties are statistical and the second
are the systematic uncertainties.
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MX Q2 Q2 · (Q2 +M2
X)

dσdiff
γ∗p→XN

dM2
X

MX Q2 Q2 · (Q2 +M2
X)

dσdiff
γ∗p→XN

dM2
X

(GeV) (GeV2) (µb GeV2) (GeV) (GeV2) (µb GeV2)

20 2.7 2.91±0.36+0.44
−0.41 30 2.7 2.57±0.75+0.84

−0.79

20 4 2.70±0.28+0.32
−0.30 30 4 2.49±0.71+0.72

−0.77

20 6 2.92±0.32+0.37
−0.41 30 6 2.65±0.79+0.89

−0.85

20 8 3.23±0.34+0.36
−0.51 30 8 2.80±0.89+1.05

−0.90

20 14 3.46±0.33+0.36
−0.36 30 14 3.60±0.96+1.02

−1.04

20 25 3.85±0.42+0.71
−0.69 30 25 3.17±1.26+1.62

−1.64

20 27 3.08±0.41+0.49
−0.43 30 27 2.82±0.98+1.03

−1.04

20 35 3.75±0.41+0.65
−0.80 30 35 3.57±0.61+1.17

−1.34

20 45 4.53±0.28+0.39
−0.44 30 45 4.45±0.75+0.98

−1.12

20 55 2.93±0.54+0.87
−0.58

20 55 3.20±0.27+0.53
−0.57 30 55 4.04±0.51+0.88

−1.93

20 70 3.80±0.33+0.42
−0.70 30 70 3.32±0.84+1.07

−1.19

20 90 3.66±0.38+0.54
−0.53 30 90 5.05±0.96+1.30

−1.19

20 120 3.11±0.32+0.48
−0.68

20 190 3.14±0.38+0.48
−0.51 30 190 3.50±0.51+1.00

−1.00

20 320 2.82±0.61+0.77
−0.90

Table 17: The diffractive cross section multiplied by Q2(Q2 + M2
X),

Q2(Q2 + M2
X)dσdiff

γ∗p→XN/dM
2
X , MN < 2.3 GeV, for W = 220 GeVas a function of

Q2 for MX = 20 and 30 GeV. The first uncertainties are statistical and the second
are the systematic uncertainties.
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Q2 W

R Mb
Ma

dMXdσdiff
γ∗p→XN

/dMX

σtot Q2 W

R Mb
Ma

dMXdσdiff
γ∗p→XN

/dMX

σtot

±stat.±syst. ±stat.±syst.

(GeV2) (GeV) (GeV2) (GeV)

25 45 0.00346±0.00057+0.00075
−0.00148 90 45 0.00059±0.00026+0.00008

−0.00022

25 65 0.00317±0.00044+0.00027
−0.00056 90 65 0.00029±0.00024+0.00014

−0.00023

25 85 0.00360±0.00042+0.00047
−0.00041 90 85 0.00019±0.00011+0.00011

−0.00007

25 115 0.00301±0.00037+0.00049
−0.00046 90 115 0.00096±0.00030+0.00007

−0.00019

25 150 0.00213±0.00035+0.00032
−0.00034 90 150 0.00102±0.00042+0.00026

−0.00022

25 180 0.00309±0.00042+0.00049
−0.00037 90 180 0.00108±0.00045+0.00031

−0.00038

25 220 0.00438±0.00060+0.00067
−0.00066 90 220 0.00023±0.00013+0.00010

−0.00003

35 45 0.00179±0.00064+0.00146
−0.00135

35 65 0.00269±0.00070+0.00040
−0.00061

35 85 0.00158±0.00042+0.00006
−0.00013 120 85 0.00024±0.00010+0.00004

−0.00006

35 115 0.00239±0.00050+0.00023
−0.00090 120 115 0.00048±0.00021+0.00007

−0.00018

35 150 0.00107±0.00037+0.00010
−0.00023 120 150 0.00064±0.00025+0.00024

−0.00011

35 180 0.00127±0.00038+0.00010
−0.00009 120 180 0.00043±0.00018+0.00005

−0.00016

35 220 0.00206±0.00043+0.00040
−0.00013 120 220 0.00091±0.00032+0.00004

−0.00002

45 45 0.00089±0.00033+0.00043
−0.00075 190 45 0.00029±0.00018+0.00001

−0.00003

45 65 0.00082±0.00025+0.00028
−0.00031 190 65 0.00014±0.00034+0.00015

−0.00005

45 85 0.00115±0.00021+0.00022
−0.00018 190 85 0.00014±0.00026+0.00035

−0.00743

45 115 0.00156±0.00027+0.00032
−0.00006

45 150 0.00169±0.00031+0.00021
−0.00021

45 180 0.00111±0.00026+0.00026
−0.00019 190 180 0.00167±0.00143+0.00071

−0.00086

45 220 0.00142±0.00026+0.00031
−0.00015 190 220 0.00053±0.00035+0.00018

−0.00001

55 45 0.00092±0.00037+0.00015
−0.00028 320 45 0.01020±0.01184+0.00021

−0.00476

55 65 0.00098±0.00031+0.00012
−0.00039

55 85 0.00078±0.00024+0.00009
−0.00017

55 115 0.00125±0.00029+0.00011
−0.00010

55 150 0.00154±0.00043+0.00006
−0.00009

55 180 0.00132±0.00034+0.00025
−0.00018 320 180 0.00039±0.00041+0.00001

−0.00001

55 220 0.00088±0.00023+0.00017
−0.00017 320 220 0.00583±0.00774+0.00042

−0.00021

70 65 0.00086±0.00029+0.00016
−0.00042

70 85 0.00074±0.00022+0.00003
−0.00011

70 115 0.00083±0.00021+0.00014
−0.00004

70 150 0.00047±0.00017+0.00008
−0.00007

70 180 0.00033±0.00017+0.00012
−0.00005

70 220 0.00055±0.00016+0.00016
−0.00006

Table 18: Ratio of the cross section for diffractive scattering, γ∗p → XN ,
MN < 2.3 GeV, integrated over MX = 0.28 − 2 GeV, to the total cross section.

43



Q2 W

R Mb
Ma

dMXdσdiff
γ∗p→XN

/dMX

σtot Q2 W

R Mb
Ma

dMXdσdiff
γ∗p→XN

/dMX

σtot

±stat.±syst. ±stat.±syst.

(GeV2) (GeV) (GeV2) (GeV)

25 45 0.00844±0.00162+0.00345
−0.00519

25 65 0.01572±0.00131+0.00125
−0.00254 90 65 0.00235±0.00071+0.00054

−0.00135

25 85 0.01379±0.00096+0.00105
−0.00159 90 85 0.00260±0.00057+0.00019

−0.00043

25 115 0.01346±0.00094+0.00112
−0.00058 90 115 0.00219±0.00041+0.00013

−0.00022

25 150 0.01509±0.00113+0.00115
−0.00220 90 150 0.00171±0.00046+0.00052

−0.00011

25 180 0.01186±0.00094+0.00141
−0.00100 90 180 0.00190±0.00042+0.00014

−0.00027

25 220 0.01174±0.00091+0.00091
−0.00099 90 220 0.00205±0.00047+0.00025

−0.00022

35 45 0.00737±0.00164+0.00361
−0.00562

35 65 0.00812±0.00132+0.00115
−0.00134 120 65 0.00042±0.00026+0.00020

−0.00038

35 85 0.00714±0.00098+0.00157
−0.00133 120 85 0.00061±0.00029+0.00033

−0.00045

35 115 0.00894±0.00104+0.00064
−0.00054 120 115 0.00171±0.00036+0.00011

−0.00020

35 150 0.00883±0.00114+0.00140
−0.00051 120 150 0.00081±0.00023+0.00010

−0.00008

35 180 0.00886±0.00108+0.00159
−0.00071 120 180 0.00111±0.00030+0.00020

−0.00010

35 220 0.00682±0.00088+0.00052
−0.00100 120 220 0.00137±0.00031+0.00023

−0.00034

45 65 0.00625±0.00081+0.00085
−0.00176 190 65 0.00065±0.00040+0.00016

−0.00030

45 85 0.00684±0.00069+0.00060
−0.00115 190 85 0.00017±0.00013+0.00007

−0.00016

45 115 0.00728±0.00061+0.00051
−0.00108 190 115 0.00064±0.00026+0.00019

−0.00007

45 150 0.00617±0.00063+0.00089
−0.00081 190 150 0.00067±0.00025+0.00017

−0.00017

45 180 0.00571±0.00052+0.00046
−0.00101 190 180 0.00015±0.00010+0.00002

−0.00004

45 220 0.00493±0.00048+0.00081
−0.00052 190 220 0.00105±0.00034+0.00007

−0.00063

55 45 0.00342±0.00139+0.00091
−0.00178

55 65 0.00358±0.00086+0.00093
−0.00193 320 65 0.00005±0.00007+0.00004

−0.00005

55 85 0.00428±0.00061+0.00042
−0.00069 320 85 0.00008±0.00009+0.00002

−0.00010

55 115 0.00501±0.00058+0.00058
−0.00064 320 115 0.00058±0.00041+0.00003

−0.00039

55 150 0.00440±0.00057+0.00047
−0.00095 320 150 0.00027±0.00060+0.00011

−0.00012

55 180 0.00436±0.00058+0.00045
−0.00069 320 180 0.00072±0.00047+0.00016

−0.00003

55 220 0.00335±0.00049+0.00060
−0.00061 320 220 0.00044±0.00031+0.00001

−0.00003

70 65 0.00254±0.00052+0.00071
−0.00132

70 85 0.00279±0.00040+0.00049
−0.00065

70 115 0.00352±0.00041+0.00035
−0.00050

70 150 0.00330±0.00045+0.00025
−0.00044

70 180 0.00362±0.00048+0.00044
−0.00054

70 220 0.00335±0.00045+0.00055
−0.00047

Table 19: Ratio of the cross section for diffractive scattering, γ∗p → XN ,
MN < 2.3 GeV, integrated over MX = 2 − 4 GeV, to the total cross section.
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Q2 W

R Mb
Ma

dMXdσdiff
γ∗p→XN

/dMX

σtot Q2 W

R Mb
Ma

dMXdσdiff
γ∗p→XN

/dMX

σtot

±stat.±syst. ±stat.±syst.

(GeV2) (GeV) (GeV2) (GeV)

25 65 0.02602±0.00497+0.00681
−0.01117

25 85 0.02823±0.00173+0.00179
−0.00230 90 85 0.01227±0.00168+0.00175

−0.00222

25 115 0.03019±0.00159+0.00226
−0.00221 90 115 0.01094±0.00125+0.00190

−0.00160

25 150 0.02549±0.00173+0.00109
−0.00193 90 150 0.01171±0.00134+0.00064

−0.00082

25 180 0.02898±0.00170+0.00083
−0.00123 90 180 0.01090±0.00131+0.00149

−0.00113

25 220 0.02925±0.00168+0.00174
−0.00138 90 220 0.01053±0.00123+0.00103

−0.00149

35 65 0.02107±0.00594+0.00568
−0.00698

35 85 0.02535±0.00280+0.00203
−0.00398 120 85 0.00555±0.00103+0.00227

−0.00316

35 115 0.02372±0.00193+0.00128
−0.00176 120 115 0.00984±0.00096+0.00173

−0.00130

35 150 0.02427±0.00222+0.00118
−0.00093 120 150 0.00739±0.00096+0.00118

−0.00099

35 180 0.02578±0.00219+0.00091
−0.00222 120 180 0.00878±0.00095+0.00081

−0.00055

35 220 0.02625±0.00216+0.00235
−0.00286 120 220 0.00730±0.00095+0.00140

−0.00045

45 65 0.01668±0.00343+0.00504
−0.00790

45 85 0.01975±0.00151+0.00173
−0.00332

45 115 0.01900±0.00111+0.00117
−0.00141 190 115 0.00396±0.00077+0.00068

−0.00073

45 150 0.02164±0.00135+0.00092
−0.00110 190 150 0.00434±0.00086+0.00067

−0.00052

45 180 0.01881±0.00119+0.00144
−0.00062 190 180 0.00404±0.00072+0.00087

−0.00077

45 220 0.02191±0.00126+0.00078
−0.00172 190 220 0.00253±0.00054+0.00071

−0.00047

55 85 0.01988±0.00156+0.00180
−0.00280

55 115 0.01726±0.00125+0.00117
−0.00115 320 115 0.00290±0.00105+0.00057

−0.00079

55 150 0.01926±0.00151+0.00159
−0.00077 320 150 0.00148±0.00077+0.00015

−0.00039

55 180 0.01491±0.00127+0.00147
−0.00071 320 180 0.00197±0.00083+0.00031

−0.00027

55 220 0.02055±0.00158+0.00138
−0.00099 320 220 0.00094±0.00072+0.00064

−0.00030

70 85 0.01288±0.00108+0.00167
−0.00212

70 115 0.01504±0.00105+0.00162
−0.00156

70 150 0.01422±0.00113+0.00193
−0.00149

70 180 0.01323±0.00106+0.00169
−0.00064

70 220 0.01337±0.00110+0.00058
−0.00137

Table 20: Ratio of the cross section for diffractive scattering, γ∗p → XN ,
MN < 2.3 GeV, integrated over MX = 4 − 8 GeV, to the total cross section.
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Q2 W

R Mb
Ma

dMXdσdiff
γ∗p→XN

/dMX

σtot Q2 W

R Mb
Ma

dMXdσdiff
γ∗p→XN

/dMX

σtot

±stat.±syst. ±stat.±syst.

(GeV2) (GeV) (GeV2) (GeV)

25 85 0.02888±0.00764+0.00727
−0.00826

25 115 0.02434±0.00177+0.00377
−0.00594 90 115 0.02133±0.00348+0.00350

−0.00452

25 150 0.02078±0.00184+0.00337
−0.00564 90 150 0.02066±0.00183+0.00193

−0.00177

25 180 0.02618±0.00170+0.00163
−0.00207 90 180 0.02131±0.00196+0.00128

−0.00106

25 220 0.02614±0.00171+0.00164
−0.00173 90 220 0.02285±0.00196+0.00144

−0.00139

35 115 0.02769±0.00246+0.00380
−0.00604 120 115 0.01899±0.00155+0.00248

−0.00471

35 150 0.02813±0.00250+0.00129
−0.00197 120 150 0.01822±0.00223+0.00233

−0.00302

35 180 0.02258±0.00248+0.00324
−0.00211 120 180 0.01801±0.00157+0.00109

−0.00180

35 220 0.02097±0.00198+0.00147
−0.00151 120 220 0.01862±0.00165+0.00097

−0.00135

45 115 0.02204±0.00141+0.00326
−0.00504 190 115 0.01221±0.00286+0.00311

−0.00411

45 150 0.02572±0.00158+0.00188
−0.00289 190 150 0.01434±0.00174+0.00134

−0.00183

45 180 0.02571±0.00149+0.00159
−0.00154 190 180 0.01134±0.00146+0.00118

−0.00097

45 220 0.02564±0.00143+0.00142
−0.00113 190 220 0.01419±0.00177+0.00137

−0.00156

55 115 0.02304±0.00285+0.00350
−0.00452 320 115 0.00617±0.00141+0.00144

−0.00316

55 150 0.02740±0.00196+0.00137
−0.00205 320 150 0.00866±0.00193+0.00119

−0.00138

55 180 0.02399±0.00173+0.00175
−0.00248 320 180 0.00961±0.00196+0.00091

−0.00229

55 220 0.02577±0.00172+0.00108
−0.00228 320 220 0.00911±0.00228+0.00073

−0.00224

70 115 0.01924±0.00165+0.00313
−0.00456

70 150 0.02323±0.00178+0.00152
−0.00226

70 180 0.02276±0.00146+0.00107
−0.00182

70 220 0.02015±0.00134+0.00166
−0.00092

Table 21: Ratio of the cross section for diffractive scattering, γ∗p → XN ,
MN < 2.3 GeV, integrated over MX = 8 − 15 GeV, to the total cross section.
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Q2 W

R Mb
Ma

dMXdσdiff
γ∗p→XN

/dMX

σtot Q2 W

R Mb
Ma

dMXdσdiff
γ∗p→XN

/dMX

σtot

±stat.±syst. ±stat.±syst.

(GeV2) (GeV) (GeV2) (GeV)

25 180 0.02250±0.00197+0.00390
−0.00516 90 180 0.01969±0.00293+0.00292

−0.00284

25 220 0.02207±0.00243+0.00324
−0.00310 90 220 0.01957±0.00207+0.00201

−0.00196

35 150 0.02464±0.00632+0.00357
−0.00371

35 180 0.01927±0.00601+0.00526
−0.00501 120 180 0.01939±0.00300+0.00270

−0.00308

35 220 0.02054±0.00229+0.00277
−0.00372 120 220 0.01623±0.00166+0.00189

−0.00312

45 150 0.01819±0.00180+0.00510
−0.00661 190 150 0.01617±0.00239+0.00719

−0.00517

45 180 0.02273±0.00220+0.00246
−0.00313 190 180 0.01800±0.00299+0.00175

−0.00366

45 220 0.02445±0.00153+0.00144
−0.00185 190 220 0.01687±0.00207+0.00158

−0.00181

55 150 0.02160±0.00501+0.00429
−0.00461 320 150 0.01389±0.00296+0.00409

−0.00425

55 180 0.01668±0.00179+0.00378
−0.00525 320 180 0.00704±0.00254+0.00260

−0.00377

55 220 0.01742±0.00149+0.00245
−0.00271 320 220 0.01311±0.00287+0.00217

−0.00308

70 180 0.01904±0.00149+0.00243
−0.00290

70 220 0.02028±0.00176+0.00140
−0.00334

Table 22: Ratio of the cross section for diffractive scattering, γ∗p → XN ,
MN < 2.3 GeV, integrated over MX = 15 − 25 GeV, to the total cross section.

Q2 W

R Mb
Ma

dMXdσdiff
γ∗p→XN

/dMX

σtot Q2 W

R Mb
Ma

dMXdσdiff
γ∗p→XN

/dMX

σtot

±stat.±syst. ±stat.±syst.

(GeV2) (GeV) (GeV2) (GeV)

90 180 0.01581±0.00827+0.00364
−0.00571

25 220 0.01252±0.00496+0.00403
−0.00417 90 220 0.02010±0.00381+0.00348

−0.00283

35 220 0.01366±0.00234+0.00381
−0.00458

45 180 0.01725±0.00539+0.00369
−0.00507 190 180 0.01465±0.00761+0.00310

−0.00689

45 220 0.01694±0.00286+0.00239
−0.00317 190 220 0.01525±0.00222+0.00378

−0.00376

55 220 0.01569±0.00198+0.00277
−0.00723

70 220 0.01289±0.00327+0.00254
−0.00327

Table 23: Ratio of the cross section for diffractive scattering, γ∗p → XN ,
MN < 2.3 GeV, integrated over MX = 25 − 35 GeV, to the total cross section.
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Q2 σdiff
0.28<MX<35GeV/σ

tot ± stat.± syst.

4 0.158 ± 0.007+0.009
−0.007

6 0.149 ± 0.007+0.005
−0.005

8 0.134 ± 0.006+0.005
−0.004

14 0.118 ± 0.005+0.003
−0.002

25 0.106 ± 0.006+0.012
−0.012

27 0.096 ± 0.006+0.003
−0.004

35 0.090 ± 0.005+0.011
−0.014

45 0.095 ± 0.004+0.007
−0.009

55 0.084 ± 0.003+0.008
−0.014

70 0.071 ± 0.004+0.007
−0.009

90 0.075 ± 0.005+0.008
−0.008

120 0.044 ± 0.003+0.005
−0.005

190 0.050 ± 0.004+0.008
−0.008

Table 24: Ratio of the cross section for diffractive scattering, γ∗p → XN ,
MN < 2.3 GeV, integrated over MX = 0.28 − 35 GeV, to the total cross section,
for W = 220 GeV.
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β x
IP

Q2 x
IP
F

D(3)
2 β x

IP
Q2 x

IP
F

D(3)
2

± stat. ± syst. ± stat. ± syst.

(GeV2) (GeV2)

0.9455 0.01290 25 0.0137±0.0022+0.0030
−0.0059 0.9605 0.01769 35 0.0092±0.0033+0.0075

−0.0070

0.9455 0.00622 25 0.0157±0.0022+0.0013
−0.0028 0.9605 0.00855 35 0.0176±0.0046+0.0026

−0.0040

0.9455 0.00365 25 0.0207±0.0024+0.0027
−0.0024 0.9605 0.00502 35 0.0125±0.0033+0.0005

−0.0010

0.9455 0.00200 25 0.0203±0.0025+0.0033
−0.0031 0.9605 0.00275 35 0.0216±0.0046+0.0021

−0.0081

0.9455 0.00117 25 0.0172±0.0028+0.0026
−0.0027 0.9605 0.00162 35 0.0110±0.0038+0.0010

−0.0024

0.9455 0.00082 25 0.0270±0.0037+0.0042
−0.0032 0.9605 0.00112 35 0.0146±0.0044+0.0011

−0.0010

0.9455 0.00055 25 0.0411±0.0056+0.0063
−0.0061 0.9605 0.00075 35 0.0272±0.0056+0.0053

−0.0017

0.7353 0.01659 25 0.0148±0.0028+0.0060
−0.0091 0.7955 0.02136 35 0.0158±0.0035+0.0077

−0.0121

0.7353 0.00800 25 0.0344±0.0028+0.0027
−0.0056 0.7955 0.01033 35 0.0220±0.0036+0.0031

−0.0036

0.7353 0.00469 25 0.0351±0.0024+0.0027
−0.0040 0.7955 0.00606 35 0.0234±0.0032+0.0052

−0.0044

0.7353 0.00257 25 0.0403±0.0028+0.0034
−0.0018 0.7955 0.00332 35 0.0336±0.0039+0.0024

−0.0020

0.7353 0.00151 25 0.0539±0.0040+0.0041
−0.0078 0.7955 0.00195 35 0.0378±0.0049+0.0060

−0.0022

0.7353 0.00105 25 0.0458±0.0036+0.0055
−0.0038 0.7955 0.00136 35 0.0424±0.0051+0.0076

−0.0034

0.7353 0.00070 25 0.0487±0.0037+0.0038
−0.0041 0.7955 0.00091 35 0.0374±0.0048+0.0029

−0.0055

0.4098 0.01435 25 0.0256±0.0049+0.0067
−0.0110 0.4930 0.01667 35 0.0231±0.0065+0.0062

−0.0076

0.4098 0.00841 25 0.0322±0.0020+0.0020
−0.0026 0.4930 0.00978 35 0.0336±0.0037+0.0027

−0.0053

0.4098 0.00460 25 0.0405±0.0021+0.0030
−0.0030 0.4930 0.00535 35 0.0360±0.0029+0.0019

−0.0027

0.4098 0.00271 25 0.0408±0.0027+0.0017
−0.0031 0.4930 0.00315 35 0.0419±0.0038+0.0020

−0.0016

0.4098 0.00188 25 0.0501±0.0029+0.0014
−0.0021 0.4930 0.00219 35 0.0498±0.0042+0.0018

−0.0043

0.4098 0.00126 25 0.0545±0.0031+0.0032
−0.0026 0.4930 0.00147 35 0.0581±0.0047+0.0052

−0.0063

0.1712 0.02014 25 0.0246±0.0065+0.0062
−0.0070

0.1712 0.01102 25 0.0244±0.0018+0.0038
−0.0060 0.2244 0.01176 35 0.0288±0.0025+0.0039

−0.0063

0.1712 0.00648 25 0.0248±0.0022+0.0040
−0.0067 0.2244 0.00692 35 0.0332±0.0029+0.0015

−0.0023

0.1712 0.00450 25 0.0338±0.0022+0.0021
−0.0027 0.2244 0.00481 35 0.0298±0.0033+0.0043

−0.0028

0.1712 0.00301 25 0.0363±0.0023+0.0023
−0.0024 0.2244 0.00322 35 0.0318±0.0030+0.0022

−0.0023

0.0805 0.01930 35 0.0313±0.0080+0.0045
−0.0047

0.0588 0.01311 25 0.0325±0.0028+0.0056
−0.0075 0.0805 0.01341 35 0.0273±0.0085+0.0075

−0.0071

0.0588 0.00878 25 0.0343±0.0038+0.0050
−0.0048 0.0805 0.00898 35 0.0334±0.0037+0.0045

−0.0061

0.0270 0.01910 25 0.0283±0.0112+0.0091
−0.0094 0.0374 0.01930 35 0.0319±0.0054+0.0089

−0.0107

Table 25: The diffractive structure function multiplied by x
IP
, x

IP
F

D(3)
2 (β, x

IP
, Q2),

for diffractive scattering, γ∗p → XN , MN < 2.3 GeV, for Q2 = 25 and 35 GeV2,
in bins of β and x

IP
.
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β x
IP

Q2 x
IP
F

D(3)
2 β x

IP
Q2 x

IP
F

D(3)
2

± stat. ± syst. ± stat. ± syst.

(GeV2) (GeV2)

0.9690 0.02243 45 0.0060±0.0022+0.0029
−0.0050 0.9745 0.02713 55 0.0071±0.0028+0.0011

−0.0022

0.9690 0.01088 45 0.0065±0.0020+0.0022
−0.0025 0.9745 0.01319 55 0.0091±0.0029+0.0012

−0.0037

0.9690 0.00639 45 0.0108±0.0020+0.0021
−0.0017 0.9745 0.00775 55 0.0086±0.0027+0.0010

−0.0018

0.9690 0.00350 45 0.0172±0.0030+0.0035
−0.0007 0.9745 0.00425 55 0.0167±0.0038+0.0014

−0.0013

0.9690 0.00206 45 0.0221±0.0041+0.0028
−0.0028 0.9745 0.00250 55 0.0247±0.0069+0.0009

−0.0014

0.9690 0.00143 45 0.0159±0.0037+0.0038
−0.0027 0.9745 0.00174 55 0.0239±0.0062+0.0046

−0.0033

0.9690 0.00096 45 0.0237±0.0044+0.0052
−0.0025 0.9745 0.00117 55 0.0173±0.0046+0.0033

−0.0033

0.8594 0.03077 55 0.0103±0.0042+0.0028
−0.0054

0.8333 0.01265 45 0.0197±0.0025+0.0027
−0.0055 0.8594 0.01495 55 0.0130±0.0031+0.0034

−0.0070

0.8333 0.00743 45 0.0258±0.0026+0.0023
−0.0043 0.8594 0.00879 55 0.0184±0.0026+0.0018

−0.0030

0.8333 0.00407 45 0.0320±0.0027+0.0022
−0.0047 0.8594 0.00482 55 0.0261±0.0030+0.0030

−0.0033

0.8333 0.00240 45 0.0322±0.0033+0.0046
−0.0042 0.8594 0.00284 55 0.0275±0.0036+0.0029

−0.0060

0.8333 0.00166 45 0.0329±0.0030+0.0026
−0.0058 0.8594 0.00197 55 0.0308±0.0041+0.0032

−0.0049

0.8333 0.00111 45 0.0329±0.0032+0.0054
−0.0035 0.8594 0.00132 55 0.0257±0.0037+0.0046

−0.0047

0.5556 0.01897 45 0.0197±0.0040+0.0059
−0.0093

0.5556 0.01114 45 0.0279±0.0021+0.0024
−0.0047 0.6044 0.01250 55 0.0305±0.0024+0.0028

−0.0043

0.5556 0.00610 45 0.0314±0.0018+0.0019
−0.0023 0.6044 0.00685 55 0.0320±0.0023+0.0022

−0.0021

0.5556 0.00359 45 0.0423±0.0026+0.0018
−0.0022 0.6044 0.00404 55 0.0428±0.0033+0.0035

−0.0017

0.5556 0.00250 45 0.0406±0.0025+0.0031
−0.0013 0.6044 0.00280 55 0.0375±0.0032+0.0037

−0.0018

0.5556 0.00167 45 0.0549±0.0031+0.0020
−0.0043 0.6044 0.00188 55 0.0562±0.0043+0.0038

−0.0027

0.2711 0.01251 45 0.0232±0.0015+0.0034
−0.0053 0.3125 0.01325 55 0.0257±0.0032+0.0039

−0.0050

0.2711 0.00736 45 0.0321±0.0019+0.0023
−0.0036 0.3125 0.00780 55 0.0367±0.0026+0.0018

−0.0028

0.2711 0.00512 45 0.0354±0.0020+0.0022
−0.0021 0.3125 0.00542 55 0.0363±0.0026+0.0026

−0.0038

0.2711 0.00343 45 0.0410±0.0022+0.0023
−0.0018 0.3125 0.00363 55 0.0424±0.0028+0.0018

−0.0038

0.1011 0.01974 45 0.0234±0.0023+0.0066
−0.0085 0.1209 0.02017 55 0.0288±0.0067+0.0057

−0.0061

0.1011 0.01372 45 0.0323±0.0031+0.0035
−0.0045 0.1209 0.01402 55 0.0251±0.0027+0.0057

−0.0079

0.1011 0.00919 45 0.0404±0.0025+0.0024
−0.0031 0.1209 0.00939 55 0.0286±0.0024+0.0040

−0.0044

0.0476 0.02913 45 0.0347±0.0108+0.0074
−0.0102

0.0476 0.01951 45 0.0396±0.0067+0.0056
−0.0074 0.0576 0.01971 55 0.0360±0.0045+0.0064

−0.0166

Table 26: The diffractive structure function multiplied by x
IP
, x

IP
F

D(3)
2 (β, x

IP
, Q2),

for diffractive scattering, γ∗p → XN , MN < 2.3 GeV, for Q2 = 45 and 55 GeV2,
in bins of β and x

IP
.
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β x
IP

Q2 x
IP
F

D(3)
2 β x

IP
Q2 x

IP
F

D(3)
2

± stat. ± syst. ± stat. ± syst.

(GeV2) (GeV2)

0.9843 0.04323 90 0.0070±0.0031+0.0010
−0.0026

0.9798 0.01663 70 0.0100±0.0034+0.0018
−0.0048 0.9843 0.02119 90 0.0042±0.0034+0.0020

−0.0034

0.9798 0.00979 70 0.0100±0.0030+0.0004
−0.0016 0.9843 0.01250 90 0.0032±0.0018+0.0018

−0.0012

0.9798 0.00537 70 0.0138±0.0035+0.0022
−0.0006 0.9843 0.00687 90 0.0196±0.0061+0.0013

−0.0039

0.9798 0.00316 70 0.0094±0.0033+0.0015
−0.0014 0.9843 0.00405 90 0.0249±0.0103+0.0065

−0.0055

0.9798 0.00220 70 0.0071±0.0038+0.0026
−0.0011 0.9843 0.00281 90 0.0296±0.0122+0.0085

−0.0103

0.9798 0.00147 70 0.0134±0.0040+0.0040
−0.0016 0.9843 0.00189 90 0.0070±0.0039+0.0032

−0.0010

0.8861 0.01839 70 0.0112±0.0023+0.0031
−0.0058 0.9091 0.02294 90 0.0126±0.0038+0.0029

−0.0073

0.8861 0.01083 70 0.0144±0.0020+0.0025
−0.0033 0.9091 0.01353 90 0.0164±0.0036+0.0012

−0.0027

0.8861 0.00594 70 0.0222±0.0026+0.0022
−0.0031 0.9091 0.00744 90 0.0167±0.0031+0.0010

−0.0017

0.8861 0.00350 70 0.0249±0.0034+0.0019
−0.0033 0.9091 0.00438 90 0.0156±0.0042+0.0048

−0.0010

0.8861 0.00243 70 0.0300±0.0039+0.0036
−0.0045 0.9091 0.00305 90 0.0193±0.0043+0.0014

−0.0028

0.8861 0.00163 70 0.0313±0.0042+0.0052
−0.0044 0.9091 0.00204 90 0.0231±0.0053+0.0029

−0.0025

0.6604 0.01453 70 0.0223±0.0019+0.0029
−0.0037 0.7143 0.01722 90 0.0247±0.0034+0.0035

−0.0045

0.6604 0.00797 70 0.0318±0.0022+0.0034
−0.0033 0.7143 0.00946 90 0.0266±0.0030+0.0046

−0.0039

0.6604 0.00470 70 0.0360±0.0028+0.0049
−0.0038 0.7143 0.00558 90 0.0341±0.0039+0.0019

−0.0024

0.6604 0.00326 70 0.0368±0.0029+0.0047
−0.0018 0.7143 0.00388 90 0.0353±0.0042+0.0048

−0.0036

0.6604 0.00219 70 0.0420±0.0034+0.0018
−0.0043 0.7143 0.00260 90 0.0376±0.0044+0.0037

−0.0053

0.3665 0.01437 70 0.0228±0.0019+0.0037
−0.0054 0.4265 0.01585 90 0.0270±0.0044+0.0044

−0.0057

0.3665 0.00846 70 0.0330±0.0025+0.0022
−0.0032 0.4265 0.00934 90 0.0314±0.0027+0.0029

−0.0027

0.3665 0.00588 70 0.0355±0.0022+0.0017
−0.0028 0.4265 0.00649 90 0.0360±0.0033+0.0022

−0.0018

0.3665 0.00394 70 0.0355±0.0023+0.0029
−0.0016 0.4265 0.00435 90 0.0426±0.0036+0.0027

−0.0026

0.1837 0.02169 90 0.0276±0.0033+0.0064
−0.0075

0.1489 0.01447 70 0.0282±0.0022+0.0036
−0.0043 0.1837 0.01508 90 0.0297±0.0044+0.0044

−0.0043

0.1489 0.00970 70 0.0339±0.0029+0.0023
−0.0056 0.1837 0.01011 90 0.0326±0.0034+0.0034

−0.0033

0.0909 0.03047 90 0.0322±0.0168+0.0074
−0.0116

0.0722 0.02001 70 0.0296±0.0075+0.0058
−0.0075 0.0909 0.02042 90 0.0452±0.0085+0.0078

−0.0064

Table 27: The diffractive structure function multiplied by x
IP
, x

IP
F

D(3)
2 (β, x

IP
, Q2),

for diffractive scattering, γ∗p → XN , MN < 2.3 GeV, for Q2 = 70 and 90 GeV2,
in bins of β and x

IP
.
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β x
IP

Q2 x
IP
F

D(3)
2 β x

IP
Q2 x

IP
F

D(3)
2

± stat. ± syst. ± stat. ± syst.

(GeV2) (GeV2)

0.9925 0.08643 190 0.0064±0.0040+0.0002
−0.0006

0.9925 0.04336 190 0.0035±0.0088+0.0038
−0.0012

0.9881 0.01653 120 0.0051±0.0022+0.0009
−0.0013 0.9925 0.02582 190 0.0042±0.0078+0.0104

−0.2232

0.9881 0.00910 120 0.0126±0.0054+0.0018
−0.0048

0.9881 0.00537 120 0.0197±0.0077+0.0074
−0.0033

0.9881 0.00373 120 0.0146±0.0061+0.0016
−0.0054 0.9925 0.00587 190 0.0815±0.0698+0.0345

−0.0420

0.9881 0.00250 120 0.0351±0.0122+0.0016
−0.0007 0.9925 0.00394 190 0.0278±0.0184+0.0095

−0.0006

0.9548 0.08984 190 0.0042±0.0021+0.0010
−0.0010

0.9302 0.02969 120 0.0027±0.0017+0.0013
−0.0025 0.9548 0.04507 190 0.0060±0.0037+0.0015

−0.0028

0.9302 0.01756 120 0.0048±0.0023+0.0026
−0.0035 0.9548 0.02684 190 0.0018±0.0013+0.0007

−0.0017

0.9302 0.00967 120 0.0164±0.0034+0.0011
−0.0019 0.9548 0.01483 190 0.0084±0.0034+0.0024

−0.0009

0.9302 0.00570 120 0.0091±0.0026+0.0011
−0.0009 0.9548 0.00877 190 0.0106±0.0039+0.0027

−0.0026

0.9302 0.00397 120 0.0138±0.0037+0.0025
−0.0012 0.9548 0.00611 190 0.0026±0.0018+0.0003

−0.0007

0.9302 0.00266 120 0.0194±0.0044+0.0033
−0.0049 0.9548 0.00410 190 0.0195±0.0063+0.0014

−0.0117

0.7692 0.02124 120 0.0132±0.0024+0.0054
−0.0075

0.7692 0.01169 120 0.0285±0.0028+0.0050
−0.0038 0.8407 0.01685 190 0.0146±0.0028+0.0025

−0.0027

0.7692 0.00690 120 0.0253±0.0033+0.0040
−0.0034 0.8407 0.00996 190 0.0195±0.0039+0.0030

−0.0023

0.7692 0.00480 120 0.0329±0.0036+0.0030
−0.0021 0.8407 0.00693 190 0.0200±0.0036+0.0043

−0.0038

0.7692 0.00322 120 0.0312±0.0040+0.0060
−0.0019 0.8407 0.00465 190 0.0134±0.0028+0.0038

−0.0025

0.4979 0.01806 120 0.0265±0.0021+0.0035
−0.0066 0.6109 0.02318 190 0.0193±0.0045+0.0049

−0.0065

0.4979 0.01065 120 0.0300±0.0036+0.0038
−0.0050 0.6109 0.01371 190 0.0277±0.0033+0.0026

−0.0035

0.4979 0.00741 120 0.0325±0.0028+0.0020
−0.0032 0.6109 0.00954 190 0.0241±0.0031+0.0025

−0.0021

0.4979 0.00497 120 0.0383±0.0034+0.0020
−0.0028 0.6109 0.00640 190 0.0322±0.0040+0.0031

−0.0035

0.3220 0.02600 190 0.0228±0.0034+0.0101
−0.0073

0.2308 0.01599 120 0.0291±0.0045+0.0040
−0.0046 0.3220 0.01810 190 0.0279±0.0046+0.0027

−0.0057

0.2308 0.01072 120 0.0278±0.0028+0.0032
−0.0053 0.3220 0.01214 190 0.0280±0.0034+0.0026

−0.0030

0.1743 0.03345 190 0.0280±0.0145+0.0059
−0.0132

0.1743 0.02243 190 0.0312±0.0045+0.0077
−0.0077

Table 28: The diffractive structure function multiplied by x
IP
, x

IP
F

D(3)
2 (β, x

IP
, Q2),

for diffractive scattering, γ∗p → XN , MN < 2.3 GeV, for Q2 = 120 and 190 GeV2,
in bins of β and x

IP
.
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β x
IP

Q2 x
IP
F

D(3)
2

± stat. ± syst.

(GeV2)

0.9726 0.07239 320 0.0006±0.0010+0.0005
−0.0006

0.9726 0.04361 320 0.0011±0.0013+0.0002
−0.0014

0.9726 0.02429 320 0.0104±0.0074+0.0005
−0.0070

0.9726 0.01442 320 0.0057±0.0126+0.0023
−0.0025

0.9726 0.01006 320 0.0182±0.0117+0.0041
−0.0008

0.9726 0.00675 320 0.0130±0.0090+0.0003
−0.0008

0.8989 0.02628 320 0.0141±0.0051+0.0028
−0.0038

0.8989 0.01560 320 0.0084±0.0044+0.0009
−0.0022

0.8989 0.01088 320 0.0134±0.0056+0.0021
−0.0018

0.8989 0.00731 320 0.0074±0.0057+0.0050
−0.0024

0.7256 0.03256 320 0.0116±0.0026+0.0027
−0.0059

0.7256 0.01933 320 0.0190±0.0042+0.0026
−0.0030

0.7256 0.01348 320 0.0252±0.0051+0.0024
−0.0060

0.7256 0.00905 320 0.0278±0.0069+0.0022
−0.0068

0.4444 0.03155 320 0.0192±0.0041+0.0057
−0.0059

0.4444 0.02200 320 0.0116±0.0042+0.0043
−0.0062

0.4444 0.01478 320 0.0251±0.0055+0.0042
−0.0059

Table 29: The diffractive structure function multiplied by x
IP
, x

IP
F

D(3)
2 (β, x

IP
, Q2),

for diffractive scattering, γ∗p → XN , MN < 2.3 GeV, for Q2 = 320 GeV2, in bins
of β and x

IP
.
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x
IP

β Q2 x
IP
F

D(3)
2

(GeV2)

0.00015 0.700 2.7 0.0378+0.0066
−0.0058

0.00015 0.700 4 0.0480+0.0093
−0.0072

0.00015 0.900 6 0.0343+0.0082
−0.0083

0.00015 0.900 8 0.0358+0.0086
−0.0064

0.0003 0.400 2.7 0.0477+0.0076
−0.0074

0.0003 0.400 4 0.0476+0.0059
−0.0059

0.0003 0.400 6 0.0523+0.0063
−0.0068

0.0003 0.400 8 0.0539+0.0064
−0.0060

0.0003 0.700 2.7 0.0382+0.0057
−0.0054

0.0003 0.700 4 0.0394+0.0066
−0.0056

0.0003 0.900 6 0.0331+0.0054
−0.0047

0.0003 0.900 8 0.0431+0.0056
−0.0076

0.0003 0.900 14 0.0439+0.0076
−0.0074

0.0006 0.400 2.7 0.0438+0.0063
−0.0067

0.0006 0.400 4 0.0460+0.0051
−0.0046

0.0006 0.400 6 0.0535+0.0053
−0.0057

0.0006 0.400 8 0.0473+0.0052
−0.0045

0.0006 0.700 2.7 0.0376+0.0060
−0.0059

0.0006 0.700 4 0.0437+0.0063
−0.0060

0.0006 0.700 14 0.0468+0.0058
−0.0052

0.0006 0.700 27 0.0575+0.0102
−0.0105

0.0006 0.900 6 0.0300+0.0045
−0.0054

0.0006 0.900 8 0.0370+0.0050
−0.0049

0.0006 0.900 14 0.0305+0.0043
−0.0046

0.0006 0.900 27 0.0340+0.0122
−0.0104

Table 30: The diffractive structure function multiplied by x
IP
, x

IP
F

D(3)
2 (β, x

IP
, Q2),

for diffractive scattering, γ∗p → XN , MN < 2.3 GeV, for fixed x
IP

=
0.00015, 0.0003, 0.0006 and fixed β. The errors are the statistical and systematic
uncertainties added in quadrature.

54



x
IP

β Q2 x
IP
F

D(3)
2

(GeV2)

0.0012 0.125 2.7 0.0247+0.0037
−0.0040

0.0012 0.125 4 0.0292+0.0029
−0.0032

0.0012 0.125 6 0.0323+0.0034
−0.0033

0.0012 0.125 8 0.0325+0.0029
−0.0030

0.0012 0.400 2.7 0.0306+0.0052
−0.0048

0.0012 0.400 4 0.0335+0.0037
−0.0040

0.0012 0.400 6 0.0366+0.0041
−0.0040

0.0012 0.400 8 0.0409+0.0036
−0.0038

0.0012 0.400 14 0.0434+0.0035
−0.0032

0.0012 0.400 25 0.0554+0.0046
−0.0046

0.0012 0.400 27 0.0510+0.0050
−0.0059

0.0012 0.400 35 0.0600+0.0087
−0.0095

0.0012 0.400 45 0.0601+0.0053
−0.0067

0.0012 0.700 2.7 0.0352+0.0074
−0.0066

0.0012 0.700 4 0.0358+0.0058
−0.0063

0.0012 0.700 14 0.0401+0.0035
−0.0035

0.0012 0.700 25 0.0540+0.0071
−0.0091

0.0012 0.700 27 0.0456+0.0085
−0.0078

0.0012 0.700 35 0.0524+0.0120
−0.0088

0.0012 0.700 35 0.0416+0.0082
−0.0097

0.0012 0.700 55 0.0401+0.0079
−0.0082

0.0012 0.700 55 0.0575+0.0073
−0.0068

0.0012 0.900 6 0.0292+0.0060
−0.0046

0.0012 0.900 8 0.0332+0.0062
−0.0053

0.0012 0.900 14 0.0316+0.0046
−0.0042

0.0012 0.900 25 0.0246+0.0055
−0.0055

0.0012 0.900 25 0.0286+0.0071
−0.0065

0.0012 0.900 27 0.0352+0.0090
−0.0122

0.0012 0.900 45 0.0272+0.0045
−0.0050

0.0012 0.900 55 0.0302+0.0092
−0.0100

0.0012 0.900 55 0.0270+0.0057
−0.0063

0.0012 0.900 70 0.0324+0.0082
−0.0076

Table 31: The diffractive structure function multiplied by x
IP
, x

IP
F

D(3)
2 (β, x

IP
, Q2),

for diffractive scattering, γ∗p → XN , MN < 2.3 GeV, for fixed x
IP

= 0.0012
and fixed β. The errors are the statistical and systematic uncertainties added in
quadrature.
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x
IP

β Q2 x
IP
F

D(3)
2

(GeV2)

0.0012 0.970 35 0.0127+0.0052
−0.0054

0.0012 0.970 45 0.0200+0.0067
−0.0057

0.0012 0.970 55 0.0168+0.0128
−0.0162

0.0012 0.970 55 0.0228+0.0082
−0.0079

0.0012 0.970 70 0.0155+0.0080
−0.0068

0.0012 0.970 120 0.0093+0.0085
−0.0075

0.0025 0.025 2.7 0.0205+0.0041
−0.0032

0.0025 0.025 4 0.0221+0.0025
−0.0028

0.0025 0.025 6 0.0324+0.0038
−0.0039

0.0025 0.125 2.7 0.0234+0.0044
−0.0040

0.0025 0.125 8. 0.0277+0.0035
−0.0028

0.0025 0.125 14 0.0331+0.0032
−0.0031

0.0025 0.400 2.7 0.0280+0.0051
−0.0053

0.0025 0.400 6 0.0385+0.0053
−0.0053

0.0025 0.400 8 0.0400+0.0060
−0.0043

0.0025 0.400 14 0.0364+0.0033
−0.0030

0.0025 0.400 25 0.0414+0.0043
−0.0050

0.0025 0.400 27 0.0369+0.0046
−0.0046

0.0025 0.400 35 0.0469+0.0058
−0.0069

0.0025 0.400 45 0.0402+0.0047
−0.0038

0.0025 0.700 2.7 0.0301+0.0060
−0.0052

0.0025 0.700 4 0.0327+0.0043
−0.0053

0.0025 0.700 25 0.0429+0.0055
−0.0046

0.0025 0.700 27 0.0373+0.0062
−0.0061

0.0025 0.700 55 0.0427+0.0071
−0.0086

0.0025 0.700 55 0.0347+0.0054
−0.0045

0.0025 0.700 70 0.0380+0.0047
−0.0058

0.0025 0.700 90 0.0390+0.0075
−0.0085

Table 32: The diffractive structure function multiplied by x
IP
, x

IP
F

D(3)
2 (β, x

IP
, Q2),

for diffractive scattering, γ∗p → XN , MN < 2.3 GeV, for fixed x
IP

= 0.0012, 0.0025
and fixed β. The errors are the statistical and systematic uncertainties added in
quadrature.
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x
IP

β Q2 x
IP
F

D(3)
2

(GeV2)

0.0025 0.900 8 0.0319+0.0055
−0.0052

0.0025 0.900 14 0.0320+0.0054
−0.0063

0.0025 0.900 27 0.0148+0.0058
−0.0057

0.0025 0.900 45 0.0251+0.0051
−0.0049

0.0025 0.900 55 0.0190+0.0105
−0.0084

0.0025 0.900 55 0.0244+0.0052
−0.0069

0.0025 0.900 70 0.0279+0.0062
−0.0067

0.0025 0.900 90 0.0226+0.0078
−0.0077

0.0025 0.900 120 0.0240+0.0087
−0.0097

0.0025 0.970 35 0.0212+0.0067
−0.0102

0.0025 0.970 45 0.0207+0.0060
−0.0060

0.0025 0.970 55 0.0255+0.0101
−0.0102

0.0025 0.970 70 0.0074+0.0062
−0.0057

0.0025 0.970 90 0.0353+0.0230
−0.0240

0.0025 0.970 120 0.0431+0.0213
−0.0213

0.0050 0.025 2.7 0.0183+0.0030
−0.0032

0.0050 0.025 4 0.0205+0.0024
−0.0026

0.0050 0.025 6 0.0239+0.0030
−0.0030

0.0050 0.125 2.7 0.0218+0.0036
−0.0035

0.0050 0.125 4 0.0214+0.0030
−0.0028

0.0050 0.125 6 0.0229+0.0025
−0.0028

0.0050 0.125 8 0.0257+0.0028
−0.0025

0.0050 0.125 14 0.0260+0.0024
−0.0025

0.0050 0.125 25 0.0327+0.0036
−0.0037

0.0050 0.125 27 0.0290+0.0036
−0.0037

Table 33: The diffractive structure function multiplied by x
IP
, x

IP
F

D(3)
2 (β, x

IP
, Q2),

for diffractive scattering, γ∗p → XN , MN < 2.3 GeV, for fixed x
IP

= 0.0025, 0.0050
and fixed β. The errors are the statistical and systematic uncertainties added in
quadrature.
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x
IP

β Q2 x
IP
F

D(3)
2

(GeV2)

0.005 0.400 2.7 0.0296+0.0053
−0.0052

0.005 0.400 4 0.0287+0.0035
−0.0032

0.005 0.400 6 0.0313+0.0048
−0.0038

0.005 0.400 8 0.0339+0.0038
−0.0052

0.005 0.400 14 0.0329+0.0034
−0.0037

0.005 0.400 25 0.0395+0.0041
−0.0041

0.005 0.400 27 0.0336+0.0041
−0.0054

0.005 0.400 35 0.0359+0.0042
−0.0043

0.005 0.400 45 0.0354+0.0032
−0.0035

0.005 0.400 55 0.0401+0.0041
−0.0051

0.005 0.400 70 0.0359+0.0036
−0.0036

0.005 0.400 90 0.0396+0.0049
−0.0048

0.005 0.400 120 0.0375+0.0050
−0.0053

0.005 0.700 14 0.0311+0.0048
−0.0036

0.005 0.700 25 0.0365+0.0045
−0.0055

0.005 0.700 27 0.0306+0.0067
−0.0073

0.005 0.700 35 0.0334+0.0070
−0.0066

0.005 0.700 55 0.0267+0.0056
−0.0053

0.005 0.700 55 0.0335+0.0040
−0.0036

0.005 0.700 70 0.0318+0.0052
−0.0040

0.005 0.700 90 0.0348+0.0060
−0.0058

0.005 0.700 120 0.0355+0.0068
−0.0062

0.005 0.700 190 0.0316+0.0063
−0.0065

0.005 0.900 6 0.0253+0.0041
−0.0044

0.005 0.900 8 0.0289+0.0044
−0.0046

0.005 0.900 14 0.0236+0.0040
−0.0043

0.005 0.900 25 0.0212+0.0040
−0.0045

0.005 0.900 27 0.0231+0.0060
−0.0058

0.005 0.900 45 0.0239+0.0033
−0.0045

0.005 0.900 55 0.0186+0.0071
−0.0059

0.005 0.900 55 0.0220+0.0044
−0.0046

0.005 0.900 70 0.0215+0.0038
−0.0044

0.005 0.900 90 0.0166+0.0059
−0.0053

0.005 0.900 120 0.0136+0.0052
−0.0049

0.005 0.900 190 0.0139+0.0044
−0.0039

Table 34: The diffractive structure function multiplied by x
IP
, x

IP
F

D(3)
2 (β, x

IP
, Q2),

for diffractive scattering, γ∗p → XN , MN < 2.3 GeV, for fixed x
IP

= 0.005 and
fixed β. The errors are the statistical and systematic uncertainties added in quadra-
ture.
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x
IP

β Q2 x
IP
F

D(3)
2

(GeV2)

0.005 0.970 35 0.0119+0.0045
−0.0045

0.005 0.970 45 0.0136+0.0040
−0.0033

0.005 0.970 55 0.0136+0.0068
−0.0072

0.005 0.970 55 0.0164+0.0055
−0.0055

0.005 0.970 70 0.0131+0.0047
−0.0044

0.005 0.970 90 0.0255+0.0123
−0.0127

0.005 0.970 120 0.0208+0.0115
−0.0112

0.005 0.970 190 0.0130+0.0055
−0.0074

0.010 0.005 2.7 0.0230+0.0047
−0.0043

0.010 0.005 4 0.0232+0.0040
−0.0038

0.010 0.025 2.7 0.0189+0.0037
−0.0036

0.010 0.025 4 0.0189+0.0034
−0.0032

0.010 0.025 6 0.0235+0.0034
−0.0043

0.010 0.025 8 0.0286+0.0043
−0.0053

0.010 0.025 14 0.0306+0.0046
−0.0047

0.010 0.125 2.7 0.0180+0.0031
−0.0031

0.010 0.125 4 0.0186+0.0030
−0.0027

0.010 0.125 6 0.0230+0.0035
−0.0036

0.010 0.125 8 0.0220+0.0030
−0.0029

0.010 0.125 14 0.0241+0.0031
−0.0035

0.010 0.125 25 0.0256+0.0047
−0.0068

0.010 0.125 27 0.0218+0.0055
−0.0046

0.010 0.125 35 0.0293+0.0087
−0.0092

0.010 0.125 45 0.0365+0.0045
−0.0051

0.010 0.125 55 0.0245+0.0080
−0.0070

0.010 0.125 55 0.0278+0.0060
−0.0073

0.010 0.125 70 0.0338+0.0048
−0.0064

0.010 0.125 90 0.0355+0.0064
−0.0063

Table 35: The diffractive structure function multiplied by x
IP
, x

IP
F

D(3)
2 (β, x

IP
, Q2),

for diffractive scattering, γ∗p → XN , MN < 2.3 GeV, for fixed x
IP

= 0.005, 0.010
and fixed β. The errors are the statistical and systematic uncertainties added in
quadrature.
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x
IP

β Q2 x
IP
F

D(3)
2

(GeV2)

0.010 0.400 6 0.0288+0.0039
−0.0044

0.010 0.400 8 0.0305+0.0027
−0.0028

0.010 0.400 14 0.0273+0.0041
−0.0040

0.010 0.400 25 0.0304+0.0061
−0.0083

0.010 0.400 27 0.0282+0.0042
−0.0047

0.010 0.400 35 0.0326+0.0057
−0.0072

0.010 0.400 45 0.0286+0.0040
−0.0057

0.010 0.400 55 0.0299+0.0056
−0.0056

0.010 0.400 55 0.0344+0.0050
−0.0057

0.010 0.400 70 0.0293+0.0044
−0.0055

0.010 0.400 90 0.0303+0.0047
−0.0046

0.010 0.400 120 0.0292+0.0046
−0.0054

0.010 0.400 190 0.0313+0.0061
−0.0064

0.010 0.400 320 0.0292+0.0102
−0.0113

0.010 0.700 14 0.0280+0.0026
−0.0030

0.010 0.700 25 0.0344+0.0049
−0.0068

0.010 0.700 27 0.0241+0.0073
−0.0051

0.010 0.700 35 0.0267+0.0072
−0.0076

0.010 0.700 55 0.0213+0.0078
−0.0057

0.010 0.700 55 0.0291+0.0041
−0.0052

0.010 0.700 70 0.0262+0.0039
−0.0042

0.010 0.700 90 0.0267+0.0063
−0.0058

0.010 0.700 120 0.0348+0.0078
−0.0066

0.010 0.700 190 0.0246+0.0044
−0.0045

0.010 0.700 320 0.0292+0.0084
−0.0106

0.010 0.900 14 0.0246+0.0042
−0.0038

0.010 0.900 25 0.0171+0.0054
−0.0083

0.010 0.900 27 0.0191+0.0046
−0.0056

0.010 0.900 45 0.0180+0.0032
−0.0046

0.010 0.900 55 0.0168+0.0052
−0.0050

0.010 0.900 55 0.0144+0.0040
−0.0056

0.010 0.900 70 0.0138+0.0037
−0.0042

0.010 0.900 90 0.0172+0.0044
−0.0049

0.010 0.900 120 0.0196+0.0059
−0.0062

0.010 0.900 190 0.0145+0.0046
−0.0044

0.010 0.900 320 0.0121+0.0076
−0.0070

Table 36: The diffractive structure function multiplied by x
IP
, x

IP
F

D(3)
2 (β, x

IP
, Q2),

for diffractive scattering, γ∗p → XN , MN < 2.3 GeV, for fixed x
IP

= 0.010 and
fixed β. The errors are the statistical and systematic uncertainties added in quadra-
ture.
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x
IP

β Q2 x
IP
F

D(3)
2

(GeV2)

0.010 0.970 35 0.0161+0.0064
−0.0069

0.010 0.970 45 0.0066+0.0037
−0.0038

0.010 0.970 55 0.0118+0.0079
−0.0066

0.010 0.970 55 0.0092+0.0037
−0.0046

0.010 0.970 70 0.0108+0.0045
−0.0048

0.010 0.970 90 0.0040+0.0039
−0.0035

0.010 0.970 120 0.0150+0.0094
−0.0108

0.010 0.970 190 0.0083+0.0045
−0.0042

0.020 0.005 2.7 0.0196+0.0084
−0.0082

0.020 0.005 4 0.0172+0.0078
−0.0079

0.020 0.005 6 0.0235+0.0106
−0.0103

0.020 0.005 8 0.0251+0.0124
−0.0114

0.020 0.025 2.7 0.0167+0.0060
−0.0052

0.020 0.025 4 0.0142+0.0053
−0.0053

0.020 0.025 6 0.0188+0.0071
−0.0061

0.020 0.025 8 0.0219+0.0083
−0.0083

0.020 0.025 14 0.0234+0.0096
−0.0095

0.020 0.025 25 0.0282+0.0182
−0.0182

0.020 0.025 27 0.0254+0.0128
−0.0129

0.020 0.025 35 0.0333+0.0123
−0.0138

0.020 0.025 45 0.0435+0.0120
−0.0132

0.020 0.125 4 0.0183+0.0047
−0.0044

0.020 0.125 6 0.0174+0.0052
−0.0051

0.020 0.125 8 0.0201+0.0056
−0.0054

0.020 0.125 14 0.0225+0.0072
−0.0069

0.020 0.125 25 0.0252+0.0114
−0.0119

0.020 0.125 27 0.0202+0.0092
−0.0080

0.020 0.125 35 0.0282+0.0110
−0.0111

0.020 0.125 45 0.0223+0.0070
−0.0087

0.020 0.125 55 0.0231+0.0123
−0.0127

0.020 0.125 55 0.0287+0.0110
−0.0112

0.020 0.125 70 0.0255+0.0104
−0.0112

0.020 0.125 90 0.0302+0.0078
−0.0081

0.020 0.125 190 0.0359+0.0115
−0.0115

Table 37: The diffractive structure function multiplied by x
IP
, x

IP
F

D(3)
2 (β, x

IP
, Q2),

for diffractive scattering, γ∗p → XN , MN < 2.3 GeV, for fixed x
IP

= 0.010, 0.020
and fixed β. The errors are the statistical and systematic uncertainties added in
quadrature.
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x
IP

β Q2 x
IP
F

D(3)
2

(GeV2)

0.020 0.400 35 0.0214+0.0103
−0.0111

0.020 0.400 45 0.0192+0.0081
−0.0107

0.020 0.400 90 0.0247+0.0070
−0.0077

0.020 0.400 120 0.0251+0.0043
−0.0069

0.020 0.400 190 0.0280+0.0071
−0.0087

0.020 0.400 320 0.0119+0.0075
−0.0088

0.020 0.700 25 0.0149+0.0073
−0.0100

0.020 0.700 27 0.0153+0.0037
−0.0033

0.020 0.700 35 0.0194+0.0113
−0.0160

0.020 0.700 55 0.0144+0.0055
−0.0052

0.020 0.700 90 0.0240+0.0058
−0.0063

0.020 0.700 120 0.0155+0.0075
−0.0097

0.020 0.700 190 0.0182+0.0076
−0.0086

0.020 0.700 320 0.0197+0.0068
−0.0070

0.020 0.900 70 0.0102+0.0041
−0.0061

0.020 0.900 90 0.0139+0.0067
−0.0099

0.020 0.900 120 0.0055+0.0047
−0.0055

0.020 0.900 190 0.0102+0.0033
−0.0034

0.020 0.900 320 0.0076+0.0056
−0.0059

0.020 0.970 35 0.0085+0.0082
−0.0077

0.020 0.970 45 0.0062+0.0044
−0.0061

0.020 0.970 70 0.0102+0.0052
−0.0069

0.020 0.970 120 0.0058+0.0038
−0.0039

0.020 0.970 320 0.0118+0.0118
−0.0142

0.030 0.025 45 0.0381+0.0187
−0.0202

0.030 0.125 90 0.0295+0.0228
−0.0242

0.030 0.125 190 0.0322+0.0246
−0.0280

0.030 0.040 190 0.0224+0.0110
−0.0086

0.030 0.040 320 0.0193+0.0081
−0.0083

0.030 0.700 320 0.0126+0.0050
−0.0076

0.030 0.900 55 0.0089+0.0056
−0.0069

0.030 0.900 320 0.0132+0.0073
−0.0077

0.030 0.970 55 0.0120+0.0075
−0.0079

0.060 0.970 90 0.0072+0.0046
−0.0052

0.060 0.970 190 0.0072+0.0070
−0.0070

Table 38: The diffractive structure function multiplied by x
IP
, x

IP
F

D(3)
2 (β, x

IP
, Q2),

for diffractive scattering, γ∗p → XN , MN < 2.3 GeV, for fixed x
IP

= 0.020, 0.030
and fixed β. The errors are the statistical and systematic uncertainties added in
quadrature.
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x
IP

β = 0.125 0.40 0.70 0.90

0.0012 c = 0.0144 ± 0.0051 0.0258 ± 0.0072 0.0347 ± 0.0082

a = 0.0117 ± 0.0020 0.0060 ± 0.0024 -0.0017 ± 0.0025

0.0025 0.0278 ± 0.0062 0.0293 ± 0.0056 0.0368 ± 0.0097

0.0037 ± 0.0022 0.0024 ± 0.0017 -0.0033 ± 0.0027

0.0050 0.0134 ± 0.0039 0.0255 ± 0.0036 0.0317 ± 0.0095 0.0347 ± 0.0049

0.0051 ± 0.0017 0.0029 ± 0.0011 0.0002 ± 0.0024 -0.0037 ± 0.0013

0.0100 0.0121 ± 0.0031 0.0288 ± 0.0042 0.0296 ± 0.0062 0.0306 ± 0.0220

0.0046 ± 0.0012 0.0003 ± 0.0012 -0.0005 ± 0.0016 -0.0033 ± 0.0053

Table 39: Fits of x
IP
F

D(3)
2 = c + a · ln(1 + Q2) for the x

IP
, β - values indicated:

shown are the values for c and a.

Exp’t cT cL cg n1 γ χ2/nD

FPC II 0.120 ± 0.003 0.074 ± 0.006 0.0111 ± 0.0015 0.067 ± 0.003 7.98 ± 0.92 0.75

FPC I 0.115 ± 0.003 0.107 ± 0.009 0.0091 ± 0.0003 0.062 ± 0.003 8.60 ± 0.56 0.62

FPC I + FPC II 0.118 ± 0.002 0.087 ± 0.005 0.0090 ± 0.0003 0.062 ± 0.002 8.22 ± 0.46 0.79

Table 40: Results from fitting the data from FPC II, from FPC I, and from the
combined data from FPC I and FPC II to BEKW(mod). The fit procedure includes
the statistical and systematic uncertainties of the data.
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Figure 1: Diagram for non-peripheral deep inelastic scattering.
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Figure 2: Diagrams of diffractive deep inelastic scattering, ep → eXN , proceeding
by the exchange of two gluons.
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points with error bars show the data. The cross hatched histograms show the MC
predictions for the sum of contributions from Xp, ρ0p and non-peripheral processes;
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Figure 10: The differential cross sections, dσdiff
γ∗p→XN/dMX , MN < 2.3 GeV, as a

function of W for bins of Q2 and of MX , for FPC I data (stars) and FPC II data
(dots), for Q2 between 2.7 and 25 GeV2. The inner error bars show the statistical
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Figure 18: The diffractive structure function of the proton multiplied by x
IP
,

x
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F

D(3)
2 , for γ∗p → XN , MN < 2.3 GeVas a function of x

IP
for different regions

of β and Q2, for the FPC II data. The inner error bars show the statistical un-
certainties and the full bars the statistical and systematic uncertainties added in

quadrature. For display purposes, some of the x
IP
F

D(3)
2 values at Q2 = 90, 120, 190

and 320 GeV2 with large uncertainties are not shown but given in Tables 25 – 29.
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Figure 19: The diffractive structure function of the proton multiplied by x
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x
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D(3)
2 , for γ∗p → XN , MN < 2.3 GeVas a function of x

IP
for different regions

of β and Q2 ≤ 25 GeV2: both FPC I data (stars) and FPC II data (dots) are shown.
The inner error bars show the statistical uncertainties and the full bars the statistical
and systematic uncertainties added in quadrature. The curves show the results of
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Figure 20: The diffractive structure function of the proton multiplied by x
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D(3)
2 , for γ∗p → XN , MN < 2.3 GeVas a function of x

IP
for different regions

of β and Q2 ≥ 35 GeV2: both FPC I data (stars) and FPC II data (dots) are shown.
The inner error bars show the statistical uncertainties and the full bars the statisti-
cal and systematic uncertainties added in quadrature. The curves show the results
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longitudinal photons (dotted) and for the (qqg) contribution for transverse photons
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uncertainties are not shown but given in Tables 27 – 29.
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Figure 22: The diffractive structure function of the proton multiplied by x
IP
,

x
IP
F

D(3)
2 , as a function of Q2 for fixed x

IP
= 0.0003 and x

IP
= 0.001 as indicated,

for different values of β. The results of the FPC I and FPC II data are compared
with those of H1. The data are multiplied by a factor of 3i for better visibility with
i = 0 for the highest value of β, i = 1 for the next highest β, and so on. The curves
show the result of the BEKW(mod) fit to the FPC I and FPC II data.

84



Q2(GeV2)

3i  x
IP

F
2D

(3
)

β =  0.95

β =  0.8

β =  0.5

β =  0.32

β =  0.2

β =  0.13

β =  0.08

β =  0.05

β =  0.032

β =  0.02

β =  0.013

β =  0.008

xIP = 0.01

ZEUS FPC I + II
H1

10
-2

10
-1

1

10

10 2

10 3

10 4

1 10 10
2

10
3

Q2(GeV2)

3i  x
IP

F
2D

(3
)

β =  0.95

β =  0.85

β =  0.67

β =  0.43

β =  0.27

β =  0.17

β =  0.11

β =  0.067

β =  0.043

β =  0.027

xIP = 0.003

ZEUS FPC I + II
H1

10
-2

10
-1

1

10

10 2

10 3

1 10 10
2

10
3

F
ig
u
r
e

2
3
:

T
h
e
d
iff
ra
ctive

stru
ctu

re
fu
n
ctio

n
o
f
th
e
p
ro
to
n

m
u
ltip

lied
by

x
IP
,

x
IP
F

D
(3
)

2
,
a
s
a
fu
n
ctio

n
o
f
Q

2
fo
r
fi
xed

x
IP

=
0.003

a
n
d
x

IP
=

0.01,
a
s
in
d
ica

ted
,
fo
r

d
iff
eren

t
va
lu
es

o
f
β
.
T
h
e
resu

lts
o
f
th
e
F
P
C

I
d
a
ta

a
n
d
F
P
C

II
d
a
ta

a
re

co
m
pa
red

w
ith

th
o
se

o
f
H
1
.
T
h
e
d
a
ta

a
re

m
u
ltip

lied
by

a
fa
cto

r
o
f

3
i
fo
r
better

visibility
w
ith

i
=

0
fo
r
th
e
h
igh

est
va
lu
e
o
f
β
,
i

=
1
fo
r
th
e
n
ext

h
igh

est
β
,
a
n
d
so

o
n
.
T
h
e
cu
rves

sh
o
w
th
e
resu

lt
o
f
th
e
B
E
K
W
(m

od
)
fi
t
to

th
e
F
P
C

I
a
n
d
F
P
C

II
d
a
ta
.

85



Q
2 (G

eV
2 )

3
i
 xIPF2

D(3)

β 
= 

 0
.6

7

β 
= 

 0
.4

3

β 
= 

 0
.2

7

β 
= 

 0
.1

7

β 
= 

 0
.1

1

β 
= 

 0
.0

67

β 
= 

 0
.0

43

β 
= 

 0
.0

17

β 
= 

 0
.0

11

β 
= 

 0
.0

06
7

β 
= 

 0
.0

04
3

β 
= 

 0
.0

02
7

x IP
 =

 0
.0

3 Z
E

U
S 

F
P

C
 I

 +
 I

I
H

1

10
-2

10
-111010
2

10
3

10
4 1

10
10

2
10

3
10

4

Figure 24: The diffractive structure function of the proton multiplied by x
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2 , as a function of Q2 for fixed x
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