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Abstract: The non-existence and existence of positive solutions for the gen-
eralized predator-prey biological model for two species of animals

∆u + ug(u, v) = 0 in Ω ,

∆v + vh(u, v) = 0 in Ω ,

u = v = 0 on ∂Ω ,

is investigated in this paper. The techniques used in this paper are from elliptic
theory, the upper-lower solution method, the maximum principles and spectrum
estimates. The arguments also rely on detailed properties of solutions to logistic
equations.

AMS Subject Classification: 78A70, 90B06
Key Words: non-existence and existence of positive solutions, generalized
predator-prey biological model, logistic equations, maximum principles

1. Introduction

A lot of research has been focused on reaction-diffusion equations modeling
the elliptic steady state solutions of predator-prey interacting processes with
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Dirichlet boundary conditions. Our knowledge about the existence of positive
solutions is limited to rather specific systems, whose relative growth rates are
linear;

∆u + u(a − bu − cv) = 0 in Ω ,

∆v + v(d + eu − fv) = 0 in Ω ,

u = v = 0 on ∂Ω,

where Ω is a bounded domain in RN with smooth boundary ∂Ω, and where
a, d > 0 are reproduction rates, b, f > 0 are self-limitation rates and c, e > 0
are competition rates.

The question in this paper concerns the existence of positive coexistence
when all the reproduction, self-limitation and competition rates are nonlinear
and combined, more precisely, the existence of the positive steady state of

∆u + ug(u, v) = 0 in Ω ,

∆v + vh(u, v) = 0 in Ω ,

u = v = 0 on ∂Ω,

where Ω is a bounded domain in RN with smooth boundary ∂Ω, and where
g, h ∈ C1 are such that gu < 0, gv < 0, hv < 0, hu > 0, g(0, 0) > 0, h(0, 0) > 0,
and there exists c0 > 0 such that g(u, 0) ≤ 0 and h(0, v) ≤ 0 for u, v ≥ c0. Also,
note that we assume hu, hv and gv are functions that are bounded above.

In Section 3, we provide the coexistence region of the reproduction rates
(g(0, 0), h(0, 0)) by virtue of Maximum Principles, upper-lower solutions method
and the properties of the logistic equation.

2. Preliminaries

In this section, we state some preliminary results which will be useful for our
later arguments.

Definition 2.1. (Upper and Lower Solutions)
{

∆u + f(x, u) = 0 in Ω,

u|∂Ω = 0,
(1)

where f ∈ Cα(Ω̄ × R) and Ω is a bounded domain in Rn.

(A) A function ū ∈ C2,α(Ω̄) satisfying
{

∆ū + f(x, ū) ≤ 0 in Ω,

ū|∂Ω ≥ 0,

is called an upper solution to (3).
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(B) A function u ∈ C2,α(Ω̄) satisfying
{

∆u + f(x, u) ≥ 0 in Ω,

u|∂Ω ≤ 0,

is called a lower solution to (3).

Lemma 2.1. Let f(x, ξ) ∈ Cα(Ω̄ × R) and let ū, u ∈ C2,α(Ω̄) be respec-
tively, upper and lower solutions to (3) which satisfy u(x) ≤ ū(x), x ∈ Ω̄. Then
(3) has a solution u ∈ C2,α(Ω̄) with u(x) ≤ u(x) ≤ ū(x), x ∈ Ω̄.

Lemma 2.2. (The First Eigenvalue)
{

−∆u + q(x)u = λu in Ω,

u|∂Ω = 0,
(2)

where q(x) is a smooth function from Ω to R and Ω is a bounded domain in
Rn.

(A) The first eigenvalue λ1(q), denoted by simply λ1 when q ≡ 0, is simple
with a positive eigenfunction φ1.

(B) If q1(x) < q2(x) for all x ∈ Ω, then λ1(q1) < λ1(q2).

Lemma 2.3. (Maximum Principles)

Lu =

n
∑

i,j=1

aij(x)Diju +

n
∑

i=1

ai(x)Diu + a(x)u = f(x) in Ω,

where Ω is a bounded domain in Rn.

(M1) ∂Ω ∈ C2,α(0 < α < 1).

(M2) |aij(x)|α, |ai(x)|α, |a(x)|α ≤ M(i, j = 1, ..., n).

(M3) L is uniformly elliptic in Ω̄, with ellipticity constant γ, i.e., for every
x ∈ Ω̄ and every real vector ξ = (ξ1, ..., ξn)

n
∑

i,j=1

aij(x)ξiξj ≥ γ

n
∑

i=1

|ξi|
2.

Let u ∈ C2(Ω) ∩ C(Ω̄) be a solution of Lu ≥ 0(Lu ≤ 0) in Ω.

(A) If a(x) ≡ 0, then maxΩ̄ u = max∂Ω u(minΩ̄ u = min∂Ω u).

(B) If a(x) ≤ 0, then maxΩ̄ u ≤ max∂Ω u+(minΩ̄ u ≥ −max∂Ω u−),

where u+ = max(u, 0), u− = −min(u, 0).

(C) If a(x) ≡ 0 and u attains its maximum (minimum) at an interior point
of Ω, then u is identically a constant in Ω.

(D) If a(x) ≤ 0 and u attains a nonnegative maximum (nonpositive mini-
mum) at an interior point of Ω, then u is identically a constant in Ω.
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Lemma 2.4. Let gi(u1, u2) ∈ C1([0,∞) × [0,∞)) and suppose that there
exists a positive constant M such that for every t ∈ [0, 1], if u = (u1, u2) is a
non-negative solution of the problem







−∆u1 = tg1(u1, u2) in Ω ,

−∆u2 = tg2(u1, u2) in Ω ,

u1|∂Ω = u2|∂Ω = 0,
(3)

then

u1 ≤ M,u2 ≤ M.

Assume that:

(1) Either g1(0, 0) > λ1, g2(0, 0) 6= λ1 or g1(0, 0) 6= λ1, g2(0, 0) > λ1,

(2)

(g1)u1(u1, 0) ≤ 0(u1 ≥ 0), (g1)u1(u1, 0) is not identically zero (u1 ∈ [0, b)) ,

(g2)u2(0, u2) ≤ 0(u2 ≥ 0), (g2)u2(0, u2) is not identically zero (u2 ∈ [0, b)),

where b is any fixed positive number,

(3) (u∗
1, 0), (0, u

∗
2) are any nontrivial non-negative solution with λ1(−g2(u

∗
1, 0))

< 0, λ1(−g1(0, u
∗
2)) < 0.

Then there is a solution u1 > 0, u2 > 0 of (3) for t = 1.

We also need some information on the solutions of the following logistic
equations.

Lemma 2.5.
{

∆u + uf(u) = 0 in Ω,

u|∂Ω = 0, u > 0,

where f is a decreasing C1 function such that there exists c0 > 0 such that
f(u) ≤ 0 for u ≥ c0 and Ω is a bounded domain in Rn.

If f(0) > λ1, then the above equation has a unique positive solution, where
λ1 is the first eigenvalue of −∆ with homogeneous boundary condition. We
denote this unique positive solution as θf .

The main property about this positive solution is that θf is increasing as f

is increasing.

Especially, for a > λ1, b > 0, we denote θ a
b

as the unique positive solution
of

{

∆u + u(a − bu) = 0 in Ω,

u|∂Ω = 0, u > 0.

Hence, θ a
b

is increasing as a > 0 is increasing.
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3. Existence Region for Steady State

We consider

∆u + ug(u, v) = 0 in Ω ,

∆v + vh(u, v) = 0 in Ω ,

u = v = 0 on ∂Ω,

(4)

where Ω is a bounded domain in RN with smooth boundary ∂Ω, g, h ∈ C1 are
such that gu < 0, gv < 0, hv < 0, hu > 0, g(0, 0) > 0, h(0, 0) > 0, and there
exists c0 > 0 such that g(u, 0) ≤ 0 and h(0, v) ≤ 0 for u, v ≥ c0. Note that we
assume hu, hv and gv are functions that are bounded above.

First, we see that the two species can not coexist when the reproduction
capacities are not robust enough.

Theorem 3.1. Suppose g(0, 0) ≤ λ1, h(0, 0) ≤ λ1. Then u = v ≡ 0 is the
only nonnegative solution to (4).

Proof. Let (u, v) be a nonnegative solution to (4). By the Mean Value
Theorem, there are ũ, ṽ such that

g(u, v) − g(u, 0) = gv(u, ṽ)v , h(u, v) − h(0, v) = hu(ũ, v)u.

Hence, (4) implies that

∆u + u(g(u, 0) + gv(u, ṽ)v) = ∆u + u(g(u, 0) + g(u, v) − g(u, 0))

= ∆u + ug(u, v) = 0 in Ω,

∆v + v(h(0, v) + hu(ũ, v)u)

= ∆v + v(h(0, v) + h(u, v) − h(0, v)) = ∆v + vh(u, v) = 0 in Ω.

Hence,

∆u + u(g(u, 0) + sup(gv)v) ≥ 0 in Ω,

∆v + v(h(0, v) + sup(hu)u) ≥ 0 in Ω.

Therefore,

sup(hu)φ1∆u + sup(hu)φ1u(g(u, 0) + sup(gv)v) ≥ 0 in Ω,

− sup(gv)φ1∆v − sup(gv)φ1v(h(0, v) + sup(hu)u) ≥ 0 in Ω.

So,
∫

Ω
− sup(hu)φ1∆udx ≤

∫

Ω
[g(u, 0) sup(hu)u + sup(gv) sup(hu)uv]φ1dx,

∫

Ω
sup(gv)φ1∆vdx ≤

∫

Ω
[−h(0, v) sup(gv)v − sup(gv) sup(hu)uv]φ1dx.
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Hence, by Green’s Identity, we have
∫

Ω
sup(hu)λ1φ1udx ≤

∫

Ω
[g(u, 0) sup(hu)u + sup(gv) sup(hu)uv]φ1dx,

∫

Ω
− sup(gv)λ1φ1vdx ≤

∫

Ω
[−h(0, v) sup(gv)v − sup(gv) sup(hu)uv]φ1dx.

Therefore,
∫

Ω
sup(hu)(λ1 − g(u, 0))uφ1 − sup(gv)(λ1 − h(0, v))vφ1dx ≤ 0.

Since the left hand side is nonnegative from

g(u, 0) ≤ g(0, 0) ≤ λ1 , h(0, v) ≤ h(0, 0) ≤ λ1,

we conclude that u = v ≡ 0.

Theorem 3.2. Let u ≥ 0, v ≥ 0 be a solution to (4). If g(0, 0) ≤ λ1, then
u ≡ 0.

Proof. Proceeding as in the proof of Theorem 3.1, we obtain

0 ≤

∫

Ω
(λ1 − g(u, 0))uφ1dx ≤

∫

Ω
sup(gv)vuφ1dx ≤ 0,

and so, u ≡ 0.

Theorem 3.2 implies if g(0, 0) ≤ λ1 and h(0, 0) > λ1, then all possible
nonnegative solutions to (4) are (0, 0) and (0, θh(0,·)).

In order to prove further results, we will need the following lemma.

Lemma 3.3. Let ũ ≥ 0, ṽ ≥ 0 be a solution of the problem






−∆u = tug(u, v) in Ω ,

−∆v = tvh(u, v) in Ω ,

u∂Ω = v∂Ω = 0,
(5)

where t ∈ [0, 1]. Then:

(1) ũ ≤ M1, ṽ ≤ M2, where M1 = − g(0,0)
sup(gu) ,M2 = −h(M1,0)+h(0,0)

sup(hv) .

(2) For t = 1,

ũ ≤ θg(·,0), ṽ ≥ θh(0,·)

if ṽ > 0 in Ω.

Proof. (1) By the Mean Value Theorem and the monotonicity of g, we have

g(ũ, ṽ) − g(0, 0) ≤ g(ũ, 0) − g(0, 0) ≤ sup(gu)ũ,
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and so,

g(ũ, ṽ) − g(0, 0)

sup(gu)
≥ ũ.

Hence,

∆(−
g(0, 0)

sup(gu)
− ũ) + t(−

g(0, 0)

sup(gu)
− ũ)(g(ũ, ṽ) − g(0, 0))

= −∆ũ − tũ(g(ũ, ṽ) − g(0, 0)) − t
g(0, 0)

sup(gu)
(g(ũ, ṽ) − g(0, 0))

= tũg(0, 0) − t
g(ũ, ṽ) − g(0, 0)

sup(gu)
g(0, 0) ≤ tg(0, 0)ũ − tg(0, 0)ũ = 0.

Since g(ũ, ṽ) − g(0, 0) ≤ 0, by the Maximum Principles, we conclude

ũ ≤ M1 = −
g(0, 0)

sup(gu)
.

By the Mean Value Theorem, we have

h(ũ, ṽ) − h(ũ, 0) ≤ sup(hv)ṽ,

and so,

h(ũ, ṽ) − h(ũ, 0)

sup(hv)
≥ ṽ.

Hence,

∆(−
h(M1, 0) + h(0, 0)

sup(hv)
− ṽ) + t(−

h(M1, 0) + h(0, 0)

sup(hv)
− ṽ)(h(ũ, ṽ) − h(ũ, 0))

= −∆ṽ − tṽ(h(ũ, ṽ) − h(ũ, 0))

− t
h(M1, 0)(h(ũ, ṽ) − h(ũ, 0))

sup(hv)
− t

h(0, 0)(h(ũ, ṽ) − h(ũ, 0))

sup(hv)

= tṽh(ũ, 0) − t
h(M1, 0)(h(ũ, ṽ) − h(ũ, 0))

sup(hv)
− t

h(0, 0)(h(ũ, ṽ) − h(ũ, 0))

sup(hv)
≤ 0.

Since h(ũ, ṽ) − h(ũ, 0) ≤ 0, by the Maximum Principles, we conclude

ṽ ≤ M2 = −
h(M1, 0) + h(0, 0)

sup(hv)
.

(2) If g(0, 0) ≤ λ1, then by Theorem 3.2, ũ ≡ 0 and so obviously ũ ≤ θg(·,0).

Suppose g(0, 0) > λ1. Since
{

∆ũ + ũg(ũ, 0) = −ũ(g(ũ, ṽ) − g(ũ, 0)) ≥ 0 in Ω ,

ũ|∂Ω = 0,
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ũ is a lower solution to
{

∆u + ug(u, 0) = 0 in Ω,

u|∂Ω = 0.

We can take large enough M such that M > ũ on Ω̄ and u = M is an upper
solution to

{

∆u + ug(u, 0) = 0 in Ω,

u|∂Ω = 0.

Since
{

∆u + ug(u, 0) = 0 in Ω,

u|∂Ω = 0 ,

has a unique positive solution θg(·,0), by the upper-lower solution method, we
conclude ũ ≤ θg(·,0) in Ω.

If h(0, 0) ≤ λ1, then since θh(0,·) = 0, obviously ṽ ≥ θh(0,·).

Suppose h(0, 0) > λ1. Since
{

∆ṽ + ṽh(0, ṽ) = −ṽ(h(ũ, ṽ) − h(0, ṽ)) ≤ 0 in Ω,

ṽ|∂Ω = 0,

ṽ > 0 is an upper solution to
{

∆v + vh(0, v) = 0 in Ω,

v|∂Ω = 0.

Since ṽ > 0, for large enough n ∈ N ,
θh(0,·)

n
< ṽ in Ω. Since

∆(
θh(0,·)

n
) +

θh(0,·)

n
h(0,

θh(0,·)

n
) =

1

n
[∆θh(0,·) + θh(0,·)h(0,

θh(0,·)

n
)]

≥
1

n
[∆θh(0,·) + θh(0,·)h(0, θh(0,·))] = 0,

θh(0,·)

n
is a lower solution to

{

∆v + vh(0, v) = 0 in Ω,

v|∂Ω = 0.

Therefore, by the uniqueness of the solution and the upper-lower solution
method, we conclude θh(0,·) ≤ ṽ.

Theorem 3.4. There exist two functions M(g), N(h) : [λ1,∞) → R such
that:

(A) if g(0, 0) ≥ λ1, h(0, 0) ≤ M(g), then all possible nonnegative solutions
to (4) are (0, 0) and (θg(·,0), 0),

(B) if λ1 < g(0, 0) < N(h), h(0, 0) > λ1, then all possible nonnegative
solutions to (4) are (0, 0), (θg(·,0), 0) and (0, θh(0,·)),
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(C) if g(0, 0) > λ1,M(g) < h(0, 0) < λ1, then all possible nonnegative
solutions to (4) are (0, 0), (θg(·,0), 0) and a positive solution u+ > 0, v+ > 0,

(D) if h(0, 0) > λ1, g(0, 0) > N(h), then all possible nonnegative solutions
to (4) are (0, 0), (θg(·,0), 0), (0, θh(0,·)) and a positive solution u+ > 0, v+ > 0.

Proof. For g(0, 0) ≥ λ1, let M(g) = λ1(−h(θg(·,0), 0) + h(0, 0)) and N(h) =
λ1(−g(0, θh(0,·)) + g(0, 0)).

(A) Suppose h(0, 0) ≤ M(g). Let ũ ≥ 0, ṽ ≥ 0 be a solution to (4). If ṽ > 0
in Ω, then λ = h(0, 0) is the smallest eigenvalue of the problem

{

−∆v + v(−h(ũ, ṽ) + h(0, 0)) = λv in Ω,

v|∂Ω = 0.

By the monotonicity of h and Lemma 3.3, we have

−h(ũ, ṽ) > −h(θg(·,0), 0),

and so

h(0, 0) = λ1(−h(ũ, ṽ) + h(0, 0)) > λ1(−h(θg(·,0), 0)) + h(0, 0) = M(g),

which is a contradiction to h(0, 0) ≤ M(g). Hence, ṽ ≡ 0. Therefore, we
conclude that if g(0, 0) ≥ λ1 and h(0, 0) ≤ M(g), then all possible nonnegative
solutions to (4) are (0, 0) and (θg(·,0), 0).

(B) Suppose λ1 < g(0, 0) ≤ N(h) and h(0, 0) > λ1. Let u ≥ 0, v ≥ 0 be
a solution to (4) with v > 0 in Ω. If u > 0 in Ω, then λ = 0 is the smallest
eigenvalue of the problem

{

−∆w − wg(u, v) = λw in Ω,

w|∂Ω = 0.

Since

−g(u, v) > −(g(0, θh(0,·))

from Lemma 3.3 and the monotonicity of g, using Lemma 2.2 we have

0 > λ1(−g(0, θh(0,·))) = λ1(−g(0, θh(0,·)) + g(0, 0)) − g(0, 0) = N(h) − g(0, 0).

This contradicts g(0, 0) ≤ N(h). Hence u = 0, so all possible nonnegative
solutions to (4) are (0, 0), (0, θh(0,·)) and (θg(·,0), 0).

(C) Suppose g(0, 0) > λ1 and M(g) < h(0, 0) < λ1. Let u ≥ 0, v ≥ 0
be a solution to (4) in which one component is zero. Then u = 0, v = 0 or
u = θg(·,0), v = 0. Since λ1(−h(θg(·,0), 0)) = λ1(−h(θg(·,0), 0)+h(0, 0))−h(0, 0) =
M(g)−h(0, 0) < 0, by the combination of Lemmas 2.4 and 3.3, there is a positive
solution to (4) u+ > 0, v+ > 0.

(D) Suppose g(0, 0) > N(h) and h(0, 0) > λ1. Let u ≥ 0, v ≥ 0 be a solution
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to (4) in which one component is zero. Then since

g(0, 0) > N(h) = λ1(−(g(0, θh(0,·)) − g(0, 0)))

> λ1(−(g(0, 0) − g(0, 0))) = λ1(0) = λ1,

from Lemma 2.2 and the monotonicity of g, we have u = 0, v = 0 or u = 0, v =
θh(0,·) or u = θg(·,0), v = 0. Since λ1(−g(0, θh(0,·))) = λ1(−g(0, θh(0,·))+g(0, 0))−
g(0, 0) = N(h) − g(0, 0) < 0, by the combination of Lemmas 2.4 and 3.3, there
is a positive solution to (4) u+ > 0, v+ > 0.

References

[1] P. Korman, A. Leung, On the existence and uniqueness of positive steady
states in the Volterra-Lotka ecological models with diffusion, Appl. Anal.,
26, No. 2 (1987), 145-160.

[2] L. Li, A. Ghoreishi, On positive solutions of general nonlinear elliptic sym-
biotic interacting systems, Appl. Anal., 40, No. 4 (1991), 281-295.

[3] J. Lopez-Gomez, R. Pardo San Gil, Coexistence regions in Lotka-Volterra
models with diffusion, Nonlinear Analysis, Theory, Methods and Applica-

tions, 19, No. 1 (1992), 11-28.

[4] Lou Yuan, Necessary and sufficient condition for the existence of posi-
tive solutions of certain cooperative system, Nonlinear Analysis, Theory,

Methods and Applications, 26, No. 6 (1996), 1079-1095.

[5] L. Zhengyuan, P. De Mottoni, Bifurcation for some systems of cooperative
and predator-prey type, J. Partial Differential Equations (1992), 25-36.


	Non-negative Steady State Solutions to an Elliptic Biological Model
	Recommended Citation

	./7.dvi

