#### University of Montana

#### ScholarWorks at University of Montana

UM Graduate Student Research Conference (GradCon)

# A hand-held, photogrammetric, approach to riparian and stream assessment and monitoring

Joseph Dehnert jd210299@umconnect.umt.edu

Follow this and additional works at: https://scholarworks.umt.edu/gsrc Let us know how access to this document benefits you.

Dehnert, Joseph, "A hand-held, photogrammetric, approach to riparian and stream assessment and monitoring" (2021). *UM Graduate Student Research Conference (GradCon)*. 1. https://scholarworks.umt.edu/gsrc/2021/stem\_oral/1

This Oral Presentation is brought to you for free and open access by ScholarWorks at University of Montana. It has been accepted for inclusion in UM Graduate Student Research Conference (GradCon) by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.

#### GradCon Presentation JOE DEHNERT SPRING, 2021

## A HAND-HELD PHOTOGRAMMETRIC APPROACH TO RIPARIAN AND STREAM ASSESSMENT AND MONITORING

JOE DEHNERT MS CANDIDATE, GEOGRAPHY

FACULTY ADVISOR DR. DAVID SHIVELY PROFESSOR, GEOGRAPHY



W.A. FRANKE COLLEGE OF FORESTRY AND CONSERVATION

## ESTABLISHED FUNDING (2020-2021)

Montana Water Center Fellowship - \$2,000

Doris and Kelsey C. Milner Scholarship - \$1,000

American Association of Geographers (Water Resources Specialty Group) Scholarship - \$250

# VISUAL ESTIMATION

| CLASS | DESCRIPTION OF ABUNDANCE                                                                      | DISTRIBUTION |  |  |
|-------|-----------------------------------------------------------------------------------------------|--------------|--|--|
| 0     | No invasive plants on the polygon                                                             |              |  |  |
| 1     | Rare occurrence                                                                               |              |  |  |
| 2     | A few sporadically occurring individual plants                                                | ·            |  |  |
| 3     | A single patch                                                                                | 41           |  |  |
| 4     | A single patch plus a few sporadically occurring plants                                       | ¥            |  |  |
| 5     | Several sporadically occurring plants                                                         |              |  |  |
| 6     | A single patch plus several sporadically occurring plants                                     | · . *        |  |  |
| 7     | A few patches                                                                                 | 16 A 18      |  |  |
| 8     | A few patches plus several sporadically occurring plants                                      | 35 y Y       |  |  |
| 9     | Several well spaced patches                                                                   | 12 y Y X     |  |  |
| 10    | Continuous uniform occurrence of well spaced plants                                           |              |  |  |
| 11    | Continuous occurrence of plants with a few gaps in the distribution                           | 36 22 400    |  |  |
| 12    | Continuous dense occurrence of plants                                                         | 308383       |  |  |
| 13    | Continuous occurrence of plants associated with a wetter or drier<br>zone within the polygon. | Stermon      |  |  |

# **RESOURCE EFFICIENCY**

#### LOTIC WETLAND SURVEY HEALTH ASSESSMENT FOR STREAMS AND SMALL RIVERS FIELD SCORE SHEET

| 1. Vegetative Cover of Floodplain and Streambanks.                                                 | Score: | /6  |
|----------------------------------------------------------------------------------------------------|--------|-----|
| 6 = More than 95% of the reach soil surface is covered by rooted plant material (live or dead).    |        |     |
| 4 = 85% to 95% of the reach soil surface is covered by rooted plant material (live or dead).       |        |     |
| 2 = 75% to 85% of the reach soil surface is covered by rooted plant material (live or dead).       |        |     |
| 0 = Less than 75% of the reach soil surface is covered by rooted plant material (live or dead).    |        |     |
| 2a. Total Canopy Cover of Invasive Plant Species (Weeds).                                          | Score: | /3  |
| 3 = No invasive plant species (weeds) on the site.                                                 |        |     |
| 2 = Invasive plants present with total canopy cover less than 1% of the polygon area.              |        |     |
| 1 = Invasive plants present with total canopy cover between 1% and 15% of the polygon area.        |        |     |
| 0 = Invasive plants present with total canopy cover more than 15% of the polygon area.             |        |     |
| 2b. Density/Distribution Pattern of Invasive Plant Species (Weeds).                                | Score: | /3  |
| 3 = No invasive plant species (weeds) on the site.                                                 |        |     |
| 2 = Invasive plants present with density/distribution in categories 1, 2, or 3.                    |        |     |
| 1 = Invasive plants present with density/distribution in categories 4, 5, 6, or 7.                 |        |     |
| 0 = Invasive plants present with density/distribution in categories 8, or higher.                  |        |     |
| 3. Disturbance-Increaser Undesirable Herbaceous Species.                                           | Score: | / 3 |
| 3 = Less than 5% of the site covered by disturbance-increaser undesirable herbaceous species.      |        |     |
| 2 = 5% to 25% of the site covered by disturbance-increaser undesirable herbaceous species.         |        |     |
| 1 = 25% to 50% of the site covered by disturbance-increaser undesirable herbaceous species.        |        |     |
| 0 = More than 50% of the site covered by disturbance-increaser undesirable herbaceous species.     |        |     |
| 4. Preferred Tree and Shrub Establishment and/or Regeneration.                                     | Score: | / 6 |
| (If the site has no woody vegetation [except for the species listed to be excluded],               |        |     |
| replace both Actual Score and Possible Score with NA.)                                             |        |     |
| 6 = More than 15% of the total canopy cover of preferred trees/shrubs is seedlings and saplings.   |        |     |
| 4 = 5% to 15% of the total canopy cover of preferred trees/shrubs is seedlings and saplings.       |        |     |
| 2 = Less than 5% of the total canopy cover of preferred tree/shrubs is seedlings and saplings.     |        |     |
| 0 = Preferred tree/shrub seedlings or saplings absent.                                             |        |     |
| 5a. Browse Utilization of Preferred Trees and Shrubs.                                              | Score: | / 3 |
| (If the site has no woody vegetation [except for the species listed to be excluded],               |        |     |
| replace both Actual Score and Possible Score with NA.)                                             |        |     |
| 3 = None (0% to 5% of available second year and older leaders of preferred species are browsed).   |        |     |
| 2 = Light (5% to 25% of available second year and older leaders of preferred species are browsed). |        |     |
| 1 = Moderate (25% to 50% of available second year and older leaders of preferred species are brows | ed).   |     |
| 0 = Heavy (More than 50% of available second year and older leaders of preferred species are brows | ed).   |     |

5

#### COMMON TERRAIN MODELING PROS AND CONS

- Satellite
  - Landscape Analysis
    - NDVI & MODIS scans
    - Spaceborn Image-Matching
    - Machine Learning Algorithms
  - Established Infrastructure
    - Public Access
    - <15m Panchromatic resolution</p>
    - Future use limited only by application and access
  - Dynamic Environments
    - Low Light
    - Variable Vegetation
    - Dense Canopy Cover

- UAV
  - Time Efficient
    - Kilometers in a day
  - Landform Scale and beyond
    - RBG & NIR scans
  - Specialization
    - Prohibitively expensive equipment
    - Specialized skills
    - Extensive Permitting
  - Dynamic Environments
    - Low Light
    - Variable Vegetation
    - Dense Canopy Cover



## PHOTOGRAMMETRY PROS AND CONS

- High-accuracy 3D point cloud data
- Comparison with historical data
- Comparable to AerialLiDARScan/TerrestrialLiDARScan in terms of accuracy
- Unspecialized, cost-effective acquisition of spatial data
- Quality data production in a variety of dynamic environments
- Relatively recent development
- Validation and standardization can be laborious with increase in Vegetation

### **PROBLEM STATEMENT & RESEARCH QUESTIONS**

#### Problem Statement

- Two of the biggest weaknesses in stream restoration and monitoring are: I) subjective estimation and subsequent comparison of changes in channel form, vegetative cover, and in-stream habitat; and 2) the high costs in terms of financing, human resources, and time necessary to make these estimates.
- Research Questions
  - What is the most suitable camera (cell phone, digital SLR, GoPro) and data acquisition method for hand-held photogrammetry in the field, considering minimum resolution, affordability, and repeatability?
  - What is the most suitable image processing workflow, considering computing power and time constraints?
  - What measurements can hand-held photogrammetry provide to stream and riparian restoration specialists and researchers?

## WHY DEER CREEK?

- Ideal location to test methodology
  - Heavily vegetated stream
  - Impossible to employ other remote sensing techniques
- Close to Missoula
- First-order stream feeding Fish Creek









#### WHY AGISOFT METASHAPE?

- 'Best Practice' workflows already established for UAV & ALS/TLS
- Intuitive 'Graphic User Interface' flattens software learning curve
- Capable of exporting multiple spatial products (orthomosaic, Digital Elevation Models, 3D mesh)

#### LEAF AREA INDEX CHALLENGE



#### IMAGE NUMBER & ERROR CHALLENGE



#### STUDY DESIGN







#### SENSORS







### EVALUATING SENSORS – ROOT MEAN SQUARE ERROR (RMSE)



Section | DSLR

#### **EVALUATING SENSORS - RMSE**



Section I GoPro

#### **EVALUATING SENSORS - RMSE**



Section I Iphone

18

#### **EVALUATING SENSORS - RMSE**

Sensor RMSE per Section



●DSLR ●GOPRO ●IPHONE

#### RMSEVS. POINT COUNTS REMOVED



#### RMSEVS. POINT COUNTS REMOVED

Section | GoPro Tie Points Total



■ Reconstruction Uncertainty ■ Reprojection Error ■ Projection Accuracy

#### RMSEVS. POINT COUNTS REMOVED

Section I Iphone Tie Point Totals



Reconstruction Uncertainty
Reprojection

Reprojection Error Pro

Projection Accuracy

#### MEASURED VS. EXPECTED

How does Metashape create scale without coordinates?



### RESEARCH QUESTION I REPEATABILITY & AFFORDABILITY

- What is the most suitable camera (cell phone, digital SLR, GoPro) and data acquisition method for hand-held photogrammetry in the field, considering minimum resolution, affordability, and repeatability?
- Results from RMSE error analysis and Expected vs. Measured Scale
  - RMSE Comparable
  - Expected vs. Measured Scale comparable
  - Winner goes to the most ubiquitous technology



#### **RESEARCH QUESTION 2**

What is the most suitable image processing workflow, considering computing power and time constraints?

| <b>IPHONE SECTION 1</b> |               |           | <b>GOPRO SECTION 1</b> |         |           | <b>DSLR SECTION 1</b> |                 |           |
|-------------------------|---------------|-----------|------------------------|---------|-----------|-----------------------|-----------------|-----------|
|                         |               |           |                        |         |           | Product               | Time            | Memory    |
| Product                 | Time          | Memory    | Product                | Time    | Memory    |                       |                 |           |
| Dense Cloud             | 3 mins 6 secs | 221.90 MB | Dense Cloud            | 50 secs | 200.73 MB | Dense Cloud           | 12 mins 24 secs | 596.7 MB  |
| DFM                     | 6 secs        | 84 04 MB  | DEM                    | 2 secs  | 24 98 MB  | DEM                   | 16 sec          | 237.68 MB |
|                         | 0 0000        | 0         |                        | 2 0000  | 2         |                       |                 |           |
| Orthomosaic             | 3mins 36 secs | 1.53 GB   | Orthomosaic            | 29 secs | 562.68    | Orthomosaic           | 9 mins 39 secs  | 3.93 GB   |

 Import -> Align -> Optimize -> Reduce Error (Projection Accuracy & Reconstruction Error Selections) -> Create Coordinate System and Scale -> Create Dense Point Cloud -> Create Mesh -> Create Texture -> Save Exports

#### RESEARCH QUESTION 3 QUANTITATIVE MEASUREMENTS

What measurements can hand-held photogrammetry provide to stream and riparian restoration specialists and researchers?



26





Х



Х

### RESULTS

- What is the most suitable camera (cell phone, digital SLR, GoPro) and data acquisition method for hand-held photogrammetry in the field, considering minimum resolution, affordability, and repeatability?
  - The ubiquitous nature of the cell phone camera combined with the lack of significance in error analysis for all three sensors puts the iPhone as the most suitable camera when considering minimum resolution, affordability, and repeatability.
- What is the most suitable image processing workflow, considering computing power and time constraints?
  - The most suitable image processing and model creation workflow within Agisoft Metashape is:
    - Import -> Align -> Optimize -> Reduce Error (Projection Accuracy & Reconstruction Error Selections) -> Create Coordinate System and Scale -> Create Dense Point Cloud -> Create Mesh -> Create Texture -> Save Exports
- What measurements can hand-held photogrammetry provide to stream and riparian restoration specialists and researchers?
  - In addition to the quantitative stream dimension measurements displayed above, Capture also provides qualitative information on instream habitat, presence of large debris, and evidence of bank erosion. These qualitative measurements on gathered at the time of stream survey and can be compared to future <sup>30</sup> surveys by looking at the 3D model record created by Capture.

#### THANK YOU VERY MUCH