
University of Montana University of Montana 

ScholarWorks at University of Montana ScholarWorks at University of Montana 

Graduate Student Theses, Dissertations, & 
Professional Papers Graduate School 

2020 

MODELING TWITTER SENTIMENT AS A FUNCTION OF MODELING TWITTER SENTIMENT AS A FUNCTION OF 

PARTICULATE MATTER 2.5 FOR COMMUNITIES IMPACTED BY PARTICULATE MATTER 2.5 FOR COMMUNITIES IMPACTED BY 

WILDFIRE ACROSS MONTANA AND IDAHO WILDFIRE ACROSS MONTANA AND IDAHO 

Matthew Kelly 

Follow this and additional works at: https://scholarworks.umt.edu/etd 

 Part of the Data Science Commons 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Kelly, Matthew, "MODELING TWITTER SENTIMENT AS A FUNCTION OF PARTICULATE MATTER 2.5 FOR 
COMMUNITIES IMPACTED BY WILDFIRE ACROSS MONTANA AND IDAHO" (2020). Graduate Student 
Theses, Dissertations, & Professional Papers. 11689. 
https://scholarworks.umt.edu/etd/11689 

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of 
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by 
an authorized administrator of ScholarWorks at University of Montana. For more information, please contact 
scholarworks@mso.umt.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Montana

https://core.ac.uk/display/388563918?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F11689&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1429?utm_source=scholarworks.umt.edu%2Fetd%2F11689&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/11689?utm_source=scholarworks.umt.edu%2Fetd%2F11689&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu


MODELING TWITTER SENTIMENT AS A FUNCTION OF PARTICULATE MATTER 2.5 

FOR COMMUNITIES IMPACTED BY WILDFIRE ACROSS MONTANA AND IDAHO 

By 

Matthew Kelly 

Bachelor of Science in Biology, Minor in Chemistry, University of Missouri-Kansas City,  

Kansas City, MO, 2011 

 

Bachelor of Arts in Psychology, University of Missouri-Kansas City,  

Kansas City, MO, 2011 

 

Thesis 

presented in partial fulfillment of the requirements 

for the degree of 

 

Master of Science  

in Computer Science 

 

The University of Montana 

Missoula, MT 

 

Winter 2020 

 

Approved by: 

 

Ashby Kinch PhD, Dean 

Graduate School 

 

Douglas Brinkerhoff PhD, Chair 

Department of Computer Science 

 

Erin Landguth PhD 

School of Public and Community Health Sciences 

 

Jesse Johnson PhD 

Department of Computer Science 

 

 

 

 

 



 

ii 

Kelly, Matthew, Master of Science, Winter 2020          Computer Science 

 

Modeling Twitter Sentiment as a Function of Particulate Matter 2.5 for Communities Impacted by 

Wildfire across Montana and Idaho 

 

Chairperson: Douglas Brinkerhoff PhD 

 

  Fine particulate matter (PM2.5) is a known pollutant with clinically detrimental physiological 

and behavioral effects. We consider Twitter sentiment as a potential indicator for well-being in 

communities impacted by wildfire-associated PM2.5 across Montana and Idaho spanning 5 years 

(2014-2018). From these geospatial air quality data and geo-tagged tweets, we trained county level 

models to examine the power of Twitter sentiment as a function of PM2.5. For all 24 counties 

sampled, we found between 1 and 8 affective dimensions where a positive 𝑟2 was detected with a 

significant F-statistic (𝑝 < 0.05). Specifically, we show that sentiment for anticipation in the 

wildfire-prone county of Missoula, MT yielded respective training/test set 𝑟2 of 0.0958 and 0.0686 

with a p-value for the F-statistic of 3.09E-07. These analyses support social media sentiment as a 

potential public health metric by showing one of the first observations of a relationship between 

PM2.5 and Twitter sentiment. 
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1 INTRODUCTION 

 This master’s thesis utilizes techniques in data science to explore the relationship between 

air quality and distress expressed in social media. It is organized into sections, the first of which 

includes previous studies on Twitter sentiment analysis and research goals. Section 2 provides 

background on big data, including a description of our tweet and air quality data. Frameworks for 

accessing and analyzing data motivate many decisions we make in our section 3 methods. Results 

are presented in section 4 with a comprehensive review for Missoula County, MT in 4.1, and all 

counties in 4.2. Finally, we state our conclusions in section 5 by addressing our research goals with 

our findings. 

 PM2.5 is a known pollutant with clinically detrimental physiological and behavioral effects 

[1]. The inspiration for then using PM2.5 as a predictor for Twitter sentiment came from a review 

of previous research where tweet sentiment was explored as a health proxy. A review of those 

studies follow here. For each, we consider how tweet sentiment has been used, how we may use 

existing methods, and where our research diverges. 

Social media has become a powerful tool allowing researchers to survey a population 

before, during, and after an event of interest, enabling the study of unpredictable events. Lin et al. 

(2017) leveraged this capability to create computational focus groups of spatiotemporally similar 

users affected by the November 2015 Paris attacks [2]. The dimensions of the response were 

defined as 3 primary negative emotions: anger, anxiety, and sadness. Tweet sentiment for these 

attributes were detected using the bag of words model Linguistic Inquiry and Word Count (LIWC) 

[3]. An increase and subsequent decrease in sentiment intensity was recorded as a period of distress 

and recovery. Their findings were (1) that a spike in anger, anxiety, and sadness was observed on 
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the day of the attack, and (2) proximity to the attack correlated strongly with the magnitude of 

distress. Our approach is also to decompose tweets into affective dimensions, but we are interested 

in modeling sentiment not for a single event, but as correlated across several years to explore the 

time-invariant relationship to PM2.5. 

In addition to a retrospective analysis, Twitter sentiment has also been explored for the 

early detection of an acute outbreak in thunderstorm induced asthma [4]. Joshi et al. (2020) were 

able to predict these outbreaks up to 9 hours prior to hospital records of the event in 3/18 of their 

experiments, and before news reports of the outbreak in 5/18. This was accomplished by first 

identifying tweets which included personal health keywords like “cough”. They hypothesized that 

multiple tweets with pathologically relevant references, separated by short time intervals, were 

rare events and therefore could be signals of distress. We also aimed to create a predictive model 

to illustrate correlations between environmental stimuli and sentiment. However, we could not find 

a significant number of tweets containing personal health keywords that were collocated with our 

PM2.5 data. As a result, we expanded our data scraping to encompass all possible tweets. 
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1.1 Research Goals 

1 Discover the best method for obtaining tweets by moderating cost and search power.  

2 Compare the performance of multiple language models through their impact on predicting 

sentiment from PM2.5. 

3 Determine if the predictive models are under or overfit.   

4 Identify the biggest sources of error. 

5 Propose ways to decrease error. 

6 Discuss the relationship between PM2.5 and Twitter sentiment. 
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2 BIG DATA 

 Data can become so-called big data when it is too large for a monolithic database [5]. It is 

therefore stored in distributed systems which often include functionality for capture, retrieval, as 

well as analysis. Sources of big data can be classified as social, transactional, or machine. Social 

data are generated by people on services alike social media. Transactional information 

encompasses primarily business and stock market data. And machine data are created through 

industrial processes, scientific research, and anywhere else an Internet of Things (IoT) device can 

be found. Using these definitions, our Twitter data is considered social, and our PM2.5 data is 

considered machine.  

Analytically, these distinctions become relevant when considering how data types are 

monetized differently, how queries impose bias, and how the signal-to-noise ratio is affected by a 

composition of data types. For example, regardless of where in the United States we sampled, a 

manual review showed that the Twitter users posting the most tweets were usually bots uploading 

information such as stock price and weather. These numerical tweets would have introduced low 

variance, neutral sentiment into our models, but were controlled for by ignoring tweets and users 

which were affectively null. Tweet acquisition is covered in 3.2, further methods on filtering and 

normalization can be found in 3.3, and sources of error are discussed in our section 5 conclusions.  

 

2.1 The Data Economy 

 Large and valuable datasets compose the data economy and are aggregated by a wide range 

of services. Consumption of these data is unlike the consumption of other goods and services in 

that its use does not reduce its supply, and its abundance does not reduce its value [6]. In the case 
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of big data, an increase in supply leads to an increase in value. This is because larger datasets can 

yield emergent properties of exponentially greater utility, inflating cost equivalently. Such 

dynamics have resulted in specialized data producers and consumers with complex strategies for 

monetization and acquisition, compounded by tensions between the demand for more data privacy 

and more powerful analytics.  

 Data science as a tool to influence behavior carries with it the potential for insight as well 

as abuse. Self-regulation of these concerns has been empowered by the dominance and novelty of 

big tech like Google in search, Amazon in e-commerce, Instagram in photos, and Twitter in free 

speech blogging. Some companies, such as Instagram [7] and Facebook [8], enforce privacy by 

forbidding any form of direct sale of their data. This is contrast to Twitter which offers tailored 

products to business, science, and government. Public tweets are even archived in the Library of 

Congress [9].  

Policy within information technology companies evolves rapidly because of the global 

nature of their products, inconsistent or absent government regulation, the arms race between 

security and bad actors, and the capriciousness of public opinion. Consequentially, data scientists 

must adapt with equal pace. We have found that our own scrapers have required modification as 

frequently as daily. Directly communicating with Twitter on our project has been helpful in 

overcoming some of these hurdles.  

Successful participation in the digital economy can be reduced to dealing with the difficulty 

of assigning value to data [10]. This is especially true as the number of free-to-use services and 

data warehouses increases. New players in a digital space can be disadvantaged by not being able 

to compete on price when incumbent services are free. However, companies that charge content 

creators like Social Blade, pay creators like advertisers, and broker data like Brand24 constitute 
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an ecosystem stabilized by competitive fees. Some of these data firms offer great value for 

acquiring tweets, but in our experience did not offer historical data or were opaque in terms of how 

their tools worked. We therefore were challenged to weigh the monetary cost of acquiring data 

directly from Twitter with the time cost of developing our own scraper in section 2.3.  

 

2.2 PM2.5 

 Our PM2.5 air quality data is geospatial in nature, stored as GeoTIFF rasters [11]. Readings 

were obtained from previous work which combined measurements from ground monitoring 

stations and satellite imagery. These data were input into a model which yielded 32-bit floating 

point values with a spatial resolution of 16x13 km and temporal resolution of 1 day spanning 

2009/06/01 to 2019/03/31. This range of dates would later be restricted to the 5 years between 

2014 and 2018 to match the years for which we had tweets for all counties. Models which included 

all dates in each year at first struggled to predict tweet sentiment from PM2.5. We hypothesized 

that the exogenous variable of seasonality was suppressing any potential relationship between the 

two. This seasonal variation was controlled for by further restricting the range of PM2.5 and 

Twitter data to only the summers of 2014-2018. Ultimately, we would discover that selecting only 

summer data would become vital for detecting significant correlations.  
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2.3 Twitter 

 Twitter is a platform for creating, consuming, aggregating, and analyzing real-time 

information. Its strategies for monetization include advertising to users and selling publicly posted 

tweets [12]. A tweet can contain rich multimedia including text up to 280 characters, photos, 

videos, polls, mentions, hashtags, moments, reposts of other tweets, replies, and reactions in the 

form of likes, emojis, and gifs [13]. Because tweets are minimally censored [14] and their text 

terse, Twitter has differentiated itself as the free speech microblogging service.  

Tweets are posted or scheduled in chronological order to a user’s Profile timeline and are 

automatically geotagged by Foursquare’s location services, unless the user opts out [15]. Tweet 

geo-tagging is explored in greater detail in section 3.2.3. Following hashtags, topics, and other 

users, populates the Home timeline with a synthesis of highly ranked tweets [16]. And the Explore 

timeline curates trending tweets and users [17]. This suggested content encourages engagement 

and is a primary success metric for social media platforms [18].  

Engagement is measured in terms of likes, retweets, follows, replies, and clicks. Business 

[19] and non-business [20] tools have been developed by Twitter to track the performance of 

previous posts with the purpose of guiding the creation of new content. Custom analytics can also 

be performed by first downloading tweets through one of Twitter’s data products, or through a 

data firm specializing in social media, or by scraping its website directly. For all 3 of these 

strategies, special care must be taken when submitting a query because in many contexts Twitter 

enables quality filters by default. These filters are informed by engagement and therefore may 

return non-representative samples. Section 3.2.1 outlines our search strategy.  
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First-party access to Twitter data is partitioned into 2 Representational State Transfer 

(REST) Application Programming Interfaces (APIs) each with several data products, and each 

with rate limits and quotas [21]. API v2.0 documentation suggests that scientific research may 

make use of expanded caps [22][23]. At present though, researchers are limited to 300 API requests 

per 15 minutes, returning at most 500 tweets per request no older than 30 days, totaling no more 

than 500,000 per month. Older tweets require a premium request and cap total monthly tweets to 

25,000. Beyond these limits are the Custom or Enterprise Tracks, rates for which are not posted 

and are subject to change, but we were quoted at greater than $250,000 to retrieve all tweets from 

50 of the most populous cities across Montana and Idaho, 25 each, spanning the same 10-year 

range as our PM2.5 data (2009-2019). As we await the finalization of Twitter’s academic research 

policies, we have in the meantime found it prudent to scrape our own data as described in 3.2. 
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3 METHODS 

 Our methods center on data scraping, sentiment analysis, modeling the relationship 

between PM2.5 and sentiment, and aggregating model output. Methods for scraping in section 3.2 

describe how we query tweets, the attributes of a tweet, and how the tweet data structure is used 

in scraping. Natural Language Processing (NLP) is used in 3.3 for data cleaning and implementing 

2 types of unsupervised sentiment analysis models. In 3.4 we explain why we chose to linearly 

model sentiment as a function of PM2.5, then carefully consider the assumptions of linear 

regression. Finally, in 3.5 we preempt our results with an explanation of our success metrics and 

how our analyses will address research goals.  

 

3.1 Working with PM2.5 and County Level Data 

 We extracted daily PM2.5 rasters for Montana and Idaho and projected them to the WGS 

84 coordinate system. These data were then masked with county shape files, also WGS 84, taken 

from the US Census Bureau [24] using the Shapely [25] and RasterIO [26] libraries. The shapefile-

cropped raster data were averaged to find the daily PM2.5 value per county and served as our 

explanatory variable.  

Both PM2.5 and Twitter data were aggregated by county because neighboring cities in the 

same county were assumed to be under the same environmental conditions. Also, through trial-

and-error we found that Twitter automatically geo-tags tweets to the nearest city even when 

significantly outside jurisdictional boarders. This means that even when a user is outside the city 

they are tagged in, it is likely we still assign them to the correct county. Our choice of querying 

the 25 most populous cities in Montana and the 25 most populous cities in Idaho resulted in 24 
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counties between them. Keeping our data at the county level, as opposed to state, allows us to gage 

the location dependence of sentiment on PM2.5. 

 

3.2 Creating a Custom Twitter Scraper 

Limitations in existing Twitter mining libraries reduce to either quotas or obsolete APIs. 

Our process for surveying scrapers began by selecting Python and JavaScript as languages which 

account for 63% and 15% of Twitter scraping repositories on GitHub. Of those, all projects which 

have been starred and updated within 6 months were manually screened for quality by code review. 

The 2 types of implementations we found were either web scrapers or calls to the official Twitter 

API. Having already decided to scrape Twitter, we observed that no such repositories on GitHub 

consistently adapted to Twitter’s frequently evolving search result interface. It was therefore 

judicious to create our own scraper from the ground up. 

 

3.2.1 Building Twitter Search Queries 

An advanced Twitter search URL has the general form:  

 

https://twitter.com/search?  

q=[search string] [operator key]:[operator value]&[filter key]=[filter value] 

 

These queries have space delimited operators and ampersand delimited filters. We used the 

date range operators “since” and “until” and the geo-tag operator “place” [27]. In our experience 
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the behavior of operators is less stable than filters. It is important to manually test that every 

operator and filter in a search has the desired effect because the only indication a query is bad is 

the return of arbitrary tweets. 

Search filters can be set by either specifying them in the query URL or by toggling them 

from within a user’s notification settings [28]. This means search results will vary depending on 

whether a user is logged in. By default, spam filters are enabled and performed well in practice. 

The only filter we added was “f=live”, which disabled the filter for tweets with only high-quality 

engagement, in order to collect the most representative sample.  

 

3.2.2 Tweet Attributes & Obfuscation 

 The primary features of a scraped tweet are profile image, display name, username, 

verification status, time, tweet text, tweet media, location, replies, retweets, and likes. We extracted 

username, date of post, and text alone. Within the text we ignored emojis because we did not have 

emoji training data or an obvious method for mapping emojis to sentiment using our language 

models in 3.3.  

 These features are typically stored in the attributes of HTML elements, or tags. Elements 

can be uniquely referenced with the “id” attribute. On un-obfuscated websites, the value of the 

“id” attribute typically describes the type of data inside that element. Other attributes such as 

“class” specify the template a tag conforms to and can therefore also be used to deduce data type. 

But on obfuscated sites, the values of these attributes are randomized or encrypted so that they are 

no longer human readable. We were however able to overcome these challenges in 3.2.6.  
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3.2.3 Twitter Location Services 

We make use of the premium search operator “place” which accepts either an ID or string 

name. Using location operators with strings often returns erroneous tweets for small to moderate 

sized cities. Other location operators exist, such as bounding boxes drawn with longitude and 

latitude, but because Foursquare has become the default location service for anyone posting a new 

tweet, we decided to begin our scraping by obtaining a table of place IDs for all our 50 cities of 

interest. Since June 2019 precise geolocation has been removed [29] but may still be accessed for 

some services like marketing [30].  

Each tweet contains only a single place ID and therefore it is not possible to first search on 

the state level and then segregate those tweets more precisely later. Searching for all tweets in 

Montana and Idaho yields a different dataset than searching for all cities in both states. While it is 

faster and less expensive to make fewer API calls with a larger geographic scope, we chose to 

scrape on the city level for higher precision.  

  

3.2.4 Dates and Times 

 Time stored as an HTML tag (<time>) was the only attribute which remained uniquely 

identifiable after Twitter began obfuscating the attributes of its web search results. Without a 

<time> element enumerating each tweet in the results, scraping would have been more difficult. 

Other social media such as Snapchat do replace the <time> tag with a generic <div> element. This 

indicates that our method for identifying tweets should not be considered stable.  
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Twitter assigns every tweet a Unix timestamp which makes controlling for time zones 

simple. We binned our tweet sentiment at the same 1-day temporal resolution as our PM2.5 data 

by indexing dates using the Skyfield library [31]. We set the winter equinox as the start of each 

year, then calculated an offset in days for each tweet and PM measurement. This was the easiest 

and most precise way to specifically sample summer-only data for reasons mentioned in 2.2.  

 

3.2.5 Scraping Un-obfuscated Tweets  

 We make use of the Beautiful Soup library for our un-obfuscated scraper [32]. It functions 

as a parser and does not use the interactive Document Object Model (DOM). This text-only 

approach has the advantage of speed over a DOM-aware library like Selenium [33]. Beautiful Soup 

can also be parallelized to overcome network I/O bottlenecks, while Selenium cannot. We could 

reliably run 2 parallel threads without being rate-limited by Twitter, achieving 30 tweets/second 

on a single IP address. Successive pages of tweets were loaded by using the “data-min-position” 

HTML attribute found in the last tweet of a given page. Adding the min-position attribute to our 

search query and refreshing was all that was necessary to retrieve the next batch of data.  

 

3.2.6 Scraping Obfuscated Tweets  

 Without the ability to find the min-position attribute we had to retrieve additional pages of 

tweets by simulating scrolling. This meant using Selenium, an industry standard tool in quality 

control. Each tweet was found using the <time> tag. From this point we traversed up the HTML 

tree to locate the username, identified as a string prepended with an “@”. We then traversed down 
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the tree to find the next string element which was always the text body of the tweet. DOM traversal 

was accomplished by generating XPath [34] language formatted queries and submitting them using 

the XPath interface within Selenium.  

 JavaScript calls to the browser triggered scrolling and the loading of additional tweets. 

However, parsing time and RAM usage increased as more tweets were loaded. We reused the same 

tree traversal method centered around <time> tags to identify already scraped tweets and delete 

them with JavaScript calls. These methods improved performance, but even so we were not able 

to parse faster than 5 tweets per second. Because Selenium was not CPU parallelizable, scraping 

in the cloud was the next best optimization.   

    

3.2.7 Cloud Scraping 

 We chose DigitalOcean and Docker as our primary cloud tools because of their tight 

integration. DigitalOcean specializes in creating virtual Linux environments, and Docker enables 

containerized execution of code. The Docker Machine API was used to dynamically create 

DigitalOcean compute instances called Droplets [35]. Each containerized scraper was 

parameterized with a search query targeting a specific city, and data was then sent to a dedicated 

database Droplet for final download and analysis. Distributing in this manner allowed us to use 

many instances of slower scrapers, while also not exceeding Twitter’s per IP rate limit.  
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3.3 Natural Language Processing 

 NLP is broadly the discipline of giving computers the ability to understand human 

language. This most commonly takes the form of machine learning with methods for annotating 

meaningful linguistic structures such as parts-of-speech. The classical NLP tools we make use of 

are tokenizers, which parse words from non-words, and WordNet, a graph of meaningfully related 

words found the Natural Language Tool Kit (NLTK) library [36].   

 

3.3.1 Cleaning Tweets 

 Each tweet was cleaned by first using the NLTK word tokenizer to generate a sequence of 

words and non-words found in the text body. We discard URLs, mentions, and usernames 

prepended with “@”, all of which are assumed not to contribute to the meaning of a tweet. 

Hashtags are identified as words or phrases joined without spaces and prepended with “#”. These 

tags are designed to be meaningful, so care must be taken to parse them back into individual words. 

All other words were passed through a custom spellchecker using the SymSpell [37] and 

Wordninja [38] libraries, both cited in contemporary NLP literature as found in Banthia et al. [39] 

and Tekumalla et al. [40].  

 

3.3.2 VADER Sentiment Model 

Existing sentiment models such as Valence Aware Dictionary for Sentiment Reasoning 

(VADER) and its predecessor LIWC are widely adopted in academia as well as industry with 

proven performance [42]. VADER builds on the bag of words approach by using heuristics, 
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accounting for such things as negation words. Studies have shown VADER (F1=0.96) beating 

humans (F1=0.84) in a task classifying text as positive, neutral, or negative.  

Our early results could only predict VADER sentiment as a function of both lagged 

sentiment and PM2.5, but failed as a function of PM alone. Improving the quality of our data 

cleaning allowed us to weakly detect VADER sentiment as a function of just PM. We then rationed 

that we could further explore this relationship by creating an even more sensitive language model. 

We reviewed VADER sentiment for a sample of tweets and identified several opportunities for 

advancement. Peer reviewed training data for tweet sentiment analysis was unfortunately not 

available, so we focused on an unsupervised strategy. 

 

3.3.3 Creating a Custom Sentiment Model 

Affective mining, or affective computing is the process of measuring the emotional 

dimensions in natural language. Our implementation synthesized the National Research Council 

Canada (NRC) Word-Emotion Association Lexicon (EmoLex) [43] with Google Book’s Ngram 

project [44] to create our own bag of words model.  EmoLex provides a human annotated 

dictionary of words categorized into the 8 bi-polar Plutchik emotions: joy/sadness, trust/disgust, 

anger/fear, and anticipation/surprise along with the polar dimensions positive/negative. This 

lexicon was filtered down to the 6468 words with non-neutral affect. [Table 2] shows output for 

the word “advance”. 
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Emotion Sentiment 

Joy 0.25 

Sadness 0.0 

Trust 0.0 

Disgust 0.0 

Anger 0.0 

Fear 0.25 

Anticipation 0.25 

Surprise 0.25 

 

[Table 1.1] The affective response for the word “advance” as scored by EmoLex. A mapping is 

shown between the emotional dimensions and their respective sentiment scores. Data are 

normalized to 1. 

 

 

Polarity Sentiment 

Positive 1.0 

Negative 0.0 

 

[Table 1.2] A mapping of polar dimensions and sentiment scores from EmoLex for the word 

“advance”. 

 

 This 6468-word lexicon was expanded by mapping words with known sentiment in their 

synonyms a 4-step process. First (1), if an input word can be matched exactly in EmoLex, its 

affective score is returned. Failing this, secondly (2) an exact match is searched for in a lexicon of 

synonyms to EmoLex. Failing this, thirdly (3) synonyms of the input word are generated, and each 

are searched for as exact matches in EmoLex, then normalized to a single score. Fourth (4), having 

no prior match, synonyms of the input word are matched against the lexicon of synonyms to 

EmoLex. And lastly, failing all else neutral affect is returned. 
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To create a lexicon of synonyms to EmoLex, each word in EmoLex is input into NTLK’s 

WordNet and synsets for that word are found. Synsets are alternative meanings to word. For 

example, the word “bank” can mean a guarantee, or the bank of a river, etc. Then for each 

alternative meaning, or synset, we consider its lemmas. Lemmas are words of the same synset 

which have the same meaning. The sentiment for each word in EmoLex is then distributed to of 

its lemmas to a new synonym lexicon. When multiple words from EmoLex map to the same 

synonym, the new sentiment is normalized to 1. This synonym lexicon is what is used in steps 2 

and 4 above.  

In steps 3 and 4, synonyms to the input word are generated through a similar method to 

generating synonyms to EmoLex. First the input world’s synsets is found, then all its lemmas 

listed. These lemmas are used to find exact matches to sentiment in either EmoLex, step 3, or its 

synonym lexicon, step 4.  

The expansion of sentiment in EmoLex to its synonyms, and the expansion of input words 

to their synonyms are weighted by word frequency as found the Google Ngram project. By 

weighting synonyms in this way, we anticipate the most likely meaning amongst competing 

lemmas. Expanding on the example word “advance”, we discovered that the synonym “forefront” 

was not found in either EmoLex or its synonyms. This means “forefront” does not apply to 

conditions 1 or 2. Its lemmas “vanguard” and “cutting edge” do exist in either EmoLex or the 

synonym lexicon. Since “vanguard" was found in EmoLex, matching condition 3, the sentiment 

for “forefront” was assigned to that of “vanguard” seen in [table 4].  
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Polarity Forefront Vanguard 

Positive 1.0 1.0 

Negative 0.0 0.0 

 

[Table 1.3] The word “forefront” was not found in EmoLex, but a mapping was possible through 

its synonyms. While “advance” had sentiment all 9 affective dimensions, its synonym 

“forefront” only contains polar dimensions. 

  

As stated above all sentiment for individual words are normalized to 1 when added together 

for the purposes of expanding our lexicon. This normalization continues similarly for the addition 

of sentiment from multiple words in a tweet. However, when words are affectively null, or an 

entire tweet is affectively null, those records are discarded. Not discarding neutral sentiment would 

make normalizing to 1 impossible, resulting in low precision when a lot of neutral affect is 

aggregated. This became a significant problem because of the discovery of machine and financial 

data in our tweet dataset mentioned in section 2. Discarding neutral, unnormalized affect had the 

added benefit of improving the predictive power of our forecast models.  

 Modeling sentiment as a function of PM2.5 expects as input a single value for the response 

variable. Consolidating multiple tweets for a single day required 2 rounds of averaging and 

normalizing. First, each user’s own tweets on a given day were averaged and normalized. Then, 

affect for all users on a given day were averaged and normalized. Each of the 9 affective 

dimensions were split into separate timeseries and modeled independently with shared daily values 

for PM2.5.  
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3.4 Modeling Sentiment as a Function of PM2.5 

 Our model choices were driven by (1) a desire to examine if a relationship between 

sentiment and PM2.5 could be supported, as opposed to building the best forecast tool. And (2) 

the observation that both sentiment and PM2.5 are excellent candidates for autoregression. 

Sections 3.4.1 and 3.4.3 describe the types of models we use, while 3.4.2 and 3.4.4 follow with 

considerations. 3.5 integrates our choice of success metrics and how relevant results are generated 

in section 4.  

 

3.4.1 Choosing a Linear Model 

 We chose linear least squares estimators because their interpretability support the goal of 

conservatively exploring a possible relationship between tweet sentiment and PM2.5. Further 

research may expand on social media as a measure of public health by leveraging the power of 

non-linearity, but first we must establish if such a connection is reasonable. Runtime was also 

important for this preliminary study. Even simple non-linear models were orders of magnitude 

slower, compounding extensive cross-validation and the challenge of consolidating insight from 

permutations on lag order, polynomial degree, multiple hypothesis testing, and language model 

for 24 counties. A linear model is not without caveats. Each assumption in 3.4.2 includes 

consideration for where violations may occur.   
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3.4.2 Gauss-Markov Assumptions 

 The Gauss-Markov theorem asserts that least squares estimators are the best linear 

unbiased estimators when (1) the model is linear, (2) error variance is constant, (3) errors are 

independent, (4) errors are normal, (5) there is no perfect multicollinearity, and (6) there is no 

omitted variable bias. 

 (1) A model is linear when its parameters are linear, meaning its explanatory variables are 

linearly related to the response variable.  A linear model with non-linear coefficients cannot be 

guaranteed to be unbiased. However, non-linear transformations are acceptable on independent 

variables. In 3.4.3 we consider linear and quadratic polynomials which model sentiment as a 

function of PM2.5 alone and as a function of PM2.5 with lagged sentiment.  

  (2) Stationarity or homoskedasticity is a property of stochastic processes and is present 

when the mean and variance of a dataset are constant. Regressing on non-stationary data can result 

in a spurious correlation even with highly confident models. Additionally, the accuracy, or 

variance, of the model may fluctuate through time despite coefficients which remain unbiased. 

This is because high variance data may adjust model parameters too much, while low variance 

data may not adjust them enough. We found that all our timeseries became stationary by simply 

applying their first difference. This was measured with a confidence interval of 95% using an 

augmented Dickey-Fuller test implemented in the Stats Models package [47].  

(3) Error terms must be independent and not autocorrelated. When errors can be used to 

predict other errors, this suggests that our independent variables cannot fully explain our dependent 

variable. This can be remedied in an autoregressive model by increasing the lag order. Coefficients 
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remain unbiased, failing condition 3, while patterns in the residuals manifest themselves with 

variance in the output as a function of time.  

It is also possible that autocorrelated error terms could be the result of modeling the wrong 

relationship. A model more or less complex, or even non-linear, may have been necessary. But if 

we successfully find independence in the error terms this supports the hypothesis our model and 

variables were appropriately chosen.  

 (4) Normality is assumed for errors. When random errors are not from a normal 

distribution, we can no longer make assertions about our confidence intervals. This is only true for 

small sample sizes, however. As sample size increases, the Central Limit Theorem guarantees that 

the expected values, or sample means, of our random variables will approach a normal distribution. 

 (5) No perfect multicollinearity requires that none of our independent variables are linear 

transformations of each other. We do not expect there to be perfect correlation between PM2.5 and 

tweet sentiment. Nor do we expect PM2.5 to be perfectly collinear with its lags. Nor do we expect 

sentiment to be perfectly collinear with its lags. These assumptions are reasonable because 

atmospheric processes and human behavior are prototypically non-deterministic, and therefore 

their lags are unlikely to be linear transformations of each other. In cases where multicollinearity 

is significant, confidence in the parameters decreases as multiple equally valid solutions emerge.  

  (6) No omitted variable bias assumes that no variables which were excluded drive 

variables which were included. If this were violated, the model would try to explain the omitted 

variable in terms of the included variables. The explanatory variables would depend in part on 

their error terms, which are no longer independent themselves in violation of condition 3. We do 
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expect violation of exogeneity here. It is impossible to account for and measure all known 

influencers of sentiment and PM2.5.  

It is possible that the influence of temperature on PM2.5 and sentiment is the true 

relationship. Or, that seasonality, which drives temperature, accounts for the influence on both 

variables. This effect of season and temperature on affect and wildfire is why we chose to model 

only summer seasons. While still in violation of condition 6, our model remains a valid tool for 

making predictions. The most significant consequence is that it is only possible to draw 

conclusions on correlation, not causation.   

 

3.4.3 An Autoregressive Process 

 An autoregressive model (AR) was appropriate because we expect that future sentiment 

and PM2.5 are both significantly influenced by their previous values. Shih et al. suggest that day-

of-the-week Twitter sentiment follows a 7-day cycle with a low on Monday and high on Friday. 

We estimate then that the length of ascension or descension to be about 3 days for a 7-day sinusoid. 

Ensuring our lag window is smaller than the period of the weekly sentiment cycle, we first modeled 

an AR(3) process but consider lags from 0-14 as well. 
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Beginning with an AR(1) process:  

𝑦𝑡 = 𝜙𝑦𝑡−1 + 𝜀𝑡 

= 𝜙(𝜙𝑦𝑡−2 + 𝜀𝑡−1) + 𝜀𝑡 

𝑦𝑡 = 𝜙𝑦0 + ∑ 𝜙𝑘𝑡−1
𝑘=0  𝜀𝑡−𝑘 

𝑦: response,  𝜙: parameter, 𝜀: error, 𝑡: timestep 

 

 

AR(1) variance: 

𝑣𝑎𝑟(𝑎) = 0,  𝑣𝑎𝑟(𝑎𝑥) = 𝑎2𝑣𝑎𝑟(𝑥) 

𝑣𝑎𝑟(𝑦𝑡) = 𝜎2∑𝜙2𝑘

𝑡−1

𝑘=0

 

 

AR(1) expected value: 

𝐸(𝜀) = 0,  𝐸(𝑎𝑥) = 𝑎𝐸(𝑥) 

𝐸(𝑦𝑡) = 𝜙𝐸(𝑦𝑡−1) 

= 𝜙𝐸(𝜙𝐸(𝑦𝑡−2)) 

=  𝜙2𝐸(𝑦𝑡−2) 

𝐸(𝑦𝑡) = 𝜙𝑡𝑦0 

 

Because the expected value 𝐸(𝑦𝑡) is a function of 𝜙𝑡 multiplied by the initial value 𝑦0 we 

can see that when |𝜙| < 1 the value is pulled back to the mean, and it is stationary. When |𝜙| > 1 

the expected value explodes to infinity and is not stationary. And when |𝜙| = 1 this suggests that 

our data is a random walk. The Augmented Dickey-Fuller tests these values of 𝜙 and is used to 

validate that our AR(3) model receives only stationary sentiment and PM2.5 data [48].  

 

An AR(1) process can be extended to AR(3) by: 

𝑦𝑡 = 𝜙1𝑥𝑡 + 𝜙2𝑥𝑡−1 + 𝜙3𝑥𝑡−2 + 𝜙4𝑥𝑡−3 + 𝜀𝑡 
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3.4.4 Spurious Correlation in Autoregression 

We consider 4 types of random walks: 

 

1. A pure random walk. The variance depends on time and trends to infinity. It cannot be 

predicted. 

𝑦𝑡 = 𝑦𝑡−1 + 𝜀𝑡 
 

2. A walk with drift. 

𝑦𝑡 = 𝛼 + 𝑦𝑡−1 + 𝜀𝑡 

𝛼: drift 

 

3. A walk with trend, constant variance, and constant growth in its mean. 

𝑦𝑡 = 𝛼 + 𝛽𝑡 + 𝜀𝑡 

𝛽: trend 

 

4. A walk with trend and drift. 

𝑦𝑡 = 𝛼 + 𝛽𝑡 + 𝑦𝑡−1 + 𝜀𝑡 

 

It is not uncommon to discover that attributes in a dataset conform to a random walk. And 

these walks may appear to have either linear or supra-linear growth which match the growth pattern 

of your target series. The effect of regressing on attributes which are random walks is a set of 

coefficients which suppress the true correlation. A random walk which has been transformed to be 

stationary has also become white nose and it is not possible to spuriously correlate the dependent 

variable on truly random data. We conclude then that if we transform our sentiment and PM data 

into a stationary form then we will remove spurious regression as a likely outcome.  
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3.4.5 Orthogonal Distance Regression 

 Orthogonal Distance Regression (ODR) was considered in addition to OLS to explore the 

possibility of significant error in both our independent and dependent variables. We expected that 

PM2.5 measurements would be accurate, but there may be significant differences between 

atmospheric readings and a user’s sensitivity to air quality. ODR measures errors which are 

orthogonal to the regression line [figure 1]. Closed form solutions are challenging to derive but we 

were able to accurately estimate their values through random sampling.  

 We created TensorFlow models with layers equivalent to polynomials fit with OLS, and 

used the Adam optimizer. Within the loss function, every batch of input is given an extra so-called 

candidate dimension with a size of 1000. This means, for every instance in the original input batch 

there are 1000 new values in the new loss function batch. These 1000 new values per instance are 

populated by drawing from a random distribution centered on each input instance’s value, with a 

standard deviation equal to its corresponding absolute error. A wider spread increases the chance 

that an instance with a high absolute error will yield a random sample with an orthogonal value.  

Candidate samples are fed back into the model to produce predicted values. We calculate 

the change in input as well as the change in output for all candidates and find the input-output pair 

with the shortest Euclidian distance. This is our orthogonal distance, the precision of which is 

dependent on the size of the candidate dimension. We chose 1000 because it was the highest factor 

of 10 for which our GPU did not suffer a runtime bottleneck.   

A batch of orthogonal distances, now without a candidate dimension, was finally reduced 

to a single loss value by finding the Euclidian distance of the entire batch of orthogonal points. 

Our implementation accepted an arbitrary number of input and output attributes to accommodate 
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AR processes of any lag. For a synthetic AR(3) process results were as expected. When there was 

no error in the explanatory variables, OLS outperformed ODR. When the explanatory variables 

had significant error, ODR outperformed OLS except when the response variable was high.  

 

[Figure 1] The blue line labeled model represents a learned function given synthetic data. The 

yellow points labeled data are the input data and the yellow lines represent the errors calculated by 

an OLS model. Green dots labeled orthogonal are the orthogonal projection of the actual data on 

to the model. And the green lines are the approximate orthogonal errors returned in our TensorFlow 

loss function. 
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3.4.6 Generating Results 

 Models for each county were generated with permutations on language model, affective 

dimension, predictive model type (OLS and ODR), lag order (from 0-14), and polynomial degree 

(from 1-3) by 10x5-fold cross-validation. Each of the 10 sets of 5 folds were randomly sampled 

with the goal finding a representative experiment. The model with the median test set 𝑟2 was 

chosen as our primary metric of success. This extensive randomly sampled cross-validation was 

primarily used to control for the sensitivity of 𝑟2 on the standard deviation and as a function of 

time for timeseries.  

 F-test were used to compare between lag orders, polynomial degrees, and intercept-only 

models. The restricted intercept-only model always returns the mean response value. An AR(3) 

linear polynomial OLS model was chosen by comparing F-test p-values between hyperparameters 

having correlations with the greatest significance shown in section 5. Reported results in 5.1-5.2 

were chosen by accepting only those models which were both significantly different from their 

intercept-only counterpart and had positive test set 𝑟2 values. Such results indicate that the model 

is different from the mean while also explaining more variance than the mean. Additional metrics 

include a Dickey-Fuller test for stationarity (addressing assumption 2 section 4.4.2) and a Durbin-

Watson test for autocorrelation (addressing assumption 3). 
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 Days with missing sentiment were populated by averaging the next earliest and next latest 

datum. If a gap in the data occurred at the beginning of a series, then the first observed value was 

replicated across that gap. Similarly, if a gap occurred at the end of a series, then the last observed 

value was replicated. All training sets spanned 360 days and all test sets spanned 90 days, so only 

counties with at least 450 tweets could have no missing data. As the number of tweets in a county 

grew in general, gap length shrunk dramatically.  
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4 RESULTS  

 Analyses begin in 4.1 for Missoula County then follow for all counties in 4.2. We chose to 

focus on Missoula because it has a moderate number of tweets and is frequently and severely 

impacted by wildfire. Critical values for Durbin-Watson in [table 2.2] apply to all counties because 

tweets for all counties were binned first by user, then by day, and all span the same range of dates. 

 A linear polynomial AR(3) OLS model type was the most successful in exploring the effect 

of PM2.5 on Twitter sentiment and therefore applies to 4.1-4.2. Our metrics of success are F-test 

p-value (𝐻0: parameters for unrestricted and restricted models are the same), Dickey-Fuller p-

value (𝐻0: indicates heteroscedasticity), Durbin-Watson test statistic (𝐻0 indicates AR(1) 

autocorrelation), and 𝑟2.  

 

𝑦𝑡 = 𝜙1𝑥𝑡 + 𝜙2𝑥𝑡−1 + 𝜙3𝑥𝑡−2 + 𝜙4𝑥𝑡−3 + 𝜀𝑡 

𝑦: sentiment, 𝑥: PM2.5, 𝑡: day 

 

4.1 Missoula County, MT  

 Results for the affective dimension of anticipation show a slight correlation between 

sentiment and PM2.5 as seen in the test set 𝑟2 [table 2.1], using an AR(3) linear polynomial OLS 

regression with our own language model. Significant homoskedasticity in the errors was found in 

both test and training sets. The Durbin-Watson test shows no significant AR(1) auto-correlation in 

the residuals of the test and training sets. The total number of tweets prior to binning daily was 

14,324.  
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The p-values for the F-tests indicate that, for the training sets, the unrestricted linear 

polynomial models were significantly different from the restricted intercept-only models. Further 

hypothesis testing, keeping lag order constant, found that 2nd and 3rd degree polynomials were 

either statistically similar to lower degree polynomials, except 0th, or had less significant individual 

metrics of success. When the p-value for F-tests was significant and the restricted model was 

intercept-only, the unrestricted model always had a greater test set 𝑟2. VADER rarely, and ODR 

more rarely, yielded unrestricted models which significantly differed from their restricted 

intercept-only counterparts for any county, and were both insignificant for Missoula County. 

Comparing F-test p-values and test set 𝑟2 for lags from 0-14 to their alternatives, differing 

by up to 4, a lag of 3 was chosen to maximize predictive power while minimizing complexity. 

Lags differing by 1 were never significant except in the case where the restricted model was 

intercept-only. Rarely were lags differing by 2-3 significant for any county. Our choice in model 

complexity and lag was limited in scope due to the number of possible permutations. Discovering 

our set of hyperparameters to significantly implicate PM2.5 as a predictor of tweet sentiment is 

therefore a foundation for future research in the building of performant public health models.  
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Dimension Test DF Test DW Test MSE Test 𝑟2 
  

surprise 1.43E-14 1.914795 0.023985 -0.00478 
  

anticipation 4.22E-06 2.219225 0.02808 0.068564 
  

       

Dimension Train DF Train DW Train MSE Train 𝑟2 
  

surprise 7.11E-13 1.964262 0.029271 0.029191 
  

anticipation 6.54E-13 2.116742 0.028593 0.095831 
  

       

Dimension F-test Intercept 𝑥𝑡 𝑥𝑡−1 𝑥𝑡−2 𝑥𝑡−3 

surprise 0.032161 0.382103 -0.06779 0.138777 0.120325 0.016974 

anticipation 3.09E-07 0.818244 -0.23335 -0.10445 0.047185 -0.2403 

 

[Table 2.1] Results for Missoula County from an AR(3) linear polynomial OLS regression using 

our own language model. F-tests show surprise and anticipation had training sets which varied 

significantly from their intercept-only models. However, only anticipation had a positive test set 

𝑟2. Example words for anticipation can be seen in [tables 3.1-3.2]. All values derive from the 

median experiment of a 10x5-fold cross-validation sorted on the test set 𝑟2. The Dickey-Fuller and 

F-tests are reported as p-values. Durbin-Watson is reported as its test statistic with [table 5.2] 

showing critical values. All significance levels were 95%. 

 

Set N DW Low Crit. DW Low DW High DW High Crit. 

Test 90 1.566 1.751 2.249 2.434 

Train 360 1.802 1.848 2.152 2.198 

 

[Table 2.2] Sample sizes and Durbin-Watson test statistics apply for all counties. From 0 to DW 

low crit. indicates significant positive autocorrelation. From DW low crit. to DW low is 

inconclusive. Bolded values from DW low to DW high indicate a significant lack of 

autocorrelation. From DW high to DW high crit. is also inconclusive. And from DW high crit. to 

4 indicates significant negative autocorrelation. 
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abeyance attendance competition distribute foresightful impatient 

accelerate auction completing divination foretell impending 

acquiring audience completion dodderer forethought importance 

addresses auspicate conjecture doomsday foreword inaugural 

adventure auspices consequent draft forming inception 

aeronautic await contiguous during frequence incidental 

aeronautical beg contingent eagerness genealogic incipience 

aeronautics begun continuation edition genealogical incipiency 

airport biennial continuing emplace genealogist incipient 

alchemic bivouac continuity encampment genealogy industrialist 

alchemical board continuousness endeavor genesis industrious 

alchemist boat continuum engulf germinal industry 

alchemize boater convergence essayist germination infinity 

alchemy boating convertibility evening gig inflexibility 

allocution box copyright eventual gradual inhabited 

allurement brim correspondence evergreen graduality inhabiting 

ancestral broadside countdown exchangeability gradualness inquiry 

angling bruise courtship expectance grasping install 

announcement bugle cramp expectancy gravitate intended 

answering burrow craps expectant habitual interim 

anticipation bye craving expectation handcraft intermission 

anticipatory calculation creeping expected handicraft interpenetrate 

apparent camp cue expecting handiwork intuitively 

appeal camper curiosity expedition hankering invasive 

append camping curricular explore happen investigation 

applicant campy daily extricate haste invitation 

approaching candlelight daybreak farm headlight invocation 

arbitration canton debenture farsighted here invoke 

archaeology caption delivery fate hereafter labyrinth 

arise captious denying fathom hereness lands 

arouse card destined ferment horizon launch 

arrival career develop fermentation horoscope lessen 

arrive chemic developer fin hungry letter 

assay chemical developing flipper hurried liability 

assayer chemist dietary forecast hurry liable 

astrologer clock diffuse forerunner hype linger 

astrology cloth diffuseness foresee immature lips 

astronomer clue digress foreseen immediately local 

attainable coming diligent foresight imminent localize 

attempt commemorative discreet foresighted immortality locater 

 

[Table 3.1] Words with sentiment over 50% in the anticipation dimension. 



 

34 

locator notification prediction reconstruction speculative tributary 

long occupant predilection rectify start tunnel 

lottery occupier predispose recurrent store twenty 

lull occupying prefatorial refining straighten ubiquitous 

lust offset preliminary regatta straightener ubiquity 

mail olfactory premeditate rehabilitation strive ultimately 

matchmaker omen preparation renovate submit uncompromising 

maternal omnipresent preparatory reposition subscribe undertaking 

merge ongoing prepare repositioning subtitle undisclosed 

midnight onset preparedness representing suffuse unfold 

mill opportunity prerequisite request sundown uninterrupted 

millenary outdo prescient restlessness sunset university 

millennial overture prevention result surround unresolved 

millennian packer previse resultant symmetricalness until 

millennium paddle primitive revive tabulate untold 

mobile paddler probability ripen tent unverified 

modernisation pale proceeding roulette tenting urgent 

modernization paleness production rudimentary theology vicinal 

modulate pallidness prognostic rudiments there vicinity 

momentum pallor programing sailing thermocouple vigil 

monetary parole programming sailor thermometer virginity 

morn passenger progress saliva thermometric vision 

morrow patient prologue sassy thirteen voyage 

motion permeate prophecy scrutinize thought voyager 

mountain perpetuate prophet secular thousand waddle 

mutable perspective prophetic seductive till waddler 

mystery pervade prophetical seek tillage wade 

nascent petitionary prospectively sentiment tilling wader 

nativity placenta prospector sentimental time wading 

naturalise placental prospicient sequel toddler wait 

naturalize plan public serial tomorrow waiting 

nautical plump punt ship totterer waitress 

navigable poke quest shortly tout wanness 

navigation posited quicken shuttle touter while 

navigational possibility readiness shuttlecock track whilst 

neighborhood possibleness ready signify transit wishful 

network practise recipient simmering transition wizard 

nil precursor recognizable six transitional wont 

noncompletion predict recombination sonar transmutability yacht 

nonessential predicting reconstruct source treadmill yachting 

 

[Table 3.2] Words with sentiment over 50% in the anticipation dimension. 
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4.2 All Counties  

 Significance levels for test sets [tables 4.1-4.2] and the training sets [tables 4.3-4.4] show 

strikingly that VADER was less responsive to PM2.5 than our own language model. It may be the 

case that having 9 affective dimensions compared to VADER’s 1 best explains this. But a 

comparison between the two models would require training data to characterize them in a general 

context. 

 All counties had at least 1 model with an F-test showing that its prediction of sentiment 

from PM2.5 was significantly different from the intercept-only alternative. Affective dimensions 

which failed an F-test or had a test set 𝑟2 ≤ 0 were not reported for brevity. From the results 

shown, no county failed the Dickey-Fuller test for homoscedastic errors explained in assumption 

2 of section 3.4.2. However, the Durbin-Watson test for AR(1) autocorrelation, explained in 

assumptions 3 and 6, indicates that some models may be better explained. Increasing model 

complexity would likely decrease complexity in the residuals and satisfy independence in the 

errors.  

The complex nature of sentiment and air quality mean it’s unlikely to be possible to account 

for all exogenous variables. We conclude in section 5 that our experiments only implicate a 

correlation between Tweet sentiment and PM2.5, and not correlation strength. This is especially 

true because of the dependence of 𝑟2 on its standard deviation which would be expected to vary 

between counties. The presence of machine and transaction data within our tweets, discussed in 

section 2, is an example of how different types of users can impact overall sentiment. We grouped 

tweets by user to control for those who tweet more, but it is likely that larger communities have a 

more diverse userbase.     
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 ODR only outperformed OLS in synthetic benchmarks with error in the explanatory 

variables and at most moderate error in the response variable, but always lead to accepting 𝐻0 for 

the F-test for this study. It is likely error in Twitter sentiment was in excess to detect a 

correlation with ODR. Having provided a framework for scraping tweets, extracting affect, and 

correlating sentiment with environmental stimuli, further research can further optimize public 

health forecasting. 
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County Tweets Affect Dimension F-test Test DF Test DW Test MSE Test 𝑟2 

Ada, ID 149716 Custom anticipation 0.012277 5.73E-10 1.8795 0.0432 0.0032 

Ada, ID 149716 Custom trust 0.023285 3.83E-10 1.8672 0.0496 0.0111 

Ada, ID 149716 Custom disgust 0.003992 2.10E-06 2.0317 0.0408 0.0229 

Bannock, ID 38241 Custom sadness 0.011264 1.31E-13 2.1827 0.0392 0.0007 

Bannock, ID 38241 VADER polarity 0.016761 2.38E-05 2.1115 0.0375 0.0035 

Bingham, ID 1296 Custom trust 0.002869 1.45E-08 2.3974 0.0342 0.0138 

Bingham, ID 1296 Custom surprise 3.62E-05 2.93E-06 2.4098 0.0212 0.0571 

Bingham, ID 1296 VADER polarity 2.59E-05 6.04E-07 2.0479 0.0363 0.0248 

Bonneville, ID 6373 Custom anger 0.036748 3.13E-07 2.0293 0.0310 0.0072 

Bonneville, ID 6373 Custom sadness 0.00349 1.26E-07 1.9912 0.0359 0.0134 

Bonneville, ID 6373 Custom fear 0.042798 8.29E-10 2.0058 0.0546 0.0149 

Bonneville, ID 6373 Custom anticipation 0.008701 1.66E-07 1.8288 0.0315 0.0163 

Canyon, ID 24863 Custom joy 0.010722 1.39E-10 1.6900 0.0315 0.0132 

Canyon, ID 24863 Custom anticipation 0.001274 2.31E-09 2.1878 0.0229 0.0278 

Elmore, ID 2409 Custom surprise 3.10E-05 1.77E-08 1.8819 0.0219 0.0461 

Kootenai, ID 21363 Custom polarity 0.022074 2.93E-06 1.8858 0.0354 0.0073 

Kootenai, ID 21363 Custom sadness 0.004539 2.39E-11 1.9017 0.0367 0.0160 

Kootenai, ID 21363 Custom trust 0.000399 3.91E-06 1.9702 0.0443 0.0225 

Kootenai, ID 21363 Custom fear 0.000779 1.57E-12 2.0337 0.0345 0.0336 

Latah, ID 7193 Custom fear 0.000647 1.72E-07 2.0670 0.0225 0.0247 

Madison, ID 10608 Custom polarity 0.004558 8.29E-09 1.9272 0.0424 0.0088 

Madison, ID 10608 Custom anger 0.03281 1.63E-05 2.0341 0.0221 0.0094 

Madison, ID 10608 Custom fear 0.001208 2.43E-09 1.9371 0.0351 0.0125 

Madison, ID 10608 Custom joy 0.001514 2.06E-12 2.3175 0.0230 0.0201 

Madison, ID 10608 Custom disgust 5.39E-05 1.54E-07 2.3043 0.0319 0.0345 

Madison, ID 10608 Custom sadness 1.11E-06 0.000152 2.1473 0.0273 0.0677 

Nez Perce, ID 4000 Custom anger 0.012702 8.59E-08 2.1098 0.0238 0.0039 

Nez Perce, ID 4000 Custom fear 5.56E-07 7.78E-24 1.9207 0.0300 0.0546 

Nez Perce, ID 4000 Custom sadness 9.86E-07 1.44E-07 1.7475 0.0173 0.0618 

Twin Falls, ID 4934 Custom surprise 0.042209 0.002722 1.9114 0.0267 0.0014 

Twin Falls, ID 4934 Custom fear 0.000991 1.77E-07 2.2602 0.0260 0.0282 

Cascade, MT 21967 Custom polarity 0.000913 6.18E-16 2.0410 0.0350 0.0158 

Custer, MT 214 Custom sadness 0.00071 1.53E-09 1.8323 0.0225 0.0176 

Custer, MT 214 Custom disgust 1.04E-05 4.12E-07 1.7559 0.0335 0.0414 

Custer, MT 214 Custom anger 4.77E-08 9.21E-08 2.0151 0.0240 0.0655 

Deer Lodge, MT 213 Custom anticipation 0.002167 5.86E-12 2.0227 0.0321 0.0099 

Deer Lodge, MT 213 Custom anger 0.000878 2.61E-13 2.3643 0.0349 0.0342 

Deer Lodge, MT 213 Custom trust 8.19E-07 3.48E-14 1.6220 0.0348 0.0798 

Deer Lodge, MT 213 Custom disgust 2.67E-10 1.96E-07 1.7215 0.0252 0.1138 

Deer Lodge, MT 213 Custom surprise 1.11E-16 4.40E-11 1.5463 0.0210 0.2708 

 

[Table 4.1] Test set results for all counties. P-values ≥ 0.05 bolded. 
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County Tweets Affect Dimension F-test Test DF Test DW Test MSE Test 𝑟2 

Fergus, MT 272 Custom anger 2.03E-07 1.60E-06 1.7465 0.0447 0.0597 

Fergus, MT 272 Custom anticipation 2.26E-08 2.62E-24 1.8025 0.0175 0.0668 

Fergus, MT 272 Custom trust 2.15E-09 1.08E-06 1.8692 0.0296 0.0921 

Fergus, MT 272 Custom fear 1.29E-12 2.67E-07 1.8136 0.0205 0.1423 

Fergus, MT 272 Custom polarity 2.91E-14 1.71E-05 2.1276 0.0256 0.1744 

Fergus, MT 272 Custom sadness 1.11E-16 1.80E-08 2.1484 0.0292 0.1839 

Fergus, MT 272 Custom disgust 1.11E-16 2.73E-14 2.3588 0.0184 0.3272 

Fergus, MT 272 VADER polarity 6.07E-06 0.000222 1.9833 0.0390 0.0683 

Flathead, MT 10593 Custom joy 0.006435 8.30E-11 2.6049 0.0359 0.0121 

Gallatin, MT 22328 Custom disgust 0.035114 5.70E-06 2.2409 0.0420 0.0002 

Gallatin, MT 22328 Custom anger 0.01211 1.32E-05 1.7291 0.0312 0.0061 

Gallatin, MT 22328 Custom trust 0.001372 1.65E-05 2.2664 0.0372 0.0208 

Gallatin, MT 22328 Custom fear 3.80E-11 1.08E-05 1.8086 0.0431 0.1190 

Gallatin, MT 22328 VADER polarity 0.001059 3.21E-14 2.0395 0.0418 0.0230 

Hill, MT 841 Custom disgust 0.01283 3.69E-08 2.1545 0.0397 0.0027 

Hill, MT 841 Custom surprise 0.000467 4.52E-11 1.9518 0.0201 0.0352 

Hill, MT 841 Custom sadness 1.11E-16 6.51E-09 2.0754 0.0365 0.1776 

Hill, MT 841 Custom trust 1.11E-16 4.20E-08 2.0425 0.0237 0.2577 

Hill, MT 841 VADER polarity 0.022305 2.66E-12 2.2301 0.0187 0.0138 

Lewis and Clark, MT 4751 Custom joy 0.001293 2.15E-06 2.1761 0.0326 0.0155 

Lewis and Clark, MT 4751 Custom fear 0.002329 9.17E-12 1.8896 0.0305 0.0321 

Lewis and Clark, MT 4751 Custom surprise 1.27E-07 2.89E-12 2.2090 0.0248 0.0647 

Missoula, MT 14324 Custom anticipation 3.09E-07 4.22E-06 2.2192 0.0280 0.0686 

Park, MT 1641 Custom fear 9.08E-05 2.21E-08 1.9364 0.0316 0.0473 

Park, MT 1641 Custom anticipation 6.25E-05 1.36E-06 2.2029 0.0271 0.0579 

Park, MT 1641 Custom disgust 3.29E-14 1.83E-09 1.9484 0.0320 0.1491 

Richland, MT 871 Custom disgust 0.03633 1.00E-06 2.0212 0.0124 0.0032 

Richland, MT 871 Custom anger 0.002837 2.85E-06 1.9747 0.0292 0.0266 

Richland, MT 871 Custom anticipation 4.74E-07 4.38E-06 2.0791 0.0316 0.0738 

Silver Bow, MT 4784 Custom disgust 1.08E-06 1.09E-12 1.9700 0.0191 0.0648 

Silver Bow, MT 4784 Custom sadness 1.45E-07 1.17E-07 2.1498 0.0282 0.0699 

Yellowstone, MT 21551 Custom trust 0.005437 0.000466 2.1109 0.0420 0.0146 

Yellowstone, MT 21551 Custom anger 0.001337 2.83E-13 1.8574 0.0419 0.0153 

Yellowstone, MT 21551 Custom sadness 0.000524 1.72E-05 2.4549 0.0243 0.0257 

Yellowstone, MT 21551 Custom anticipation 0.000526 7.24E-06 1.9093 0.0307 0.0315 

Yellowstone, MT 21551 Custom disgust 1.22E-09 8.75E-08 2.0533 0.0501 0.1141 

Yellowstone, MT 21551 VADER polarity 0.009171 1.02E-09 1.9550 0.0388 0.0143 

 

[Table 4.2] Test set results for all counties. P-values ≥ 0.05 bolded. 
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County Tweets Affect Dimension F-test Train DF Train DW Train MSE Train 𝑟2 

Ada, ID 149716 Custom anticipation 0.012277 6.42E-20 2.0016 0.0402 0.0353 

Ada, ID 149716 Custom trust 0.023285 3.18E-19 1.9478 0.0459 0.0313 

Ada, ID 149716 Custom disgust 0.003992 1.18E-14 1.7714 0.0399 0.0423 

Bannock, ID 38241 Custom sadness 0.011264 8.73E-13 1.9238 0.0277 0.0359 

Bannock, ID 38241 VADER polarity 0.016761 3.88E-15 1.9727 0.0410 0.0334 

Bingham, ID 1296 Custom trust 0.002869 1.63E-18 2.0924 0.0274 0.0443 

Bingham, ID 1296 Custom surprise 3.62E-05 1.19E-13 1.9777 0.0199 0.0697 

Bingham, ID 1296 VADER polarity 2.59E-05 3.52E-14 2.1000 0.0285 0.0716 

Bonneville, ID 6373 Custom anger 0.036748 4.92E-14 2.0691 0.0318 0.0283 

Bonneville, ID 6373 Custom sadness 0.00349 7.90E-18 2.0527 0.0314 0.0431 

Bonneville, ID 6373 Custom fear 0.042798 3.21E-15 1.8395 0.0371 0.0273 

Bonneville, ID 6373 Custom anticipation 0.008701 8.13E-19 1.9021 0.0346 0.0375 

Canyon, ID 24863 Custom joy 0.010722 2.04E-13 1.9616 0.0348 0.0362 

Canyon, ID 24863 Custom anticipation 0.001274 3.22E-21 2.0430 0.0355 0.0491 

Elmore, ID 2409 Custom surprise 3.10E-05 2.10E-16 2.0922 0.0261 0.0705 

Kootenai, ID 21363 Custom polarity 0.022074 1.11E-12 1.8358 0.0364 0.0316 

Kootenai, ID 21363 Custom sadness 0.004539 4.47E-15 2.2212 0.0370 0.0415 

Kootenai, ID 21363 Custom trust 0.000399 3.67E-14 1.9479 0.0414 0.0559 

Kootenai, ID 21363 Custom fear 0.000779 1.98E-19 1.9830 0.0396 0.0520 

Latah, ID 7193 Custom fear 0.000647 1.54E-10 1.9043 0.0309 0.0531 

Madison, ID 10608 Custom polarity 0.004558 9.42E-13 1.9122 0.0356 0.0414 

Madison, ID 10608 Custom anger 0.03281 2.89E-17 2.0306 0.0263 0.0291 

Madison, ID 10608 Custom fear 0.001208 3.07E-14 1.9359 0.0303 0.0494 

Madison, ID 10608 Custom joy 0.001514 8.93E-13 2.0496 0.0292 0.0481 

Madison, ID 10608 Custom disgust 5.39E-05 1.30E-14 2.1834 0.0246 0.0674 

Madison, ID 10608 Custom sadness 1.11E-06 1.01E-13 2.0042 0.0305 0.0889 

Nez Perce, ID 4000 Custom anger 0.012702 3.78E-11 2.1201 0.0221 0.0351 

Nez Perce, ID 4000 Custom fear 5.56E-07 8.68E-13 2.1197 0.0269 0.0927 

Nez Perce, ID 4000 Custom sadness 9.86E-07 1.31E-12 1.9396 0.0239 0.0896 

Twin Falls, ID 4934 Custom surprise 0.042209 6.40E-19 1.7902 0.0366 0.0274 

Twin Falls, ID 4934 Custom fear 0.000991 1.27E-13 2.1255 0.0253 0.0506 

Cascade, MT 21967 Custom polarity 0.000913 1.32E-14 2.1226 0.0394 0.0511 

Custer, MT 214 Custom sadness 0.00071 8.23E-18 1.7772 0.0193 0.0526 

Custer, MT 214 Custom disgust 1.04E-05 1.78E-14 1.8652 0.0195 0.0767 

Custer, MT 214 Custom anger 4.77E-08 3.86E-17 1.9434 0.0209 0.1058 

Deer Lodge, MT 213 Custom anticipation 0.002167 2.62E-18 1.9930 0.0271 0.0459 

Deer Lodge, MT 213 Custom anger 0.000878 3.58E-18 1.9681 0.0316 0.0513 

Deer Lodge, MT 213 Custom trust 8.19E-07 1.37E-12 1.8007 0.0255 0.0906 

Deer Lodge, MT 213 Custom disgust 2.67E-10 1.10E-14 2.2046 0.0200 0.1326 

Deer Lodge, MT 213 Custom surprise 1.11E-16 3.47E-12 1.9433 0.0264 0.2794 

  

[Table 4.3] Training set results for all counties. P-values ≥ 0.05 bolded. 
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County Tweets Affect Dimension F-test Train DF Train DW Train MSE Train 𝑟2 

Fergus, MT 272 Custom anger 2.03E-07 1.38E-12 2.0973 0.0383 0.0981 

Fergus, MT 272 Custom anticipation 2.26E-08 2.32E-14 2.0602 0.0174 0.1097 

Fergus, MT 272 Custom trust 2.15E-09 2.84E-17 2.1187 0.0340 0.1219 

Fergus, MT 272 Custom fear 1.29E-12 7.45E-10 2.0942 0.0219 0.1591 

Fergus, MT 272 Custom polarity 2.91E-14 1.90E-16 2.1535 0.0259 0.1773 

Fergus, MT 272 Custom sadness 1.11E-16 1.18E-12 2.0908 0.0298 0.2035 

Fergus, MT 272 Custom disgust 1.11E-16 4.84E-16 1.9157 0.0212 0.3227 

Fergus, MT 272 VADER polarity 6.07E-06 1.29E-13 2.0544 0.0298 0.0796 

Flathead, MT 10593 Custom joy 0.006435 2.31E-14 1.9585 0.0397 0.0393 

Gallatin, MT 22328 Custom disgust 0.035114 1.50E-12 2.1351 0.0335 0.0286 

Gallatin, MT 22328 Custom anger 0.01211 3.25E-13 1.9132 0.0367 0.0354 

Gallatin, MT 22328 Custom trust 0.001372 2.02E-20 1.9462 0.0348 0.0487 

Gallatin, MT 22328 Custom fear 3.80E-11 1.37E-23 1.8998 0.0300 0.1424 

Gallatin, MT 22328 VADER polarity 0.001059 1.39E-14 2.0774 0.0371 0.0502 

Hill, MT 841 Custom disgust 0.01283 6.44E-16 1.9646 0.0353 0.0350 

Hill, MT 841 Custom surprise 0.000467 9.75E-17 2.0069 0.0289 0.0550 

Hill, MT 841 Custom sadness 1.11E-16 1.26E-12 2.2775 0.0259 0.2080 

Hill, MT 841 Custom trust 1.11E-16 6.18E-12 2.1429 0.0172 0.2796 

Hill, MT 841 VADER polarity 0.022305 2.41E-15 2.2415 0.0257 0.0315 

Lewis and Clark, MT 4751 Custom joy 0.001293 6.04E-11 1.9034 0.0312 0.0490 

Lewis and Clark, MT 4751 Custom fear 0.002329 2.17E-12 2.1735 0.0290 0.0455 

Lewis and Clark, MT 4751 Custom surprise 1.27E-07 5.61E-14 2.0804 0.0250 0.1006 

Missoula, MT 14324 Custom anticipation 3.09E-07 6.54E-13 2.117 0.0286 0.0958 

Park, MT 1641 Custom fear 9.08E-05 6.05E-12 1.8632 0.0358 0.0645 

Park, MT 1641 Custom anticipation 6.25E-05 4.22E-13 1.9526 0.0273 0.0666 

Park, MT 1641 Custom disgust 3.29E-14 4.40E-18 1.8515 0.0253 0.1768 

Richland, MT 871 Custom disgust 0.03633 1.88E-11 2.0473 0.0192 0.0284 

Richland, MT 871 Custom anger 0.002837 1.30E-14 2.0807 0.0219 0.0443 

Richland, MT 871 Custom anticipation 4.74E-07 6.81E-19 1.9806 0.0279 0.0935 

Silver Bow, MT 4784 Custom disgust 1.08E-06 5.03E-15 1.8585 0.0230 0.0891 

Silver Bow, MT 4784 Custom sadness 1.45E-07 1.35E-13 1.9372 0.0279 0.0999 

Yellowstone, MT 21551 Custom trust 0.005437 7.03E-17 1.9890 0.0355 0.0404 

Yellowstone, MT 21551 Custom anger 0.001337 4.65E-10 1.7523 0.0356 0.0488 

Yellowstone, MT 21551 Custom sadness 0.000524 4.62E-13 2.0336 0.0286 0.0543 

Yellowstone, MT 21551 Custom anticipation 0.000526 1.58E-14 2.1069 0.0350 0.0543 

Yellowstone, MT 21551 Custom disgust 1.22E-09 2.09E-15 2.1128 0.0358 0.1248 

Yellowstone, MT 21551 VADER polarity 0.009171 2.72E-12 2.0677 0.0360 0.0371 

 

[Table 4.4] Training set results for all counties. P-values ≥ 0.05 bolded. 
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5 CONCLUSIONS  

(1) We created a custom scraper because first-party data at commercial rates was infeasible, 

and third-party sources did not allow us to parameterize our tweet search to the degree we wanted. 

Containerizing our scraper with Docker on the DigitalOcean cloud decreased our scraping time by 

orders of magnitude. Even when additional time is permitted, or the scope of data scraping is 

limited, a single instance of a scraper is better on a cloud platform than in the lab. This is because 

exceeding rate limits can lead to an IP-based cap lasting multiple days. Twitter’s academic research 

products encourage the discovery of insight but require bandwidth moderation.  

(2) Our custom language model could forecast sentiment with a degree of significance as 

measured through F-tests and test set 𝑟2 for a linear polynomials of PM2.5 using OLS. VADER 

was effective as a predictor of tweet sentiment in only 6/78 total models where a significant 

correlation was found. This suggests that VADER is less responsive to PM2.5 than our own 

sentiment analysis tool. We cannot compare performance of VADER and our affective model in 

other contexts, but regressing on 9 dimensions of sentiment may have been a key advantage. 

(3) The fit between models of different affective dimensions, language models, and 

counties [tables 4.1-4.4] can be assessed by identifying test and training sets with similar errors. 

Differences in the fit between individual rows of results are likely imparted by differences in 

sentiment error. The number of tweets in each varied from 213 in Fergus, MT to 149,716 in Ada, 

ID indicating different degrees of representativeness. Fewer users in Fergus translates to each 

having a much greater influence than users in Ada. 
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 (4)  Assertions 3 and 6 in 3.4.2 were likely violated resulting in models with variance as a 

function of time. Future research should perform attribute selection to identify the effect of 

potential exogenous variables like temperature. Any bag of words model is inflexible and therefore 

cannot be context aware. It is reasonable to assume this accounts for significant error.  

(5)  An attention-based language model has the potential to model sentiment with reduced 

error. This would however rely on the not insignificant task of acquiring training data including 

multiple affective dimensions. It is also warranted to explore a broader range of hyperparameters 

and sentiment forecasting model types, especially non-linear.   

Although we did not detect AR(1) autocorrelation in most of our results [tables 4.1-4.4], 

and found that a linear polynomial often outperformed higher order polynomials, but this does not 

mean a linear model was optimal. The process of making PM2.5 and sentiment data stationary 

(through first-differencing) prior to modeling has the effect of controlling autocorrelation in the 

errors. This means our error terms may be more interdependent than they appear. Patterns in the 

errors suggest insufficient model complexity or excluded variables. The reduction of sentiment 

error may also have the side-effect of revealing more complex dynamics.  

(6) A weak yet significant correlation was found between PM2.5 and Twitter sentiment 

reliably using our own language model, and occasionally using VADER. Future research may 

benchmark our affective model with existing NLP tools for multi-domain sentiment analysis to 

validate the meaningfulness of the dimensions of our model. High bias is not indicated but variance 

as a function of time is likely due to the violation of error independence and exogeneity. We 

therefore conclude that PM2.5 is a reasonable predictor of Twitter sentiment. 
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