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Energy dependence of the charged multiplicity in deep

inelastic scattering at HERA

The ZEUS collaboration

Abstract: The charged multiplicity distributions and the mean charged multiplicity have

been investigated in inclusive neutral current deep inelastic ep scattering with the ZEUS

detector at HERA, using an integrated luminosity of 38.6 pb−1. The measurements were

performed in the current region of the Breit frame, as well as in the current fragmentation

region of the hadronic centre-of-mass frame. The KNO-scaling properties of the data were

investigated and the energy dependence was studied using different energy scales. The data

are compared to results obtained in e+e− collisions and to previous DIS measurements as

well as to leading-logarithm parton-shower Monte Carlo predictions.
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1. Introduction

The production of multi-hadronic final states in high-energy two-body collisions has long

been a subject of great interest from experimental and theoretical points of view. The

charged multiplicity at HERA has been measured previously by the H1 [1 – 4] and ZEUS [5 –

7] experiments. In this paper, new measurements by the ZEUS collaboration of the charged

multiplicity in deep inelastic scattering (DIS) are presented.

Measurements are performed in the hadronic centre-of-mass (HCM) frame and the

results are compared with those obtained in e+e− collisions, as well as with those from

previous DIS experiments [1, 8 – 10]. For the ep final state, differences are expected in the

photon (current) and proton (target) fragmentation regions, due to the asymmetric nature

of the reaction. The detector acceptance only allows the current fragmentation region to

be measured.

Measurements of the charged multiplicity are also performed in the current region

of the Breit frame, which should behave similarly to one hemisphere in e+e− collisions.

Previous DIS results [2, 5, 11] using Q, the virtuality of the exchanged photon, as the

scale showed a reasonable agreement with e+e− data. However, this agreement degraded
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at values of Q below 6–8 GeV. In this paper, the energy of the current region of the Breit

frame is used as the scale to compare with e+e− data.

An alternative energy scale, the invariant mass of the hadronic system, has also been

used in both the Breit and HCM frames. The results using this variable are also compared

to results from e+e− collisions.

2. Experimental set-up

The data were collected with the ZEUS detector during the 1996 and 1997 running periods,

when HERA operated with protons of energy Ep = 820 GeV and positrons of energy

Ee = 27.5 GeV, and correspond to an integrated luminosity of 38.6 ± 0.6 pb−1.

The ZEUS detector is described in detail elsewhere [12]. The most important compo-

nents used in the current analysis were the central tracking detector and the calorimeter.

Charged particles were tracked in the central tracking detector (CTD) [13 – 15], which

operated in a magnetic field of 1.43T provided by a thin superconducting coil. The CTD

consisted of 72 cylindrical drift chamber layers, organised in 9 superlayers covering the

polar-angle1 region 15◦ < θ < 164◦. The transverse-momentum resolution for full-length

tracks was σ(pT )/pT = 0.0058pT ⊕ 0.0065 ⊕ 0.0014/pT , with pT in GeV.

The high-resolution uranium-scintillator calorimeter (CAL) [16 – 19] consisted of three

parts: the forward (FCAL), the barrel (BCAL) and the rear (RCAL) calorimeters. Each

part was subdivided transversely into towers and longitudinally into one electromagnetic

section (EMC) and either one (in RCAL) or two (in BCAL and FCAL) hadronic sections

(HAC). The smallest subdivision of the calorimeter was called a cell. The CAL energy res-

olutions, as measured under test-beam conditions, were σ(E)/E = 0.18/
√

E for electrons

and σ(E)/E = 0.35/
√

E for hadrons, with E in GeV.

3. Data selection

Deep inelastic scattering events were selected by requiring that the outgoing positron was

measured in the CAL. The scattered-positron identification was based on a neural-network

algorithm using the CAL information [20].

For the reconstruction of the photon virtuality, Q2, Bjorken x, and the γ∗P centre-of-

mass energy, W , the double angle (DA) method was chosen, in which the scattered-positron

angle, θe, and the hadronic angle γH are used [21]. In the naive quark-parton model, γH

is the angle of the scattered massless quark in the laboratory frame.

For each event, the measurement of the charged multiplicity was performed using tracks

reconstructed in the CTD. The energy of the hadronic final state was measured using a

combination of track and CAL information, excluding the cells and the track associated

with the scattered positron. The selected tracks and CAL clusters were treated as massless

Energy Flow Objects (EFOs) [22]. The clustering of objects was done according to the

1The ZEUS coordinate system is a right-handed Cartesian system, with the Z axis pointing in the proton

beam direction, referred to as the “forward direction”, and the X axis pointing left towards the centre of

HERA. The coordinate origin is at the nominal interaction point.
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Snowmass convention [23]. The transverse momentum, pT , of each EFO was required to

be greater than 0.15 GeV.

The event selection criteria were:

• Ee′ > 12 GeV, where Ee′ is the energy of the scattered positron, to select neutral

current DIS events;

• ye ≤ 0.95, where ye is the scaling variable y as determined from the energy and polar

angle of the scattered positron. This cut reduces the photoproduction background;

• yJB ≥ 0.04, where yJB is the estimate of y using the Jacquet-Blondel (JB)

method [24]. It is defined as yJB =
∑

h(Eh −PZh
)/2Ee, where the sum runs over all

EFOs and Eh and PZh
are the energies and longitudinal momenta of the EFOs re-

spectively. This requirement guarantees sufficient accuracy for the DA reconstruction

method;

• 35 ≤ δ ≤ 60GeV, where δ =
∑

i(Ei −PZi
) and the sum runs over all EFOs and the

scattered positron, to remove photoproduction events and events with large radiative

corrections;

• R ≥ 25 cm, where R is the distance from the beam axis to the impact position of the

scattered positron on the face of the CAL. This ensured that the positron was fully

contained within the detector and its position reconstructed with sufficient accuracy;

• |Zvtx| < 50 cm, where Zvtx is the longitudinal position of the vertex, to reduce

background events from non-ep collisions.

To ensure high-quality tracks reconstructed with high efficiency, the following require-

ments were made:

• the tracks had to pass through at least three CTD superlayers;

• the tracks had to be associated with the primary event vertex;

• the tracks were restricted to the region |ηLAB| ≤ 1.75, where ηLAB is the pseudora-

pidity of the tracks in the laboratory frame;

• the tracks had pT > 0.15 GeV.

The analysis was restricted to the kinematic range Q2 > 25 GeV2 and 70 < W <

225 GeV.

4. Analysis method

Due to the large asymmetry of the beam energies at HERA, a large fraction of the hadronic

final state close to the proton direction lies outside the detector acceptance. Therefore only

hadrons belonging to the current fragmentation regions of the HCM and Breit frames were

used in this analysis. The boost to the corresponding reference frames was calculated using

the positron four-momentum taken from the DA method.

– 3 –
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4.1 Breit frame

In the Breit frame, which is defined by the condition that the momentum of the exchanged

virtual boson is purely spacelike, q = (0, 0,−Q), the particles produced in the interaction

can be assigned to one of two regions: the current region if their longitudinal momentum

in the Breit frame is negative, and the target region if their longitudinal momentum is

positive. The hadronic system of the current region used in this analysis is almost fully

(about 95%) contained within the acceptance of the CTD.

Previous analyses compared the mean charged multiplicity 〈nch〉 as a function of Q to

〈nch〉/2 as a function of
√

s in e+e− collisions [2, 5]. For values of Q > 8GeV, reasonable

agreement was observed, while some disagreement was found for Q < 8GeV. The difference

can be understood in terms of higher-order processes [25], which change the available energy

in the current region of the Breit frame, Ecr
B , which is no longer equal to Q/2. In this

analysis the quantity 2 · Ecr
B is used as a scale. On an event-by-event basis this method

should compensate for particles and their corresponding energies migrating between current

and target regions of the Breit frame.

4.2 Hadronic centre-of-mass frame

In the HCM frame, the exchanged virtual boson has four-momentum q = {E, p} =

(W 2−Q2

2W
, 0, 0, W 2+Q2

2W
). The hadronic final state is separated into the photon (current) and

proton (target) fragmentation regions. About 60–80% of the current region of the HCM

frame is contained within the acceptance of the CTD.

The multiplicity in the HCM frame in DIS is usually studied as a function of W [1, 8 –

10]. At HERA, the energy in the current region of the HCM frame, Ecr
HCM, coincides with

W/2 within 0.3 − 0.4%. Thus, for practical reasons, W was used as the energy scale.

4.3 Invariant mass of the hadronic system

Charged multiplicities in the current region of both the Breit and HCM frames were also

measured as functions of the invariant mass:

M2
eff =

(

∑

i

Ei

)2

−
(

∑

i

PXi

)2

−
(

∑

i

PYi

)2

−
(

∑

i

PZi

)2

, (4.1)

where the sum runs over all charged and neutral particles of the corresponding hadronic

system.

5. Monte Carlo models, acceptance corrections and systematic errors

Samples of neutral current DIS events were generated using the colour-dipole model as

implemented in Ariadne 4.12 [26] or with the MEPS model of Lepto 6.5 [27]. Both

programs were interfaced to Heracles 4.6.1 [28, 29] using the Djangoh 1.1 [30, 31]

program. Both Ariadne and Lepto use the Lund string model [32] for the hadronisa-

tion. The event samples were generated using the CTEQ4D [33] parametrisation of the

parton distribution functions (PDFs) in the proton. The cluster hadronisation model as

– 4 –
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20<2Ecr<30 GeV          B

30<2Ecr<45 GeV          B

45<2Ecr<100 GeV          B

Figure 1: Multiplicity distributions measured in the current region of the Breit frame in bins of

2 · Ecr
B (solid circles). The inner error bars represent the statistical uncertainties and the outer error

bars the statistical and systematic uncertainties added in quadrature. The predictions (solid lines)

of different MC models are also shown.

implemented in Herwig 6.1 [34] was used to estimate the effect of different hadronisation

schemes on the unfolding procedure. The minimum transverse momentum of outgoing

partons in the hard interaction and of partons participating in multi-parton interactions is

adjustable in Herwig using the parameter pmin
T . The parameter was tuned in this analysis

to improve the description of the detector distributions. The best agreement was found for

pmin
T = 2.5 GeV [35]. The Herwig samples were generated using CTEQ5L [36] parametri-

sation of the proton PDFs. The MC samples were used both for data correction and for

comparison of the data to the model predictions.

– 5 –



J
H
E
P
0
6
(
2
0
0
8
)
0
6
1

The corrections applied to the data accounted for the effects of acceptance and res-

olution of the detector, event selection cuts, QED-radiative effects, track reconstruction,

track selection cuts, and energy losses in the inactive material in front of the calorimeter in

the case of the energy measurement. Finally the multiplicity distributions were corrected

using a matrix unfolding method as described in earlier studies [5].

The generated events were passed through a full simulation of the detector, using a

program based on Geant 3.13 [37], and processed and selected with the same programs

as used for the data. The simulated samples were used to determine the response of the

detector and to evaluate the correction factors necessary to obtain hadron-level quantities.

The hadron level is defined by those hadrons with lifetime τ ≥ 3 · 10−10 seconds. In order

to compare the results to different experiments, corrections were calculated both including

and not including the decay products of K0
S and Λ.

The dominant systematic uncertainty in this analysis arises from the simulation of the

hadronic final state. To correct the data, the average of the correction factors from the

Ariadne and Herwig MC programs was used. One half of the difference, as large as 5%,

was assigned to the systematic uncertainties.

Other sources of uncertainty are (typical values of the uncertainties are shown in paren-

theses): event reconstruction and selection (< 0.5%), track reconstruction and selection

(< 0.5%), and the uncertainty due to variation of the Q2 cut by its resolution (< 1.7%).

The uncertainty due to contamination from diffractive events is negligible. The individ-

ual systematic uncertainties were added in quadrature. The major correlated uncertainty

comes from the CAL energy scale (< 1.5%) and is not shown in the figures or given in the

tables. A detailed study of the sources contributing to the uncertainties of the measurement

can be found elsewhere [38].

6. Results

6.1 Multiplicity distributions

The multiplicity distributions in the current region of the Breit frame are presented in

figure 1 and table 1 and in figure 2 and table 2 in bins of 2 · Ecr
B and in bins of Meff

respectively. The kinematic range of the analysis restricts the Meff measurements in the

current region of the Breit frame to a maximum value of about 20 GeV. The predictions of

Ariadne, Lepto and Herwig are also shown. All three MC models generally describe the

data, but Ariadne gives the best description. In all figures and tables the charged-particle

decay products of K0
S and Λ are included, unless otherwise stated.

– 6 –
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2 · Ecr
B 1.5–4 4–8 8–12 12–20 20–30 30–45 45–100

(GeV)

nch=0 12.33 ± 0.25+0.21
−0.23 4.34 ± 0.09+0.65

−0.65 1.83 ± 0.10+0.57
−0.56 0.81 ± 0.03+0.26

−0.26 0.33 ± 0.03+0.10
−0.10 0.23 ± 0.05+0.09

−0.09 0.17 ± 0.09+0.09
−0.09

1 35.79 ± 0.46+0.18
−0.35 17.44 ± 0.19+0.71

−0.72 8.29 ± 0.20+0.78
−0.77 4.35 ± 0.06+0.44

−0.44 2.23 ± 0.08+0.33
−0.33 1.45 ± 0.13+0.45

−0.44 0.86 ± 0.16+0.19
−0.20

2 33.31 ± 0.43+0.65
−0.57 27.99 ± 0.24+0.21

−0.21 17.14 ± 0.30+0.44
−0.51 10.07 ± 0.09+0.38

−0.38 5.50 ± 0.13+0.39
−0.38 3.38 ± 0.18+0.28

−0.27 2.11 ± 0.25+0.38
−0.35

3 14.50 ± 0.26+0.39
−0.39 26.40 ± 0.23+0.50

−0.49 24.13 ± 0.36+0.25
−0.37 17.08 ± 0.12+0.19

−0.20 10.95 ± 0.19+0.29
−0.32 7.14 ± 0.27+0.48

−0.42 4.45 ± 0.38+0.65
−0.63

4 3.46 ± 0.12+0.18
−0.18 15.27 ± 0.18+0.42

−0.42 21.62 ± 0.34+0.65
−0.66 19.82 ± 0.12+0.18

−0.27 14.65 ± 0.22+0.11
−0.21 11.05 ± 0.34+0.30

−0.25 7.36 ± 0.48+0.63
−0.60

5 0.54 ± 0.04+0.04
−0.03 6.14 ± 0.11+0.42

−0.40 14.72 ± 0.29+0.73
−0.71 18.41 ± 0.12+0.43

−0.45 16.90 ± 0.23+0.16
−0.15 14.03 ± 0.38+0.26

−0.25 10.19 ± 0.56+0.42
−0.33

6 0.07 ± 0.02+0.01
−0.01 1.88 ± 0.06+0.14

−0.14 7.55 ± 0.20+0.45
−0.40 13.36 ± 0.10+0.47

−0.48 15.42 ± 0.22+0.30
−0.30 14.17 ± 0.38+0.29

−0.36 11.66 ± 0.60+0.37
−0.27

7 0.43 ± 0.02+0.03
−0.03 3.16 ± 0.13+0.22

−0.19 8.30 ± 0.08+0.30
−0.26 12.86 ± 0.20+0.43

−0.41 13.22 ± 0.36+0.60
−0.61 11.96 ± 0.61+0.28

−0.16

8 0.09 ± 0.01+0.01
−0.01 1.13 ± 0.08+0.06

−0.08 4.36 ± 0.06+0.17
−0.10 8.78 ± 0.17+0.30

−0.30 10.96 ± 0.33+0.38
−0.44 11.26 ± 0.59+0.66

−0.52

9 0.34 ± 0.04+0.02
−0.02 2.09 ± 0.04+0.10

−0.06 5.68 ± 0.13+0.28
−0.28 8.30 ± 0.28+0.42

−0.41 10.10 ± 0.56+0.47
−0.44

10 0.06 ± 0.01+0.01
−0.01 0.85 ± 0.03+0.06

−0.04 3.27 ± 0.10+0.07
−0.02 6.01 ± 0.25+0.22

−0.08 7.66 ± 0.48+0.57
−0.65

11 0.02 ± 0.01+0.00
−0.00 0.33 ± 0.02+0.04

−0.03 1.80 ± 0.07+0.02
−0.05 4.00 ± 0.20+0.13

−0.07 6.32 ± 0.44+0.18
−0.27

12 0.12 ± 0.01+0.02
−0.02 0.85 ± 0.05+0.08

−0.09 2.53 ± 0.16+0.10
−0.09 4.80 ± 0.40+0.37

−0.57

13 0.45 ± 0.04+0.08
−0.07 1.58 ± 0.12+0.05

−0.07 3.46 ± 0.31+0.35
−0.41

14 0.19 ± 0.02+0.02
−0.02 0.98 ± 0.10+0.11

−0.11 2.46 ± 0.26+0.07
−0.13

15 0.09 ± 0.02+0.02
−0.02 0.48 ± 0.06+0.05

−0.02 1.77 ± 0.23+0.23
−0.37

16 0.03 ± 0.01+0.01
−0.01 0.26 ± 0.05+0.03

−0.03 1.17 ± 0.19+0.09
−0.11

17 0.02 ± 0.01+0.01
−0.02 0.14 ± 0.04+0.03

−0.04 0.74 ± 0.15+0.13
−0.14

18 0.01 ± 0.01+0.00
−0.00 0.06 ± 0.02+0.02

−0.02 0.65 ± 0.15+0.18
−0.07

19 0.30 ± 0.08+0.07
−0.11

20 0.20 ± 0.06+0.17
−0.05

Table 1: Multiplicity distributions 100 · 1/NdN/dnch measured in the current region of the Breit frame in bins of 2 · Ecr
B . The first errors are

statistical and the second are the systematic uncertainties.
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Meff (GeV) 1.5–4 4–8 8–12 12–20

nch=0 1.90 ± 0.05+0.34
−0.34

0.23 ± 0.04+0.07
−0.07

0.04 ± 0.02+0.02
−0.01

0.02 ± 0.02+0.01
−0.01

1 9.81 ± 0.13+0.47
−0.50

1.68 ± 0.12+0.24
−0.22

0.40 ± 0.05+0.02
−0.02

0.13 ± 0.05+0.02
−0.02

2 21.73 ± 0.20+0.28
−0.32

5.57 ± 0.24+0.31
−0.26

1.26 ± 0.09+0.04
−0.07

0.56 ± 0.13+0.21
−0.21

3 28.19 ± 0.23+0.28
−0.29

12.12 ± 0.37+0.35
−0.24

3.58 ± 0.16+0.16
−0.14

1.49 ± 0.18+0.19
−0.17

4 21.12 ± 0.20+0.15
−0.14

17.68 ± 0.47+0.31
−0.40

6.73 ± 0.23+0.09
−0.12

3.33 ± 0.30+0.26
−0.30

5 10.93 ± 0.14+0.32
−0.25

19.78 ± 0.51+0.21
−0.29

11.07 ± 0.31+0.34
−0.37

5.64 ± 0.39+0.27
−0.18

6 4.40 ± 0.09+0.13
−0.08

17.11 ± 0.48+0.69
−0.69

14.17 ± 0.37+0.11
−0.20

8.38 ± 0.50+0.24
−0.12

7 1.43 ± 0.05+0.05
−0.03

12.41 ± 0.41+0.17
−0.18

16.01 ± 0.40+0.39
−0.42

10.47 ± 0.58+0.40
−0.35

8 0.38 ± 0.02+0.02
−0.01

7.27 ± 0.31+0.25
−0.24

14.40 ± 0.38+0.46
−0.46

12.16 ± 0.66+0.43
−0.42

9 0.09 ± 0.01+0.01
−0.01

3.51 ± 0.23+0.47
−0.46

11.74 ± 0.35+0.29
−0.26

12.75 ± 0.68+0.27
−0.17

10 1.63 ± 0.15+0.17
−0.16

8.46 ± 0.30+0.33
−0.29

11.80 ± 0.69+0.28
−0.26

11 0.66 ± 0.09+0.09
−0.08

5.50 ± 0.24+0.25
−0.21

10.03 ± 0.63+0.33
−0.12

12 0.26 ± 0.06+0.05
−0.05

3.16 ± 0.18+0.32
−0.31

7.74 ± 0.57+0.25
−0.34

13 0.04 ± 0.02+0.01
−0.01

1.76 ± 0.13+0.24
−0.20

5.56 ± 0.46+0.21
−0.48

14 0.03 ± 0.02+0.01
−0.01

0.94 ± 0.09+0.13
−0.11

4.02 ± 0.40+0.33
−0.21

15 0.01 ± 0.01+0.01
−0.01

0.41 ± 0.06+0.13
−0.12

2.50 ± 0.31+0.11
−0.22

16 0.19 ± 0.04+0.04
−0.04

1.44 ± 0.25+0.07
−0.14

17 0.10 ± 0.03+0.03
−0.05

0.89 ± 0.19+0.21
−0.23

18 0.05 ± 0.02+0.03
−0.02

0.52 ± 0.14+0.13
−0.13

19 0.01 ± 0.01+0.00
−0.00

0.22 ± 0.09+0.11
−0.11

20 0.19 ± 0.09+0.13
−0.10

Table 2: Multiplicity distributions 100 · 1/NdN/dnch measured in the current region of the Breit

frame in bins of Meff . The first errors are statistical and the second are the systematic uncertainties.

For a given bin of energy, the multiplicities as a function of 2 · Ecr
B and Meff differ by

approximately a factor of two. This is due to the fact that 2 · Ecr
B (as well as Q or W )

characterise the total centre-of-mass energy of the system of which only one hemisphere

is measured. On the other hand the Meff method measures the multiplicity of the system

with respect to the corresponding invariant mass.

The multiplicity distributions in the current region of the HCM frame are presented

in figure 3 and table 3 in bins of W . Both Ariadne and Lepto predict similar W distri-

butions and give a reasonable description of the data. Herwig predicts longer tails for the

multiplicity distributions in bins of W . This leads to higher average multiplicities, affecting

the unfolded multiplicity values and increasing the systematic uncertainties of the measure-

ment. The Ariadne predictions vary slightly from both Lepto and Herwig at the rising

edge of the distributions, which also leads to an increase of the systematic uncertainties.

The multiplicity distributions in the current region of the HCM frame in bins of Meff

are presented in figure 4 and table 4. To minimise the extrapolation both in multiplicity

and Meff , an additional requirement, |ηLAB| < 1.75, was applied at the hadron level. None

of the MC models shown in figure 4 give a complete description of the data. This is most

visible at higher values of Meff .
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Figure 2: Multiplicity distributions measured in the current region of the Breit frame in bins of

Meff (solid circles). The inner error bars represent the statistical uncertainties and the outer error

bars the statistical and systematic uncertainties added in quadrature. The predictions (solid lines)

of different MC models are also shown.

6.2 KNO scaling

The multiplicity distributions are expected to scale with energy as discussed in detail

elsewhere [39]. A commonly used form of the scaling, from KNO [40], is shown in figures 5–

8, where the product of the multiplicity distribution P (nch) with average multiplicity 〈nch〉,
〈nch〉P (nch), is shown as a function of nch/〈nch〉.

In figure 5(a), the KNO distributions measured in bins of W in the current region of

the HCM frame are shown. Within the uncertainties, the distributions measured in three

bins of W agree. They also agree well with the average distribution, which was calculated

– 9 –
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Figure 3: Multiplicity distributions measured in the current region of the HCM frame in bins of

W (solid circles). The inner error bars represent the statistical uncertainties and the outer error

bars the statistical and systematic uncertainties added in quadrature. The predictions (solid lines)

of different MC models are also shown.

using data for the entire W region, 70 < W < 225 GeV. This average KNO spectrum,

presented as a histogram, is shown in figures 5 and 6 as a reference KNO distribution.

The reference KNO distribution is compared to the measurements in the current region

of the Breit frame in figures 5(b) and 5(c) in bins of 2 · Ecr
B . For values of 2 · Ecr

B >

12 GeV, as shown in figure 5(c), the measurements are in reasonable agreement with the

reference KNO histogram. For lower values of 2 · Ecr
B , as demonstrated in figure 5(b), the

distributions do not follow the KNO-scaling behaviour; they have different shapes, but

approach the KNO curve with increasing values of 2 · Ecr
B .
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J
H
E
P
0
6
(
2
0
0
8
)
0
6
1

W (GeV) 70–100 100–150 150–225

nch=0 0.09 ± 0.03+0.01
−0.01

0.11 ± 0.03+0.02
−0.02

0.09 ± 0.02+0.05
−0.04

1 0.37 ± 0.04+0.13
−0.13

0.26 ± 0.03+0.10
−0.10

0.25 ± 0.04+0.17
−0.17

2 1.50 ± 0.07+0.28
−0.28

1.02 ± 0.06+0.23
−0.23

0.81 ± 0.05+0.19
−0.19

3 2.58 ± 0.09+0.36
−0.36

1.55 ± 0.06+0.17
−0.17

0.99 ± 0.05+0.18
−0.17

4 5.22 ± 0.13+0.52
−0.52

3.60 ± 0.09+0.69
−0.69

2.43 ± 0.08+0.66
−0.66

5 6.47 ± 0.14+0.39
−0.38

4.43 ± 0.10+0.14
−0.13

3.00 ± 0.08+0.07
−0.06

6 8.97 ± 0.16+0.58
−0.58

6.71 ± 0.12+0.85
−0.85

4.72 ± 0.10+0.80
−0.80

7 9.57 ± 0.17+0.12
−0.09

7.40 ± 0.13+0.19
−0.18

5.51 ± 0.11+0.24
−0.23

8 9.89 ± 0.16+0.78
−0.78

8.41 ± 0.13+0.89
−0.89

6.82 ± 0.12+0.87
−0.87

9 9.53 ± 0.16+0.53
−0.53

8.45 ± 0.13+0.51
−0.51

7.18 ± 0.12+0.57
−0.57

10 8.73 ± 0.16+0.70
−0.70

8.40 ± 0.13+0.85
−0.85

7.61 ± 0.13+0.74
−0.74

11 7.82 ± 0.15+0.41
−0.41

8.05 ± 0.13+0.40
−0.41

7.54 ± 0.13+0.57
−0.57

12 6.63 ± 0.14+0.16
−0.16

7.31 ± 0.12+0.49
−0.49

7.41 ± 0.13+0.58
−0.58

13 5.50 ± 0.13+0.11
−0.12

6.46 ± 0.12+0.15
−0.15

6.82 ± 0.12+0.30
−0.30

14 4.32 ± 0.12+0.12
−0.15

5.53 ± 0.11+0.03
−0.02

6.33 ± 0.12+0.31
−0.31

15 3.45 ± 0.11+0.25
−0.25

4.72 ± 0.10+0.19
−0.19

5.69 ± 0.11+0.05
−0.05

16 2.58 ± 0.09+0.37
−0.37

3.90 ± 0.10+0.27
−0.27

4.93 ± 0.11+0.00
−0.03

17 1.96 ± 0.09+0.44
−0.44

3.16 ± 0.09+0.44
−0.44

4.22 ± 0.10+0.30
−0.30

18 1.46 ± 0.08+0.45
−0.45

2.58 ± 0.08+0.45
−0.45

3.48 ± 0.09+0.30
−0.30

19 1.05 ± 0.07+0.35
−0.35

1.98 ± 0.08+0.51
−0.51

2.95 ± 0.09+0.37
−0.37

20 0.74 ± 0.06+0.34
−0.34

1.50 ± 0.07+0.51
−0.51

2.32 ± 0.08+0.45
−0.45

21 0.51 ± 0.06+0.25
−0.25

1.14 ± 0.06+0.48
−0.48

1.91 ± 0.08+0.52
−0.52

22 0.34 ± 0.05+0.19
−0.19

0.90 ± 0.06+0.38
−0.38

1.51 ± 0.07+0.48
−0.48

23 0.25 ± 0.05+0.16
−0.16

0.65 ± 0.05+0.36
−0.36

1.22 ± 0.07+0.47
−0.47

24 0.17 ± 0.04+0.12
−0.12

0.46 ± 0.05+0.27
−0.27

0.94 ± 0.06+0.41
−0.41

25 0.10 ± 0.04+0.08
−0.08

0.36 ± 0.05+0.23
−0.23

0.74 ± 0.06+0.40
−0.40

26 0.08 ± 0.03+0.06
−0.06

0.28 ± 0.04+0.20
−0.20

0.58 ± 0.05+0.31
−0.31

27 0.05 ± 0.03+0.04
−0.04

0.19 ± 0.04+0.15
−0.15

0.45 ± 0.05+0.27
−0.27

28 0.03 ± 0.02+0.03
−0.03

0.15 ± 0.04+0.12
−0.12

0.36 ± 0.05+0.23
−0.23

29 0.02 ± 0.02+0.01
−0.02

0.10 ± 0.04+0.08
−0.08

0.29 ± 0.05+0.20
−0.20

30 0.01 ± 0.03+0.01
−0.02

0.07 ± 0.02+0.05
−0.05

0.22 ± 0.05+0.17
−0.17

31 0.05 ± 0.03+0.04
−0.04

0.17 ± 0.04+0.12
−0.12

32 0.04 ± 0.03+0.03
−0.03

0.13 ± 0.05+0.11
−0.11

33 0.03 ± 0.03+0.03
−0.03

0.10 ± 0.04+0.08
−0.08

34 0.01 ± 0.02+0.01
−0.01

0.08 ± 0.03+0.06
−0.06

35 0.01 ± 0.01+0.01
−0.01

0.05 ± 0.03+0.05
−0.07

36 0.05 ± 0.03+0.05
−0.04

37 0.03 ± 0.03+0.03
−0.03

38 0.02 ± 0.02+0.02
−0.02

Table 3: Multiplicity distributions 100 · 1/NdN/dnch measured in the current region of the HCM

in bins of W . The first errors are statistical and the second are the systematic uncertainties.

In figure 6, the KNO distributions measured in bins of Meff in the current region

of the HCM frame are presented. The multiplicity distributions in bins of Meff do not

follow the same KNO scaling observed for measurements as functions of W or 2 · Ecr
B ,

but do demonstrate scaling behaviour for Meff values above 8GeV. The measurements at
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Figure 4: Multiplicity distributions measured in the current region of the HCM frame in bins of

Meff (solid circles). The inner error bars represent the statistical uncertainties and the outer error

bars the statistical and systematic uncertainties added in quadrature. The predictions (solid lines)

of different MC models are also shown.

Meff < 4GeV in the current regions of both the Breit and HCM frames behave differently

from the measurements at the higher values of Meff .

Figure 7 shows a comparison of the KNO distributions from ZEUS with results ob-

tained in e+e− collisions. The measurements in bins of 2 · Ecr
B , for 2 · Ecr

B > 12 GeV, and

in bins of W are plotted together and compared with measurements in one hemisphere of

e+e−. In figure 7(a), a comparison with results from the TASSO collaboration [41] in the

energy range 14 <
√

see < 44 GeV is shown. At LEP only DELPHI [42] and OPAL [43]

performed measurements in a single hemisphere at
√

see = 91.2 GeV. A comparison with
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J
H
E
P
0
6
(
2
0
0
8
)
0
6
1

Meff (GeV) 1.5–4 4–8 8–12 12–20 20–30

nch=0 1.44 ± 0.09+0.58
−0.58

0.12 ± 0.01+0.04
−0.04

0.02 ± 0.01+0.00
−0.00

1 6.59 ± 0.22+0.74
−0.74

1.06 ± 0.04+0.05
−0.06

0.18 ± 0.02+0.03
−0.03

0.05 ± 0.01+0.01
−0.01

2 16.69 ± 0.40+1.54
−1.50

3.83 ± 0.09+0.13
−0.13

0.76 ± 0.04+0.01
−0.04

0.17 ± 0.02+0.01
−0.01

0.03 ± 0.02+0.01
−0.01

3 23.29 ± 0.49+0.27
−0.21

8.91 ± 0.14+0.27
−0.22

2.27 ± 0.08+0.03
−0.10

0.54 ± 0.04+0.01
−0.03

0.13 ± 0.04+0.05
−0.03

4 24.20 ± 0.52+1.26
−1.28

15.01 ± 0.19+0.81
−0.82

5.15 ± 0.12+0.32
−0.38

1.32 ± 0.06+0.08
−0.09

0.31 ± 0.06+0.08
−0.06

5 15.49 ± 0.41+0.87
−0.86

18.40 ± 0.21+0.14
−0.21

8.84 ± 0.16+0.46
−0.48

2.81 ± 0.09+0.19
−0.20

0.78 ± 0.10+0.10
−0.07

6 8.07 ± 0.29+0.34
−0.32

18.13 ± 0.22+0.71
−0.71

12.51 ± 0.19+0.64
−0.65

4.81 ± 0.12+0.41
−0.43

1.49 ± 0.13+0.13
−0.07

7 3.03 ± 0.17+0.16
−0.18

14.32 ± 0.19+0.32
−0.34

14.61 ± 0.21+0.79
−0.79

7.30 ± 0.15+0.68
−0.69

2.43 ± 0.18+0.18
−0.23

8 0.95 ± 0.09+0.13
−0.12

9.62 ± 0.16+0.26
−0.24

14.62 ± 0.21+0.60
−0.59

9.38 ± 0.18+0.68
−0.69

3.91 ± 0.22+0.65
−0.59

9 0.20 ± 0.04+0.06
−0.07

5.54 ± 0.12+0.50
−0.49

12.97 ± 0.20+0.20
−0.16

11.03 ± 0.19+0.85
−0.86

5.56 ± 0.28+0.95
−0.93

10 0.05 ± 0.02+0.03
−0.01

2.82 ± 0.09+0.34
−0.33

10.32 ± 0.19+0.28
−0.27

11.53 ± 0.20+0.63
−0.63

6.97 ± 0.31+1.10
−1.13

11 1.36 ± 0.06+0.28
−0.28

7.24 ± 0.16+0.46
−0.44

11.18 ± 0.20+0.59
−0.59

8.01 ± 0.33+1.23
−1.25

12 0.57 ± 0.04+0.13
−0.13

4.74 ± 0.13+0.71
−0.70

10.07 ± 0.20+0.20
−0.21

8.48 ± 0.35+1.05
−1.04

13 0.19 ± 0.03+0.07
−0.07

2.73 ± 0.10+0.59
−0.58

8.44 ± 0.18+0.27
−0.24

9.26 ± 0.36+1.36
−1.36

14 0.08 ± 0.02+0.02
−0.02

1.51 ± 0.08+0.38
−0.37

6.58 ± 0.16+0.52
−0.51

8.90 ± 0.38+0.72
−0.71

15 0.03 ± 0.01+0.00
−0.01

0.83 ± 0.06+0.28
−0.28

4.92 ± 0.15+0.60
−0.59

8.09 ± 0.36+0.37
−0.35

16 0.35 ± 0.04+0.14
−0.14

3.53 ± 0.13+0.66
−0.65

7.57 ± 0.36+0.21
−0.21

17 0.20 ± 0.03+0.08
−0.08

2.43 ± 0.11+0.64
−0.63

6.41 ± 0.35+0.47
−0.45

18 0.08 ± 0.02+0.03
−0.03

1.56 ± 0.10+0.56
−0.56

5.17 ± 0.33+0.86
−0.90

19 0.03 ± 0.02+0.02
−0.02

0.96 ± 0.08+0.36
−0.36

4.08 ± 0.29+0.65
−0.71

20 0.01 ± 0.01+0.01
−0.01

0.59 ± 0.06+0.25
−0.25

3.47 ± 0.29+0.96
−0.95

21 0.36 ± 0.05+0.18
−0.18

2.63 ± 0.27+0.99
−0.98

22 0.18 ± 0.04+0.12
−0.11

1.83 ± 0.24+0.72
−0.72

23 0.12 ± 0.04+0.09
−0.08

1.39 ± 0.23+0.77
−0.75

24 0.07 ± 0.02+0.04
−0.04

0.96 ± 0.20+0.62
−0.63

25 0.04 ± 0.02+0.02
−0.02

0.66 ± 0.20+0.50
−0.52

26 0.02 ± 0.02+0.01
−0.02

0.53 ± 0.16+0.33
−0.33

27 0.34 ± 0.16+0.27
−0.22

28 0.28 ± 0.20+0.26
−0.26

29 0.13 ± 0.11+0.11
−0.13

30 0.09 ± 0.07+0.07
−0.12

Table 4: Multiplicity distributions 100 · 1/NdN/dnch measured in the current region of the HCM

frame in bins of Meff . The first errors are statistical and the second are the systematic uncertainties.

the present data is shown in figure 7(b). The systematic uncertainties are not shown, but

within statistical uncertainties there is a remarkable agreement between ep and e+e− re-

sults. However, the LEP data differ somewhat from the present measurement in the peak

region and at very low values of nch/〈nch〉.
The data as a function of Meff , for Meff > 8 GeV, are compared with the e+e−

measurements for the whole event in figure 8. Both the TASSO and LEP [42 – 56] data

(91.2 <
√

see < 209 GeV) agree with the present measurement.

6.3 Mean charged multiplicity

Figure 9 and table 5 show the mean charged multiplicity, 〈nch〉, in the current region of
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Figure 5: The multiplicity distributions plotted in KNO form. The reference KNO histogram

represents the measured distribution in the HCM frame in the entire W range. (a) Multiplicity dis-

tributions measured in the current region of the HCM frame in bins of W . Multiplicity distributions

measured in the current region of the Breit frame in bins of 2 · Ecr
B for (b) 1.5 < 2 · Ecr

B < 12 GeV

and (c) 12 < 2 · Ecr
B < 100 GeV.

the HCM frame as a function of W and the mean charged multiplicity in the current re-

gion of the Breit frame as a function of 2 · Ecr
B . The K0

S and Λ hadrons were considered

stable in figure 9, where the data are compared with results of previously published HERA

measurements [1, 2, 4, 5]. As expected, at low values of 2 · Ecr
B , the measurement differs

with those as a function of Q (see section 4.1). At higher values of 2 · Ecr
B the data agree

within the experimental uncertainties with the previous ZEUS and H1 measurements, but

lie systematically above them. The data are in good agreement with the Ariadne and

Lepto predictions. The Herwig predictions also describe the data but are below those

from Ariadne and Lepto. In the current region of the HCM, the measurement agrees

well, with improved statistical and systematic uncertainties, with the earlier H1 results.

The Ariadne and Lepto predictions agree with the data. Herwig predicts a very dif-

ferent slope, with much higher multiplicities at higher energies; with increasing energy the

agreement with data degrades.
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Figure 6: The multiplicity distributions plotted in KNO form and compared to the reference KNO

distribution (histogram). The multiplicity distributions are measured in bins of Meff in the current

regions of (a) the HCM frame, restricted in ηLAB, and (b) the Breit frame.

2 · Ecr
B (GeV) 〈nch〉 (K0,Λ stable) 〈nch〉 (K0,Λ decay)

2.9 1.50 ± 0.01+0.04
−0.00 1.63 ± 0.01+0.05

−0.01

5.9 2.39 ± 0.01+0.09
−0.05 2.60 ± 0.01+0.11

−0.05

9.6 3.27 ± 0.01+0.12
−0.08 3.55 ± 0.01+0.15

−0.08

14.8 4.17 ± 0.01+0.10
−0.05 4.53 ± 0.01+0.12

−0.05

23.8 5.22 ± 0.01+0.06
−0.05 5.67 ± 0.01+0.08

−0.05

35.6 6.19 ± 0.03+0.08
−0.07 6.68 ± 0.03+0.08

−0.08

58.1 7.46 ± 0.06+0.14
−0.16 8.04 ± 0.06+0.16

−0.18

W (GeV) 〈nch〉 (K0,Λ stable) 〈nch〉 (K0,Λ decay)

84.6 8.72 ± 0.02+0.22
−0.22 9.58 ± 0.02+0.33

−0.33

123.8 10.04 ± 0.02+0.44
−0.44 11.07 ± 0.02+0.61

−0.61

184.5 11.40 ± 0.03+0.58
−0.58 12.59 ± 0.03+0.79

−0.79

Table 5: Mean charged multiplicity, 〈nch〉, measured in the current region of the Breit frame as a

function of 2 · Ecr
B and in the current fragmentation region of the HCM frame as a function of W .

The first errors are statistical and the second are the systematic uncertainties.

The mean charged multiplicities in the current regions of the Breit and HCM frames are

presented in figure 10 and table 6 as a function of the invariant mass of the corresponding

– 15 –
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Figure 7: The multiplicity distributions plotted in KNO form and compared to the results of

e+e− experiments. The solid circles represent the ZEUS data measured in the current region of

the Breit frame in bins of 2 · Ecr
B , for 2 · Ecr

B ≥ 12 GeV, and the solid squares represent the data

measured in the current region of the HCM frame in bins of W . Multiplicities measured in one

hemisphere of the e+e− collision are shown in bins of
√

see for (a) the TASSO experiment [41], in

the energy range 14 ≤ √
see ≤ 44 GeV, and (b) for the LEP experiments [42, 43], measured at

energy
√

see = 91.2 GeV.

hadronic system, Meff . In figures 10(a) and 10(b), the multiplicities are compared to

the MC predictions. All three MC models describe the data reasonably well; however in

the last Meff bin in the current region of the HCM, the Herwig prediction is too high.

In figure 10(c), both measurements are shown together and compared with different MC

curves calculated using the Ariadne MC. The measurements in the Breit and HCM frames

agree at values of Meff less than 10 GeV. Above this value, 〈nch〉 rises much faster with Meff

in the current region of the HCM frame than in the current region of the Breit frame. Since

the HCM measurement was restricted in η, a separate Ariadne calculation was performed

in the total current region of the HCM frame. The difference is small, although the rise of

– 16 –
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Figure 8: The multiplicity distributions plotted in KNO form and compared to the results of the

e+e− experiments. The solid circles represent the ZEUS data measured in the current region of

the Breit frame and the solid squares represent the data measured in the current region of the

HCM frame both in bins of Meff , for Meff ≥ 8 GeV. Charged multiplicities measured for the

whole event in e+e− collisions are shown in bins of
√

see for (a) the TASSO experiment [41], in the

energy range 14 ≤ √
see ≤ 44 GeV, and (b) for the LEP experiments [42 – 56] in the energy range

91.2 ≤ √
see ≤ 209 GeV.

〈nch〉 with Meff is faster in the total current region of the HCM frame.

Figure 10(c) also shows 2 · 〈nch〉 as a function of 2 · Ecr
B . This measurement exhibits

the same behaviour as 〈nch〉 as a function of Meff in the current region of the Breit frame

but differs from that in the HCM frame. The multiplicity in the current region of the HCM

frame rises much faster with the invariant mass than with W .

Finally, figure 11 combines the mean charged multiplicities measured in the current

regions of the Breit and HCM frames as functions of the respective energy scales, 2 · Ecr
B

and W . Also shown are the measurements from e+e− [41 – 59] and fixed-target [8 – 10]

experiments. The fixed-target data were scaled by a factor two, since they only measure

one hemisphere and by a factor 1.08, to correct for the decays of the K0
S and Λ, as estimated

using Ariadne MC.
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Figure 9: Mean charged multiplicity, 〈nch〉, in the current region of the Breit frame as a function

of 2 · Ecr
B and in the current fragmentation region of the HCM frame as a function of W . The inner

error bars represent the statistical uncertainties, typically smaller than the size of the symbols. The

outer error bars represent the quadratic sum of statistical and systematic uncertainties. Also shown

are the results of previous HERA measurements [1, 2, 4, 5] and predictions from Ariadne, Lepto

and Herwig. The decay products of K0
S and Λ are not included.

The measurements presented in this paper show good overall agreement with those

from other experiments, exhibiting approximately the same dependence of the mean

charged multiplicity on the respective energy scale. At low values of the energy, the mea-

surement as a function of 2 · Ecr
B agrees well with e+e− data, in contrast to the previous

measurements as a function of Q [2, 5]. The measurements in the current region of the

HCM agree with the LEP data, but are systematically below them. The data from fixed-
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Figure 10: Mean charged multiplicity, 〈nch〉, measured as a function of Meff (a) in the current

region of the Breit frame and (b) in the current region of the HCM frame compared to MC predic-

tions. (c) Comparison between measurements in the current regions of the Breit and HCM frame as

functions of Meff and with the measurement as a function of 2 · Ecr
B . The predictions from Ariadne

are also shown.

target DIS experiments [1, 8 – 10] deviate from the observed energy dependence at energies

above 15 GeV. The Ariadne MC prediction generally describes the energy dependence of

the data over the entire region. However, the prediction in the HCM frame is generally

lower than the data and than the prediction in the Breit frame. The Herwig MC model

does not give a good overall description of the data.

7. Summary and conclusions

The charged multiplicity distributions and the mean charged multiplicity have been in-

vestigated in inclusive neutral current deep inelastic ep scattering in the kinematic range

Q2 > 25 GeV2 and 70 < W < 225 GeV in terms of different energy scales. The scale 2 · Ecr
B ,
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Figure 11: Mean charged multiplicity, 〈nch〉, in the current region of the Breit frame multiplied by

2 as a function of 2 · Ecr
B and in the current region of the HCM frame multiplied by 2 as a function

of W . The results of e+e− [41 – 59] and fixed-target DIS experiments [8 – 10] are shown. The factor

1.08 was estimated using MC predictions to correct the fixed-target data for the decay products of

K0
S and Λ. The predictions of Ariadne and Herwig are also shown.

was used in the current region of the Breit frame. In the current region of the HCM frame,

W was used and the invariant mass, Meff , was used in both frames.

In terms of KNO scaling, the charged multiplicities in the current regions of the Breit

and HCM frames exhibit the same behaviour as those in one hemisphere of e+e− colli-

sions when 2 · Ecr
B or W are considered. When the energy scale Meff is used, the charged

multiplicities exhibit the same KNO-scaling behaviour as those for the whole e+e− event.

The mean charged multiplicity in the current region of the Breit frame scales with Meff
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Current region of the Breit frame

Meff (GeV) 〈nch〉 (K0,Λ stable) 〈nch〉 (K0,Λ decay)

2.4 2.91 ± 0.01+0.04
−0.03 3.17 ± 0.01+0.04

−0.03

5.2 4.82 ± 0.02+0.03
−0.03 5.26 ± 0.02+0.03

−0.03

9.4 6.85 ± 0.02+0.07
−0.05 7.45 ± 0.02+0.08

−0.06

14.4 8.60 ± 0.06+0.07
−0.09 9.29 ± 0.06+0.14

−0.09

Current region of the HCM frame

Meff (GeV) 〈nch〉 (K0,Λ stable) 〈nch〉 (K0,Λ decay)

3.1 3.38 ± 0.02+0.03
−0.02 3.64 ± 0.02+0.05

−0.02

5.9 5.33 ± 0.01+0.07
−0.07 5.77 ± 0.01+0.09

−0.09

9.8 7.37 ± 0.02+0.13
−0.12 8.05 ± 0.01+0.19

−0.19

15.1 9.86 ± 0.02+0.23
−0.23 10.84 ± 0.02+0.36

−0.36

23.5 12.83 ± 0.06+0.53
−0.54 14.17 ± 0.05+0.80

−0.80

Table 6: Mean charged multiplicity, 〈nch〉, measured in the current region of the Breit frame and

in the current fragmentation region of the HCM frame as a function of Meff . The first errors are

statistical and the second are the systematic uncertainties.

in the same way as 2 · 〈nch〉 scales with 2 · Ecr
B and, therefore, as 〈nch〉 scales with

√
see in

e+e− collisions. The mean charged multiplicity in the current region of HCM frame as a

function of Meff rises faster than that in the current region of the Breit frame.

The energy scale 2 · Ecr
B , rather than Q, gives better agreement between the mean

charged multiplicity measured in the current region of the Breit frame and that measured in

e+e− collisions. The measurements of 〈nch〉 as a function of W agree, within the uncertain-

ties, with the data from e+e− collisions. When using these scales, ep DIS data can be con-

sistently compared with data from e+e−, µP and νP scattering over a wide energy region.
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Departamento de F́ısica Teórica, Universidad Autónoma de Madrid,

Madrid, Spainl

F. Corriveau, C. Liu, J. Schwartz, R. Walsh and C. Zhou

Department of Physics, McGill University,

Montréal, Québec, H3A 2T8 Canadaa

T. Tsurugai

Meiji Gakuin University, Faculty of General Education,

Yokohama, Japanf

A. Antonov, B.A. Dolgoshein, D. Gladkov, V. Sosnovtsev, A. Stifutkin

and S. Suchkov

Moscow Engineering Physics Institute,

Moscow, Russiaj

R.K. Dementiev, P.F. Ermolov, L.K. Gladilin, Yu.A. Golubkov, L.A. Khein,

I.A. Korzhavina, V.A. Kuzmin, B.B. Levchenko,21 O.Yu. Lukina,

A.S. Proskuryakov, L.M. Shcheglova and D.S. Zotkin

Moscow State University, Institute of Nuclear Physics,

Moscow, Russiak

I. Abt, A. Caldwell, D. Kollar, B. Reisert and W.B. Schmidke

Max-Planck-Institut für Physik,

München, Germany

G. Grigorescu, A. Keramidas, E. Koffeman, P. Kooijman, A. Pellegrino,

H. Tiecke, M. Vázquez9 and L. Wiggers

NIKHEF and University of Amsterdam,

Amsterdam, Netherlandsh
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