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POSITIVE EQUILIBRIUM SOLUTIONS TO

GENERAL POPULATION MODEL
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Abstract: In this paper, we investigate conditions for the existence of positive
solution to the following general elliptic system with various growth conditions:







∆u+ u(a+ g(u, v)) = 0
∆v + v(d+ h(u, v)) = 0

in Ω,

u|∂Ω = v|∂Ω = 0.

Our arguments mainly rely on super-sub solutions, maximum principles, spec-
trum estimates, and some detailed properties for the solution of logistic equa-
tions.

AMS Subject Classification: 35A05, 35A07
Key Words: elliptic system with various growth conditions, existence of
positive solution, super-sub solutions, maximum principles, spectrum estimates,
logistic equations

1. Introduction

One of the prominent subjects of study and analysis in mathematical biology
concerns the competition, predator-prey or cooperation of two or more species
of animals in the same environment. Especially pertinent areas of investigation
include the conditions under which the species can coexist, as well as the con-
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ditions under which any one of the species becomes extinct, that is, one of the
species is excluded by the others (see [1], [2], [3], [4], [6], [7], [11], [12], [13]). In
this paper, we focus on the general population model to better understand the
interactions between two species.

2. Preliminaries

Before entering into our primary arguments and results, we must first present
a few preliminary items that we later employ throughout the proofs detailed in
this paper. The following definition and lemmas are established and accepted
throughout the literature on our topic.

Definition 2.1. (Super and sub solutions) Consider

{

∆u+ f(x, u) = 0 in Ω,
u|∂Ω = 0,

(1)

where f ∈ Cα(Ω̄×R) and Ω is a bounded domain in Rn.
(A) A function ū ∈ C2,α(Ω̄) satisfying

{

∆ū+ f(x, ū) ≤ 0 in Ω,
ū|∂Ω ≥ 0

is called a super solution to (1).
(B) A function u ∈ C2,α(Ω̄) satisfying

{

∆u+ f(x, u) ≥ 0 in Ω,
u|∂Ω ≤ 0

is called a sub solution to (1).

Lemma 2.1. Let f(x, ξ) ∈ Cα(Ω̄ × R) and let ū, u ∈ C2,α(Ω̄) be, respec-
tively, super and sub solutions to (1) which satisfy u(x) ≤ ū(x), x ∈ Ω̄. Then
(1) has a solution u ∈ C2,α(Ω̄) with u(x) ≤ u(x) ≤ ū(x), x ∈ Ω̄.

In our proof, we also employ accepted conclusions concerning the solutions
of the following logistic equations.

Lemma 2.2. (Established in [13]) Consider

{

∆u+ uf(u) = 0 in Ω,
u|∂Ω = 0, u > 0,
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where f is a decreasing C1 function such that there exists c0 > 0 such that
f(u) ≤ 0 for u ≥ c0 and Ω is a bounded domain in Rn.

If f(0) > λ1, then the above equation has a unique positive solution, where
λ1 is the first eigenvalue of −∆ with homogeneous boundary conditions whose
corresponding eigenfunction is denoted by φ1. We denote this unique positive
solution as θf .

The most important property of this positive solution is that θf is increasing
as f is increasing.

We specifically note that for a > λ1, the unique positive solution of
{

∆u+ u(a− u) = 0 in Ω,
u|∂Ω = 0, u > 0,

is denoted by ωa ≡ θa−x. Hence, θa is increasing as a > 0 is increasing.
Consider the system

∆u+ f(x, u) = 0 in, Ω,
u = 0 on ∂Ω,

(2)

where u = (u1, ..., um) and f = (f1, ..., fm) is quasimonotone increasing, i.e.
fi(x, u) is increasing in uj for all j 6= i.

Lemma 2.3. ([12]) Let wλ be a family of subsolutions(α ≤ λ ≤ β) to (2),
increasing in λ such that

∆wλ + f(x,wλ) ≥ 0 in Ω, wλ = 0 on ∂Ω.

Assume also u ≥ wα, wλ does not satisfy (2) for any λ, and ∂wλ

∂n
changes

continuously in λ on ∂Ω. Then u ≥ supwλ.

3. Cooperating Species

In [12], Korman and Leung established a sufficient and necessary condition for
the existence of positive solution to the cooperation system







∆u(x) + u(x)(a− u(x) + cv(x)) = 0
∆v(x) + v(x)(d − v(x) + eu(x)) = 0

in Ω,

u(x)|∂Ω = v(x)|∂Ω = 0.
(3)

where Ω is a bounded domain in Rn, u(x) and v(x) designate the population
densities for the two species.

The following is their result:
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Theorem 3.1. For existence of a positive solution to (3) it is necessary
and sufficient that ce < 1.

In this section, we develop their result to more general population model:







∆u(x) + u(x)(a+ g(u(x), v(x))) = 0
∆v(x) + v(x)(d + h(u(x), v(x))) = 0

in Ω,

u|∂Ω = v|∂Ω = 0,
(4)

where a and d are positive constants, g, h ∈ C1 are such that gu < 0, gv >

0, hu > 0, hv < 0 and g(0, 0) = h(0, 0) = 0.

The following Theorem proves a necessary condition for the existence of a
positive solution to (4).

Theorem 3.2. If a > λ1, d > λ1, inf(hv) ≥ −1, and inf(hu) > 0, then the
existence of a positive solution to (4) implies

inf(gv) inf(hu) + inf(gu) < 0.

Proof. Suppose inf(gv) inf(hu) + inf(gu) ≥ 0. Consider a family (uλ, vλ) =
(λφ1, λ inf(hu)φ1) with any λ > 0.

Then by the assumption and Mean Value Theorem,

∆uλ + uλ[a+ g(uλ, vλ)]
= −λλ1φ1 + λφ1[a+ g(λφ1, λ inf(hu)φ1)]
= λφ1[−λ1 + a+ g(λφ1, λ inf(hu)φ1)]
= λφ1[a− λ1 + g(λφ1, λ inf(hu)φ1 − g(λφ1, 0) + g(λφ1, 0) − g(0, 0)]
≥ λφ1[a− λ1 + inf(gv) inf(hu)λφ1 + inf(gu)λφ1]
> 0,

and

∆vλ + vλ[d+ h(uλ, vλ)]
= −λ inf(hu)λ1φ1 + λ inf(hu)φ1[d+ h(λφ1, λ inf(hu)φ1)]
= λ inf(hu)φ1[−λ1 + d+ h(λφ1, λ inf(hu)φ1)]
= λ inf(hu)φ1[d− λ1 + h(λφ1, λ inf(hu)φ1)− h(λφ1, 0) + h(λφ1, 0)

−h(0, 0)]
≥ λ inf(hu)φ1[d− λ1 + inf(hv)λ inf(hu)φ1 + inf(hu)λφ1]
> 0.

Therefore, (uλ, vλ) = (λφ1, λ inf(hu)φ1) with any λ > 0 is a family of subsolu-
tions to (4).
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Furthermore, if (u, v) is a positive solution to (4), then u > λ0φ1 and
v > λ0 inf(hu)φ1 for suffuciently small λ0 > 0, and so by the lemma 2.3, we
conclude that u ≥ λφ1 and v ≥ λ inf(hu)φ1 for any λ ≥ λ0.

Hence, there is no positive solution to (4).

For a sufficient condition for the existence of a positive solution to (4), we
need the following Lemma.

Lemma 3.3. If bf > ce, then we can choose arbitrary large M,N > 0
such that

a− bM + cN < 0,
d+ eu− fN < 0.

We now establish a sufficient condition for the existence of a positive solution
to (4).

Theorem 3.4. If a > λ1, d > λ1 and sup(gv) sup(hu) < sup(gu) sup(hv),
then (4) has a positive solution.

Proof. Let u = αφ1, v = βφ1, where α, β > 0.

Then since a > λ1 and d > λ1, by the Mean Value Theorem, for small
enough α, β > 0,

∆u+ u[a+ g(u, v)]
= −αλ1φ1 + αφ1[a+ g(αφ1, βφ1)]
= αφ1[−λ1 + a+ g(αφ1, βφ1)]
= αφ1[−λ1 + a+ g(αφ1, βφ1)− g(0, βφ1) + g(0, βφ1)− g(0, 0)]
≥ αφ1[−λ1 + a+ inf(gu)αφ1 + inf(gv)βφ1]
≥ 0,

and

∆v + v[d+ h(u, v)]
= −βλ1φ1 + βφ1[d+ h(αφ1, βφ1)]
= βφ1[−λ1 + d+ h(αφ1, βφ1)]
= βφ1[−λ1 + d+ h(αφ1, βφ1)− h(0, βφ1) + h(0, βφ1)− h(0, 0)]
≥ βφ1[−λ1 + d+ inf(hu)αφ1 + inf(hv)βφ1]
≥ 0,

and so, (u, v) = (αφ1, βφ1) is a subsolution to (4) for sufficiently small α, β > 0.

But, for all (u, v), by the Mean Value Theorem again,

g(u, v) = g(u, v) − g(u, 0) + g(u, 0) − g(0, 0)
≤ sup(gv)v + sup(gu)u,
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and
h(u, v) = h(u, v) − h(u, 0) + h(u, 0) − h(0, 0)

≤ sup(hv)v + sup(hu)u,

so by the condition and the Lemma 3.3, there are constants M,N > 0 with
αφ1 < M,βφ1 < N such that

∆M +M [a+ g(M,N)] ≤ M [a+ sup(gv)N + sup(gu)M ] < 0,
∆N +N [d+ h(M,N)] ≤ N [d+ sup(hv)N + sup(hu)M ] < 0,

in other words, (M,N) is a supersolution to (4).
We conclude by the Lemma 2.1 that there is a positive solution (u, v) to (4)

with αφ1 ≤ u ≤ M,βφ1 ≤ v ≤ N .

4. Competing Species

In [4], Cosner and Lazer established a sufficient and necessary condition for
the existence of positive solution to the competing system







∆u(x) + u(x)(a− bu(x)− cv(x)) = 0
∆v(x) + v(x)(a − fv(x)− eu(x)) = 0

in Ω,

u(x)|∂Ω = v(x)|∂Ω = 0,
(5)

where Ω is a bounded domain in Rn, a, b, c, e, f > 0 are constants, u(x) and
v(x) designate the population densities for the two species.

The following is their result:

Theorem 4.1. In order that there exist positive smooth functions u and v

in Ω satisfying (5), it is necessary and sufficient that one of the following three
sets of conditions holds.

(i)a > λ1, b > e, c < f

(ii)a > λ1, b = e, c = f

(iii)a > λ1, b < e, c > f

In this section, we develop their result to more general population model:






∆u(x) + u(x)[a+ g(u(x), v(x))] = 0
∆v(x) + v(x)[a + h(u(x), v(x))] = 0

in Ω,

u|∂Ω = v|∂Ω = 0,
(6)

where a is a positive constant, g, h ∈ C1 are such that gu < 0, gv < 0, hu <

0, hv < 0, there exist constants c0 > 0, c1 > 0 such that a + g(u, 0) ≤ 0 for
u ≥ c0 and a+ h(0, v) ≤ 0 for v ≥ c1, and g(0, 0) = h(0, 0) = 0.
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The following theorem provides a sufficient condition for the existence of a
positive smooth solution to (6).

Theorem 4.2. Suppose one of the following three sets of conditions holds.

(1)a > λ1, inf(gu) < inf(hu), inf(gv) > inf(hv)
(2)a > λ1, inf(gu) = inf(hu), inf(gv) = inf(hv)
(3)a > λ1, inf(gu) > inf(hu), inf(gv) < inf(hv)

Then (6) has a positive smooth solution.

Proof. By the Theorem 4.1, if one of the above three sets of conditions
holds, then there is a positive smooth solution (u, v) to

∆u+ u[a− (− inf(gu))u− (− inf(gv))v] = 0
∆v + v[a− (− inf(hu))u− (− inf(hv))v] = 0

in Ω, u|∂Ω = v|∂Ω = 0.

But, by the Mean Value Theorem,

∆u+ u[a+ g(u, v)]
= ∆u+ u[a+ g(u, v) − g(0, v) + g(0, v) − g(0, 0)]
≥ ∆u+ u[a+ inf(gu)u+ inf(gv)v]
= ∆u+ u[a− (− inf(gu))u− (− inf(gv))v]
= 0,

and

∆v + v[a+ h(u, v)]
= ∆v + v[a+ h(u, v) − h(0, v) + h(0, v) − h(0, 0)]
≥ ∆v + v[a+ inf(hu)u+ inf(hv)v]
= ∆v + v[a− (− inf(hu))u− (− inf(hv))v]
= 0.

Hence, (u, v) is a subsolution to (6).

But by the conditions of g, h, any large positive constant M satisfying u <

M, v < M in Ω is a supersolution to (6).

Therefore, by the Lemma 2.1, (6) has a positive smooth solution.

The next theorem establishes a necessary condition for the existence of a
positive smooth solution to (6).

Theorem 4.3. If (6) has a positive smooth solution, then a > λ1 and one
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of the following six sets of conditions holds.

(1)gu ≡ hu are constants, inf(hv) ≤ sup(gv), sup(hv) ≥ inf(gv)
(2) inf(hu) = sup(gu), sup(hu) > inf(gu), inf(hv) ≤ sup(gv)
(3) inf(hu) > sup(gu), sup(hu) > inf(gu), inf(hv) < sup(gv)
(4) inf(hu) < sup(gu), sup(hu) = inf(gu), sup(hv) ≥ inf(gv)
(5) inf(hu) < sup(gu), sup(hu) < inf(gu), sup(hv) > inf(gv)
(6) inf(hu) < sup(gu), sup(hu) > inf(gu)

Proof. Suppose (u, v) is a positive smooth solution to (6).
By the Mean Value Theorem, there are ũ, ṽ with 0 ≤ ũ ≤ u, 0 ≤ ṽ ≤ v such

that
g(u, 0) − g(0, 0) = gu(ũ, 0)u,
g(u, v) − g(u, 0) = gv(u, ṽ)v.

Hence, by the Green’s Identity,

∫

Ω uφ1[λ1 − a− gu(ũ, 0)u − gv(u, ṽ)v]dx
=

∫

Ω uφ1[λ1 − a+ g(0, 0) − g(u, 0) + g(u, 0) − g(u, v)]dx
=

∫

Ω uφ1[λ1 − a− g(u, v)]dx
=

∫

Ω φ1[−au− ug(u, v)] + uλ1φ1dx

=
∫

Ω φ1∆u− u∆φ1dx

= 0.

But, since −gu(ũ, 0)u− gv(u, ṽ)v > 0 in Ω, a > λ1.
By the Mean Value Theorem again, there are u1, u2, v1, v2 with 0 ≤ u1, u2 ≤

u, 0 ≤ v1, v2 ≤ v such that

g(u, v) − g(0, v) = gu(u1, v)u,
h(u, v) − h(0, v) = hu(u2, v)u,
g(0, v) − g(0, 0) = gv(0, v1)v,
h(0, v) − h(0, 0) = hv(0, v2)v.

Therefore, by the Green’s Identity again,

∫

Ω uv([hu(u2, v)− gu(u1, v)]u+ [hv(0, v2)− gv(0, v1)]v)dx
=

∫

Ω uv[hu(u2, v)u+ hv(0, v2)v − gu(u1, v)u− gv(0, v1)v]dx
=

∫

Ω uv[h(u, v) − h(0, v) + h(0, v) − h(0, 0) + g(0, v) − g(u, v) − g(0, v)
+g(0, 0)]dx

=
∫

Ω uv[h(u, v) − g(u, v)]dx
=

∫

Ω v∆u− u∆vdx

= 0,
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and so,

∫

Ω uv([inf(hu)− sup(gu)]u+ [inf(hv)− sup(gv)]v)dx ≤ 0,
∫

Ω uv([sup(hu)− inf(gu)]u+ [sup(hv)− inf(gv)]v)dx ≥ 0,

which derives

(A) inf(hu) = sup(gu), inf(hv) ≤ sup(gv),
(B) inf(hu) > sup(gu), inf(hv) < sup(gv),
(C) inf(hu) < sup(gu),

and

(A′) sup(hu) = inf(gu), sup(hv) ≥ inf(gv),
(B′) sup(hu) < inf(gu), sup(hv) > inf(gv),
(C ′) sup(hu) > inf(gu).

Combining (A), (B), (C) and (A′), (B′), (C ′) together, we may have

(A”)gu ≡ hu are constants, inf(hv) ≤ sup(gv), sup(hv) ≥ inf(gv),
(B”) inf(hu) = sup(gu), sup(hu) < inf(gu), inf(hv) ≤ sup(gv), sup(hv) > inf(gv),
(C”) inf(hu) = sup(gu), sup(hu) > inf(gu), inf(hv) ≤ sup(gv),
(D”) inf(hu) > sup(gu), sup(hu) = inf(gu), inf(hv) < sup(gv), sup(hv) ≥ inf(gv),
(E”) inf(hu) > sup(gu), sup(hu) < inf(gu), inf(hv) < sup(gv), sup(hv) > inf(gv),
(F”) inf(hu) > sup(gu), sup(hu) > inf(gu), inf(hv) < sup(gv),
(G”) inf(hu) < sup(gu), sup(hu) = inf(gu), sup(hv) ≥ inf(gv),
(H”) inf(hu) < sup(gu), sup(hu) < inf(gu), sup(hv) > inf(gv),
(I”) inf(hu) < sup(gu), sup(hu) > inf(gu).

However, it is clear that (B”), (D”), (E”) are not possible, so we establish the
result of the Theorem.

Finally, we prove a nonexistence result.

Theorem 4.4. If a > ν
µ
d,−1 ≤ gu < 0, and hv ≤ −1, where µ =

min[− sup(hu), 1] and ν = max[− inf(gv), 1], then there is no positive solution
to (6).

Proof. Suppose there is a positive solution (u, v) to (6).

Then by the Mean Value Theorem, the Green’s Identity and the inequality
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conditions,

∫

Ω(a− d+ [− sup(hu)− 1]u+ [1 + inf(gv)]v)uvdx
≤

∫

Ω(a− d+ [inf(gu)− sup(hu)]u+ [inf(gv)− sup(hv)]v)uvdx
≤

∫

Ω[a− d+ g(u, 0) − g(0, 0) − h(u, v) + h(0, v) + g(u, v) − g(u, 0) − h(0, v)
+h(0, 0)]uvdx

=
∫

Ω[a− d+ g(u, v) − h(u, v)]uvdx
=

∫

Ω(v∆u− u∆v)dx
= 0.

(7)
But, if a > ν

µ
d, then since a ≥ u and d ≥ v,

a− d+ [− sup(hu)− 1]u+ [1 + inf(gv)]v ≥ µa− νd > 0,

which contradicts to (7).
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