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Abstract Photoproduction of beauty and charm quarks in
events with at least two jets has been measured with the
ZEUS detector at HERA using an integrated luminosity of
133 pb−1. The fractions of jets containing b and c quarks
were extracted using the invariant mass of charged tracks
associated with secondary vertices and the decay-length sig-
nificance of these vertices. Differential cross sections as a
function of jet transverse momentum, p

jet
T , and pseudora-
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pidity, ηjet, were measured. The data are compared with
previous measurements and are well described by next-to-
leading-order QCD predictions.

1 Introduction

The study of beauty and charm production in ep collisions
constitutes a rigorous test of perturbative Quantum Chro-
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modynamics (QCD) since the heavy-quark masses provide
a hard scale that allows perturbative calculations. At lead-
ing order, boson-gluon fusion (BGF), γg → qq̄ with q ∈
{b, c}, is the dominant process for heavy-quark production
at HERA. When the negative squared four-momentum ex-
changed at the electron vertex, Q2, is small, the process can
be treated as photoproduction, in which a quasi-real photon
emitted by the incoming electron interacts with the proton.
For heavy-quark transverse momenta larger than or compa-
rable to the quark mass, next-to-leading-order (NLO) QCD
calculations in which the massive quarks are generated in
the hard sub-process [1, 2] are expected to provide reliable
predictions for the photoproduction cross sections.

Beauty and charm photoproduction has been measured
using several different methods by both the ZEUS and H1
collaborations. In most of the previous measurements of
beauty photoproduction at HERA, the cross section was de-
termined using semileptonic decays into muons [3–6] or
electrons [7, 8]. In the muon analyses, the fraction of lep-
tons originating from beauty was determined by using the
large transverse momentum of the muon relative to the axis
of the associated jet, prel

T , and/or exploiting the impact pa-
rameter of the muons. In the more recent electron analy-
sis [7], several variables, sensitive to both electron identi-
fication as well as to semileptonic decays, were combined in
a likelihood-ratio test function in order to extract the beauty
and charm content. The H1 collaboration has published an
inclusive measurement of beauty- and charm-quark photo-
production using a method based on the impact parameter of
tracks to the primary vertex [9]. The other published charm
or beauty photoproduction measurements [10–16] used ei-
ther meson tags or a combination of lepton and meson tags.
In all of the above analyses reasonable agreement between
the measurement and the theory prediction was found.

The aim of this measurement is to test perturbative QCD
with high precision. For this purpose, the long lifetimes of
the weakly decaying b and c hadrons as well as their large
masses were exploited. The measurement relies on the re-
construction of decay vertices with the ZEUS silicon mi-
crovertex detector (MVD) [17]. Two discriminating vari-
ables were used: the significance of the reconstructed decay
length and the invariant mass of the charged tracks associ-
ated with the decay vertex (secondary vertex). The measure-
ment was kept fully inclusive, leading to a reduced uncer-
tainty due to branching fractions and a substantial increase
in statistics compared to exclusive analyses. The high statis-
tics also allowed the kinematic region of the measurement
to be extended to high values of the transverse jet momen-
tum, p

jet
T .

2 Experimental set-up

The analysis was performed with data corresponding to an
integrated luminosity of 133 pb−1 which were taken dur-
ing 2005. Electrons at an energy of Ee = 27.5 GeV collided
with protons at Ep = 920 GeV, yielding a centre-of-mass
energy of 318 GeV.

A detailed description of the ZEUS detector can be found
elsewhere [18]. A brief outline of the components that are
most relevant for this analysis is given below.

In the kinematic range of the analysis, charged parti-
cles were tracked in the central tracking detector (CTD)
[19–21] and the microvertex detector (MVD) [17]. These
components operated in a magnetic field of 1.43 T provided
by a thin superconducting solenoid. The CTD consisted of
72 cylindrical drift-chamber layers, organised in nine super-
layers covering the polar-angle1 region 15◦ < θ < 164◦. The
MVD silicon tracker consisted of a barrel (BMVD) and a
forward (FMVD) section. The BMVD contained three lay-
ers and provided polar-angle coverage for tracks from 30◦
to 150◦. The four-layer FMVD extended the polar-angle
coverage in the forward region to 7◦. After alignment, the
single-hit resolution of the MVD was 24 µm. The transverse
distance of closest approach (DCA) to the nominal vertex in
X–Y was measured to have a resolution, averaged over the
azimuthal angle, of (46 ⊕ 122/pT) µm, with pT in GeV. For
CTD-MVD tracks that pass through all nine CTD superlay-
ers, the momentum resolution was σ(pT)/pT = 0.0029pT ⊕
0.0081 ⊕ 0.0012/pT, with pT in GeV.

The high-resolution uranium–scintillator calorimeter
(CAL) [22–25] consisted of three parts: the forward (FCAL),
the barrel (BCAL) and the rear (RCAL) calorimeters. Each
part was subdivided transversely into towers and longitu-
dinally into one electromagnetic section (EMC) and either
one (in RCAL) or two (in BCAL and FCAL) hadronic sec-
tions (HAC). The smallest subdivision of the calorimeter
was called a cell. The CAL energy resolutions, as measured
under test-beam conditions, were σ(E)/E = 0.18/

√
E for

electrons and σ(E)/E = 0.35/
√

E for hadrons, with E

in GeV.
The luminosity was measured using the Bethe-Heitler

reaction ep → eγp by a luminosity detector which con-
sisted of independent lead–scintillator calorimeter [26–28]
and magnetic spectrometer [29] systems. The fractional sys-
tematic uncertainty on the measured luminosity was 1.8%.

1The ZEUS coordinate system is a right-handed Cartesian system, with
the Z axis pointing in the nominal proton beam direction, referred to
as the “forward direction”, and the X axis pointing left towards the
centre of HERA. The coordinate origin is at the centre of the CTD. The
pseudorapidity is defined as η = − ln(tan θ

2 ), where the polar angle, θ ,
is measured with respect to the proton beam direction. The azimuthal
angle, φ, is measured with respect to the X axis.
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3 Monte Carlo simulation

Monte Carlo (MC) samples of beauty, charm and light-
flavour events generated with PYTHIA 6.2 [30–32] were
used to evaluate the detector acceptance and to provide the
predictions of the signal and background distributions.

The production of bb̄ and cc̄ pairs was simulated follow-
ing the standard PYTHIA prescription, using leading-order
matrix elements combined with parton showering. The fol-
lowing subprocesses [33] were generated:

• Direct and resolved photoproduction with leading-order
massive matrix elements. In the direct-photon process, the
quasi-real photon enters directly in the hard interaction,
while in the resolved-photon process, the photon acts as
a source of light partons which take part in the hard in-
teraction. The b-quark and c-quark masses were set to
4.75 GeV and 1.5 GeV, respectively.

• b-quark and c-quark excitation, i.e. the contribution to the
leading-order massless matrix elements of b and c quarks
from initial-state photon or gluon splitting.

The light-quark predictions were taken from a simulation of
both direct and non-direct inclusive photoproduction with
leading-order matrix elements in the massless scheme. This
sample also includes final-state gluon splitting into bb̄ and
cc̄ pairs, which is treated as part of the signal.

The CTEQ4L [34] and CTEQ5L [35] proton parton
distribution functions (PDFs) were used for the light-
flavour and heavy-flavour samples, respectively. The GRV-G
LO [36, 37] photon PDF was used for all samples.

The lifetimes of the B±, B0 and Bs mesons were cor-
rected from the default PYTHIA values to reflect the world
averages [38].

The generated events were passed through a full simula-
tion of the ZEUS detector based on GEANT 3.21 [39]. The
final MC events had to fulfil the same trigger requirements
and pass the same reconstruction programme as the data.

4 Data selection and event reconstruction

A three-level trigger system was used to select events on-
line [18, 40, 41]. At the third level, jets were reconstructed
using the energies and positions in the CAL. Events with
at least two jets with transverse momentum in excess of
4.5 GeV within |η| < 2.5 were selected.

The tracking efficiency at the first-level trigger (FLT) as
well as the efficiency of the dijet third-level trigger (TLT)
were lowered in the detector simulation such that they re-
produced the efficiencies as measured in the data. The trig-
ger efficiencies were ≈86% for the FLT and 76–100% for
the TLT, depending on the transverse momentum of the
jets, with an average of about 90%. The average corrections
amounted to ≈7.7% for the FLT and ≈3.7% for the TLT.

The hadronic system was reconstructed from energy-
flow objects (EFOs) [42] combining track and calorime-
ter information, corrected for energy loss in the dead ma-
terial. Each EFO, i, was assigned a reconstructed four-
momentum (pi

X,pi
Y ,pi

Z,Ei), assuming the pion mass. Jets
were reconstructed from EFOs using a kT clustering algo-
rithm [43] in the longitudinally invariant mode [44]. The E-
recombination scheme, which produces massive jets whose
four-momenta are the sum of the four-momenta of the clus-
tered objects, was used.

At least two jets with |ηjet| < 2.5 and p
jet
T > 7(6) GeV

for the highest (second highest) energetic jet were required.
Only events with a well reconstructed primary vertex with
|Zvtx| < 30 cm were selected.

In order to remove background from deep inelastic scat-
tering (DIS), events were rejected in which a scattered-
electron candidate was found in the calorimeter with energy

E′
e > 5 GeV and ye < 0.9, with ye = 1 − E′

e
2Ee

(1 − cos θ ′
e),

where θ ′
e is the polar angle of the outgoing electron. The

event inelasticity, y, was reconstructed from the hadronic fi-
nal state using the Jacquet–Blondel method [45] with yJB =∑

i (E
i − pi

Z)/2Ee, where the sum runs over all the EFOs.
A cut 0.2 < yJB < 0.8 was used to remove residual DIS
events and non-ep interactions. These requirements corre-
spond to an effective cut of Q2 � 1 GeV2 with a median of
Q2 ≈ 10−3 GeV2, as estimated from simulations.

In order to reconstruct secondary vertices related to b-
and c-hadron decays, tracks were selected if:

• pT > 0.5 GeV.
• The number of superlayers in the CTD ≥3.
• The total number of hits2 in the MVD ≥4.

The tracks were associated with one of the two highest en-
ergetic jets if they fulfilled

�R =
√

(
ηtrk − ηjet

)2 + (
φtrk − φjet

)2
< 1.

If two or more of such tracks were associated with the se-
lected jet, a candidate vertex was fitted from the selected
tracks using a deterministic annealing filter [46–48]. This
fit provided the vertex position including its error matrix as
well as the invariant mass, mvtx, of the charged tracks asso-
ciated with the reconstructed vertex. Vertices with χ2/ndf <

6, a distance from the interaction point within 1 cm in the X–
Y plane and ±30 cm in the Z direction, and 0.8 ≤ mvtx <

7.5 GeV were retained for further analysis.
Only those secondary vertices that were associated with

one of the two jets with the highest p
jet
T were considered,

since these jets were most likely to correspond to heavy-
quark jets. The associated jet was required to be recon-
structed within the central part of the detector with −1.6 ≤
ηjet < 1.4.

2Each MVD layer provided two coordinate measurements.
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Fig. 1 Distributions of
decay-length significance, S, for
a 0.8 ≤ mvtx < 1.4 GeV,
b 1.4 ≤ mvtx < 2 GeV and
c 2 ≤ mvtx < 7.5 GeV. The data
are compared to the total
PYTHIA MC distributions as
well as the contributions from
the beauty, charm and
light-flavour MC subsamples.
All samples were normalised
according to the scaling factors
obtained from the fit (see
Sect. 8)

5 Extraction of the heavy-flavour cross sections

Using the secondary vertices associated with jets, the decay
length, d , was defined as the distance in X–Y between the
secondary vertex and the interaction point3, projected onto
the jet axis in the X–Y plane.

The decay-length significance, S, was defined as d/δd ,
where δd is the uncertainty on d . The sign of the decay
length was assigned using the axis of the jet to which the ver-
tex is associated: if the decay-length vector was in the same
hemisphere as the jet axis, a positive sign was assigned to it;
otherwise the sign of the decay length was negative. Nega-
tive decay lengths, which originate from secondary vertices
reconstructed on the wrong side of the interaction point with
respect to the direction of the associated jets, are unphysical
and caused by detector resolution effects. A small correc-
tion [33] to the MC decay-length distribution was applied
in order to reproduce the negative decay-length data: 5%
of the tracks in the central region were smeared and an ad-

3In the X–Y plane, the interaction point was defined as the centre of
the beam ellipse, determined using the average primary vertex position
for groups of a few thousand events, taking into account the difference
in angle between the beam direction and the Z direction. The Z coor-
dinate was taken as the Z position of the primary vertex of the event.

ditional smearing was applied to tracks in the tails of the
decay-length distribution.

The shape of the decay-length significance distribution
together with the secondary-vertex mass distribution, mvtx,
is used to extract the beauty and charm content. The invari-
ant mass of the tracks fitted to the secondary vertex provides
a distinguishing variable for jets from b and c quarks, re-
flecting the different masses of the b and c hadrons. Figure 1
shows the decay-length significance, S, divided into the
three mass bins 0.8 ≤ mvtx < 1.4 GeV, 1.4 ≤ mvtx < 2 GeV
and 2 ≤ mvtx < 7.5 GeV. The MC simulation provides a
good description of the data in all three bins and an almost
pure beauty region can be obtained at high significances in
the bin 2 ≤ mvtx < 7.5 GeV.

In order to minimise the effect of the light-flavour con-
tribution, the contents of the negative bins of the signifi-
cance distribution, N(S−), were subtracted from the con-
tents of the corresponding positive bins, N(S+), yielding a
subtracted decay-length significance distribution. An addi-
tional advantage of this subtraction is that symmetric sys-
tematic effects, which might arise from discrepancies be-
tween the data and the MC, are removed.

In order further to reduce the uncertainty due to remain-
ing differences between data and MC in the core region of
the significance distribution, a cut of |S| > 3 was applied.
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Fig. 2 Distributions of a ηjet

and b p
jet
T of the jets associated

with a secondary vertex, c mvtx
and d ntrk of the selected
secondary vertices. e χ2/ndf of
the secondary vertices before
the cut shown in the figure had
been applied. f shows x

jet
γ

weighted by the number of jets
with associated secondary
vertices in the event. The data
are compared to the total MC
distributions as well as the
contributions from the beauty
and charm MC subsamples. All
samples were normalised
according to the scaling factors
obtained from the fit (see
Sect. 8)

Fig. 3 Distribution of the
subtracted decay-length
significance in three mass bins.
The data are compared to the
total PYTHIA MC distribution
as well as the contributions from
the beauty, charm and
light-flavour MC subsamples.
All samples were normalised
according to the scaling factors
obtained from the fit
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Fig. 4 Distributions of a ηjet, b p
jet
T , c mvtx and d ntrk of the selected

secondary vertices and e subtracted decay-length significance, for a
beauty-enriched subsample with 2 ≤ mvtx < 7.5 GeV and |S| > 8. The
data are compared to the total MC distributions as well as the contri-

butions from the beauty and charm MC subsamples. The light-flavour
contribution is not shown separately as it is negligible on the scales
shown. All samples were normalised according to the scaling factors
obtained from the fit

As a consistency check this cut was varied in order to esti-
mate the uncertainty due to the MC modelling of the low |S|
region; effects smaller than 1% on the beauty results and 3%
on the charm results were found.

After all selection cuts, a sample of 70 433 jets with as-
sociated secondary vertices remained.

Figure 2 shows the data and MC distributions of p
jet
T ,

ηjet, mvtx, the secondary vertex track multiplicity, ntrk,
and χ2/ndf of the secondary vertices. All distributions are
shown after all selection cuts, except for the χ2/ndf distrib-
ution, where the χ2/ndf cut has not been applied yet. Also

shown in Fig. 2 is the fraction of the total hadronic E − pZ

carried by the two highest-pT jets,

x
jet
γ =

∑
j=1,2(E

j − p
j
Z)

E − pZ

,

weighted by the number of jets with associated secondary
vertices in the event. This distribution is sensitive to the frac-
tion of direct and non-direct photoproduction contributions.
The MC provides an adequate description of the data for all
variables except ηjet; the effect of this discrepancy on the
results is discussed in Sect. 6.



Eur. Phys. J. C (2011) 71:1659 Page 9 of 16

Fig. 5 Distributions of a ηjet, b p
jet
T , c mvtx and d ntrk of the selected

secondary vertices and e subtracted decay-length significance, for a
charm-enriched subsample with 0.8 ≤ mvtx < 2 GeV. No additional
significance cut was applied here. The data are compared to the to-

tal MC distributions as well as the contributions from the beauty and
charm MC subsamples. The light-flavour contribution is not shown
separately as it is negligible on the scales shown. All samples were
normalised according to the scaling factors obtained from the fit

The beauty and charm contributions were extracted us-
ing a least-squares fit [33, 49] to the subtracted distribu-
tions in the three mass bins. The MC beauty, charm and
light-flavour contributions, normalised to the data lumi-
nosity, were scaled by the factors kb , kc and klf, respec-
tively, to give the best fit to the observed subtracted dis-
tributions. The overall MC normalisation was constrained
by requiring it to be consistent with the normalisation of
the data in the significance distribution with |S| > 3 and
0.8 ≤ mvtx < 7.5 GeV. The subtracted and fitted distrib-
utions for the three mass bins are shown in Fig. 3. The

contribution of the light flavours was substantially reduced
through the subtraction. After the subtraction, good agree-
ment was also observed between the data and the MC sim-
ulation. The fit procedure was repeated in different bins of
p

jet
T and ηjet to obtain the differential cross-sections dσ/dp

jet
T

and dσ/dηjet.
In order to check the quality of the data description

by the MC, subtracted distributions of p
jet
T , ηjet, mvtx, the

secondary-vertex track multiplicity, ntrk, and |S| are shown
in Fig. 4 after beauty enrichment (2 ≤ mvtx < 7.5 GeV and
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|S| ≥ 8) and in Fig. 5 after charm enrichment (0.8 ≤ mvtx <

2 GeV).
The total visible cross section for inclusive heavy-quark

jet production, σq , with q ∈ {b, c} is given by

σq = N
rec,Data
q

Aq · LData
.

Here, LData denotes the integrated luminosity, Aq is the ac-
ceptance and N

rec,Data
q the number of reconstructed heavy-

quark jets in data, which was determined from the fit using

N rec,Data
q = kq · N rec,MC

q ,

with N
rec,MC
q being the number of reconstructed events in a

MC sample with the same integrated luminosity as the data.
kq denotes the heavy-quark scaling factor obtained from the
fit. Defining the acceptance as

Aq = N
rec,MC
q

N
true,HL
q

,

the cross section can be written as

σq = kq · N true,HL
q

LData .

Here, N
true,HL
q denotes the number of generated heavy-

quark jets at hadron level (HL). Hadron-level jets were ob-
tained by running the kT clustering algorithm in the same
mode as for the data with the E-recombination scheme. The
algorithm was run on all final-state MC particles before the
decay of the weakly decaying b or c hadrons. True b or c

jets were then defined as all hadron-level jets containing a b

or c hadron. Signatures with b or c hadrons resulting from
final-state gluon splitting (g → qq̄) were also included in
the respective signal, independent of the quark flavours in
the hard subprocess. The contribution of gluon splitting to
the beauty signal amounted to ≈2%, while the contribution
to the charm signal was ≈10%.

The single-differential heavy-quark jet production cross
section as a function of a given variable, v, is defined ac-
cordingly:

dσq

dv
= kq · N true,HL

q

LData · �v
,

where �v is the width of the bin.

6 Systematic uncertainties

Systematic uncertainties were evaluated by appropriate vari-
ations of the MC simulation. The fit of the subtracted decay-
length significance in mvtx bins was repeated and the cross

Table 1 Systematic uncertainties on the total beauty- and charm-jet
cross sections

Source Beauty/Charm

(%)

(1a) TLT trigger efficiency ±0.8/±2.0

(1b) FLT trigger efficiency +4.1
−3.8/

+4.0
−3.7

(2) CAL hadronic energy scale ±0.6/±4.3

(3) Track-finding uncertainty +5.9/+1.0

(4) Decay-length smearing ±1.0/±0.7

(5) Light-flavour asymmetry ±0.2/±0.7

(6a) ηjet reweighting −1.2/−1.0

(6b) p
jet
T reweighting −5.5/−1.1

(7a) D±/D0 ratio +0
−1.3/

+0.6
−1.8

(7b) D±/D±
s ratio +0

−1.2/
+0.1
−1.3

(8) Charm fragmentation +0.3
−0.3/

+1.2
−1.3

(9) Beauty fragmentation +1.8
−2.1/

+0.1
−0.1

(10) Luminosity measurement ±1.8/±1.8

Total +7.8
−7.7/

+6.7
−7.0

sections were recalculated. The uncertainties on the total
cross sections determined for each source are summarised
in Table 1. The following sources of experimental system-
atic uncertainties were identified [33]:

1. The systematic uncertainties associated with the TLT
and FLT trigger efficiency corrections (see Sect. 4) were
determined by varying each correction within its esti-
mated uncertainty.

2. The calorimetric part of the jet energy was varied by
±3%.

3. The track-finding inefficiency in the data with respect
to the MC was estimated to be at most 2%. The overall
uncertainty due to this tracking inefficiency was deter-
mined by randomly rejecting 2% of all tracks in the MC
and repeating the secondary vertex finding and all sub-
sequent analysis steps;

4. The uncertainty due to the smearing procedure was esti-
mated by varying the fraction of secondary vertices for
which the decay length was smeared by ±2%. For varia-
tions of the fraction in this range the agreement between
data and MC remained reasonable.

5. The uncertainty due to the asymmetry of the light-
flavour content of the sample was evaluated by varying
klf by ±11%. The size of the variation was estimated
from the uncertainty on the light-flavour fraction as de-
termined by a fit to the subtracted decay-length signifi-
cance distribution, where the overall normalisation con-
straint using the unsubtracted distribution was not ap-
plied.

6. The MC distributions for both light and heavy flavours
were reweighted in ηjet and p

jet
T to account for the dif-

ferences between data and MC (see Fig. 2). A reweight-
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ing of only the light-flavour content was also investi-
gated. No significant change of the cross sections was
observed and therefore no additional systematic uncer-
tainty was assigned.

7. The various D mesons have different lifetimes and de-
cay modes. In order to account for the uncertainty of
the different fragmentation fractions, the D+/D0 and
D+/D+

s ratios were varied by ±10% while keeping the
total number of c hadrons constant.

8. The charm fragmentation function was varied by weight-
ing all events according to

z = (E + P||)D
(E + P)c-quark jet

calculated in the string rest-frame [30–32] such that the
change in the mean value of z corresponded to the mea-
sured uncertainty [50].

9. The beauty fragmentation function was varied in anal-
ogy to the charm case using a variation of z correspond-
ing to a variation of the Peterson fragmentation parame-
ter, εb , of ±0.0015 [51, 52].

10. A 1.8% overall normalisation uncertainty was associ-
ated with the luminosity measurement. It was included
in the systematic error on the total cross sections, but
not in those of the differential cross sections.

The same variations were applied to each bin for the
differential cross sections. The total systematic uncertainty
was obtained by adding the above contributions in quadra-
ture. In the case of beauty, the dominant effects arise from
the variation of the trigger-efficiency corrections, the track-
finding efficiency and the reweighting as a function of p

jet
T .

For charm, the variation of the trigger-efficiency corrections
as well as the energy-scale variation contribute most to the
total systematic uncertainty.

As an additional consistency check, the contributions of
direct and non-direct photon processes were investigated by
reweighting the x

jet
γ distributions based on MC and data

comparisons of the b- and c-enriched samples. The ef-
fect on the cross sections was smaller than that due to the
reweighting of the p

jet
T and ηjet distributions and so a further

contribution was not added to the systematic uncertainties.
A reweighting of the mvtx distribution was also done in or-
der to account for residual differences between the data and
the MC. Its effect on the cross sections was found to be neg-
ligible.

7 Theoretical predictions and uncertainties

The measured total and differential cross sections were com-
pared to NLO QCD predictions calculated with the FMNR

programme [53]. This calculation is based on the fixed-
flavour-number scheme, using three light flavours for the
charm predictions and four for beauty. The PDFs were taken
from CTEQ6.6 [54] for the proton and GRV-G HO [36] for
the photon. The heavy-quark masses (pole masses) were set
to mb = 4.75 GeV and mc = 1.5 GeV. The QCD scale,
Λ

(5)
QCD, was set to 0.226 GeV. The renormalisation scale,

μR , and the factorisation scale, μF , were chosen to be equal

and set to μR = μF = 1
2

√
p̂2

T + m2
b(c), where p̂T is the av-

erage transverse momentum of the heavy quarks. In order to
ease the comparison with previous analyses, the theoretical
predictions were also made using the CTEQ5M [35] proton
PDFs.

For the systematic uncertainty on the theoretical predic-
tion, the masses and scales were varied separately and the
effects of both variations were added in quadrature. The
masses were varied using the values mb = 4.5 and 5.0 GeV,
mc = 1.3 and 1.7 GeV; the scales were varied using μR =
μF = 1

4

√
p̂2

T + m2
b(c)

and
√

p̂2
T + m2

b(c)
. The resulting un-

certainties on the NLO QCD predictions for the total cross
sections are +22% and −15% for beauty and +42% and
−21% for charm.

Parton-level jets were found by applying the kT clustering
algorithm to the generated partonic final state in the same
mode as for the hadron level in the MC (see Sect. 5). The
NLO QCD predictions for parton-level jets were corrected
for hadronisation effects. A bin-by-bin procedure was used
whereby dσ = dσNLO · Chad, and dσNLO is the cross section
for partons in the final state of the NLO calculation. The
hadronisation-correction factors, Chad, were obtained from
the ratio of the hadron-level to the parton-level MC jet cross
section, where the parton level is defined as being the result
of the parton-showering stage of the simulation. The correc-
tion factors are given in Tables 2 and 3; their uncertainty was
negligible in comparison to the other theoretical uncertain-
ties [3].

8 Results

The total and single-differential beauty- and charm-jet cross
sections were measured for the processes

e−p → e−b(b̄)X,

e−p → e−c(c̄)X

in events with

Q2 < 1 GeV2, 0.2 < y < 0.8,

p
jet 1(2)
T > 7(6) GeV, −2.5 < ηjet 1(2) < 2.5.
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Here ηjet 1(2) and p
jet 1(2)
T refer, respectively, to the pseudo-

rapidities and the transverse momenta of the two jets in the
event with the largest transverse momentum within the range
|ηjet| < 2.5. The cross sections are measured for those jets
among these two satisfying

−1.6 < ηq-jet < 1.4,

with q ∈ {b, c}.
The total beauty- and charm-jet production cross sections

were measured as

σ vis
b = 682 ± 21(stat.)+52

−52(syst.) pb,

σ vis
c = 5780 ± 120(stat.)+390

−410(syst.) pb.

The errors given correspond to the statistical uncertainties
and the total systematic uncertainties including the errors
due to the uncertainty in the luminosity measurement. The
measurements were compared to NLO QCD predictions cal-
culated with the FMNR programme using the specifications
given in Sect. 7:

σ NLO
b ⊗ Cb

had = 740+210
−130 pb,

σ NLO
c ⊗ Cc

had = 6000+2400
−1300 pb.

Hadronisation corrections of Cb
had = 0.84 and Cc

had = 0.83
were applied to the NLO QCD predictions. Good agreement
between the measured cross sections and the NLO QCD pre-
dictions is observed. Replacing CTEQ6.6 by CTEQ5M as
proton PDF reduces the theory predictions by ≈5%.

The beauty and charm cross sections as a function of p
jet
T

and ηjet are given in Tables 2 and 3, respectively, and are
shown in Fig. 6. The measurements are compared to the
NLO QCD predictions and to the PYTHIA MC scaled (see
Sect. 5) by a factor of 1.11 for beauty and 1.35 for charm, as
obtained from the inclusive fit. The NLO QCD predictions
are in good agreement with the data and the scaled PYTHIA

MC describes the distributions well.
In Fig. 7 the b-jet cross section, dσ/dηjet, is compared to

a previously published analysis [55] using semileptonic de-
cays into muons in dijet events. Both measurements agree
well. The improved precision of this analysis can be clearly
seen. While a direct comparison with a previous H1 mea-
surement using a similar approach [9] is not possible, as the
cross-section definitions are different, the relative errors on
the measurements in this paper are approximately a factor 3
(2) smaller for beauty (charm).

In order to enable direct comparisons with other ZEUS
measurements given at the b-quark level [3–5, 7, 8, 13], the
NLO QCD prediction corrected for hadronisation was used
to extrapolate the dijet cross sections to inclusive b-quark
cross sections:

dσ

dpb
T

=
( dσ

dp
jet
T

)vis

( dσ

dp
jet
T

)NLO
·
(

dσ

dpb
T

)NLO

.

For the previous measurements, the extrapolations have
been updated using the CTEQ6.6 proton PDFs. In Fig. 8, the

Table 2 Summary table of
differential beauty-jet
photoproduction cross sections,
as defined in Sect. 8. The
measurements are given
together with their statistical and
systematic uncertainties. The
NLO QCD predictions using
CTEQ6.6 and their uncertainty
are also listed. The last column
gives the hadronisation
correction factors, Cb

had

p
jet
T dσb/dp

jet
T dσNLO

b /dp
jet
T ⊗ Cb

had Cb
had

(GeV) (pb/GeV) (pb/GeV)

6:11 95.6±4.9+9.8
−7.0 109+31

−19 0.83

11:16 24.8±1.2+1.8
−1.4 29.1+7.9

−4.7 0.89

16:21 6.02±0.49+0.55
−0.57 7.1+2.0

−1.2 0.92

21:27 0.93±0.22+0.31
−0.20 1.87+0.54

−0.34 0.95

27:35 0.30±0.12+0.14
−0.12 0.46+0.13

−0.08 1.05

ηjet dσb/dηjet dσNLO
b /dηjet ⊗ Cb

had Cb
had

(pb) (pb)

−1.6:−1.1 57±22+13
−3 72+22

−13 0.70

−1.1:−0.8 121±21+16
−16 182+50

−30 0.78

−0.8:−0.5 214±22+22
−12 255+69

−42 0.79

−0.5:−0.2 233±21+28
−21 307+83

−50 0.79

−0.2:0.1 264±22+28
−23 342+91

−55 0.81

0.1:0.5 316±21+23
−17 346+96

−57 0.86

0.5:1.4 288±15+20
−30 265+82

−48 0.93
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Table 3 Summary table of
differential charm-jet
photoproduction cross sections,
as defined in Sect. 8. The
measurements are given
together with their statistical and
systematic uncertainties. The
NLO QCD predictions using
CTEQ6.6 and their uncertainty
are also listed. The last column
gives the hadronisation
correction factors, Cc

had

p
jet
T dσc/dp

jet
T dσNLO

c /dp
jet
T ⊗ Cc

had Cc
had

(GeV) (pb/GeV) (pb/GeV)

6:11 906±24+56
−60 967+380

−210 0.82

11:16 194±7+20
−20 192+75

−41 0.90

16:21 39.1±3.3+6.4
−6.4 38.5+15

−8.5 0.92

21:27 10.5±2.1+4.4
−4.0 8.9+3.4

−2.0 0.90

27:35 0.9±0.7+0.4
−0.9 1.96+0.72

−0.43 0.91

ηjet dσc/dηjet dσNLO
c /dηjet ⊗ Cc

had Cc
had

(pb) (pb)

−1.6:−1.1 499±79+36
−46 825+320

−180 0.71

−1.1:−0.8 1380±110+110
−110 1933+700

−400 0.79

−0.8:−0.5 2090±120+140
−180 2566+940

−540 0.80

−0.5:−0.2 2460±130+170
−170 2948+1100

−610 0.80

−0.2:0.1 2920±130+200
−220 2975+1100

−630 0.83

0.1:0.5 2600±110+180
−260 2602+1000

−560 0.87

0.5:1.4 2040±91+160
−140 1579+700

−360 0.89

Fig. 6 Differential beauty-jet and charm-jet photoproduction cross
sections as defined in Sect. 8 as a function of a–b p

jet
T and c–d ηjet. The

data are shown as points. The inner error bars are the statistical uncer-
tainties, while the outer error bars show the statistical and systematic
uncertainties added in quadrature. The band represents the NLO QCD

prediction, corrected for hadronisation effects, using CTEQ6.6 as pro-
ton PDF; the shaded band shows the estimated uncertainty. The NLO
QCD prediction using CTEQ5M as proton PDF is depicted separately
(dotted-dashed line). The scaled PYTHIA MC prediction (dashed line)
is also shown
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b-quark differential cross sections as a function of the quark
transverse momentum, dσ(ep → bX)/dpb

T, are shown for

Fig. 7 Differential beauty-jet photoproduction cross sections as a
function of ηjet. The filled circles show the results from this analysis
(the same data as shown in Fig. 6c); the open circles show the results
from a previously published measurement [3]. The inner error bars
are the statistical uncertainties, while the outer error bars show the
statistical and systematic uncertainties added in quadrature. The scaled
PYTHIA MC prediction is also shown (dashed line)

b-quark pseudorapidity in the laboratory frame, |ηb| < 2, for
Q2 < 1 GeV2 and 0.2 < y < 0.8. The b̄ quark was not taken
into account in the definition of the b-quark cross section.
The measurement presented here extends the kinematic re-
gion to higher pb

T values than previous measurements and
represents the most precise measurement of b-quark photo-
production at HERA. Good agreement with the NLO QCD
prediction is observed for many independent ZEUS mea-
surements, giving a consistent picture of b-quark photopro-
duction over a wide range of pb

T.
The corresponding c-quark cross sections were also cal-

culated and are shown in Fig. 9. Due to the lower mass of
the charm quark, its momentum is more affected by gluon
radiation. Hence the corresponding cross section is shown
as a function of the parton-level jet momentum (calculated
as in Sect. 7) rather than that of the quark. Here the cross
sections have been extrapolated to the region |ηc-jet| < 1.5,
as it corresponded better to the measurements.

The c-quark jet cross sections are consistent with previ-
ous ZEUS measurements [8, 11] and are in good agreement
with the NLO QCD prediction.

Fig. 8 a Summary of
differential cross sections for
b-quark production as a function
of pb

T as measured by the ZEUS
collaboration. The
measurements are shown as
points, with the results of this
analysis shown as inverted
triangles. The inner error bars
are the statistical uncertainties,
while the outer error bars show
the statistical and systematic
uncertainties added in
quadrature. The band represents
the NLO QCD prediction and its
theoretical uncertainty. The
solid line shows the prediction
for μ2 = (m2

b + p2
T)/4, while

the dashed line shows the
prediction for μ2 = m2

b + p2
T.

b The ratio of the measured
cross sections, σmeas, to the
theoretical prediction, σ th, for
μ2 = (m2

b + p2
T)/4
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Fig. 9 a Summary of
differential cross sections for
c-quark jet production as a
function of p

c-jet
T as measured

by the ZEUS collaboration. The
measurements are shown as
points, with the results of this
analysis shown as inverted
triangles. The inner error bars
are the statistical uncertainties,
while the outer error bars show
the statistical and systematic
uncertainties added in
quadrature. The band represents
the NLO QCD prediction and its
theoretical uncertainty. The
solid line shows the prediction
for μ2 = (m2

c + p2
T)/4, while

the dashed line shows the
prediction for μ2 = m2

c + p2
T.

b The ratio of the measured
cross sections, σmeas, to the
theoretical prediction, σ th, for
μ2 = (m2

c + p2
T)/4

9 Conclusions

Inclusive beauty- and charm-jet cross sections in photopro-
duction at HERA have been presented, exploiting the long
lifetimes and large masses of b and c hadrons. Compared to
previous measurements of specific decay chains, this analy-
sis has substantially increased statistics and a reduced de-
pendence on the branching fractions. The background from
light-quark jets was suppressed by using the subtracted
decay-length significance distribution of secondary vertices.

The visible cross sections as well as differential cross sec-
tions as a function of p

jet
T and ηjet have been compared with

NLO QCD calculations. Good agreement is observed.
In order to be able to compare these cross sections with

others, they have been extrapolated to the region |ηb| < 2
(|ηc-jet| < 1.5) using the NLO QCD predictions. Cross sec-
tions as a function of the transverse momentum of the b

quark and of the c-quark jet have been determined and com-
pared with previous ZEUS measurements. The measure-
ments agree with each other and give a consistent picture of
heavy-quark photoproduction over a wide kinematic range.

The charm cross sections presented in this paper are more
precise than previous measurements made by the ZEUS col-

laboration and have similar accuracy as measurements made
by H1. The beauty cross sections represent the most precise
measurements of b-quark photoproduction made at HERA.
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