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Abstract  

Social media has had an impact on how patients find and evaluate medical professionals and their experiences 

of modern healthcare. Qualitative research in healthcare has increased its focus on social media. The present 

study examined 497 reviews of hospitals in the Pittsburgh area across three websites: Google, Yelp, and 

Healthgrades. Using computerized content analysis tools (CATA), we analyzed positive and negative 

comments to identify key themes. Key themes and words included “doctor,” “hospital,” “staff,” and “time.” 

These findings highlight the importance of medical staff to patient experience. Results indicated that Yelp had 

the lowest average rating. CATA also revealed that the central term for Google reviews was “hospital,” for 

Healthgrades reviews it was “doctor,” and the central term for Yelp reviews was “patient.” These central terms 

reflect the focus of each website. The present study highlights the importance of healthcare professionals 

understanding the source of reviews and being cautious about how social media comments are used in 

decision-making about the practice. Future research should try to expand this approach to other cities and 

countries to evaluate cross-cultural effects on social media comments.  
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Introduction  

Recent research has shown that the business of healthcare has been affected in a variety of ways by social 

media content (Hilliard, 2012; Islam et al., 2016; Ranney & Genes, 2016). Social media has had a profound 

effect on how patients find and share information about their healthcare experiences (Morahan-Martin, 2004; 

Terry, 2009), as well as how healthcare providers respond to these concerns. First, patient satisfaction has 

grown in importance due to the Affordable Care Act (ACA) requirements around satisfaction ratings (Atinga 

et al.,  2011). Second, patients can now find data on doctors and hospitals from a variety of sources that may 

affect their choice of healthcare provider (Hawn, 2009). As information access increases, patients can make a 

broader range of choices around their healthcare. These sources of data are not always under the control of 

healthcare organizations. Online health information can provide increased opportunities for healthcare 

organizations to communicate with patients as well as a way for patients to communicate their healthcare 

experiences (Gravili, 2013). Patients increasingly use online reviews to make decisions about which healthcare 

providers to visit (Greaves & Millett 2012). Trends in other industries, such as finance (Devries, 2012) and 

hospitality (Chetta et al., 2017), indicate that social media comments affect consumer choices, and it behooves 

the healthcare industry to understand how sources affect ratings. The present study explores different social 

media sites, the ratings provided, and the qualitative data associated with these ratings. 

Background  

Healthcare research has increased its use of qualitative methods to better understand the patient experience 

(Sarasohn-Kahn, (2008); Smailhodzic et al., 2016). Qualitative research allows healthcare researchers and 

practitioners to understand the experience of patients (Smith et al., 2003), healthcare workers (Bradbury-

Jones et al., 2014), and administrators (Schultz et al., 2011). Qualitative methods have been shown to be 

effective in understanding and improving processes within healthcare systems (Pope et al., 2002).  

Much research has been conducted using interviews and coding schemes to understand these experiences 

(Chenail, 2011). This research has often generated new data from interviews and focus groups. However, 

social media represents a rich data source for qualitative researchers in healthcare that does not require data 

collection and may provide more open descriptions. Social media are defined as “online platforms for 

interactions to occur around various health topics relating to patient education, health promotion, public 

relations, and crisis communication” (Househ et al., 2013). Social media tools include blogs, microblogging 

(i.e., Twitter), social networking (i.e., Facebook), and video- and file-sharing sites (i.e., YouTube). Social 

media data has been used in a variety of studies to better understand healthcare processes and procedures. 

Hospitals have shown a marked increase in the use of social media platforms to communicate with patients 

(Griffis et al., 2014). Chan & Chen (2019) conducted a study on the effect of pregnancy apps on healthcare 

outcomes and showed the impact of this technology on women’s pregnancy experiences. Laranjo et al. (2015) 

reviewed the effect of social media sites on patient behavioral change over time and found that social media 

support could maintain patient behaviorial change. Williams et al. (2014) conducted a meta-analysis on the 

effect of social media interventions on exercise and diet. These studies of social media focused on quantitative 

research and indicated the overall impact that the communication tool could have on health outcomes.  

Studies of social media’s impact on healthcare have noted the interplay between patients, organizations, and 

service providers (Auriemmo et al., 2018; Househ, 2013). As a crowdsourced, user-produced form of text, 

social media data allows researchers unique understanding of the communication processes between 

organizations, healthcare workers, and patients. Most qualitative research in this area has focused on patient 

experience and health-related outcomes, with the research centered around understanding the patient 

experience. These experiences are understood to be communicated through social media and can have an 

impact on organizations’ and medical practitioners’ financial bottom line (Apenteng, 2020).   
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Literature Review  

Social media research in healthcare has focused primarily on website reviews with some focus on social media 

platforms (Hawn, 2009; Hamm et al., 2013; McCaughey et al., 2014) and an occasional focus on how to best 

utilize these platforms to maximize value for healthcare organizations or sole practitioners (Grajales et al., 

2014). Most of the research uses the individual physician as the lens of analysis. Physicians are often reviewed 

on websites that are available to laypeople (Ventola, 2014). Physicians must be mindful of these sites and 

reviews as they can drive patient choices about care and potentially impact the financial wellbeing of a 

physician’s practice. Antheunis et al. (2013) found that physicians primarily used LinkedIn and Twitter for 

marketing and networking, while patients used Twitter and Facebook for knowledge and advice. Patients are 

making healthcare choices and those physicians that wish to continue to grow their practices must be mindful 

of online reviews. Social media presents an opportunity to engage in consistent evaluation of healthcare 

providers’ service, patient reactions, and organizational effectiveness (Cordoş et al., 2017).  

Donnally et al. (2018) conducted a comprehensive review of the ratings of spinal surgeons across three health-

related websites (i.e., Healthgrades) and found that surgeons with a social media presence received higher 

numbers of comments on their review pages. They reviewed the comments for health-related information but 

did not look at what language drove positive and negative reviews.  

Nwachukwu et al. (2016) reviewed the ratings of surgeons across three different review websites 

(Healthgrades, Vitals, and Rate MDs) and found that female surgeons were more likely to receive higher 

ratings and that social media presence also lead to higher ratings. The comments were analyzed for primarily 

health-related information related to patient experience, but no significant differences were found between 

the ratings websites.  

Korzadeh (2018) reviewed ratings across publicly available websites (i.e., Google) and hospital-provided 

ratings. This study found that the ratings provided by the hospital were higher than those available on Google, 

signaling that organizations know the value of higher ratings in driving financial performance.  

McLellan (2019) extended the ratings research further by focusing on comments and data from a variety of 

medical sources as well as Google ratings. Google had significantly more ratings than the health-oriented 

sites, indicating its importance as a source of healthcare-related information for consumers. Google also 

included more comments, but these comments were not content analyzed.  

Baksh and Mesfin (2014) conducted a content analysis of eight different health-related websites. A researcher 

content analyzed and coded the comments. The analyses revealed that scheduling and time with the patient 

were primary factors in the higher ratings. While this analysis provided a cross-sectional view across a variety 

of websites (i.e., Google, Healthgrades, WebMD), the language that drove positive and negative ratings was 

not identified.  

Across these studies, two themes emerge. First, most of these studies focus on physician-specific ratings 

rather than ratings of the hospital facility or organization. Unlike other service providers, where the 

organization is the focal point, the review process in these studies focused on individual providers (i.e., 

physicians). This is despite the impact of other players such as nurses and administrators on patient care 

within the larger healthcare system. Second, much of the research has included comments but has converted 

written comments into quantitative variables (i.e., number of comments included) rather than reviewing the 

substance of what patients had written regarding their care. This leaves a significant gap in the research 

literature that the present study hopes to address.   
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Theoretical Framework  

Healthcare researchers have begun to utilize qualitative analyses; however, many have yet to fully realize the 

value of computer-assisted textual analysis (CATA) (Abualigah et al., 2020). To address the calls for increased 

use of qualitative methods (Cohen & Crabtree, 2008), many researchers have used traditional content coding 

(Roth & Whitehead, 2019). Traditional content coding includes the application of the Weber Protocol 

involving a human coder who categorizes and analyzes text for themes and meaning (Duriau et al., 2007). 

CATA is defined as “a research technique involving the essential use of computer software for making 

replicable and valid inferences from text to their context” (Tian & Stewart, 2005). The CATA approach can 

make the process of content analysis much faster by using established dictionaries to evaluate language. 

Technological tools that are used in CATA can conduct sentiment analysis and language aggregation.  

Sentiment analysis is concerned with assessing text for emotions, often positive and negative emotions. 

Healthcare researchers (Georgiou et al., 2015) have evaluated sentiment analysis tools for their efficacy and 

validated several established tools. Research has indicated that the open-source tools provide more effective 

sentiment analysis than commercial ones. The present study will use several open-source tools (i.e., Voyant 

Tools) in its analyses. Abirami & Askarunisa (2017) recommend the use of multiple data sources to better 

understand the sentiment of any given subject.  

To conduct an effective sentiment analysis, researchers must use dictionaries to tag words as either positive, 

negative, or neutral (Young & Soroka, 2012). Sentiment analysis dictionaries such as the Lexicoder dictionary 

have been used in a variety of settings (www.lexicoder.com). The Lexicoder dictionary has most commonly 

been used to evaluate news articles’ sentiment and political content (Soroka et al., 2015). This dictionary has 

also been used to analyze sentiment and perceptions of healthcare treatments (Sabel & Dal Cin, 2016). A key 

criticism of CATA is that the method utilizes machines to understand human language. However, we propose 

approaching CATA in healthcare through the lens presented by Todres et al. (2009), who proposed a 

humanist framework through which to view qualitative research. This framework addressed some limitations 

presented by Bradley (2005) by focusing on the individual human experience that a CATA tool would allow 

researchers to identify. In other words, CATA does not replace human coders but allows humans to process 

larger groups of data with an eye towards standardized analysis.  

One concern regarding qualitative methods is the lack of replicability and credibility of the results. Miyata and 

Kai (2009) highlight four epistemological axes that can be used to evaluate qualitative and quantitative 

research. They conclude that qualitative and quantitative research methods need not be in competition with 

one another. CATA allows qualitative researchers to take unstructured text and use a dictionary to apply 

quantitative methods. In addition to applying a numerical framework to the text, CATA can also be used to 

extract text using frequency categories to better understand the language used. This addresses one of the 

prime uses of qualitative data in evidence-based healthcare, that of a thematic tool to identify issues for 

change and improvement (Popay & Williams, 1998; Al-Busaidi, 2008). CATA also addresses some of the 

concerns of Pope et al., 2000), who stated that qualitative research must be done with an eye towards 

categorization due to human subjectivity. CATA shifts the need away from training the human to perceive the 

text correctly to choosing the correct dictionary and extraction tools to identify sentiment and language.  

Prior studies that have used CATA techniques have looked at large-scale databases from a single source 

(Greaves et al., 2013). A variety of studies have used multiple databases but have not compared comments 

between these sites. Research has also evaluated comments using the unit of analysis of the individual 

provider (i.e., physician), yet few studies have looked at the hospital as the unit of analysis. The present study 

builds upon previous work by Islam et al. (2016).  
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Lagu et al. (2017) also showed that the characteristics of the websites used impacted physician reviews with 

factors such as punctuality and question structure impacting the quantitative and qualitative ratings. Despite 

identifying the impact, little information from the qualitative comments on these sites was used to evaluate 

patient experience and physician reviews.  

Figure 1 shows the updated qualitative patient experience model from Islam et al. (2016)’s paper on urgent 

care centers. The authors of the present study updated the model presented in Figure 1. The model posits that 

patients experience staff interactions, care delivery, and the facility during their healthcare experiences. These 

experiences are filtered through patient perceptions. Patients then choose a social media or review site that 

impacts their written comments and ratings on external review websites. The researchers propose using a 

grounded theory and phenomenological approach to understand the process.  

Figure 1: Qualitative Patient Experience Model 

Research Questions 

Research Question 1: Are there differences in quantitative ratings of hospitals between review sites?  

Research Question 2: What are the differences in language used on different review sites to describe patient 

experiences within hospitals?  

Method 

The present study examines ratings and language used in reviews of hospitals in the Pittsburgh area, following 

a similar methodology to Black et al. (2009) and Islam et al. (2016). The study uses a content analysis 

approach to understand open-source comments on public websites. Morris (1994) defines content analysis as 

“a qualitative research technique that uses a set of procedures to classify or categorize communications to 

permit valid inferences to be drawn.” Computerized content analysis is considered qualitative because 

qualitative research attempts to develop “an understanding of the meaning and experience dimensions of 

humans’ lives and social worlds” (Fossey et al., 2002). Computerized content analysis uses computers to assist 
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in processing and assigning meaning to vast amounts of text (Morris, 1994). The study was reviewed and 

approved by the IRB.  

Pittsburgh was chosen as a location because it was a city with multiple hospitals with a variety of specialties 

that would provide a wide range of potential responses. Specifying a location from which to collect the data 

allowed researchers to control for other factors that might affect data from multiple cities and locations, based 

on recommendations from Black et al. (2009). Area hospitals from Pittsburgh, Pennsylvania, were chosen, 

and a researcher collected 497 comments about 10 different Pittsburgh area hospitals and healthcare 

providers from three sources, Yelp, Google, and Healthgrades. Healthgrades was chosen because it is a site 

dedicated to health ratings and bills itself as “the leading online resource for comprehensive information 

about physicians and hospitals.” (Hilliard, 2012). Google was chosen because it is viewed as the leader in 

online searches (Thelwell, 2008) and a source of much patient information. Yelp describes itself as connecting 

people with great local businesses. Yelp was chosen because it has traditionally been viewed as a site that 

impacts consumer choices and has been little studied in the healthcare space (Hicks et al., 2012). Researchers 

gathered 214 comments from Google, 263 from Healthgrades, and 20 from Yelp. Comments and ratings were 

collected between January 1, 2019, and October 31, 2019. 

Ratings were analyzed using a one-way ANOVA with the website (Google, Yelp, Healthgrades) as the 

independent variable and the rating as the dependent variable. Post hoc analyses were done using Tukey’s 

test. Computerized content analysis tools were used to text mine the comments from Google, Healthgrades, 

and Yelp. RIOT scan was used to analyze the sentiment of each set of comments using the Lexicoder 

dictionary (Daku et al., 2015). The Lexicoder dictionary consists of 4,567 positive and negative words and 

phrases. It has also been validated against manually coded data and has outperformed other valence 

dictionaries (Soroka et al., 2015). The sentiment analysis scores represent the overall positive and negative 

sentiment. RIOT scan calculates this score by taking the number of positive words and subtracting the 

negated positive sentiment and adding back in the negated negative sentiment. To calculate negative 

sentiment, the number of negative sentiment words is subtracted from the number of negated negative 

sentiment and added to the negated positive sentiment. In other words, only the positive or negative 

sentiment remains through this calculation. The Lexicoder dictionary defines which terms are positive, 

negative, and in which context the words negate positive or negative sentiment. The corpus was organized 

according to positive and negative ratings and by rating source (Google, Healthgrades, and Yelp). Comments 

were categorized as negative if the rating received was 1 or 2, and high ratings were defined as 3, 4, and 5. 

After the data was organized in this way, the Lexicoder dictionary was used to analyze the rating of positive 

and negative affect.  

The researchers used another text analytic tool known as Voyant Tools, which is “a web-based reading and 

analysis environment for digital texts” (voyant-tools.org). Using Voyant Tools, the researchers conducted 

another computerized content analysis of the comments across the different platforms. Voyant tools produced 

the most popular words by corpus and word clouds of the most popular terms. Voyant tools also identified 

distinctive language by corpus. Distinctive language is defined as words used primarily in one text versus the 

others.  

The corpus was also analyzed using Tropes (semantic-knowledge.com). Tropes is a natural language 

processing (NLP) and semantic classification software that allows researchers to extract text and identify the 

style of the language used in the reviews. Tropes was also used to identify the top word pairs in each segment 

of the corpus as well as the text style. Using Tropes, the researchers then organized these data into star 

diagrams. Star diagrams show relations between words and word categories. The star diagram indicates a 

central term and the words that come before and after that central term. This diagram allows the researcher to 

understand the language that comprises the central concepts in the corpus.  
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Results  

Table 1 contains average rating by website. Average ratings for service were lowest on Yelp (M = 2.06) and 

highest for Healthgrades (M = 4.13). 

Table 1: Mean Numerical Rating by Rating Source  

Rating Source (Google, Yelp, Healthgrades)  Mean  SD  N  

Google   3.371   1.880   210   

Healthgrades   4.137   1.612   263   

Yelp   2.056   1.697   18   

Table 2 shows the results of the ANOVA analysis. There was a significant effect of review source on 

quantitative ratings F = 20.098, df = 2, p <.05 for the three conditions. 

Table 2: Numerical Rating by Rating Source  

Cases  Sum of Squares  df  Mean Square  F  p  

Rating Source (Google, Yelp, Healthgrades)   121.004   2.000   60.502   20.098   < .001   

Residual   1469.045   488.000   3.010         

Note: Type III Sum of Squares  

Table 3 contains results of post-hoc analyses by rating source. Post-hoc analyses revealed that Google ratings 

were lower than Healthgrades, with Yelp the lowest of all. 

Table 3: Post Hoc Comparisons—Rating Source (Google, Yelp, Healthgrades)  

      Mean Difference  SE  t  Cohen’s d  p tukey  

Google   Healthgrades   -0.765   0.161   -4.767   -0.441   < .001   

    Yelp   1.316   0.426   3.088   0.705   0.006   

Healthgrades   Yelp   2.081   0.423   4.924   1.287   < .001   

Note:  Cohen’s d does not correct for multiple comparisons.  

Table 4 contains overall sentiment analysis scores. The results in Table 4 indicate that Yelp had the most 

negative language used and Healthgrades had the most positive language used. A computerized content 

analysis was conducted using RIOT scan (Boyd, 2013) and the Lexicoder dictionary (Young & Soroka, 2012) to 

assess each sources’ sentiment. Yelp had the lowest level of positive sentiment (M = 2.35) and Healthgrades 

had the highest positive sentiment (M = 6.76). These results seem to indicate that Healthgrades draws in 

more reviews related to positivity and may be used by those reviewers who have the most experience and 

knowledge of healthcare. Yelp reviews seem to be more general and focused on service. Time seems to be a 

concern across all platforms and seems to drive ratings of quality across hospital systems. 

Table 4: Overall Corpus Positive–Negative Affect Lexicoder Sentiment Dictionary  

 Average Sentence Length Sentences Negative Affect  Positive Affect  

Google  12.86 692 3.05 6.67 

Healthgrades  10.22 942 2.83 6.76 

Yelp  13.35   81 4.35 2.31 
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Table 5 contains sentiment analysis results by review source and positive and negative rating. Google had the 

highest positive sentiment rating while Yelp’s negative ratings had the highest amount of negative sentiment.  

Table 5: Positive–Negative Affect by Source and Rating  

  Average Sentence 

Length 

Sentences Negative 

Affect  

Positive 

Affect  

Google  Positive Rating 12.65  375 1.33 10.26 

 Negative Rating  13.06 318  5.03   2.57 

Healthgrades  Positive Rating  4.34 718 1.76   8.63 

 Negative Rating   4.13 224 5.42   2.27 

Yelp  Positive Rating  4.34   57 2.37   4.41 

 Negative Rating   4.5   24 5.11   1.53 

Figures 2, 3, 4, and 5 contain word clouds of the Google, Healthgrades, and Yelp comments. The most 

frequent words across the corpus of text (Google, Yelp, and Healthgrades) were “doctor,” “staff,” “hospital,” 

and “time.” The longest comments were left with the Healthgrades site, followed by Google and Yelp. 

Vocabulary density or the amount of higher-level vocabulary used in the corpus was also calculated. Yelp 

reviews had the highest vocabulary density (.418).  

Note. For Figures 2–5, the larger the text the more often the word appears in the corpus. 

Figure 2: Google Comments Word Cloud 
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Figure 3: Healthgrades Word Cloud  

Figure 4: Yelp Word Cloud 

Figure 5: Entire Corpus Word Cloud 
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Table 6 contains the top five words by review source, including words such as “staff” for Google and Yelp, “Dr” 

for Healthgrades, and the entire corpus.  

Table 6: Top 5 Words Across Platforms  

Google Healthgrades Yelp Entire Corpus  

Top 5 

Words 

Count  Top 5 

Words 

Count  Top 5 Words Count  Top 5 

Words 

Count  

Staff  

Hospital  

Care   

Nurses 

Doctors 

86 

85 

57 

46 

31 

Dr 

Time 

Doctor 

Staff 

Recommend 

175 

67 

62 

52 

51 

Staff 

Appointment 

Medical 

Place 

Told   

8 

5 

5 

5 

5 

Dr 

Staff 

Time 

Hospital  

Doctor  

183 

146 

  99 

  94 

  82 

Table 7 contains distinctive language used by review source. Google reviews included distinctive terms like 

“child,” “experience,” and “good.” Distinctive terms for Healthgrades included “doctor,” “takes,” “listens,” and 

“explains.” Distinctive language in Yelp reviews includes “payments,” “transported,” and “thoughts.”  

The text style for the overall corpus could be described as enunciative and focused on individual perspective 

and tends to use the term “I.” This indicates that these are first-person statements. There were mostly stative 

verbs used, and time was a common modality across the corpus. Researchers analyzed the corpus by source 

(Google, Healthgrades, and Yelp). All three sources used an enunciative style utilizing the “I” pronoun 

indicating a first-person perspective. Time was the top modality across review source, with 22% of Google’s 

modalities, 25% of Healthgrades’, and 22% of Yelp’s reviews using the time modality.  

Table 7: Distinctive Words by Source  

Google Healthgrades Yelp 

Distinctive Words Count Distinctive 

Words 

Count Distinctive Words Count 

Child 

Facility 

Baby 

Experience 

Good 

15 

10 

10 

26 

25 

Dr. 

Takes 

Listens 

Recommend 

Hip 

175 

  24 

  23 

  51 

  16 

Payment 

Western 

Transported 

Thoughts 

Suicidal 

3 

2 

2 

2 

2 

Table 8 contains the word pairs, with Google’s top word pair being “nurse>doctor” and “doctor>nurse,” while 

Healthgrades top pair was “doctor>year” and “greeting>doctor,” indicating the importance of behavior 

between nurses and doctors as well as between medical staff and patients. Due to the small sample size of 

written comments, Yelp only had one relevant pair, “communication>delay,” which supports the importance 

of communication with patients seen in Google and Healthgrades comments.   
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Table 8: Top Word Relations Pairs by Review Source  

Google Healthgrades Yelp 

Word Pair  Pairs Word Pair  Pairs Word Pair  Pairs 

Nurse> Doctor 10 Doctor> Year 8 Communication>Delay 2 

Doctor>Nurse 7 Greeting>Doctor 7   

Child> Hospital 7 Time>Patient 6   

Hospital>Pennsylvania 7 Knee>Replacement 5   

UPMC> Hospital 5 Time>Office 5   

Figures 6–9 display star diagrams. For the Google corpus, the central term was “hospital,” for Healthgrades, 

the central term was “doctor,” and for Yelp’s corpus, the central term was “patient.” Each central term 

represents the focus of each site, with Google reviews about the hospitals, Healthgrades reviews primarily 

about physicians, and Yelp reflecting the views of the patients. Proper names were removed and replaced with 

the words “person” or “hospital name” to maintain anonymity. The star diagrams were created again for the 

corpus organized by positive and negative ratings by website. 

Note. For Figures 6–9, the numbers found next to the text represent the number of times the words appear in 

this position in the text.  

Figure 6: Google Comments Star Diagram  
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Figure 7: Healthgrades Star Diagram 

 

Figure 8: Yelp Star Diagram 
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Figure 9: Entire Corpus Star Diagram  

Figures 10–15 indicate star diagrams organized by review source as well as the overall corpus. The central 

term for Google reviews was the term “hospital.” The central term for Healthgrades was “doctor” and for Yelp 

reviews, “patient.” The researchers then constructed star diagrams based on positive and negative reviews and 

review source. Google positive comments are driven by the term “staff.” Yelp positive comments also reflected 

“staff,” while Healthgrades’ positive and negative comments were centered around the term “doctor.” 

Note. For Figures 10–15, the numbers found next to the text represent the number of times the words appear 

in this position in the text.  

Figure 10: Google Negative Comments Star Diagram  



  
Islam et al., 2021 

 
Journal of Excellence in Nursing and Healthcare Practice 14 

Figure 11: Google Positive Comments Star Diagram  

 

Figure 12: Healthgrades Negative Star Diagram  
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Figure 13: Healthgrades Positive Star Diagram  

Figure 14: Yelp Negative Comments Star Diagram  
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Figure 15: Yelp Positive Comments Star Diagram  

Discussion  

The present research provides some insight into how different platforms may reflect patients’ perspectives. 

The results of this paper indicate that patient comments often reflect the goals of the website itself. Website 

structure and focus are key factors in determining what the qualitative comments found on the site are 

focused on. For example, Yelp is a user-generated site focused on patients’ individual experiences and thus 

terms like “appointment” and “doctor” were of key importance. Google comments were pulled around the 

hospital names and thus the ratings and comments reflected a focus on the hospital itself.  

Previous research on open-source comments has not noted the impact of the website focus on the types of 

comments. Evaluating the instructions and approach of different sites should be a consideration for social 

media managers that work in a healthcare setting. Depending on what their organizations or practitioners 

value, they may prioritize comments from different websites and social media accounts. While the tone of the 

language and the sentiment offered was slightly different, the comments are where true changes can be 

identified and made. Hospitals should continue to evaluate staff and services through external and internal 

patient feedback.  

The results of the present study also highlight the importance of staff interactions. While previous research 

has shown the importance of hospital staff in patient experiences, the present results indicate the power of 

staff to impact social media ratings that may lead to future business. Hospital systems should maintain 

effective human resource systems and provide rewards to staff around these types of positive interactions. 

Social media managers and HR professionals should collaborate on identifying those staff behaviors that most 

drive positive social media comments.  

Limitations 

The present study was limited by several factors. First, the time was limited to less than a year. An expanded 

timeframe, especially one that includes flu season, might result in an increased understanding of patient 

experiences. A longer timeframe might also allow researchers to map qualitative feedback over time to see if 

there are seasonal differences in how patients view their hospital experience. The present study was also 
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limited by the number of websites used. To generate a more comprehensive comparison between health-

oriented websites and more general consumer-oriented sites, additional website comments must be added. 

Finally, the single location also limited the results. Additional cities and locations may provide researchers 

with greater understanding of patient experiences across states and even countries.  

Future Research  

The present study provided some interesting initial results but serves as an exploratory analysis of social 

media comments. Future research should attempt to develop a predictive model of textual analysis and social 

media comments with bottom-line factors such as revenue, returning patients, and referrals. The focus of this 

study was also on one city. Future research should try to expand this approach to other cities and countries to 

evaluate cross-cultural effects on social media comments. Identifying key drivers of social media comments in 

other countries may illuminate expectations of service.  

Relevance to Clinical Practice  

In terms of clinical practice, patient feedback from different sources is important in that it may alter the post-

operative instructions or care given to patients that have undergone similar procedures. At times, patients do 

not follow up with post-operative visits, so in these cases, user feedback on the different websites can help 

clinicians learn what post-operative instructions worked better than others. Interestingly, similar studies of 

patient feedback based on the care they received either reported no effects, small non-statistically significant 

improvements, or few statistically significant changes in clinical practice (Kumah et al., 2018). It is important 

to note that the instructions on the website to write a review may also impact the ratings and comments a 

clinician may receive. 

Clinical practice has already been impacted by social media from a business perspective (Eckler et al., 2010). 

As noted by Hors-Frail et al. (2016), social media has both a positive and negative side. The present paper 

highlights the importance of choosing which website to follow based on the purpose of the site itself. While 

these sites may provide some insights, they should not be used to drive clinical practice but rather customer 

service initiatives for a hospital’s patients.  

Conclusions  

The present study provides some clear insights into online social media comments from health-related 

websites. Medical professionals in clinical practice utilized social media in their decision-making processes 

(Hawn, 2009). The findings of this study highlight the importance of understanding the source of these 

reviews. Users tend to adhere to the guidelines provided by the platform or website through which they are 

providing feedback. Healthcare practitioners should identify the most relevant website and social media pages 

that drive their practices’ business and provide the most clinical insight. Additionally, this study’s findings 

highlight the importance of hospital staff in the patient experience. The work of healthcare practitioners is the 

most important driver in patients’ healthcare experience. Clinical practitioners should use different social 

media and websites to evaluate patient perceptions of their services.    
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