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38 Dipartimento di Fisica, Università ’La Sapienza’ and INFN, Rome, Italys
39 Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, UKu

40 Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics, Tel-Aviv University, Tel-Aviv, Israelaj
41 Department of Physics, Tokyo Institute of Technology, Tokyo, Japanaa
42 Department of Physics, University of Tokyo, Tokyo, Japanaa
43 Tokyo Metropolitan University, Department of Physics, Tokyo, Japanaa
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Abstract. The production of the neutral strange hadrons K0S , Λ and Λ̄ has been measured in ep collisions
at HERA using the ZEUS detector. Cross sections, baryon-to-meson ratios, relative yields of strange and
charged light hadrons, Λ (Λ̄) asymmetry and polarization have been measured in three kinematic regions:

Q2 > 25 GeV2; 5<Q2 < 25 GeV2; and in photoproduction (Q2 � 0). In photoproduction the presence of two
hadronic jets, each with at least 5 GeV transverse energy, was required. The measurements agree in gen-
eral with Monte Carlo models and are consistent with measurements made at e+e− colliders, except for an
enhancement of baryon relative to meson production in photoproduction.

a Supported by DESY, Germany.
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e Supported by Chonnam National University in 2005.
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1 Introduction

Production of K0S , Λ and Λ̄ hadrons has been exten-
sively studied at particle colliders: e+e− [1–15], ep [16–
19], pp̄ [20–23] and pp [24]. The data have been used to
test QCD and build phenomenological models extending
QCD predictions beyond what can be calculated from first
principles.
The results on K0S , Λ, and Λ̄ production presented in

this paper are based on a data sample of 121 pb−1 collected
by the ZEUS experiment at HERA, about 100 times larger
than used in previous HERA publications [16–19] and ex-
tend the kinematical region of the measurements, thereby
providing a tighter constraint on models.
The measurements have been performed in three dif-

ferent regions of Q2, where Q2 is the virtuality of the
exchanged boson: deep inelastic scattering (DIS) with
Q2 > 25 GeV2; DIS with 5 < Q2 < 25 GeV2; and photo-
production, Q2 � 0 GeV2, in which a quasi-real photon
interacts with the proton. In the photoproduction sam-
ple, two jets, each of at least 5 GeV transverse energy, were
required.
The following measurements are presented in this pa-

per: differential cross sections, baryon–antibaryon asym-
metry, baryon-to-meson ratio, ratio of strange-to-light
hadrons, and the Λ and Λ̄ transverse spin polarization.
There was no attempt to separate direct production from
resonance decays: all sources for K0S, Λ, and Λ̄ production
were included. These measurements are relevant for mod-
eling production of hadrons at high energies, for example
in Monte Carlo (MC) programs [25–29], and for testing
the mechanism for baryon transport along the rapidity
axis [30], the mechanisms for baryon production [31, 32],

ae Supported by the Spanish Ministry of Education and Sci-
ence through funds provided by CICYT.
af Supported by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC).
ag Partially supported by the German Federal Ministry for Ed-
ucation and Research (BMBF).
ah Supported by RF Presidential grant N 1685.2003.2 for the
leading scientific schools and by the Russian Ministry of Edu-
cation and Science through its grant for Scientific Research on
High Energy Physics.
ai Supported by the Netherlands Foundation for Research on
Matter (FOM).
aj Supported by the German-Israeli Foundation and the Israel
Science Foundation.
ak Supported in part by the MINERVA Gesellschaft für For-
schung GmbH, the Israel Science Foundation (grant no. 293/
02-11.2) and the U.S.-Israel Binational Science Foundation.



4 The ZEUS Collaboration: Measurement of K0S , Λ and Λ̄ production at HERA

Fig. 1. Mass distributions of the secondary vertex candidates
in the Λ+ Λ̄ and K0S samples assuming pπ and ππ decays re-
spectively. Only candidates in the range 0.6< PLABT < 2.5 GeV

and |ηLAB|< 1.2 for events with Q2 > 25 GeV2 and 0.02 < y <
0.95 are displayed. Statistical errors are smaller than the point
size. The number of total Λ+ Λ̄ and K0S candidates located
within the vertical lines are estimated to be 10731 and 73140,
respectively, after the background subtraction

effects due to QCD instantons [33–43] and the mechanisms
for the transverse spin polarization of hadrons [44–46].

2 Experimental setup

The data were collected by the ZEUS detector at the
HERA ep collider during the running period 1996–2000.
The data correspond to an integrated luminosity of
121 pb−1, of which 82 pb−1 were collected at

√
s= 318GeV

(the electron or positron beam1 energy, Ebeame , was
27.5 GeV and the proton beam energy was 920GeV) and
39 pb−1 at

√
s= 300GeV (where the proton beam energy

was 820GeV).
A detailed description of the ZEUS detector can be

found elsewhere [47]. A brief outline of the components
that are most relevant for this analysis is given below.
Charged particles are tracked in the central tracking

detector (CTD) [48–50], which operates in a magnetic
field of 1.43 Tesla provided by a thin superconducting coil.
The CTD consists of 72 cylindrical drift chamber layers,
organized in 9 superlayers covering the polar-angle2 re-
gion 15◦ < θ < 164◦. The transverse-momentum resolution

1 In the text, electron beam, as well as scattered electron, ap-
ply to both electron and positron.
2 The ZEUS coordinate system is a right-handed Cartesian
system, with the Z axis pointing in the proton beam direction,

Fig. 2. Detector-level distributions of ct, where t is the recon-
structed proper lifetime, for Λ, Λ̄ and K0S samples for data
and ARIADNE. The ARIADNE histogram is normalised to the
same number of events as the data. Statistical errors are shown
unless smaller than the point size

for full-length tracks is σ(pT)/pT = 0.0058pT⊕ 0.0065⊕
0.0014/pT, with pT in GeV.
The high-resolution uranium-scintillator calorimeter

(CAL) [51–54] consists of three parts: the forward (FCAL),
the barrel (BCAL) and the rear (RCAL) calorimeters.
Each part is subdivided transversely into towers and lon-
gitudinally into one electromagnetic section and either one
(in RCAL) or two (in BCAL and FCAL) hadronic sec-
tions. The smallest subdivision of the calorimeter is called
a cell. The CAL energy resolutions, as measured under
test-beam conditions, are σ(E)/E = 0.18/

√
E for electrons

and σ(E)/E = 0.35/
√
E for hadrons, with E in GeV.

A three-level trigger system was used to select events
on-line [47]. At the third level, DIS events were accepted on
the basis of the identification of a scattered electron candi-
date using localised energy deposition in the CAL. As there
was no possibility to select inclusive photoproduction sam-
ple, the requirement for photoproduction events [55] was
based on running a jet algorithm using the energies and
positions of the CAL cells. Events with at least two jets
were accepted, where each jet was required to have trans-
verse energy greater than 4.5 GeV and pseudorapidity3 less
than 2.5.
The luminosity wasmeasured using the bremsstrahlung

process ep→ epγ with the luminosity monitor [56–58],
a lead-scintillator calorimeter placed in the HERA tunnel
at Z =−107m.

referred to as the “forward direction”, and the X axis pointing
left towards the center of HERA. The coordinate origin is at the
nominal interaction point.
3 The pseudorapidity η is defined as η ≡− ln tan(θ/2), where
θ is a scattering angle.
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3 Event reconstruction and selection

3.1 Deep inelastic scattering sample

The DIS events are characterised by a scattered electron
detected in the CAL. The scattered electron was identified
from the energy deposit in the CAL using a neural net-
work [59, 60]. The Bjorken variable xBj [61] and Q

2 were
reconstructed using the double angle method (DA) [62, 63]
which has the best resolution in the Q2 region studied. The
inelasticity variable, y, was reconstructed using both the
electron (e) [62, 63] andJacquet–Blondel (JB) [64]methods.
The following requirements were applied offline to select
eventswithQ2 > 25 GeV2 (called the high-Q2 sample):

– | Zvtx |< 50 cm to reduce the background from non-ep
collisions;
– 38< δ < 65 GeV, where δ =

∑
i(Ei−PZ,i) and the sum

runs over the energy and longitudinal momentum of all
CAL cell deposits. This cut reduced the background

Fig. 3. Differential K0S cross-sections as a function of P
LAB
T and ηLAB in the range 0.6 < PLABT < 2.5 GeV and |ηLAB|< 1.2 for

events with 5<Q2 < 25 GeV2, 0.02 < y < 0.95 and Q2 > 25 GeV2, 0.02 < y < 0.95. Statistical errors (inner error bars) and the
systematic uncertainties added in quadrature are shown, unless smaller than the point size. The histograms show predictions from
ARIADNE and LEPTO using the stated strangeness suppression

from photoproduction and events with large radiative
corrections;
– anidentifiedscatteredelectronwithenergyabove10GeV;
– the impact position of the scattered electron on the
CAL satisfied

√
X2+Y 2 > 36 cm;

– the electron was isolated: the energy from all CAL cell
deposits not associated with the scattered electron but
in an η−φ cone of radius 0.8 centered on the electron
was required to be below 5GeV. This requirement re-
duced photoproduction background;
– a track match with any electron falling in the range
0.3< θ < 2.6, well within the CTD acceptance. For θ
outside this region, δ > 44GeV was required. This cut
further suppressed events from non-ep interaction and
photoproduction;
– yJB > 0.02 to improve the accuracy of the DA
reconstruction;
– ye < 0.95 to remove events where fake electrons were
found in the FCAL;
– Q2DA > 25 GeV

2.
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The same selection was used to obtain the low-Q2 DIS
sample, except for the Q2 requirement and the position of
the scattered electron, which were as follows:

– the impact position of the scattered electron on the
CAL was required to be outside a rectangle of dimen-
sions 26×14 cm2, centred on the beam pipe;
– 5<Q2DA < 25 GeV

2.

The trigger for selecting low-Q2 events was normally
prescaled, so the data correspond to an integrated luminos-
ity of 16.6 pb−1.
It should be noted that there was no jet requirement in

the DIS event samples.

3.2 Photoproduction sample

Photoproduction events were selected applying the follow-
ing criteria, described in an earlier publication [55]:

– |Zvtx| < 50 cm, to reduce background from non-ep
collisions;

Fig. 4. DifferentialK0S cross sections as a function of xBj and Q
2 in the range 0.6<PLABT < 2.5 GeV and |ηLAB|< 1.2 for events

a with 5 <Q2 < 25 GeV2, 0.02 < y < 0.95 b Q2 > 25 GeV2, 0.02 < y < 0.95 and c Q2 > 5 GeV2, 0.02 < y < 0.95. Statistical er-
rors and the systematic uncertainties added in quadrature are smaller than the point size. The histograms show predictions from
ARIADNE and LEPTO using the stated strangeness suppression

– yJB > 0.2, to further reduce background from non-ep
collisions;
– events were removed where an electron was found with
ye < 0.85, reducing the background from neutral cur-
rent DIS events;
– yJB < 0.85, to reduce background from neutral current
DIS events where the electron was not identified;
– charged current DIS events were removed by reject-
ing events with PmissT /

√
ET > 2.0 GeV

1
2 , where PmissT is

the missing transverse momentum and ET is the total
transverse energy.

Energy flow objects, reconstructed from a combination
of calorimeter and tracking information to give the best
resolution of kinematic variables, were used as the input
to the kT cluster jet-finding algorithm [65, 66], which was
run in the longitudinally invariant inclusive mode [67]. The
transverse energy of the jets was corrected for energy losses
in inactive material in front of the CAL, as described in
a previous publication [68]. An event was accepted if it
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contained at least two jets, both satisfying the following
criteria:

– jet transverse energy EjetT > 5 GeV;
– jet pseudorapidity |ηjet|< 2.4.

Photoproduction events selected in this way con-
tributed about 10% to the total photoproduction cross
section. The photoproduction sample was divided into sub-
samples using the variable xOBSγ , a measure of the fraction
of the photon energy transferred to the dijet system, de-
fined as:

xOBSγ =

∑
EjetT e

−ηjet

2yJBEbeame

,

where the sum runs over the two jets with highest trans-
verse energy. In leading-order QCD, xOBSγ = 1 corresponds
to direct photon processes in which the photon takes part
in the hard scattering as a point-like particle. Resolved
photon processes, in which the photon acts as a source of
partons, populate the region at xOBSγ < 1. The sample with

Fig. 5. Differential Λ+ Λ̄ cross sections as a function of PLABT and ηLAB in the range 0.6 < PLABT < 2.5 GeV and |ηLAB|< 1.2
for events with 5<Q2 < 25 GeV2, 0.02< y < 0.95 andQ2 > 25 GeV2, 0.02< y < 0.95. Statistical errors (inner error bars) and the

systematic uncertainties added in quadrature are shown, unless smaller than the point size. The histograms show predictions from
ARIADNE and LEPTO using the stated strangeness suppression

xOBSγ > 0.75 is classified as direct-enriched, and that with

xOBSγ < 0.75 as resolved-enriched.

3.3 Strange particle reconstruction

Candidates for long-lived neutral strange hadrons decaying
to two charged particles were identified by selecting pairs of
oppositely charged tracks, fitted to a displaced secondary
vertex. Events were required to have at least one such can-
didate. These secondary vertices were found by the ZEUS
track-finding software, which is based onminimizing the χ2

arising from fitting tracks to vertices [69]. Displaced ver-
tices were typically more than 3 cm away from the primary
vertex. The minimal distance required to resolve a dis-
placed vertex from the primary vertex was about 1 cm. The
tracks fitted to this vertex were required to pass through
at least the fifth superlayer of the CTD, the transverse mo-
mentum was required to be greater than 150MeV and the
absolute pseudorapidity in the laboratory frame was re-



8 The ZEUS Collaboration: Measurement of K0S , Λ and Λ̄ production at HERA

Fig. 6. Differential Λ+ Λ̄ cross sections as a function of xBj and Q
2 in the range 0.6 < PLABT < 2.5 GeV and |ηLAB| < 1.2 for

events a with 5<Q2 < 25 GeV2, 0.02< y < 0.95 b Q2 > 25 GeV2, 0.02< y < 0.95 and c Q2 > 5GeV2, 0.02< y < 0.95. Statistical
errors and the systematic uncertainties added in quadrature are smaller than the point size. The histograms show predictions from
ARIADNE and LEPTO using the stated strangeness suppression

quired to be less than 1.5. These constraints ensured a good
track resolution and acceptance. The Λ, Λ̄ and K0S par-
ticles may also be created in interactions with the beam
pipe. To remove these events a collinearity cut on the angle
between the reconstructed candidate momentum and the
vector joining the primary vertex to secondary vertex was
applied. This angle was restricted to be less than 0.2.
The Λ(Λ̄) candidates were reconstructed by their

charged decay mode to pπ−( p̄π+) (branching ratio 63.9±
0.5% [70]). The track with the larger momentum was
assigned the mass of the proton, while the other was as-
signed the mass of the charged pion, as the decay pro-
ton always has a larger momentum than the pion, pro-
vided the Λ(Λ̄) momentum is greater than 0.3GeV. Ad-
ditional requirements to select Λ(Λ̄) are given in the
following:

– 0.6< PLABT (Λ, Λ̄) < 2.5 GeV, where PLABT (Λ, Λ̄) is the
transverse momentum of the reconstructed candidate;
– | ηLAB(Λ, Λ̄) |< 1.2, where ηLAB(Λ, Λ̄) is the pseudora-
pidity of the reconstructed candidate in the laboratory;

– M(e+e−) > 0.05GeV, to eliminate electron pairs from
photon conversions4;
– M(π+π−)< 0.475GeV, to removeK0S contamination;
– 1.11<M(pπ)< 1.122GeV.

TheK0S meson candidates were reconstructed from the
decays to π+π− (branching ratio 68.95±0.14% [70]). Both
tracks were assigned the mass of the charged pion. Addi-
tional requirements to selectK0S are given in the following:

– 0.6 < PLABT (K0S) < 2.5 GeV, where P
LAB
T (K0S) is the

transverse momentum of the reconstructed candidate;
– | ηLAB(K0S) |< 1.2, where η

LAB(K0S) is the pseudorapid-
ity of the reconstructed candidate in the laboratory;
– M(e+e−)> 0.05GeV;
– M(pπ)> 1.125GeV, to removeΛ and Λ̄ contamination.
Here the mass of the proton was assigned to the track
with larger momentum and the mass of the pion to the
other track;
– 0.48<M(π+π−)< 0.52GeV.

4 M(ab) is defined as the invariant mass for two vertex tracks
with the assignment of masses of particles a and b.
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Fig. 7. Differential K0S cross sections as a function of P
LAB
T , ηLAB and xOBSγ , in the range 0.6 < PLABT < 2.5 GeV and

|ηLAB|< 1.2 for events with Q2 < 1 GeV2, 0.2< y < 0.85 and at least two jets both satisfying EjetT > 5 GeV and |η
jet|< 2.4. Sta-

tistical errors are shown, unless smaller than the point size, together with the systematic uncertainty arising from the trigger
efficiency added in quadrature. The uncertainty arising from the jet energy scale is also shown (shaded band). The solid histogram
shows the prediction from PYTHIA (with multiple interactions), normalised to the data

The mass peaks for K0S and Λ+ Λ̄ in the high-Q
2 sam-

ple are shown in Fig. 1. The decay of K0S, Λ, and Λ̄ was
well understood as can be demonstrated by Fig. 2, which
shows the proper decay times, reconstructed from the three
dimensional decay length, compared to the expectations
from MC simulation (see below).

4 Event simulation

Production ofK0S,Λ and Λ̄ hadrons wasmodelled using the
MC programs described below. In these models, strange
quarks can be produced perturbatively by the boson–gluon
fusion process (γg→ ss̄) or by gluon splitting in so-called

parton showers. They may also originate from the proton
parton densities or can be generated in non-perturbative
string fragmentation. Strange hadrons are produced dur-
ing hadronization, when quarks recombine into hadrons,
and through the decays of other hadrons. Samples of events
were generated to determine the response of the detector
and obtain the correction factors required to convert the
detector-level distributions to the hadron level. The gen-
erated events were passed through a full simulation of the
detector, using GEANT 3.13 [71], and processed with the
same reconstruction program as used for the data.
The high-Q2 and the low-Q2 DIS data were corrected to

the hadron level using the ARIADNE 4 [25] MC program
interfaced to HERACLES 4.6.1 [72–75] via DJANGOH
1.1[75], to include QED corrections. The CTEQ proton
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Fig. 8. Differential Λ+ Λ̄ cross sections as a function of PLABT , ηLAB and xOBSγ , in the range 0.6 < PLABT < 2.5 GeV and

|ηLAB|< 1.2 for events with Q2 < 1 GeV2, 0.2< y < 0.85 and at least two jets both satisfying EjetT > 5 GeV and |η
jet|< 2.4. Sta-

tistical errors are shown, unless smaller than the point size, together with the systematic uncertainty arising from the trigger
efficiency added in quadrature. The uncertainty arising from the jet energy scale is also shown (shaded band). The solid histogram
shows the prediction from PYTHIA (with multiple interactions), normalised to the data

parton density functions were used [76, 77]. ARIADNE is
based on the colour dipole model in which most QCD
coherence effects are modelled as gluon emission from
colour dipoles between partons. The program uses the
Lund string model [78] to simulate the fragmentation of
the partons. A significant parameter governing the pro-
duction of strange hadrons is the strangeness-suppression
factor, λs, that is the probability to produce s-quark pairs
relative to u- and d-quark pairs in the string fragmenta-
tion. This was set to 0.3, the default value, as found in
e+e− annihilation [79–82]. Other parameters that control
baryon production were set to their default values5 [83].

5 The key parameters for baryon production in JETSET are
the diquark–antidiquark pair production suppression

This ARIADNE sample was also used to compare to the
final cross sections and ratios.
A value of λs smaller than 0.3 is often preferred [12, 16–

19, 84, 85] for K0S production. Therefore, a further sample
with λs = 0.22 [86] was also generated and used for com-
parison. The DIS data were additionally simulated using
the LEPTO 6.5 MC program [26], which is based on first-
order matrix elements plus parton showers (MEPS). The

PARJ(1) = 0.10, the suppression of s quark pair production
compared to u or d pair production λs ≡ PARJ(2) = 0.30, the
extra suppression of strange diquark production compared with
the normal suppression of strange quarks PARJ(3) = 0.4 and
the suppression of spin 1 diquarks compared with spin 0 ones
PARJ(4) = 0.05.
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same Lund string model was used for the hadronisation,
with λs = 0.3, and the same proton parton density func-
tions as in the ARIADNE sample. This was used for further
comparison to the data.
The photoproduction data were corrected to the hadron

level using the PYTHIA 6 event generator [28], which
consists of leading-order matrix-element calculations with
initial- and final-state parton showering to simulate higher-
order processes. The proton and photon PDFs were taken
from GRV [87] and SaS2D [88], respectively. Multiple in-
teractions [55, 89–93], where more than one pair of partons
(one parton from the photon and one parton from the
proton) interact independently, were included. The de-
fault implementation was used, with the pminT [83] value
of 2.7 GeV. The hadronisation is performed by the Lund
string model, as in ARIADNE, with the same parame-
ters controlling the production of strange hadrons. Direct
and resolved events were generated separately. For correc-
tion of the data, the direct and resolved subsamples were
combined such that they gave a best fit to the data xOBSγ

Fig. 9. The ratio
N(Λ)−N(Λ̄)
N(Λ)+N(Λ̄)

as a function of PLABT , ηLAB, xBj and Q
2, in the range 0.6 < PLABT < 2.5 GeV and |ηLAB|< 1.2

for events with Q2 > 25 GeV2 and 0.02 < y < 0.95. Statistical errors (inner error bars) and the systematic uncertainties added in
quadrature are shown. The histograms show predictions from ARIADNE and LEPTO using the stated strangeness suppression

distribution. The PYTHIA sample was also used to com-
pare to the final cross sections and ratios, in which case the
direct and resolved events were combined according to the
predicted cross sections.

5 Cross-section determination

The cross sections in the high-Q2 DIS sample were meas-
ured in the kinematic region Q2 > 25GeV2 and 0.02 <
y < 0.95. The cross sections in the low-Q2 DIS sample
were measured in the kinematic region 5< Q2 < 25 GeV2

and 0.02< y < 0.95. The cross sections in the photopro-
duction sample were measured in the kinematic region
Q2 < 1 GeV2 and 0.2 < y < 0.85, with the additional re-
quirement of 2 jets, both satisfying EjetT > 5 GeV and
|ηjet| < 2.4. In all three samples there was a further kine-
matic requirement that 0.6 < PLABT (K0S , Λ, Λ̄) < 2.5 GeV
and |ηLAB(K0S , Λ, Λ̄)| < 1.2. In all samples the measured
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Fig. 10. The ratio
N(Λ)−N(Λ̄)
N(Λ)+N(Λ̄)

as a function of PLABT , ηLAB and xOBSγ , in the range 0.6< PLABT < 2.5 GeV and |ηLAB|< 1.2 for

events with Q2 < 1 GeV2, 0.2 < y < 0.85 and at least two jets both satisfying EjetT > 5 GeV and |η
jet|< 2.4. Statistical errors are

shown, together with the uncertainty arising from the jet energy scale (shaded band). The solid histogram shows the prediction
from PYTHIA (with multiple interactions)

cross sections were the luminosity-weighted average of the
cross sections at the centre-of-mass energies

√
s= 318GeV

and
√
s = 300GeV. In the DIS samples differential cross

sections were measured as functions of PLABT (K0S , Λ, Λ̄),
ηLAB(K0S , Λ, Λ̄), xBj, andQ

2. In the photoproduction sam-
ple differential cross sections were measured as functions of
PLABT (K0S , Λ, Λ̄), η

LAB(K0S , Λ, Λ̄), and x
OBS
γ .

The K0S , Λ and Λ̄ differential cross sections in any vari-
able Y were calculated using a standard bin-by-bin correc-
tion as follows:

dσ

dY
=

N

A ·L ·B ·∆Y
,

where N is the number of K0S , Λ or Λ̄ in a bin of width
∆Y , L is the luminosity, A is the acceptance and B is the

branching ratio. The acceptance was calculated from the
MC samples described in Sect. 4, and took into account
migration effects and efficiencies for each bin. The accept-
ance for each particle was calculated for each bin of a 6×6
grid in pT and η. An additional acceptance correction was
made to obtain the differential cross sections as functions
of variables other than pT or η. In each bin a mass-sideband
subtraction method was used to subtract the remaining
combinatorial background in the K0S , Λ and Λ̄ samples,
which was at the level of ∼ 3% in theK0S sample and ∼ 6%
in the Λ and Λ̄ samples.
The differential cross sections, dσdY , for the considered

particle as a function of η and PT can be converted into the
multiplicity distribution 1

dσinc

dσ
dY , where σinc is the inclu-
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sive event cross section using the following factors: σ−1inc =
2.6×10−5 pb−1 for the high-Q2 sample, 8.9×10−6 pb−1

for the low-Q2 sample and 1.6×10−5 pb−1 for the photo-
production sample. On average, in the measured PT and
η region, for the high-Q2 sample, there were about 0.017Λ
(or Λ̄) and 0.09K0S per event. The correspondingmultiplic-
ities for the photoproduction sample were 0.077 for Λ (or
Λ̄) and 0.27 forK0S .

5.1 Systematic uncertainties

The main sources which contributed to the systematic un-
certaintywere investigatedbychanging theanalysis proced-
ure, as outlinedbelow, andobserving the difference fromthe
primary result. The total systematic uncertainty in the DIS
samples for each bin was calculated by adding the individ-
ual contributions from the different variations in quadra-
ture. The following sources of systematic uncertainties were
considered: the energy measurement of the scattered elec-
tron; the measurement of Q2, δ, Zvtx and y; measurements

Fig. 11. The ratio
N(Λ)+N(Λ̄)
N(K0S)

as a function of PLABT and ηLAB in the range 0.6 < PLABT < 2.5 GeV and |ηLAB|< 1.2 for events

with 5<Q2 < 25 GeV2, 0.02< y < 0.95 andQ2 > 25 GeV2, 0.02< y < 0.95. Statistical errors (inner error bars) and the systematic
uncertainties added in quadrature are shown. The histograms show predictions from ARIADNE and LEPTO using the stated
strangeness suppression

of secondary-track pT and η; the removal of Λ and K
0
S due

to the collinearity cut; the impact position of the electron
on the CAL; the estimation of the background.The system-
atic uncertainty on the cross sections was generally � 5%.
Additionally, a 2% uncertainty due to the luminosity meas-
urementwas included for the cross sections. The branching-
ratio uncertainties were deemed negligible and not taken
into account.
The most significant systematic error in the photoproduc-
tion sample was due to the uncertainty in the calorime-
ter energy scale (±3%), shown as a separate band in the
figures. Typical uncertainties in the cross sections were
� 10%, except in the highest bin of xOBSγ where the uncer-
tainty was up to 80%. A systematic uncertainty of 7% on
the photoproduction cross sections due to trigger efficien-
cies was included. The limitations of the PYTHIA Monte
Carlo simulation, particularly in describing the xOBSγ dis-
tribution in the data, introduced a possible additional
systematic uncertainty in correcting the data from detec-
tor level to hadron level. The effect of this was investi-
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gated by reweighting the PYTHIA xOBSγ distribution to
the data and using this reweighted sample to correct the
data. The difference between the results obtained with the
reweighted sample compared to the primary results was
treated as a further systematic uncertainty; uncertainties
in the cross sections were� 5%.
The uncertainty of the tracking simulation [94] was neg-

ligible compared to all other sources. Most of the uncer-
tainties discussed above cancel in the ratios and asymme-
tries presented in this paper.

6 Results and discussion

6.1 Cross sections

Measured differential cross sections for the production of
K0S and Λ+ Λ̄ are shown in Figs. 3–6 for the DIS data and

Fig. 12. The ratio
N(Λ)+N(Λ̄)
N(K0S)

as a function of xBj andQ
2 in the range 0.6<PLABT < 2.5 GeV and |ηLAB|< 1.2 for events with a

5<Q2 < 25 GeV2, 0.02 < y < 0.95 b Q2 > 25 GeV2, 0.02 < y < 0.95 and c Q2 > 5 GeV2, 0.02 < y < 0.95. Statistical errors (inner
error bars) and the systematic uncertainties added in quadrature are shown. The histograms show predictions from ARIADNE
and LEPTO using the stated strangeness suppression

in Figs. 7 and 8 for the photoproduction sample. The DIS
cross sections are compared to the absolute predictions of
ARIADNE and LEPTO MC calculations. The photopro-
duction cross sections are compared to the prediction of the
PYTHIA MC with multiple interactions normalised to the
data cross section.
The ARIADNE program with strangeness-suppression

factor of 0.3 describes the data reasonably well, although
the K0S cross section for the high-Q

2 sample is overesti-
mated. The slope of the PLABT dependence is incorrect and
the cross section at low xBj is underestimated for both low-
and high-Q2 samples. A similar comment can be made for
the Λ+ Λ̄ cross sections.
The description of the data by ARIADNE with the

strangeness-suppression factor of 0.22 is less satisfactory
but, as λs is not the only parameter influencing the cross
section, a conclusion on what value of the λs can describe
the data best cannot be drawn. The LEPTO MC does not
describe the data well.
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In photoproduction, PYTHIA with multiple interac-
tions describes the shape of the data dependence on PLABT
and ηLAB adequately, but the xOBSγ dependence is pre-
dicted to be too flat and at the smallest xOBSγ , in the re-
solved photon region, the description is poor.

6.2 Baryon–antibaryon asymmetry

The baryon–antibaryon asymmetryA is defined as:

A=
N(Λ)−N(Λ̄)

N(Λ)+N(Λ̄)
,

where N(Λ), N(Λ̄) is the number of Λ and Λ̄ baryons, re-
spectively.
The baryon–antibaryon asymmetry A has been meas-

ured and compared to MC predictions from ARIADNE
and PYTHIA (with λs = 0.3 for both, and also with λs =
0.22 for ARIADNE). The following values were obtained:

– at high Q2: A= 0.3±1.3+0.5−0.8%, compared to the ARI-
ADNE (λs = 0.3) prediction of 0.4±0.2%;
– at low Q2: A = 1.2±1.6+0.7−2.1%, compared to the ARI-
ADNE (λs = 0.3) prediction of 1.0±0.2%;
– in photoproduction: A = −0.07± 0.6+1.0−1.0%, compared
to the PYTHIA prediction of 0.6±0.1%.

Fig. 13. The ratio
N(Λ)+N(Λ̄)
N(K0S)

as a function of Q2 for four bins of xBj, in the range 0.6< P
LAB
T < 2.5 GeV and |ηLAB|< 1.2 for

events withQ2 > 5 GeV2 and 0.02< y < 0.95. Statistical errors only are shown. The histograms show predictions from ARIADNE
with a strangeness-suppression factor of 0.3

Figures 9 and 10 show the baryon–antibaryon asymme-
try at high-Q2 as a function of PLABT , ηLAB, xBj, Q

2 and
in photoproduction as a function of PLABT , ηLAB and xOBSγ .
In all cases, the average baryon–antibaryon asymmetry is
consistent both with no asymmetry and consistent with
the very small asymmetry predicted by Monte Carlo. This
suggests that in the considered parts of the ep phase-space,
to a good approximation, baryons and antibaryons are pro-
duced according to the same mechanism.
A positive asymmetry of 3.5% is predicted in DIS [30],

due to the so called gluon-junction mechanism that makes
it possible for the “baryon number to travel” several units
of rapidity, in this case from the proton beam direction
to the rapidity around 0 in the laboratory frame in which
the measurements were made. Such a class of models can
describe the significant positive baryon–antibaryon asym-
metry which has been measured at the heavy-ion collider
RHIC [95]. Although this prediction is not Q2 dependent,
it is not clear whether it could be extended down to Q2 = 0
and applied to the selected photoproduction sample. Com-
bining statistical and systematic errors from the three sam-
ples, the average asymmetry is in disagreement with the
3.5% value.
Although ARIADNE predicts that on average about

15% (40% at the highest xBj for the low-Q
2 sample) of
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events with a reconstructed Λ or Λ̄ originate from the ex-
changed photon coupling to an s or s̄ quark from the pro-
ton, this measurement, being at low xBj, is not sensitive to
the strange-quark asymmetry in the proton structure func-
tion as studied by NuTeV [96].
As our baryon–antibaryon asymmetry is consistent

with no asymmetry, the Λ and Λ̄ samples were combined
together (except for the transverse polarization measure-
ment) and results presented for the combined sample.

6.3 Baryon-to-meson ratio

The baryon-to-meson ratioR is defined as:

R=
N(Λ)+N(Λ̄)

N(K0S)
,

where N(Λ), N(Λ̄), N(K0S) refer to the number of indi-
cated hadrons.
Figures 11 and 12 show the measured and predicted

R for the DIS samples as a function of PLABT , ηLAB, xBj
and Q2. The inaccuracies in describing the K0S and Λ + Λ̄
cross sections for highQ2, mentioned earlier, are clearly re-
flected in R, but overall the ARIADNE MC with λs = 0.3

Fig. 14. The ratio
N(Λ)+N(Λ̄)
N(K0S)

as a function of xBj for four bins of Q
2, in the range 0.6< PLABT < 2.5 GeV and |ηLAB|< 1.2 for

events withQ2 > 5 GeV2 and 0.02< y < 0.95. Statistical errors only are shown. The histograms show predictions from ARIADNE
with a strangeness-suppression factor of 0.3

follows the shape of the data distributions and is usually in
agreement to better than about 10%. The low-Q2 sample
is described by the same Monte Carlo programs with even
better accuracy. In order to have a better understanding
of how R depends on xBj and Q2, R is shown as a func-
tion of Q2 for fixed bins in xBj and as a function of xBj for
fixed bins in Q2 in Figs. 13 and 14. A dependence on Q2

and a discrepancy between the data and MC can now be
seen for the bins of higher xBj. For the two bins of higher
Q2, the MC underestimates the data at low xBj by up to
20%. The R value varies between about 0.2 and 0.5, and is
about 0.4 to 0.5 at low xBj and low Q

2. These values can
be compared to measurements at e+e− colliders, where for
centre-of-mass energies from 10 to 200GeV, R varies be-
tween about 0.2 and 0.4 [70].
Figure 15 shows R for the photoproduction sample.

For the direct-enriched sample, where xOBSγ > 0.75, R is
about 0.4, the same value as in DIS at low xBj and low
Q2. However, R rises to a value of about 0.7 towards low
xOBSγ (resolved-enriched sample), while it stays flat in the

PYTHIA prediction.
In order to study this effect further, the photoproduc-

tion events were divided into two samples. In the first,
the jet with the highest transverse energy was required to
contribute at most 30% to the total hadronic transverse
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energy. In this sample the events have largely isotropic
transverse energy flow and therefore the sample is called
“fireball-enriched”. The other sample, containing all the
other events, was called “fireball-depleted”. Figure 16a
shows the distribution of events as a function of the total
transverse energy, which is on average 30 GeV, and of the

transverse energy of the jet with the highest EjetT . The line
represents the cut used to separate fireball-enriched and
fireball-depleted samples. Figure 16b illustrates the fireball
selection in relation to the fraction of the total transverse
energy carried by two jets of the highest transverse energy.
It can be seen that fireball-depleted events are dominated
by dijet events carrying most of the total transverse energy
and that the fireball-enriched and fireball-depleted samples
have about the same number of events.

Fig. 15. The ratio
N(Λ)+N(Λ̄)
N(K0S)

as a function of PLABT , ηLAB and xOBSγ , in the range 0.6 <PLABT < 2.5 GeV and |ηLAB|< 1.2 for

events with Q2 < 1 GeV2, 0.2< y < 0.85 and at least two jets both satisfying EjetT > 5 GeV and |η
jet|< 2.4. The statistical errors

are shown, unless smaller than the point size. The shaded band shows the uncertainty arising from the jet energy scale. The solid
histogram shows the prediction from PYTHIA (with multiple interactions)

The baryon-to-meson ratios for the fireball-enriched
and fireball-depleted samples are presented in Fig. 17 for
the data and PYTHIA MC. The measured R is larger
for the fireball-enriched sample, most significantly at high
PLABT , than it is for the fireball-depleted sample. This fea-
ture is not reproduced by PYTHIA, which predicts almost
the sameR for both samples. The PYTHIA prediction rea-
sonably describes the measured values ofR for the fireball-
depleted sample. This is not surprising as PYTHIA gen-
erates jets in events according to the multiple interaction
mechanism [89–92], which makes several independent jets,
like those in DIS or e+e− where baryons and mesons are
created locally. Provided there is enough energy available,
R will be the same, regardless of the number of jets (ignor-
ing some differences in quark and gluon fragmentation).
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Fig. 16. a Distribution of photoproduc-
tion events as a function of the total trans-
verse energy and the transverse energy of
the jet with the highest transverse energy.
Here the event sample was selected with-
out any strange hadron requirements. The
solid line represents the cut used to sepa-
rate fireball-enriched and fireball-depleted
subsamples. b The fraction of the total ET
carried by the two jets of highest trans-
verse energy for the same data sample as

in a. Fireball-enriched (E
jet(1)
T /ET < 0.3)

and fireball-depleted (E
jet(1)
T /ET > 0.3)

samples are shown. Statistical errors are
smaller than the point size

Large values of R, larger than 1, have been measured
at hadron and heavy-ion colliders: pp̄ [23], pp [24, 97] and
RHIC [98–101].

6.4 Ratio of strange-to-light hadrons

The ratio of strange-to-light hadrons was measured in
terms of T :

T =
N(K0S)

Nch
,

where N(K0S) is the number of K
0
S and Nch is the number

of charged pions, charged kaons, protons and antiprotons,
(excluding products of K0S, Λ, and Λ̄ decays) in the same
region of PLABT and ηLAB as theK0S.
In Figs. 18 and 19, T is shown as a function of PLABT

and ηLAB for the high-Q2 sample (for the low-Q2 sample,
not shown, the values are similar) and for the photopro-
duction sample. The MC predictions from ARIADNE and

PYTHIA are also shown. They follow the data reasonably
well, preferring the strangeness-suppression factor to be
smaller than 0.3. The measured T lies between 0.05 and
0.1, varying with PLABT for both the DIS and photoproduc-
tion. Similar values have been measured at e+e− [70] for
the ratio of the number of K0S to the number of charged
pions and are on average about 0.07 at centre-of-mass ener-
gies from 10 to 35GeV, about 0.06 at the Z0 and about 0.05
at 200GeV. It can be concluded that T is about the same in
e+e− and ep.
In order to see whether T depends on the transverse

energy flow, the fireball selection, as discussed above, was
applied to the photoproduction events. Figure 19c and d
show the measured and predicted T for the fireball selec-
tion. The quantity T hardly depends on the fireball selec-
tion, as predicted by PYTHIA.
Fireball events are candidates for events where QCD

instantons [33–43] could play a role [102–104], since they
are characterised by isotropic transverse energy flow. An-
other expectation is a likely enhancement of heavier-quark
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production relative to light quarks, due to the required
flavour democracy. Searches for QCD instantons in DIS
have been reported by H1 [105] and ZEUS [106]. No ef-
fect was identified due to QCD instantons, as the expected
effects were small compared to the background at the rela-
tively large Q2 required. Bigger effects are expected at
lowerQ2.
If QCD instantons contribute to the fireball event sam-

ple, then T would be expected to be different, possibly
larger, for the fireball events than the typical value of
about 0.07 or 0.08. As this is not the case, this measure-
ment of T in photoproduction does not support the idea
that QCD instantons contribute significantly to the pro-
duction of the fireball events. It should be noted that there

Fig. 17. The ratio
N(Λ)+N(Λ̄)
N(K0S)

as a function of PLABT , ηLAB and xOBSγ , in the range 0.6 < PLABT < 2.5 GeV and |ηLAB|< 1.2

for events with Q2 < 1 GeV2, 0.2 < y < 0.85 and at least two jets both satisfying EjetT > 5 GeV and |η
jet|< 2.4. The ratios from

the fireball-enriched sample (squares) and the fireball-depleted sample (triangles) are shown for the data. The prediction from
PYTHIA for the fireball-enriched (solid line) and for the fireball-depleted (dashed line) samples are shown. Statistical errors are
shown. The highest xOBSγ bin (0.9< xOBSγ < 1.0) of the fireball enriched sample is omitted due to insufficient statistics

is only a qualitative prediction on the contribution from
QCD instantons based on democracy of flavours, includ-
ing heavy flavours, subject to available energy. The only
existing calculation [104] applies to DIS and only con-
siders three massless flavours. Since there is no charm-
quark contribution, this calculation is probably only valid
at low particle multiplicities, where the number of K0S is
predicted to be about twice as big as that predicted by
ARIADNE.

6.5 Polarization

In analogywithQED, the spin-orbit interaction leads to po-
larization in scattering due to the strong inter-
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Fig. 18. The ratio
N(K0S)
Nch

as

a function of PLABT and ηLAB, in
the range 0.6 < PLABT < 2.5 GeV
and |ηLAB|< 1.2 for events with
Q2 > 25 GeV2 and 0.02 < y <
0.95. Statistical errors are smaller
than the point size. The his-
tograms show predictions from
ARIADNE and LEPTO using
the stated strangeness suppres-
sion

Fig. 19. The ratio
N(K0S)
Nch

as

a function of PLABT and ηLAB,
in the range 0.6 < PLABT <

2.5 GeV and |ηLAB| < 1.2 for
events with Q2 < 1GeV2, 0.2 <
y < 0.85 and at least two jets
both satisfying EjetT > 5 GeV

and |ηjet| < 2.4. The ratio is
shown for all events in a and
b and for the fireball-enriched
sample and the fireball-depleted
sample in c and d. Prediction
from PYTHIA (with multiple
interactions) predictions with
a strangeness suppression fac-
tor of 0.3 are shown as solid
and dashed histograms. Statisti-
cal errors are smaller than the
symbols

action [44–46]. Unpolarized s quarks get partially trans-
versely polarized due to elastic scattering in the coloured
field along the direction of ki×kf, where ki and kf stand

for the initial and final momenta of the s quarks. The de-
gree of the polarization depends on the scattering angle and
the strength of the coloured field. In the constituent quark
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Polarization (%)

High-Q2 DIS Low-Q2 DIS Photoproduction

Λ −1.3±4.3(stat.)+4.0−0.8(syst.) −4.0±5.3(stat.)+4.7−4.0(syst.) −2.4±2.2(stat.)

Λ̄ −2.2±4.2(stat.)+2.4−1.3(syst.) −8.5±5.5(stat.)+4.7−2.1(syst.) −5.8±2.2(stat.)

K0S −1.5±1.1(stat.) −0.05±1.5(stat.) −0.5±0.2(stat.)

Table 1. The transverse polarization values for Λ and Λ̄, expressed here in %, in the high-Q2 DIS
(Q2 > 25 GeV2 and 0.02< y < 0.95), low-Q2 DIS (5<Q2 < 25 GeV2 and 0.02 < y < 0.95), and pho-

toproduction (Q2 < 1 GeV2, 0.2< y < 0.85 and with two jets EjetT > 5 GeV and |η
jet|< 2.4) samples.

Only Λ and Λ̄ in the range 0.6 < PLABT < 2.5 GeV and |ηLAB|< 1.2 are considered. The statistical
error is quoted for all samples, together with the systematic uncertainty associated with the meas-
urement for the high-Q2 and low-Q2 samples. A similar systematic uncertainty is expected for the
photoproduction sample. Also shown, as a test of any systematic effect, are the polarization values
obtained by investigating the angular distribution of the higher-momentum π from K0S decays

model, theΛ inherits its spin fromthesquark,andkf is along
theΛmomentum.Aski is unknown in our case, the electron
beam direction was used instead (the effect of using the jet
directionwas also investigated).
The transverse polarizationPΛ (P Λ̄) is defined by the form
of the proton (antiproton) angular distribution:

1

N

dN

d cos θ
=
1

2
[1+αPΛ cos θ] ,

1

N

dN

d cos θ
=
1

2
[1−αP Λ̄ cos θ] ,

where α is the decay asymmetry parameter, measured to
be α = 0.642±0.013 [70], and θ is the angle between the
proton (antiproton) momentum boosted to the rest frame
of the Λ(Λ̄) and the polarization axis, kbeame × kΛ. An
example of the angular distribution of the proton’s (an-
tiproton’s) momenta with respect to the polarization axis,
boosted to the Λ(Λ̄) rest frame, is shown in Fig. 20.
Fitted values of the transverse polarization PΛ and P Λ̄

are presented in Table 1 for high- and low-Q2 DIS and for
photoproduction. All values are compatible with no polar-
ization. Also presented are the polarization values obtained
by investigating the angular distribution of the higher-
momentum π from K0S decays, as a further test of any
systematic detector effect.

7 Conclusions

Measurements of K0S , Λ and Λ̄ production have been
made at HERA, using 121 pb−1 of data collected with
the ZEUS detector. The following conclusions have been
obtained:

1. in high- and low-Q2 DIS, ARIADNE reproduces gross
features of the cross sections but shows discrepancies
in detail. Overall, the strangeness suppression factor
λs = 0.3 is preferred to λs = 0.22. PYTHIA, normalised
to the data, describes the dependence of the photopro-
duction cross sections on PLABT and ηLAB satisfactorily
but fails to reproduce the xOBSγ dependence;

Fig. 20. Angular distributions of the highest-momentum de-
cay particle from a Λ or Λ̄ in the range 0.6 < PLABT < 2.5 GeV
and |ηLAB|< 1.2 for events with Q2 > 25 GeV2 and 0.02 < y <
0.95, where θ is the angle between the decay-particle momen-
tum vector and the polarization axis, in the rest frame of the
Λ or Λ̄. Statistical errors (inner error bars) and the systematic
uncertainties added in quadrature are shown. The first-order
polynomial fit (solid line) from which the polarization is ob-
tained is also shown

2. the numbers of Λ and Λ̄ produced are consistent with
being equal;

3. except for the resolved photon interactions, the meas-
ured ratio of baryons to mesonsR, defined as:

R=
N(Λ)+N(Λ̄)

N(K0S)
,

is in the range between 0.2 and 0.5, similar to meas-
urements at e+e− colliders. ARIADNE and PYTHIA
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follow the shapes of the data on the selected observables
but in many cases fail quantitatively at the 10 to 20%
level;

4. in the resolved photon region, the ratio of baryons
to mesons is large, significantly larger than measured
in e+e− interactions and significantly larger than the
PYTHIA prediction;

5. the ratio of strange-to-light hadrons measured in terms
of T :

T =
N(K0S)

Nch
,

is compatible with measurements at other colliders and
is described by ARIADNE and PYTHIA for all in-
vestigated samples of events. For the DIS sample, the
strangeness suppression factor λs = 0.22 is preferred to
the default value of λs = 0.3. For the photoproduction
sample, PYTHIA with λs = 0.3 overestimates the data,
but describes the shape of the distributions. There is
no indication of any unusual yield of strange-hadrons in
the fireball-enriched sample, as would be qualitatively
expected had there been a significant contribution from
QCD instantons;

6. No evidence has been found for non-zero transverse po-
larization in inclusive Λ or Λ̄ production.
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