Andrews University
Digital Commons @ Andrews University

Faculty Publications

12-1-2009

Non-negative Steady State Solutions to an Elliptic Biological Model

Brian Ibanez

Andrews University, ibanez@andrews.edu
Joon Hyuk Kang
Andrews University, kang@andrews.edu
Jungho Lee
Anyang University

Follow this and additional works at: https://digitalcommons.andrews.edu/pubs
Part of the Mathematics Commons

Recommended Citation

Ibanez, Brian; Hyuk Kang, Joon; and Lee, Jungho, "Non-negative Steady State Solutions to an Elliptic Biological Model" (2009). Faculty Publications. 1838.
https://digitalcommons.andrews.edu/pubs/1838

This Article is brought to you for free and open access by Digital Commons @ Andrews University. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Digital Commons @ Andrews University. For more information, please contact repository@andrews.edu.

International Journal of Pure and Applied Mathematics

Volume 53 No. 3 2009, 385-394

NON-NEGATIVE STEADY STATE SOLUTIONS TO AN ELLIPTIC BIOLOGICAL MODEL

Brian Ibanez ${ }^{1}$, Joon Hyuk Kang ${ }^{2}$ §, Jungho Lee ${ }^{3}$
${ }^{1,2}$ Department of Mathematics
Andrews University
Berrien Springs, MI 49104, USA
${ }^{1}$ e-mail: ibanez@andrews.edu
${ }^{2}$ e-mail: kang@andrews.edu
${ }^{3}$ ABEEK Center
Anyang University
Anyang 5-Dong, Manan-Gu 430-714, Anyang, KOREA
e-mail: leejungho@anyang.ac.kr

Abstract

The non-existence and existence of positive solutions for the generalized predator-prey biological model for two species of animals $$
\begin{aligned} & \Delta u+u g(u, v)=0 \text { in } \Omega, \\ & \Delta v+v h(u, v)=0 \text { in } \Omega, \\ & u=v=0 \text { on } \partial \Omega, \end{aligned}
$$ is investigated in this paper. The techniques used in this paper are from elliptic theory, the upper-lower solution method, the maximum principles and spectrum estimates. The arguments also rely on detailed properties of solutions to logistic equations.

AMS Subject Classification: 78A70, 90B06 Key Words: non-existence and existence of positive solutions, generalized predator-prey biological model, logistic equations, maximum principles

1. Introduction

A lot of research has been focused on reaction-diffusion equations modeling the elliptic steady state solutions of predator-prey interacting processes with
© 2009 Academic Publications
${ }^{\text {§ }}$ Correspondence author

Dirichlet boundary conditions. Our knowledge about the existence of positive solutions is limited to rather specific systems, whose relative growth rates are linear;

$$
\begin{aligned}
& \Delta u+u(a-b u-c v)=0 \text { in } \Omega, \\
& \Delta v+v(d+e u-f v)=0 \text { in } \Omega, \\
& u=v=0 \text { on } \partial \Omega,
\end{aligned}
$$

where Ω is a bounded domain in R^{N} with smooth boundary $\partial \Omega$, and where $a, d>0$ are reproduction rates, $b, f>0$ are self-limitation rates and $c, e>0$ are competition rates.

The question in this paper concerns the existence of positive coexistence when all the reproduction, self-limitation and competition rates are nonlinear and combined, more precisely, the existence of the positive steady state of

$$
\begin{aligned}
& \Delta u+u g(u, v)=0 \text { in } \Omega, \\
& \Delta v+v h(u, v)=0 \text { in } \Omega, \\
& u=v=0 \text { on } \partial \Omega
\end{aligned}
$$

where Ω is a bounded domain in R^{N} with smooth boundary $\partial \Omega$, and where $g, h \in C^{1}$ are such that $g_{u}<0, g_{v}<0, h_{v}<0, h_{u}>0, g(0,0)>0, h(0,0)>0$, and there exists $c_{0}>0$ such that $g(u, 0) \leq 0$ and $h(0, v) \leq 0$ for $u, v \geq c_{0}$. Also, note that we assume h_{u}, h_{v} and g_{v} are functions that are bounded above.

In Section 3, we provide the coexistence region of the reproduction rates $(g(0,0), h(0,0))$ by virtue of Maximum Principles, upper-lower solutions method and the properties of the logistic equation.

2. Preliminaries

In this section, we state some preliminary results which will be useful for our later arguments.

Definition 2.1. (Upper and Lower Solutions)

$$
\left\{\begin{array}{l}
\Delta u+f(x, u)=0 \text { in } \Omega, \tag{1}\\
\left.u\right|_{\partial \Omega}=0
\end{array}\right.
$$

where $f \in C^{\alpha}(\bar{\Omega} \times R)$ and Ω is a bounded domain in R^{n}.
(A) A function $\bar{u} \in C^{2, \alpha}(\bar{\Omega})$ satisfying

$$
\left\{\begin{array}{l}
\Delta \bar{u}+f(x, \bar{u}) \leq 0 \text { in } \Omega, \\
\left.\bar{u}\right|_{\partial \Omega} \geq 0,
\end{array}\right.
$$

is called an upper solution to (3).
(B) A function $\underline{u} \in C^{2, \alpha}(\bar{\Omega})$ satisfying

$$
\left\{\begin{array}{l}
\Delta \underline{u}+f(x, \underline{u}) \geq 0 \text { in } \Omega, \\
\underline{u} \mid \partial \Omega \leq 0,
\end{array}\right.
$$

is called a lower solution to (3).
Lemma 2.1. Let $f(x, \xi) \in C^{\alpha}(\bar{\Omega} \times R)$ and let $\bar{u}, \underline{u} \in C^{2, \alpha}(\bar{\Omega})$ be respectively, upper and lower solutions to (3) which satisfy $\underline{u}(x) \leq \bar{u}(x), x \in \bar{\Omega}$. Then (3) has a solution $u \in C^{2, \alpha}(\bar{\Omega})$ with $\underline{u}(x) \leq u(x) \leq \bar{u}(x), x \in \bar{\Omega}$.

Lemma 2.2. (The First Eigenvalue)

$$
\left\{\begin{array}{l}
-\Delta u+q(x) u=\lambda u \text { in } \Omega, \tag{2}\\
\left.u\right|_{\partial \Omega}=0,
\end{array}\right.
$$

where $q(x)$ is a smooth function from Ω to R and Ω is a bounded domain in R^{n}.
(A) The first eigenvalue $\lambda_{1}(q)$, denoted by simply λ_{1} when $q \equiv 0$, is simple with a positive eigenfunction ϕ_{1}.
(B) If $q_{1}(x)<q_{2}(x)$ for all $x \in \Omega$, then $\lambda_{1}\left(q_{1}\right)<\lambda_{1}\left(q_{2}\right)$.

Lemma 2.3. (Maximum Principles)

$$
L u=\sum_{i, j=1}^{n} a_{i j}(x) D_{i j} u+\sum_{i=1}^{n} a_{i}(x) D_{i} u+a(x) u=f(x) \text { in } \Omega,
$$

where Ω is a bounded domain in R^{n}.
(M1) $\partial \Omega \in C^{2, \alpha}(0<\alpha<1)$.
(M2) $\left|a_{i j}(x)\right|_{\alpha},\left|a_{i}(x)\right|_{\alpha},|a(x)|_{\alpha} \leq M(i, j=1, \ldots, n)$.
(M3) L is uniformly elliptic in $\bar{\Omega}$, with ellipticity constant γ, i.e., for every $x \in \bar{\Omega}$ and every real vector $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$

$$
\sum_{i, j=1}^{n} a_{i j}(x) \xi_{i} \xi_{j} \geq \gamma \sum_{i=1}^{n}\left|\xi_{i}\right|^{2}
$$

Let $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ be a solution of $L u \geq 0(L u \leq 0)$ in Ω.
(A) If $a(x) \equiv 0$, then $\max _{\bar{\Omega}} u=\max _{\partial \Omega} u\left(\min _{\bar{\Omega}} u=\min _{\partial \Omega} u\right)$.
(B) If $a(x) \leq 0$, then $\max _{\bar{\Omega}} u \leq \max _{\partial \Omega} u^{+}\left(\min _{\bar{\Omega}} u \geq-\max _{\partial \Omega} u^{-}\right)$, where $u^{+}=\max (u, 0), u^{-}=-\min (u, 0)$.
(C) If $a(x) \equiv 0$ and u attains its maximum (minimum) at an interior point of Ω, then u is identically a constant in Ω.
(D) If $a(x) \leq 0$ and u attains a nonnegative maximum (nonpositive minimum) at an interior point of Ω, then u is identically a constant in Ω.

Lemma 2.4. Let $g_{i}\left(u_{1}, u_{2}\right) \in C^{1}([0, \infty) \times[0, \infty))$ and suppose that there exists a positive constant M such that for every $t \in[0,1]$, if $u=\left(u_{1}, u_{2}\right)$ is a non-negative solution of the problem

$$
\left\{\begin{array}{l}
-\Delta u_{1}=t g_{1}\left(u_{1}, u_{2}\right) \text { in } \Omega, \tag{3}\\
-\Delta u_{2}=t g_{2}\left(u_{1}, u_{2}\right) \text { in } \Omega, \\
\left.u_{1}\right|_{\partial \Omega}=\left.u_{2}\right|_{\partial \Omega}=0,
\end{array}\right.
$$

then

$$
u_{1} \leq M, u_{2} \leq M .
$$

Assume that:
(1) Either $g_{1}(0,0)>\lambda_{1}, g_{2}(0,0) \neq \lambda_{1}$ or $g_{1}(0,0) \neq \lambda_{1}, g_{2}(0,0)>\lambda_{1}$,
$\left(g_{1}\right)_{u_{1}}\left(u_{1}, 0\right) \leq 0\left(u_{1} \geq 0\right),\left(g_{1}\right)_{u_{1}}\left(u_{1}, 0\right)$ is not identically zero $\left(u_{1} \in[0, b)\right)$,
$\left(g_{2}\right)_{u_{2}}\left(0, u_{2}\right) \leq 0\left(u_{2} \geq 0\right),\left(g_{2}\right)_{u_{2}}\left(0, u_{2}\right)$ is not identically zero $\left(u_{2} \in[0, b)\right)$, where b is any fixed positive number,
(3) $\left(u_{1}^{*}, 0\right),\left(0, u_{2}^{*}\right)$ are any nontrivial non-negative solution with $\lambda_{1}\left(-g_{2}\left(u_{1}^{*}, 0\right)\right)$ $<0, \lambda_{1}\left(-g_{1}\left(0, u_{2}^{*}\right)\right)<0$.

Then there is a solution $u_{1}>0, u_{2}>0$ of (3) for $t=1$.
We also need some information on the solutions of the following logistic equations.

Lemma 2.5.

$$
\left\{\begin{array}{l}
\Delta u+u f(u)=0 \text { in } \Omega, \\
\left.u\right|_{\partial \Omega}=0, u>0,
\end{array}\right.
$$

where f is a decreasing C^{1} function such that there exists $c_{0}>0$ such that $f(u) \leq 0$ for $u \geq c_{0}$ and Ω is a bounded domain in R^{n}.

If $f(0)>\lambda_{1}$, then the above equation has a unique positive solution, where λ_{1} is the first eigenvalue of $-\Delta$ with homogeneous boundary condition. We denote this unique positive solution as θ_{f}.

The main property about this positive solution is that θ_{f} is increasing as f is increasing.

Especially, for $a>\lambda_{1}, b>0$, we denote $\theta \frac{a}{b}$ as the unique positive solution of

$$
\left\{\begin{array}{l}
\Delta u+u(a-b u)=0 \text { in } \Omega, \\
\left.u\right|_{\partial \Omega}=0, u>0 .
\end{array}\right.
$$

Hence, $\theta_{\frac{a}{b}}$ is increasing as $a>0$ is increasing.

3. Existence Region for Steady State

We consider

$$
\begin{align*}
& \Delta u+u g(u, v)=0 \text { in } \Omega \\
& \Delta v+v h(u, v)=0 \text { in } \Omega \tag{4}\\
& u=v=0 \text { on } \partial \Omega
\end{align*}
$$

where Ω is a bounded domain in R^{N} with smooth boundary $\partial \Omega, g, h \in C^{1}$ are such that $g_{u}<0, g_{v}<0, h_{v}<0, h_{u}>0, g(0,0)>0, h(0,0)>0$, and there exists $c_{0}>0$ such that $g(u, 0) \leq 0$ and $h(0, v) \leq 0$ for $u, v \geq c_{0}$. Note that we assume h_{u}, h_{v} and g_{v} are functions that are bounded above.

First, we see that the two species can not coexist when the reproduction capacities are not robust enough.

Theorem 3.1. Suppose $g(0,0) \leq \lambda_{1}, h(0,0) \leq \lambda_{1}$. Then $u=v \equiv 0$ is the only nonnegative solution to (4).

Proof. Let (u, v) be a nonnegative solution to (4). By the Mean Value Theorem, there are \tilde{u}, \tilde{v} such that

$$
g(u, v)-g(u, 0)=g_{v}(u, \tilde{v}) v, \quad h(u, v)-h(0, v)=h_{u}(\tilde{u}, v) u
$$

Hence, (4) implies that

$$
\begin{aligned}
\Delta u+u\left(g(u, 0)+g_{v}(u, \tilde{v}) v\right)=\Delta u+u(g(u, 0)+ & g(u, v)-g(u, 0)) \\
& =\Delta u+u g(u, v)=0 \text { in } \Omega
\end{aligned}
$$

$$
\begin{aligned}
& \Delta v+v\left(h(0, v)+h_{u}(\tilde{u}, v) u\right) \\
& \quad=\Delta v+v(h(0, v)+h(u, v)-h(0, v))=\Delta v+v h(u, v)=0 \text { in } \Omega
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& \Delta u+u\left(g(u, 0)+\sup \left(g_{v}\right) v\right) \geq 0 \text { in } \Omega \\
& \Delta v+v\left(h(0, v)+\sup \left(h_{u}\right) u\right) \geq 0 \text { in } \Omega
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \sup \left(h_{u}\right) \phi_{1} \Delta u+\sup \left(h_{u}\right) \phi_{1} u\left(g(u, 0)+\sup \left(g_{v}\right) v\right) \geq 0 \text { in } \Omega \\
& -\sup \left(g_{v}\right) \phi_{1} \Delta v-\sup \left(g_{v}\right) \phi_{1} v\left(h(0, v)+\sup \left(h_{u}\right) u\right) \geq 0 \text { in } \Omega
\end{aligned}
$$

So,

$$
\begin{aligned}
\int_{\Omega}-\sup \left(h_{u}\right) \phi_{1} \Delta u d x \leq \int_{\Omega}\left[g(u, 0) \sup \left(h_{u}\right) u+\sup \left(g_{v}\right) \sup \left(h_{u}\right) u v\right] \phi_{1} d x \\
\int_{\Omega} \sup \left(g_{v}\right) \phi_{1} \Delta v d x \leq \int_{\Omega}\left[-h(0, v) \sup \left(g_{v}\right) v-\sup \left(g_{v}\right) \sup \left(h_{u}\right) u v\right] \phi_{1} d x
\end{aligned}
$$

Hence, by Green's Identity, we have

$$
\begin{aligned}
& \int_{\Omega} \sup \left(h_{u}\right) \lambda_{1} \phi_{1} u d x \leq \int_{\Omega}\left[g(u, 0) \sup \left(h_{u}\right) u+\sup \left(g_{v}\right) \sup \left(h_{u}\right) u v\right] \phi_{1} d x \\
& \quad \int_{\Omega}-\sup \left(g_{v}\right) \lambda_{1} \phi_{1} v d x \leq \int_{\Omega}\left[-h(0, v) \sup \left(g_{v}\right) v-\sup \left(g_{v}\right) \sup \left(h_{u}\right) u v\right] \phi_{1} d x .
\end{aligned}
$$

Therefore,

$$
\int_{\Omega} \sup \left(h_{u}\right)\left(\lambda_{1}-g(u, 0)\right) u \phi_{1}-\sup \left(g_{v}\right)\left(\lambda_{1}-h(0, v)\right) v \phi_{1} d x \leq 0 .
$$

Since the left hand side is nonnegative from

$$
g(u, 0) \leq g(0,0) \leq \lambda_{1}, \quad h(0, v) \leq h(0,0) \leq \lambda_{1},
$$

we conclude that $u=v \equiv 0$.
Theorem 3.2. Let $u \geq 0, v \geq 0$ be a solution to (4). If $g(0,0) \leq \lambda_{1}$, then $u \equiv 0$.

Proof. Proceeding as in the proof of Theorem 3.1, we obtain

$$
0 \leq \int_{\Omega}\left(\lambda_{1}-g(u, 0)\right) u \phi_{1} d x \leq \int_{\Omega} \sup \left(g_{v}\right) v u \phi_{1} d x \leq 0
$$

and so, $u \equiv 0$.
Theorem 3.2 implies if $g(0,0) \leq \lambda_{1}$ and $h(0,0)>\lambda_{1}$, then all possible nonnegative solutions to (4) are $(0,0)$ and $\left(0, \theta_{h(0, \cdot)}\right)$.

In order to prove further results, we will need the following lemma.
Lemma 3.3. Let $\tilde{u} \geq 0, \tilde{v} \geq 0$ be a solution of the problem

$$
\left\{\begin{array}{l}
-\Delta u=\operatorname{tug}(u, v) \text { in } \Omega, \tag{5}\\
-\Delta v=\operatorname{tvh}(u, v) \text { in } \Omega, \\
u_{\partial \Omega}=v_{\partial \Omega}=0,
\end{array}\right.
$$

where $t \in[0,1]$. Then:
(1) $\tilde{u} \leq M_{1}, \tilde{v} \leq M_{2}$, where $M_{1}=-\frac{g(0,0)}{\sup \left(g_{u}\right)}, M_{2}=-\frac{h\left(M_{1}, 0\right)+h(0,0)}{\sup \left(h_{v}\right)}$.
(2) For $t=1$,

$$
\tilde{u} \leq \theta_{g(\cdot, 0)}, \tilde{v} \geq \theta_{h(0, \cdot)}
$$

if $\tilde{v}>0$ in Ω.
Proof. (1) By the Mean Value Theorem and the monotonicity of g, we have

$$
g(\tilde{u}, \tilde{v})-g(0,0) \leq g(\tilde{u}, 0)-g(0,0) \leq \sup \left(g_{u}\right) \tilde{u},
$$

and so,

$$
\frac{g(\tilde{u}, \tilde{v})-g(0,0)}{\sup \left(g_{u}\right)} \geq \tilde{u} .
$$

Hence,

$$
\begin{aligned}
& \Delta\left(-\frac{g(0,0)}{\sup \left(g_{u}\right)}-\tilde{u}\right)+t\left(-\frac{g(0,0)}{\sup \left(g_{u}\right)}-\tilde{u}\right)(g(\tilde{u}, \tilde{v})-g(0,0)) \\
& \quad=-\Delta \tilde{u}-t \tilde{u}(g(\tilde{u}, \tilde{v})-g(0,0))-t \frac{g(0,0)}{\sup \left(g_{u}\right)}(g(\tilde{u}, \tilde{v})-g(0,0)) \\
& \quad=t \tilde{u} g(0,0)-t \frac{g(\tilde{u}, \tilde{v})-g(0,0)}{\sup \left(g_{u}\right)} g(0,0) \leq \operatorname{tg}(0,0) \tilde{u}-t g(0,0) \tilde{u}=0 .
\end{aligned}
$$

Since $g(\tilde{u}, \tilde{v})-g(0,0) \leq 0$, by the Maximum Principles, we conclude

$$
\tilde{u} \leq M_{1}=-\frac{g(0,0)}{\sup \left(g_{u}\right)}
$$

By the Mean Value Theorem, we have

$$
h(\tilde{u}, \tilde{v})-h(\tilde{u}, 0) \leq \sup \left(h_{v}\right) \tilde{v}
$$

and so,

$$
\frac{h(\tilde{u}, \tilde{v})-h(\tilde{u}, 0)}{\sup \left(h_{v}\right)} \geq \tilde{v} .
$$

Hence,

$$
\begin{aligned}
& \begin{array}{r}
\Delta\left(-\frac{h\left(M_{1}, 0\right)+h(0,0)}{\sup \left(h_{v}\right)}-\tilde{v}\right)+t\left(-\frac{h\left(M_{1}, 0\right)+h(0,0)}{\sup \left(h_{v}\right)}-\tilde{v}\right)(h(\tilde{u}, \tilde{v})-h(\tilde{u}, 0)) \\
=-\Delta \tilde{v}-t \tilde{v}(h(\tilde{u}, \tilde{v})-h(\tilde{u}, 0))
\end{array} \\
& \quad-t \frac{h\left(M_{1}, 0\right)(h(\tilde{u}, \tilde{v})-h(\tilde{u}, 0))}{\sup \left(h_{v}\right)}-t \frac{h(0,0)(h(\tilde{u}, \tilde{v})-h(\tilde{u}, 0))}{\sup \left(h_{v}\right)} \\
& =t \tilde{v} h(\tilde{u}, 0)-t \frac{h\left(M_{1}, 0\right)(h(\tilde{u}, \tilde{v})-h(\tilde{u}, 0))}{\sup \left(h_{v}\right)}-t \frac{h(0,0)(h(\tilde{u}, \tilde{v})-h(\tilde{u}, 0))}{\sup \left(h_{v}\right)} \leq 0 .
\end{aligned}
$$

Since $h(\tilde{u}, \tilde{v})-h(\tilde{u}, 0) \leq 0$, by the Maximum Principles, we conclude

$$
\tilde{v} \leq M_{2}=-\frac{h\left(M_{1}, 0\right)+h(0,0)}{\sup \left(h_{v}\right)} .
$$

(2) If $g(0,0) \leq \lambda_{1}$, then by Theorem 3.2, $\tilde{u} \equiv 0$ and so obviously $\tilde{u} \leq \theta_{g(\cdot, 0)}$.

Suppose $g(0,0)>\lambda_{1}$. Since

$$
\left\{\begin{array}{l}
\Delta \tilde{u}+\tilde{u} g(\tilde{u}, 0)=-\tilde{u}(g(\tilde{u}, \tilde{v})-g(\tilde{u}, 0)) \geq 0 \text { in } \Omega, \\
\left.\tilde{u}\right|_{\partial \Omega}=0
\end{array}\right.
$$

\tilde{u} is a lower solution to

$$
\left\{\begin{array}{l}
\Delta u+u g(u, 0)=0 \text { in } \Omega, \\
\left.u\right|_{\partial \Omega}=0 .
\end{array}\right.
$$

We can take large enough M such that $M>\tilde{u}$ on $\bar{\Omega}$ and $u=M$ is an upper solution to

$$
\left\{\begin{array}{l}
\Delta u+u g(u, 0)=0 \text { in } \Omega, \\
\left.u\right|_{\partial \Omega}=0 .
\end{array}\right.
$$

Since

$$
\left\{\begin{array}{l}
\Delta u+u g(u, 0)=0 \text { in } \Omega, \\
\left.u\right|_{\partial \Omega}=0,
\end{array}\right.
$$

has a unique positive solution $\theta_{g(\cdot, 0)}$, by the upper-lower solution method, we conclude $\tilde{u} \leq \theta_{g(\cdot, 0)}$ in Ω.

If $h(0,0) \leq \lambda_{1}$, then since $\theta_{h(0, \cdot)}=0$, obviously $\tilde{v} \geq \theta_{h(0, \cdot)}$.
Suppose $h(0,0)>\lambda_{1}$. Since

$$
\left\{\begin{array}{l}
\Delta \tilde{v}+\tilde{v} h(0, \tilde{v})=-\tilde{v}(h(\tilde{u}, \tilde{v})-h(0, \tilde{v})) \leq 0 \text { in } \Omega, \\
\left.\tilde{v}\right|_{\partial \Omega}=0
\end{array}\right.
$$

$\tilde{v}>0$ is an upper solution to

$$
\left\{\begin{array}{l}
\Delta v+v h(0, v)=0 \text { in } \Omega, \\
\left.v\right|_{\partial \Omega}=0 .
\end{array}\right.
$$

Since $\tilde{v}>0$, for large enough $n \in N, \frac{\theta_{h(0,)}}{n}<\tilde{v}$ in Ω. Since

$$
\begin{aligned}
& \Delta\left(\frac{\theta_{h(0, \cdot)}}{n}\right)+\frac{\theta_{h(0, \cdot)}}{n} h\left(0, \frac{\theta_{h(0, \cdot)}}{n}\right)=\frac{1}{n}\left[\Delta \theta_{h(0, \cdot)}+\theta_{h(0, \cdot)} h\left(0, \frac{\theta_{h(0, \cdot)}}{n}\right)\right] \\
& \geq \frac{1}{n}\left[\Delta \theta_{h(0, \cdot)}+\theta_{h(0, \cdot)} h\left(0, \theta_{h(0, \cdot)}\right)\right]=0
\end{aligned}
$$

$\frac{\theta_{h(0, \cdot)}}{n}$ is a lower solution to

$$
\left\{\begin{array}{l}
\Delta v+v h(0, v)=0 \text { in } \Omega \\
\left.v\right|_{\partial \Omega}=0
\end{array}\right.
$$

Therefore, by the uniqueness of the solution and the upper-lower solution method, we conclude $\theta_{h(0, \cdot)} \leq \tilde{v}$.

Theorem 3.4. There exist two functions $M(g), N(h):\left[\lambda_{1}, \infty\right) \rightarrow R$ such that:
(A) if $g(0,0) \geq \lambda_{1}, h(0,0) \leq M(g)$, then all possible nonnegative solutions to (4) are $(0,0)$ and $\left(\theta_{g(\cdot, 0)}, 0\right)$,
(B) if $\lambda_{1}<g(0,0)<N(h), h(0,0)>\lambda_{1}$, then all possible nonnegative solutions to (4) are $(0,0),\left(\theta_{g(\cdot, 0)}, 0\right)$ and $\left(0, \theta_{h(0, \cdot)}\right)$,
(C) if $g(0,0)>\lambda_{1}, M(g)<h(0,0)<\lambda_{1}$, then all possible nonnegative solutions to (4) are $(0,0),\left(\theta_{g(\cdot, 0)}, 0\right)$ and a positive solution $u^{+}>0, v^{+}>0$,
(D) if $h(0,0)>\lambda_{1}, g(0,0)>N(h)$, then all possible nonnegative solutions to (4) are $(0,0),\left(\theta_{g(\cdot, 0)}, 0\right),\left(0, \theta_{h(0, \cdot)}\right)$ and a positive solution $u^{+}>0, v^{+}>0$.

Proof. For $g(0,0) \geq \lambda_{1}$, let $M(g)=\lambda_{1}\left(-h\left(\theta_{g(\cdot, 0)}, 0\right)+h(0,0)\right)$ and $N(h)=$ $\lambda_{1}\left(-g\left(0, \theta_{h(0, \cdot)}\right)+g(0,0)\right)$.
(A) Suppose $h(0,0) \leq M(g)$. Let $\tilde{u} \geq 0, \tilde{v} \geq 0$ be a solution to (4). If $\tilde{v}>0$ in Ω, then $\lambda=h(0,0)$ is the smallest eigenvalue of the problem

$$
\left\{\begin{array}{l}
-\Delta v+v(-h(\tilde{u}, \tilde{v})+h(0,0))=\lambda v \text { in } \Omega, \\
\left.v\right|_{\partial \Omega}=0 .
\end{array}\right.
$$

By the monotonicity of h and Lemma 3.3, we have

$$
-h(\tilde{u}, \tilde{v})>-h\left(\theta_{g(\cdot, 0)}, 0\right),
$$

and so

$$
h(0,0)=\lambda_{1}(-h(\tilde{u}, \tilde{v})+h(0,0))>\lambda_{1}\left(-h\left(\theta_{g(\cdot, 0)}, 0\right)\right)+h(0,0)=M(g),
$$

which is a contradiction to $h(0,0) \leq M(g)$. Hence, $\tilde{v} \equiv 0$. Therefore, we conclude that if $g(0,0) \geq \lambda_{1}$ and $h(0,0) \leq M(g)$, then all possible nonnegative solutions to (4) are $(0,0)$ and $\left(\theta_{g(\cdot, 0)}, 0\right)$.
(B) Suppose $\lambda_{1}<g(0,0) \leq N(h)$ and $h(0,0)>\lambda_{1}$. Let $u \geq 0, v \geq 0$ be a solution to (4) with $v>0$ in Ω. If $u>0$ in Ω, then $\lambda=0$ is the smallest eigenvalue of the problem

$$
\left\{\begin{array}{l}
-\Delta w-w g(u, v)=\lambda w \text { in } \Omega, \\
\left.w\right|_{\partial \Omega}=0 .
\end{array}\right.
$$

Since

$$
-g(u, v)>-\left(g\left(0, \theta_{h(0, \cdot)}\right)\right.
$$

from Lemma 3.3 and the monotonicity of g, using Lemma 2.2 we have

$$
0>\lambda_{1}\left(-g\left(0, \theta_{h(0, \cdot)}\right)\right)=\lambda_{1}\left(-g\left(0, \theta_{h(0, \cdot)}\right)+g(0,0)\right)-g(0,0)=N(h)-g(0,0) .
$$

This contradicts $g(0,0) \leq N(h)$. Hence $u=0$, so all possible nonnegative solutions to (4) are $(0,0),\left(0, \theta_{h(0, \cdot)}\right)$ and $\left(\theta_{g(\cdot, 0)}, 0\right)$.
(C) Suppose $g(0,0)>\lambda_{1}$ and $M(g)<h(0,0)<\lambda_{1}$. Let $u \geq 0, v \geq 0$ be a solution to (4) in which one component is zero. Then $u=0, v=0$ or $u=\theta_{g(\cdot, 0)}, v=0$. Since $\lambda_{1}\left(-h\left(\theta_{g(\cdot, 0)}, 0\right)\right)=\lambda_{1}\left(-h\left(\theta_{g(\cdot, 0)}, 0\right)+h(0,0)\right)-h(0,0)=$ $M(g)-h(0,0)<0$, by the combination of Lemmas 2.4 and 3.3 , there is a positive solution to (4) $u^{+}>0, v^{+}>0$.
(D) Suppose $g(0,0)>N(h)$ and $h(0,0)>\lambda_{1}$. Let $u \geq 0, v \geq 0$ be a solution
to (4) in which one component is zero. Then since

$$
\begin{aligned}
g(0,0) & >N(h)=\lambda_{1}\left(-\left(g\left(0, \theta_{h(0, \cdot)}\right)-g(0,0)\right)\right) \\
& >\lambda_{1}(-(g(0,0)-g(0,0)))=\lambda_{1}(0)=\lambda_{1},
\end{aligned}
$$

from Lemma 2.2 and the monotonicity of g, we have $u=0, v=0$ or $u=0, v=$ $\theta_{h(0, \cdot)}$ or $u=\theta_{g(\cdot, 0)}, v=0$. Since $\lambda_{1}\left(-g\left(0, \theta_{h(0, \cdot)}\right)\right)=\lambda_{1}\left(-g\left(0, \theta_{h(0, \cdot)}\right)+g(0,0)\right)-$ $g(0,0)=N(h)-g(0,0)<0$, by the combination of Lemmas 2.4 and 3.3, there is a positive solution to (4) $u^{+}>0, v^{+}>0$.

References

[1] P. Korman, A. Leung, On the existence and uniqueness of positive steady states in the Volterra-Lotka ecological models with diffusion, Appl. Anal., 26, No. 2 (1987), 145-160.
[2] L. Li, A. Ghoreishi, On positive solutions of general nonlinear elliptic symbiotic interacting systems, Appl. Anal., 40, No. 4 (1991), 281-295.
[3] J. Lopez-Gomez, R. Pardo San Gil, Coexistence regions in Lotka-Volterra models with diffusion, Nonlinear Analysis, Theory, Methods and Applications, 19, No. 1 (1992), 11-28.
[4] Lou Yuan, Necessary and sufficient condition for the existence of positive solutions of certain cooperative system, Nonlinear Analysis, Theory, Methods and Applications, 26, No. 6 (1996), 1079-1095.
[5] L. Zhengyuan, P. De Mottoni, Bifurcation for some systems of cooperative and predator-prey type, J. Partial Differential Equations (1992), 25-36.

