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Abstract – A Review and Evaluation of Techniques for Improved Feature Detection in 

Mass Spectrometry Data 

Mass spectrometry (MS) is used in analysis of chemical samples to identify the 

molecules present and their quantities. This analytical technique has applications in many fields, 

from pharmacology to space exploration. Its impacts on medicine are particularly significant, 

since MS aids in the identification of molecules associated with disease; for instance, in 

proteomics, MS allows researchers to identify proteins that are associated with autoimmune 

disorders, cancers, and other conditions. Since the applications are so wide-ranging and the tool 

is ubiquitous across so many fields, it is critical that the analytical methods used to collect data 

are sound. 

Data analysis in MS is challenging. Experiments produce massive amounts of raw data 

that need to be processed algorithmically in order to generate interpretable results in a process 

known as feature detection, which is tasked with distinguishing signals associated with the 

chemical sample being analyzed from signals associated with background noise. These 

experimentally meaningful signals are also known as features or extracted ion chromatograms 

(XIC) and are the fundamental signal unit in mass spectrometry. There are many algorithms for 

analyzing raw mass spectrometry data tasked with distinguishing real isotopic signals from 

noise. While one or more of the available algorithms are typically chained together for end-to-

end mass spectrometry analysis, analysis of each algorithm in isolation provides a specific 

measurement of the strengths and weaknesses of each algorithm without the confounding effects 

that can occur when multiple algorithmic tasks are chained together. Though qualitative opinions 

on extraction algorithm performance abound, quantitative performance has never been publicly 

ascertained. Quantitative evaluation has not occurred partly due to the lack of an available 

quantitative ground truth MS1 data set. 

Because XIC must be distinguished from noise, quality algorithms for this purpose are 

essential. Background noise is introduced through the mobile phase of the chemical matrix in 

which the sample of interest is introduced to the MS instrument, and as a result, MS data is full 

of signals representing low-abundance molecules (i.e. low-intensity signals). Noise generally 

presents in one of two ways: very low-intensity signals that comprise a majority of the data from 

an MS experiment, and noise features that are moderately low-intensity and can resemble signals 

from low-abundance molecules deriving from the actual sample of interest. Like XIC algorithms, 

noise reduction algorithms have yet to be quantitatively evaluated, to our knowledge; the 

performance of these algorithms is generally evaluated through consensus with other noise 

reduction algorithms. 

Using a recently published, manually-extracted XIC dataset as ground truth data, we 

evaluate the quality of popular XIC algorithms, including MaxQuant, MZMine2, and several 

methods from XCMS. XIC algorithms were applied to the manually extracted data using a grid 

search of possible parameters. Performance varied greatly between different parameter settings, 

though nearly all algorithms with parameter settings optimized with respect to the number of true 

positives recovered over 10,000 XIC. We also examine two popular algorithms for reducing 

background noise, the COmponent Detection Algorithm (CODA) and adaptive iteratively 

reweighted Penalized Least Squares (airPLS), and compare their performance to the results of 

feature detection alone using algorithms that achieved the best performance in a previous 

evaluation. Due to weaknesses inherent in the implementation of these algorithms, both noise 

reduction algorithms eliminate data identified by feature detection as significant.
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Quantitative Evaluation of Ion Chromatogram Extraction Algorithms 
 

Annika Tostengard and Rob Smith 

Abstract 
Extracted ion chromatograms (XIC) are the fundamental signal unit in mass spectrometry. 

There are many algorithms for analyzing raw mass spectrometry data tasked with distinguishing 

real isotopic signals from noise. While one or more of the available algorithms are typically 

chained together for end-to-end mass spectrometry analysis, analysis of each algorithm in isolation 

provides a specific measurement of the strengths and weaknesses of each approach. Though 

qualitative opinions on extraction algorithm performance abound, quantitative performance has 

never been publicly ascertained. Quantitative evaluation has not occurred partly due to the lack of 

an available quantitative ground truth MS1 dataset. 

Using a recently published data set of manually-extracted XIC as ground truth data, we 

evaluate the quality of popular XIC algorithms, including MaxQuant, MZMine2, and several 

methods from XCMS. The manually-curated dataset comprises 48 human proteins stratified over 

6 abundance orders of magnitude. Signals in the sample were manually curated into XIC using a 

commercial tool for visually identifying XIC and isotopic envelopes. XIC algorithms were applied 

to the manually extracted data using a grid search of possible parameters. Performance varied 

greatly between different parameter settings, though nearly all algorithms with parameter settings 

optimized with respect to the number of true positives recovered over 10,000 XIC.  

 

Introduction 
 Liquid chromatography mass spectrometry (LC-MS) is a popular modality for the 

identification and quantification of molecular content within biological samples. It is particularly 

well-suited to high throughput, label-free experiments. LC-MS experiments result in raw output, 

typically consisting of MS1 and MS2 data, that must be analyzed with data processing software to 

yield molecular identities and quantities.  

One increasingly critical component of data processing is the extraction of extracted ion 

chromatograms (XIC) from raw data. Correct XIC extraction is essential to important downstream 

tasks such as molecular identification, charge state assessment, and run-to-run normalization. 

There are many algorithms for extracting XIC from raw mass spectrometry data. These algorithms 

vary in approach. Some rely on MS2 identifications to locate peptide XIC within specific mass-

to-charge (m/z) and retention time (RT) ranges in precursor data (possible, for example, in 

Skyline1, openSwath2 and Spectronaut3). Other algorithms are capable of MS1 XIC extraction 

without explicit MS2 identification, such as Dinosaur4. In this evaluation, we have included open 

source, popular algorithms for data-independent XIC extraction, discussed below. 

Although the choice and application of data processing software can have as dramatic an 

effect on experimental results as benchtop protocol5, very few algorithms and software have been 

quantitatively evaluated6. This is, in part, due to a lack of positive control data sets which can be 

used to quantify accuracy and precision, also known as ground truth data. To date, published XIC 

extraction algorithms have primarily been evaluated through qualitative comparison to chemical 

ground truth (e.g., spiked-in standards), quantitative comparison to simulated data, or qualitative 

comparison to results from other methods (so-called “consensus results”). Each of these methods 

has significant drawbacks. Simulated data as ground truth poses a problem because the simulation 

is only as good as model, and an accurate model requires ground truth to build. Chemical ground 
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truth does not provide the granularity necessary to isolate the experimental effect of XIC extraction 

results due to the presence of many confounding factors (such as variance in digestion, ionization, 

and elution). Consensus evaluations, on the other hand, are inherently limited to answering the 

question, “How well do new methods perform compared to old methods?” and not the real question 

of interest: “How well do new methods perform compared to the true answer? 

Other evaluations of XIC extraction software performance include an evaluation of 

whether reported variations in protein abundance between samples is driven by software or is 

naturally-occurring7, which suggested that the software introduced more variability in protein 

abundance than was found with biologically introduced protein variability. There is also an R 

package called LFQbench, which allows software developers to determine precision and accuracy 

in data-independent acquisition on certain high-complexity data sets8.  

Given the limitations of previously-used surrogates for ground truth and that the “true” 

answer is not known, we adopt the assumption general to most every computational field—that 

the best available performance measurement is how well methods compare to the best answer 

obtainable by manual (human) curation. While hand-curated data is not perfectly correct, it does 

(by definition) represent as close to the correct answer as possible given human limitations.  

In this study, we present a benchmark analysis of XIC algorithms in isolation using a new, 

manually-curated data set. To this end, we use a recently published dataset of over 11,000 hand-

curated XIC from a published UPS2 protein standard spiked into ecoli9. 

We evaluate several popular algorithms for XIC extraction, including Massifquant10, the 

unnamed XIC extraction algorithm from MaxQuant11 (referred to by its parent program hereafter), 

CentWave12, the “centroid” algorithm from MZMine213 (also referred to by its parent program 

hereafter), and MatchedFilter14.  

OpenMS15, a popular tool that includes feature detection, was excluded from the evaluation 

due to the fact that it uses a single-stage envelope level detection algorithm. 

General description, performance and specific measurement of the strengths and 

weaknesses of each approach are provided.  

The intent of this study is to provide insight on the real-world performance of common 

XIC extraction approaches, highlight persisting weaknesses, and provide direction for novel 

approaches. This benchmark can be used to ensure that any novel XIC extraction algorithm 

performs at least as well as existing algorithms, helping to mitigate the proliferation of 

publications that make it difficult for practitioners to keep track of the state of the art. 

Massifquant 

Massifquant uses 2D Kalman filters (KFs) to identify XIC in XCMS data, where a single 

KF tracks an XIC’s m/z and intensity over the chromatogram. Each instance of a KF, called a track, 

starts with the detection of centroids in a single scan, seen in Figure 1a. The existence of a centroid 

in the next scan is then predicted. If a real centroid is detected in the next scan, and that centroid 

is close enough to the prediction made by the KF (where closeness is determined by quasi-

confidence intervals centered about the prediction), that centroid will be added to the current track, 

seen in Figure 1b and 1c. The track is terminated once the signal disappears, and unclaimed 

centroids spawn new tracks, so there are several tracks being maintained at once. Tracks are also 

discarded if they do not meet criteria for minimum length, intensity, expected m/z deviance or 

consecutive missed predictions. 
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 Massifquant also uses the concept of a Kalman gain, a weight given to the estimate of the 

location of the current centroid; a smaller Kalman gain indicates that a centroid’s location as 

perceived by the algorithm is more likely to be close to the true location of the centroid. 

 

MaxQuant  

XIC extraction is the first part of the two-phase MaxQuant isotopic envelope extraction 

algorithm, where a Gaussian peak shape is fitted over the high density regions of data points in 

each scan, seen in Figure 2b. On the retention time axis, XIC are split at significant local minima, 

seen in Figure 1a. The masses of the peaks are then estimated from the centroid masses, weighting 

intensity where precision is calculated by bootstrap replication. Because MaxQuant is not open-

source, the algorithm was reimplemented based on the original publication in order to access 

 

Figure 1: Detection of XIC by Massifquant. a) an XIC t1 is created after detection of a centroid in the first scan. 

b) a centroid is added to t1 as its location is close enough to the predicted location of a centroid made after 

scan 1 and a new XIC (t2) is created. c) another centroid is added to t1, a new XIC (t3) is started, and t2 is 

discarded because there is no additional centroid nearby in the next scan. 
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results after the XIC extraction portion. Although MaxQuant is not suggested for use with 

centroided data, we have included it here because it is so widely used.  

Matched Filter 

MatchedFilter extracts ion chromatograms by first splitting the run into bins 0.1 m/z wide 

(shown in Figure 3b) and isolating the maximum intensity at each time point in the bin. The lists 

of mass/intensity pairs (one for each scan) are converted into a matrix. The matrix rows represent 

equally spaced masses, and the columns represent a single scan.  

The matrix is constructed in one of four ways according to a user-selected algorithm. The “bin” 

algorithm places an intensity into the matrix cell that is nearest to it in mass and is suggested for 

use with centroided data16. As UPS2 is a centroided dataset, only runs using the “bin” algorithm 

are included; originally, several runs were performed with all the binning algorithms available, 

 

Figure 2: Detection of XIC by MaxQuant. a) MaxQuant splits XIC at local minima. b) MaxQuant fits Gaussian 

peak shapes over a single scan. 

 

Figure 3: Detection of XIC by MatchedFilter. a) Gaussian peak fitting. b) MatchedFilter divides the 

chromatogram into bins.  
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and the preliminary results clearly showed that the “bin” algorithm outperformed all others on this 

dataset.  

After the matrix is constructed, it is then filtered by matched filtration using a second-

derivative Gaussian as the model peak shape, seen in Figure 3a. A signal-to-noise ratio cutoff, 

calculated by taking the mean of the unfiltered data, is then used to discard some of the peaks. To 

find peak mass, a two-step strategy is used: using the full-resolution data, the mass is calculated in 

each spectrum containing the peak, then the overall peak mass is calculated as a weighted mean of 

all the full-resolution masses, using intensities as weights. 

CentWave 

CentWave avoids binning by making Regions of Interest (ROI) using the m/z values from 

the first scan, seen in Figure 4a, then calculates the mean m/z value for each ROI detected. Then, 

in consecutive scans, the algorithm checks whether the absolute difference between the current 

scan’s m/z value and the mean m/z value for the detected ROI is less than the mass accuracy. If it 

is, additional centroids are added to ROI, as seen in Figure 4b and 4c. The baseline intensity is 

calculated by discarding both the 5% least intense signals and the 5% most intense signals, then 

finding the mean intensity of the remaining 90% of the data; the standard deviation is used as the 

noise level. The Continuous Wavelet Theorem is then applied to the intensity values of each ROI 

and chromatographic peaks are located by descent on the filtered peak similar to MatchedFilter. A 

Gaussian curve can also be fitted to each feature according to user specification. 

 

MZMine2 

In MZMine2, there are many different modules available depending on the type of data to 

be processed, and only the specific workflow and modules used here are described. The initial step 

in the MZMine2 workflow is to run one of the mass detection modules. Five are available, but 

only one, “centroid”, is suitable for centroided data. This mass detector detects all data points 

 

 

Figure 4: Detection of XIC by CentWave. a) a new ROI (region of interest) is detected. In scan 2 and 3, centroids 

are added to XIC (see b and c). In scan 3, a new ROI is also detected (c). 
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above the specified noise level as peaks, 

seen in Figure 5. The next step in 

MZMine2’s workflow is to connect 

consecutive m/z values spanning over 

multiple scans into chromatogram objects, 

which it does by constructing a set of 

potential chromatograms spanning over 

consecutive scans. In each scan, the mass 

list of that scan is iterated through so that 

each ion is connected to its corresponding 

chromatogram as specified by the m/z 

tolerance parameter. If no corresponding 

chromatogram can be found, a new one is 

created. When there are no longer any m/z 

peaks being connected to a particular 

chromatogram, it is terminated and 

checked for RT span and intensity to make 

sure they fall within the user-specified 

parameters. 

 

Methods 
 The curated data set is an untargeted protein identification sample consisting of 48 

Universal Proteomics Standard (UPS) proteins. UPS2 has been used in many publications as a 

known set of molecules and abundances that approaches the large dynamic range of abundances 

present in naturally-occurring biological samples. The proteins are organized into six groups of 

abundances with eight protein types per group. The abundances per group vary from 0.5 fmol to 

50,000 fmol with each group differing by an order of magnitude. The raw data consists of a trypsin-

digested run of UPS2 produced and recently published by the Nesvizhskii group as part of 

comparison of state-of-the-art data-dependent and data-independent acquisition methods17. It 

provides an independent representative example of a run using modern instrumentation, wet lab, 

and instrumental protocol. The file in question was created using a data independent acquisition 

protocol on an AB Sciex TripleTOF 5600, using a 250-ms ion accumulation time for MS1 survey 

scans. The raw data file is publicly available in PRIDE repository PXD001587 under filename 

18185_REP2_4pmol_UPS2_IDA_1.mzXML and consists of data centroided by ProteinPilot 

(Sciex) software. The mzXML file was converted to mzML using msconvert. 

 Using a newly available software platform for computational mass spectrometry 

(Prometheus by Prime Labs), we conducted an extensive manual annotation process comprised of 

more than 1,000 human hours. The data set consists of more than 62 million points, with 1,294,008 

points grouped into 57,518 extracted ion chromatograms.  

The abundance of parameter settings required to run most published algorithms can 

significantly affect the performance of the algorithm on particular datasets. For all algorithms 

except MaxQuant, in order to ensure that an algorithm is not undervalued because of poor 

parameter choices, runs were performed over parameter ranges. Published parameter settings6,10,12 

were used for all algorithms, while for CentWave and MatchedFilter, these published parameter 

suggestions were also combined with the optimized settings suggested by the Isotopologue 

 

Figure 5: Detection of XIC by MZMine2. The centroid 

algorithm from MZMine2 only adds signals to a centroid if 

the signal is above the signal-to-noise threshold. 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 
 

Parameter Optimization (IPO) tool18, created in part by one of the authors of the CentWave XCMS 

algorithm. 

 

Parameters 

Massifquant 

The parameters tested for Massifquant were parts per million, signal-to-noise threshold, 

peakwidth and critical value12,18. Caution should be exercised when choosing Massifquant 

parameters, as the selection of certain values will result in unreasonable runtimes. For example, 

setting the peak width to anything below 4 resulted in the run taking more than several days and 

up to a week. Critical value was another parameter that drastically affects the runtime; a large peak 

width with a small critical value would run within a few hours while a large peak width with large 

critical values would take ~8 hours. The parameters tested are shown below; the algorithm was 

run with a grid search so that every combination of the parameters was evaluated (see Table 1). 

 

TABLE 1: Parameters tested for Massifquant. 

 

criticalValue 0.1 1 2 3  

ppm 10 20 30 40 50 

Peakwidth (sec) 4 8 16   

snthresh 1 10 100   

 

Matched Filter 
The parameters tested for Matched Filter were step, full width half maximum (fwhm), 

signal-to-noise threshold (snthresh), and the m/z difference (mzdiff) (see Table 2). The initial 

parameters were suggested by IPO, the Isotopologue Parameter Optimization tool for the 

MatchedFilter and CentWave methods in the XCMS package; the final values were chosen in a 

range around these values. Again, because the “bin” algorithm from MatchedFilter is 

recommended for centroided data, it was the only one included in this evaluation. 

TABLE 2: Parameters tested for Matched Filter. 

step 0.01 0.02 0.04 0.06 0.08  

fwhm 10 20 30 40 50  

mzdiff 0 0.2 0.4 0.6 0.8 1 

algorithm bin      

snthresh 1,2,…20 
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CentWave 

We tested parts per million (ppm), peakwidth, and signal-to-noise threshold (snthresh), as 

these are considered to be the most pertinent parameters12. CentWave is the second algorithm that 

is available for use with the IPO tool, so the range of parameters were chosen considering these 

suggestions as well as the default settings. For both peakwidth and snthresh, values between 1 and 

20 were tested, incrementing by 1. For ppm, 10, 20, 30, 40, and 50 were tested. As with all the 

other XCMS algorithms, a grid search was run on all combinations of parameter settings. 

 

MZMine2 
We originally wanted to do three runs of MZMine2, using noise levels of 1, 10 and 100. 

However, as with Massifquant, choosing a noise level of 1 prevented the algorithm from being 

able to build a chromatogram within a reasonable time.  

Even choosing 5, it still took several hours to complete the chromatogram builder for each 

parameter permutation. The final values chosen for the noise level were 5, 10, and 100. 

 

Metrics 

The metrics compare the manually-curated XIC assignments to each algorithm’s results. 

The data from the manually-curated CSV file is stored as a point object consisting of an m/z, RT 

and intensity. Points that have been identified as belonging to the same XIC are all given the same 

manually-curated ID 

number, seen to the right of 

each point in Figure 6. All 

points, whether they have 

been assigned a feature ID or 

not, are stored in a master list 

that is then sorted by m/z 

once all manually-curated 

data points have been read 

in; this master list is used to 

find matching points from 

the algorithmic files later.  

After reading in the 

manually-curated points, the 

file of algorithmically-

curated XIC is read in. For 

each of these points, if they 

have been detected as 

belonging to an XIC, a 

search through the 

manually-curated points is 

conducted in order to find 

the point from the manually-

curated file that matches in 

m/z and RT. When a match is 

 

Figure 6: Evaluation of XIC extraction. There are three manually-extracted 

XIC: a, b, and c. XIC a has been correctly identified because the algorithm 

grouped the same points under the same algorithmically-curated feature 

ID, 6. XIC b was not correctly extracted because none of the 

algorithmically-curated XIC IDs (8, 10, 13) contained at least 50% of the 

intensity of the total intensity contained in the manually-extracted XIC 

(manually-curated feature ID 2). In c, the points remained unassigned by 

the algorithm. 
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found, the original manually-curated point is also assigned an algorithmically-curated XIC ID, 

seen to the left of the points in Figure 6. 

Once all the algorithmically-curated XIC have been read in, all XIC which have been 

identified in the manually-curated file are examined to see whether the same points that were 

manually curated into an XIC were also grouped by the algorithm. This is accomplished by 

checking that the algorithmically-curated XIC’s total intensity is greater than 50% of the manually-

curated XIC’s intensity, as suggested by the Massifquant paper. The XIC IDs are used to do this; 

all the points in each XIC will have the same manually-curated ID and a majority of the points in 

a correctly-extracted XIC will also share the same algorithmically-curated XIC ID. This is 

demonstrated by the leftmost XIC in Figure 6, XIC a. The total intensity for a given 

algorithmically-curated XIC is the sum of the intensity of the points that are assigned the 

algorithmically-curated XIC’s ID. Any XIC in which the algorithmically-curated XIC’s total 

intensity was not greater than 50% of the manually-curated XIC’s total intensity are considered 

false negatives, demonstrated by the center XIC in Figure 6, XIC b. This also ensures that there is 

only a single match for each manually-curated XIC. Points which were not curated by the 

algorithm are also considered incorrect, seen in the rightmost XIC in Figure 6, XIC c. 

Intensity and m/z error metrics were also calculated. To measure intensity error, we report 

the ratio between the total intensity of all the points clustered into true positive XIC and the total 

intensity of all manually curated points. 

 

intensity ratio = ∑(algorithm_true_positive_intensity) / ∑(manually_curated_intensity) 

 

 To calculate the m/z error, we first calculated the average m/z weighted by intensity by 

multiplying each point’s intensity and m/z, then summing those values over each XIC, then 

normalizing by the total intensity. 

 

weighted average m/z = ∑(intensity * m/z) / ∑ intensity 

 

 The total error was found by then taking the absolute value of the difference between the 

weighted average manually-curated m/z and the weighted average algorithmically-curated m/z. 

 

m/z error = ∑(|ground_truth_weighted_average_mz - experimental_ 

weighted_average_mz |)  

Results 

Each algorithms’ highest-performing parameter set, with regard to true positives, is 

documented in Tables 3-5.    

 

TABLE 3: Best performing parameters for MatchedFilter. 

parameter step fwhm snthresh mzdiff 

value 0.02 10 1 0 
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TABLE 4: Best performing parameters for Massifquant. 

parameter ppm peakwidth snthresh critical value 

value 10 4 1 1 

 

TABLE 5: Best performing parameters for CentWave. 

parameter ppm peakwidth snthresh 

value 50 1 20 

 

For MZMine2, the lowest snthresh setting, 5, resulted in the greatest number of matches 

to the manually curated data. A listing of how each algorithms’ best parameter set performed 

across all five metrics is shown in Table 6. A full listing of every parameter set tested can be 

found in Supplement tables 1-4. The total XIC reported from both the XIC from the manual 

curation and other XIC not included in the manual curation is shown in the first column. The 

number of true positives, shown in the second column, describes the number of XIC from the 

algorithmically-curated file which matched at least 50% of the total intensity of a manually-

curated XIC. The third column, % true positives, is the ratio of the number of true positives 

discovered by the algorithm over the total number of manually-curated XIC. The false negatives 

column describes XIC which were manually-curated but not identified by the algorithm, or 

where the algorithm’s XIC did not include at least 50% of the total intensity of the manual XIC 

(see Figure 7). The fifth column, m/z error, shows the average weighted m/z error, described 

above. The fifth column shows the intensity ratio, also described above. In cases where the 

intensity ratio is greater than one, it indicates that the algorithm included more points in true 

positive XIC than were included in manual curation. 
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a           b  

c           d  

e  

 

Figure 7: False negative XIC are XIC where < 50% of the hand curated points were captured. Each algorithm 

differs in the number of and quality of false negatives. Panels show a) manual XIC extraction b) XIC extraction 

by CentWave c) XIC extraction by Massifquant d) XIC extraction by MatchedFilter e) XIC extraction by 

MZMine2. Each unique color represents a single XIC. 
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TABLE 6: Collated results from each algorithm. 

 total 

XIC 

true 

positives 

% true 

positives 

false 

negatives 

avg m/z 

error 

intensity 

ratio 

MZMine2 68,664 43,177 76.6% 13,963 0.03 13.0 

Massifquant 462,679 38,099 66.7% 19,041 0.02 2.25 

MatchedFilter 98,684 27,632 48.4% 29,508 0.02 0.68 

CentWave 36,694 17,670 30.9% 39,470 0.02 0.74 

MaxQuant 6,532 1,078 1.9% 56,062 13.9 0.15 

 

Below are screenshots of how the algorithms performed on a particular window as viewed 

in JS-MS19, an open-source software used to manually extract XIC. Each panel shows a different 

algorithm, where each XIC is given a unique color. Figure 8 shows the window before any curation 

has taken place. In Figure 8, color indicates intensity, with pink and purple representing areas of 

high intensity and blue and green representing areas of low intensity. Figure 9a shows how the 

window is manually curated. One thing that should be noted in Figure 9a is that it demonstrates 

the imperfections of manual curation. While 

low m/z variability is a criterion for choosing 

which points to include in each XIC, here the 

operator made a mistake. In Figure 8, there are 

low-intensity (green) points very close in m/z to 

the heaviest and lightest XIC in this envelope. 

In Figure 9a, it can be seen that those low-

intensity points which deviated from the m/z of 

the more intense points were included in the 

XIC at manual curation, which is indicated by 

the fact that all of those points are now the same 

color. This is one reason that adopting the rule 

that an algorithmically-curated XIC must 

extract at least 50% of the intensity of the 

manually-curated XIC is useful, as it mitigates 

some of the mistakes made during manual 

curation.  

 

Figure 8: The original, uncurated tile as seen in JS-

MS, open source software used for XIC 

identification. 
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a           b  

c           d  

e             f  

 

Figure 9: The same window as Figure 8 but curated by a) manual XIC extraction b) XIC extraction by CentWave c) 

XIC extraction by Massifquant d) XIC extraction by MatchedFilter e) XIC extraction by MaxQuant f) XIC extraction 

by MZMine2. Each unique color represents a single XIC. 
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 Figures 9b-f are screenshots of how the other algorithms performed XIC extraction on the 

same window. Each XIC has been assigned a unique color, and each point belonging to that XIC 

is given that color. 8b and 8d show extraction by CentWave and Matched Filter; both algorithms 

had a tendency to split a single XIC into multiple XIC. 8c and 8f show extraction by Massifquant 

and MZMine2. These two algorithms were also qualititatively similar in that they both recovered 

more XIC than were found during manual curation, and both were found to recover over half the 

XIC found in the manually-curated file. Figure 9e shows extraction by MaxQuant, which looks 

very similar to manual curation with some extra signals recovered in the lower bottom half of the 

window. 

Figures 10-12 demonstrate how widely performance varies depending on parameter 

settings; each figure is a histogram where each bar represents a single run using a single parameter 

set. The number of true positives recovered by each parameter set is shown on the y-axis. 

CentWave’s lowest-performing settings yielded less than 1,000 correctly-extracted XIC, while 

Massifquant’s lowest correctly extracted less than 4,000 and MatchedFilter’s lowest correctly 

extracted less than 6,000. 

  

Conclusions 
The evaluation of popular XIC algorithms on a quantitative manually curated data set 

showed that performance among the available algorithms for mass spectrometry is variable.  

 

 

Figure 10: Difference in performance among 

different parameter sets for CentWave. Each 

bar represents one parameter combination. 

 

 

Figure 11: Difference in performance 

among different parameter sets for Massifquant. 

Each bar represents one parameter combination. 
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One principal observation from this study include that there is no one clearly superior 

algorithm for ion chromatogram extraction, and that the state-of-the-art still has room for 

improvement. Surprisingly, only two 

algorithms (Massifquant and MZmine) 

identified more than half of the XIC present 

in the manually curated dataset, while the 

others did not identify at least half of the 

manually curated XIC. In addition, the 

absolute intensity and m/z error across all 

algorithms was quite high. 

Parameter selection significantly 

affects results. Each algorithm had 

drastically differing performance across 

different parameter settings. In other words, 

no algorithm was always or even mostly 

better than any other across parameter 

settings, though MatchedFilter’s 

performance varied the least. The impact of 

parameter selection suggests that without a 

way of optimizing parameters that does not 

require ground truth, the utility of any XIC 

extraction algorithm is still unknown. In 

addition, it is impractical for algorithm 

developers to suggest a grid search of 

parameters for algorithm optimization. This 

experiment took months of runtime, just for 

a single dataset. 

One observation in this regard is 

that for all algorithms except CentWave, 

lower signal-to-noise thresholds have a 

significant impact on the number of XIC 

found, and so focusing on this parameter as 

opposed to others that were not found to 

have as significant an impact could be 

beneficial to researchers. For Massifquant, 

for example, any experiments with a 

critical value of 0.1 performed worse than 

any other experiment with a critical value 

between 1-3, though it is unclear if either of 

these patterns generalize to other data sets. 

One of the most interesting results 

was that the algorithms often split XIC 

prematurely, or did not split XIC at a local 

intensity minima. For example, a single 

XIC that had been extracted manually may 

 

Figure 12: Difference in performance among different 

parameter sets for MatchedFilter. Each bar represents 

one parameter combination. 

 

 

Figure 13: An XIC that was manually curated but not 

discovered by any algorithm. Lilac/light purple areas are 

the points included in this signal. 
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have been split into two or more XIC by the 

algorithm. This phenomenon can be seen in 

both Figures 8b and 8d, in the segmentation 

of CentWave and MatchedFilter, 

respectively. Sometimes, however, the 

reverse was seen, and the algorithm merged 

two XIC that had originally been split in the 

manually-curated data. These “duplicates” 

appear to be more common in areas where 

the centroiding did not perform as well and 

the data was more difficult to interpret. 

Centroiding also has a tendency to 

combine two or more more XIC into a 

single XIC. These combinations are very 

difficult for algorithms to recover (see 

Figure 13). Whether a signal like the one 

seen in Figure 13 should have been 

included in the evaluation to begin with is 

debatable.  

Another interesting thing to note is 

the difference in performance between 

MatchedFilter and CentWave, as CentWave 

was developed as a high mass accuracy alternative to MatchedFilter. MatchedFilter uses Gaussian 

shape fitting to filter potential peaks, while CentWave uses wavelets to model peak shapes, and so 

the data in UPS2 is likely more amenable to peak fitting via Gaussians rather than wavelets. 

 

Figure 14: Each bin covers a range of intensity and the 

height represents the number of XIC that were curated, at 

that intensity. 

 

Figure 16: Intensity of Massifquant true positives. Each bin 

covers a range of intensity and the height represents the 

percentage of true positive XIC, at that intensity. 

 

Figure 15: Intensity of MaxQuant true positives. Each 

bin covers a range of intensity and the height 

represents the percentage of true positive XIC, at that 

intensity. 
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The performance of the algorithms 

across ascending ranges of intensity for all 

XIC found to be true positives is shown in 

Figures 15-19. Figure 14 shows the 

stratification of XIC in the hand curated data 

by intensity as a baseline for comparison.  

Figure 13 shows the intensity ranges 

of manually-curated XIC. Figure 15 shows 

the intensity ranges of true positives for 

MaxQuant; because MaxQuant is not for use 

on centroided data, Figure 15 shows that 

MaxQuant did not recover many of the XIC 

with the highest intensities and its 

performance on centroided data is 

unpredictable and not similar to the other 

algorithms’ performance. 

 Figures 15 and 16, however, show 

that MZMine2 and Massifquant had fairly 

similar performance. They both recovered a 

high number of XIC and also, the total 

number of points in each intensity range is 

higher than for the manually-curated XIC. 

This means that they both had a tendency to cluster more points into XIC than were chosen to be 

clustered during manual curation.  

 

Figure 17: Intensity of MZMine2 true positives. Each bin 

covers a range of intensity and the height represents 

the percentage of true positive XIC, at that intensity. 

 

Figure 19. Intensity of MatchedFilter true positives. 
Each bin covers a range of intensity and the height 

represents the percentage of true positive XIC, at that 

intensity. 

 

Figure 18. Intensity of CentWave true positives. Each 

bin covers a range of intensity and the height 

represents the percentage of true positive XIC, at 

that intensity. 
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CentWave and MatchedFilter also have similar intensity distributions, as seen in Figures 

18 and 19. Both algorithms have a tendency to cluster less points in each XIC than were clustered 

during manual segmentation, so the total number of points in each intensity range is generally less 

than is seen in the intensity distribution of the manually-curated XIC. 

There are several limitations to our approach. The primary limitation is that this experiment 

was performed with a single dataset—this being the only quantitative, manually-curated data set 

available to date. As other data sets are made available, this analysis can be extended and the results 

generalized. Future work will include performing this evaluation on additional files in order to get 

a representation of performance on profile data, data of higher/lower resolution, rate of MS/MS, 

and varying degrees of data complexity. 
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An Evaluation of Noise Reduction Algorithms for Liquid Chromatography Mass Spectrometry 

Data 

 

Annika Tostengard and Rob Smith 

 

Abstract 

Mass spectrometry (MS) is used in analysis of chemical samples to identify both what 

molecules are present and their quantities. This analytical technique has applications in many 

fields, from pharmacology to space exploration. Its impacts on medicine are particularly 

significant, since MS aids in the identification of molecules associated with disease; for instance, 

in proteomics, MS allows researchers to identify proteins that are associated with autoimmune 

disorders, cancers, and other conditions. Since the applications are so wide-ranging and the tool is 

ubiquitous across so many fields, it is critical that the analytical methods used to collect data are 

sound.  

 Data analysis in MS is challenging. Experiments produce massive amounts of raw data that 

need to be processed algorithmically in order to generate interpretable results in a process known 

as feature detection, which is tasked with distinguishing signals associated with the chemical 

sample being analyzed from signals associated with background noise, which can be introduced 

through multiple mechanisms. We examine two popular algorithms, the COmponent Detection 

Algorithm (CODA) and adaptive iteratively reweighted Penalized Least Squares (airPLS), for 

reducing background noise and compare them to the results of feature detection alone. Due to 

weaknesses inherent in the implementation of these algorithms, both algorithms eliminate data 

identified by feature detection alone as significant. 

Introduction 

Mass spectrometry is a quintessential tool for a variety of domains, including proteomics, 

lipidomics, and metabolomics. Liquid chromatography coupled to mass spectrometry (LC-MS) 

has emerged as a ubiquitous configuration for many experimental objectives. In LC-MS, sample 

analytes are separated by LC, ionized, and analyzed by the mass spectrometer. The objective of 

mass spectrometry experiments is to measure the presence, absence, or abundance of one or more 

specific molecules. Computational processing is used in many forms and to different extents to 

achieve this objective. 

While various specific approaches for and across proteomics, lipidomics, and 

metabolomics exist, with some approaches being specific to the molecule type and others general 

across all types, these approaches require the computational processing of raw mass spectrometer 

output to make the results interpretable to researchers. Multiple algorithms have been produced 

with the goal of rendering raw data human-interpretable. Shared between many of these 

approaches is the need to isolate specific portions of the raw data. Isotopic envelopes are signal 

groups comprised of individual isotopic masses, known as features, that correspond to one or more 

compounds at a given mass-to-charge (m/z) and retention time (RT), and are of particular interest. 

Isotopic envelopes can be used to measure the abundance of the compound(s), as the abundance is 

proportional to the summed intensities of all points comprising the envelope; these envelopes map 
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to MSn events which provide information for molecule identification and reduces data from 

millions of points to tens of thousands or fewer envelopes. 

More specifically, feature detection attempts to directly extract isotopic envelopes from the 

raw data. This is most often a two-stage process in which individual isotopes are identified and 

then grouped into isotopic envelopes. Historically, due to low mass spectrometer resolution, 

feature detection algorithms were not effective in directly extracting isotopic envelopes from raw 

data. However, recent innovations have shown vast improvement over prior algorithms. 

Another approach treats isotopic envelope detection as a modular process with many 

different configurations possible [1]. In this approach, prior to feature detection, the raw data is 

subjected to the ordered application of several processes that are treated as independent; this 

modular process often includes noise removal. Noise is generally present in two forms: 

background noise of very low intensity signals, and noise peaks of moderately low intensity that 

resemble actual features. Both are generally introduced through the mobile phase of the chemical 

matrix in which the sample of interest is introduced to the MS instrument. Noise removal involves 

identifying noisy regions and then either removing the regions entirely or reducing the intensity of 

the region by a certain amount. 

To our knowledge, the efficacy of current noise removal algorithms has never been 

quantitatively evaluated. In this manuscript, we investigate whether noise reduction is necessary 

or helpful given modern feature detection algorithms and high resolution mass spectrometry.  

Algorithms 

GridMass 

GridMass is a feature detection algorithm included in the popular open source mass 

spectrometry analysis software MZMine2. GridMass employs probes assigned to a rectangular 

area of the entire chromatogram to find local maxima; probes that converge on the same feature 

are used to provide an estimation of feature boundaries. [2] 

 GridMass is included here because it outperformed several other popular feature detection 

algorithms in an evaluation on a published ground truth MS dataset [3]. 

 

XFlow 

XFlow is a recently published feature detection algorithm that extracts ion chromatograms 

from MS1 LC-MS data without using any parameters. It can be used on both profile or centroided 

data and is agnostic in regard to both resolution and instrument. XFlow identifies features by 

identifying points which are local maxima; it then assigns nearby points a confidence score based 

on both intensity and distance from the local maxima. Points with the highest confidences are then 

assigned to the same feature. [3] 

 As with GridMass, XFlow is included here because it outperformed several popular feature 

detection algorithms when evaluated on a published ground truth MS dataset [3]. 

 

CODA 

The component detection algorithm is one that aims to be useful for noisy data with a high 

background level. Furthermore, it does so without transforming the original data and instead 

selects high-quality regions within a dataset. It does this by first smoothing the data, then 

calculating the average intensity across each chromatogram. The average intensity is subtracted 
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from the smoothed intensities, after which a normalized output of the difference between the 

average and smoothed data is calculated to determine the similarity threshold against which all the 

spectra can be compared. Only those signals whose similarity values are above the threshold value 

are retained. 

The theory behind CODA is that in regions of data containing noise spikes, the smoothed data 

will differ substantially from the original data; therefore, a high similarity between the smoothed 

and original data indicates high-quality peaks that represent pertinent information, while a low 

similarity index indicates a noise peak. When comparing data that has been both smoothed and 

averaged with the original data, a high-quality peak has a low mean value in comparison to a poor-

quality peak. As when comparing the smoothed and original data, the smoothed, averaged data 

that has a high similarity to the original data indicates a quality peak. The two different 

measurements are combined into a single similarity index, called a “mass quality index” (MCQ). 

In the case that a noise peak has a high similarity in either case, the combination of the two 

measurements will indicate that it is a poor-quality peak. Again, only regions which are greater 

than a certain MCQ threshold will be considered high-quality. Data regions that do not meet this 

threshold are discarded entirely. [4] 

 
airPLS 

Penalized least squares has long been used as a smoothing technique for spectroscopic data. 

However, in 2005, it was suggested that it be used for a number of other purposes, including 

baseline correction [5]. A well-known method of least squares for baseline correction uses 

asymmetry as a parameter which needs to be optimized, but it was subsequently shown to have a 

tendency to produce negative regions in complex data where things like overlapping signals occur 

frequently [6, 7] and required that feature detection be performed prior to smoothing. airPLS, on 

the other hand, is based on asymmetric least squares but does not require feature detection. Instead, 

airPLS adds a penalty item to control smoothing. Eilers’ method also uses the same asymmetry 

parameter across the entire baseline, but adaptive iteratively reweighted least squares introduced a 

new way to calculate weights based on the difference between the previously fitted baseline and 

the original signals. [8]  

 

Methods 
The fundamental signal unit in MS is the extracted ion chromatogram, also known as a 

feature. Features represent a molecule of a certain mass that occurs at a certain time as a sample 

passes through a mass spectrometer. Isotopic masses are then grouped into isotopic envelopes that 

represent all isotopic masses for a particular molecule. Therefore, quality feature detection is the 

ultimate goal of MS data processing algorithms. An example of extracting features from 

background noise is shown in Figure 1. Algorithms tasked with distinguishing masses of interest 

from noise are known as feature detection algorithms. To make the feature detection process more 

accurate, many preprocessing algorithms are used to reduce dataset size and make data more 

scrutable. One important set of preprocessing algorithms are noise reduction algorithms, which 

often both reduce noise and smooth data. 
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Noise reduction is traditionally applied as an independent process that occurs before feature 

detection. While there is value in treating every subproblem in a complex analysis as independent, 

in order to maximize the overall 

result [9], a rational argument can be 

made that the separately-treated 

problems of noise reduction and 

feature detection are really just 

simplified interdependent 

approximations of the 3D feature 

finding problem. It can be argued 

that treating these problems 

separately is a lossy approach 

compared to leveraging all available 

information into 3D feature finding. 

For example, when feature 

detection occurs on data that has 

already been separated into 

independent bins, then denoised and 

possibly smoothed, it has gone 

through at least two successive lossy 

processes, none of which was aware 

of the assumptions made or 

information lost in each step [1]. 

Denoising and smoothing are 

typically used to remove or 

minimize the abundances of points 

that do not pertain to an isotopic 

envelope [1]. Typically, some filter 

is applied to the data to attenuate the 

intensities of points not pertaining to 

an isotopic envelope while 

(hopefully) minimally affecting 

points pertaining to isotopic 

envelopes. Filters include the 

Savitzky-Golay [10], some variation 

of wavelet [11], moving average 

[12], Gaussian [13], or kernel 

density [14].  



25 
 

Treating scans as informationally independent is convenient when performing noise 

reduction, as it considerably reduces dataset size. However, the size savings comes at the cost of 

ignoring the majority of relevant information contained in the run.  For example, both noise 

reduction algorithms included 

in this evaluation bin the entire 

chromatogram by both mass 

(m/z) and retention time. 

However, isotopic envelopes 

can occur across two or more 

masses, and the individual 

isotopic masses that make up 

the envelope often occur 

across multiple scans; these 

algorithms therefore lose the 

opportunity to leverage mutual 

information among 

masses/scans. In addition, 

most noise reduction 

algorithms have parameters, 

which not only require setting 

and optimization, but also 

inherently impart the 

constraint that parameters that work well on some parts of an experimental output will necessarily 

work poorly on others. Total Ion Chromatogram (TIC) approaches, in which all masses in each 

scan are summed into a single representation (shown in Figure 2), are common to noise reduction 

and smoothing algorithms and discard much of the information contained in the three dimensional 

full run data [1]. 

To demonstrate the differences, strengths and weaknesses of the algorithms evaluated here, 

we include the changes made by each algorithm across the entire chromatogram, as well as find 

individual mass chromatograms in feature detection disagrees with noise reduction  as to which 

data to retain or by how much the original data needs to be transformed. 

Data 

    We used several files to compare the data processing of the noise reduction algorithms with the 

data processing of the feature detection algorithms. The files included are:  

• a published UPS2 protein standard spiked into E. coli acquired on an AB Sciex 

TripleTOf 5600, which can be found in PRIDE repository PXD001587 under 

filename 18185_REP2_4pmol_UPS2_IDA_1.mzML and is hereafter referred to as 

UPS2;  

• a published  panel of seven cancer cell lines acquired on an Orbitrap Fusion Lumos, 

which can be found in PRIDE repository PXD008952 under filename 

01_CPTAC_TMTS1-NC17_P_JHUZ_20180509_LUMOS.mzML and is hereafter 

referred to as LUMOS; 

• a published green alga cell culture acquired on a Q Exactive, which can be found 

in Pride repository PXD003236 under filename 
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Cre_PLPGS_0_100_mix_FASP_fraction_FT_ph11.mzML and is hereafter 

referred to as FASP; 

• a published baker’s yeast protein sample acquired on an LTQ Orbitrap, which can 

be found in PRIDE repository PXD000792 under filename 000.mzML and is 

hereafter referred to as 000; 

• a published mouse murine myoblast cell line acquired on an LTQ Orbitrap Elite, 

which can be found in PRIDE repository PXD000790 under filename 

OEII12347.mzML and is hereafter referred to as OEII; 

• a set of three experimental replicates consisting of a commercial proteomics 

dynamic range standard (UPS2,  sigma) analyzed using liquid chromatography MS 

with an Orbitrap FusionTM Lumos mass spectrometer. Publication of the data is in 

progress. This file is hereafter referred to as PRICE. 

 

Parameters 
GridMass 

GridMass has seven parameters, four required and three optional. Required parameters 

include the minimum height threshold, an intensity value below which points will be ignored; 

width, a time parameter that determines the distance between probes in the retention time 

dimension; m/z tolerance, a mass parameter that determines the distance between probes in the 

m/z dimension; and the intensity similarity ratio, which detects features that have a similar 

intensity and mass. The three optional parameters include ignore times, a list of time ranges that 

will be ignored; smoothing time, the time over which the chromatogram will be smoothed via 

averaging; and smoothing m/z, the m/z range over which the chromatogram will be smoothed via 

averaging [2]. The default parameters achieved high performance in an evaluation including 

XFlow, and therefore the default parameters were used here as well. 

 

CODA 

CODA examines masses individually and discards data across entire masses that do not 

achieve a quality threshold. Here, we refer to masses that were not discarded as retained mass 

chromatograms. To determine the best CODA results, we used the number of retained 

chromatograms, with a higher number of retained chromatograms being preferred. The primary 

parameters for the CODA algorithm are window size, a rectangular window over which smoothing 

is applied, and mass quality index level (MCQ), the threshold chromatograms must meet to be 

considered high-quality. For each file, we also binned chromatograms by m/z using different bin 

sizes for comparison. The parameters tested are shown in Table 1; every combination of the 

parameters was evaluated. 

The parameter setting which retained the highest number of chromatograms was then 

further compared to XFlow and GridMass in two ways: first, by summing the intensity of all points 

that were clustered into peaks by XFlow and GridMass, respectively, but were not included in any 

chromatograms retained by CODA, and second, by summing the intensity of all points that were 

included in any chromatograms retained by CODA that were not clustered into a peak by XFlow 

and GridMass, respectively. We also report the total intensity of all points that were retained by 

CODA and by feature detection. 
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Table 1. Parameters Tested for CODA 

window size 3 5  

MCQ 0.69 0.79 0.89 

bin size 0.5 1 10 

 

airPLS 

The primary setting in airPLS is lambda, which dictates how smoothed the result is. As 

with CODA, we binned the data by m/z to examine the effects of binning. The parameters tested 

are shown in Table 2. Since airPLS returns a modified chromatogram and does not discard any 

regions of data, there is no objective measure by which to judge whether a given parameter setting 

retains more information; therefore, we report the intensity differences across all settings, and 

between feature detection and airPLS in Figures 5 and 6. Figures 5 and 6 show the intensity 

differences between XFlow and GridMass by summing the total intensity that was retained in the 

modified airPLS chromatogram that did not overlap with the signals reported by both XFlow and 

GridMass, and also the total intensity reported by XFlow and GridMass that was not retained in 

the airPLS chromatogram. We also report the total intensity of the points that were reported by  

airPLS and feature detection. 

 

Table 2. Parameters Tested for airPLS 

lambda 10e3 10e5 10e7 10e9 10e11 

bin size 0.5 1 10   

Results 

CODA 

The number of retained chromatograms for each file at each bin size are shown in Figure 

3 below. CODA retained the highest number of chromatograms using the same parameter settings 

for all files; these settings are a bin size of 0.5 m/z, a window size of 3 and an MCQ of 0.69. The 

total intensity comparison results are shown in Figures 5 and 6. 

When compared to the chromatograms obtained by feature detection with XFlow, there is a 

significant difference in what data is retained, suggesting that CODA is discarding pertinent 

information that may be experimentally significant. Features detected by  XFlow and GridMass 

but discarded by CODA are shown in Figures 7 and 8. 
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airPLS 

The total intensity differences for airPLS are shown in the tables below. These tables 

include the total intensity differences between airPLS and both XFlow and GridMass, respectively. 

As with CODA, airPLS discarded features detected by XFlow and GridMass. airPLS 

significantly reduced the intensity of many sections of data so that features which were apparent 

in the original data were no longer discernible, shown in Figures 7 and 8. 
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Comparisons Between Algorithms 

In order to demonstrate the changes made across an entire chromatogram by each algorithm and 

to get a sense of individual algorithm performance, Figure 4 made heat maps of the UPS2 data, 

showing both the 

original, unadulterated 

data and the 

chromatogram after it 

had been processed by 

each algorithm 

separately, shown in 

Figure 4. 

We have also 

included the total 

intensity difference 

results from all files. 

The GridMass results 

are shown in Figure 5 

and the XFlow results 

are shown in Figure 6. 

These figures display 

the total intensity that 

was reported by the 

noise reduction 

algorithms that was not 

reported by the feature 

detection algorithms, 

the total intensity that 

the feature detection 

algorithms reported 

that the noise reduction 

algorithms did not, and 

the total intensity that 

both reported. 
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Discussion 

There are several drawbacks from pre-processing raw data prior to feature detection. 

Among all approaches, information is lost. Preprocessing algorithms necessarily consider only a 

subset of the feature detection problem, and as such are likely to repeatedly mischaracterize a point 

or collection of points as noise in situations where a good feature detection algorithm might 

leverage mutual information to extract information from the same data subset. For example, while 

the noise reduction algorithms here treat each scan as an independent data source, 3D feature 

detection can make point clustering decisions using the mutual information across multiple scans. 

Among all approaches, bias is imputed. All algorithms impute bias into a problem since 

solutions rely on certain assumptions about the data. The more algorithms you apply, the more 

bias you impute. Bias is not necessarily bad, but the more of it you have, the more likely it will 

diminish results. The more you subdivide a problem, the more likely you are producing a 

suboptimal result. 

With all approaches, you compound and propagate error. Most mass spectrometry 

experimental results come with statistical measures of confidence and error. However, modular 

approaches typically have no mechanism for feeding forward confidence or error. Typically, 

subsequent processes assume that previous processes were completely correct. Therefore, 

confidence is likely to be overreported, and error underreported.  

In most mass spectrometry experiments, feature detection is a necessary step. While there 

is always the possibility that some identified peaks are noise peaks, most noise peaks are present 

with low intensity [15]. As seen in Figures 7 and 8, the features that were discarded by CODA or 

significantly reduced by airPLS are high intensity, except for Figure 8 panel b (suggesting that in 

this case a noise peak was removed by airPLS). Furthermore, looking at the high level of intensity 

in Figures 6 and 7 that was reported by feature detection but not by noise reduction makes it highly 

likely that not all the features removed by noise reduction are noise peaks. The total intensity 

retained by feature detection that was discarded by noise reduction is, for most files, within a few 

orders of magnitude of the total intensity retained by noise reduction that was not clustered into 

features by feature detection algorithms. One would expect noise reduction to retain a higher total 

intensity than peak detection because by its nature, it is meant to simply reduce the intensity all 

the existing data, or in the case of CODA, retain all the noise in peaks it finds to be high-quality. 

Feature detection, by its nature, is meant to retain a much smaller subset of the data. The fact that 

the total intensities retained by noise reduction and feature detection are so similar is highly 

suggestive that a great deal of meaningful data is being discarded. 

Furthermore, CODA in particular is a very popular algorithm, and is included in popular 

mass spectrometry analysis software suites, such as OpenChrom, the Waters Empower Software, 

the PerkinElmer TurboMass software, and the ACD Labs Mass Processor software. Its treatment 

of masses as independent information slices and subsequent removal of entire masses across all 

scans reduces the ability of feature detection algorithms to find isotopic envelopes, as these can 

occur across masses. Both GridMass and XFlow found peaks in chromatograms that were 

discarded by CODA and suggests that binning the data in this way results in data loss. 

airPLS makes less dramatic changes, and it can be seen in Figure 4 that, on average, it does 

not significantly modify the data. However, in the case of individual features, the changes that it 

is making are still reducing the intensity of features detected by XFlow and GridMass such that 

they become undetectable. Figures 6 and 7 demonstrate that the total intensities found by feature 

detection that were not included in the total intensities of CODA and airPLS are within a single 
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order of magnitude of each other for most files, suggesting that they have similar performance in 

terms of discarding features that would that been discoverable otherwise. 

While feature detection by itself still runs the risk of detecting noise peaks, depending on 

desired experimental outcome such as resolution, the potential for data loss may not be worth the 

reduced noise. Additional attention to noise peak identification and mitigation is needed and it may 

be the case that improved feature detection is preferable to maintaining noise reduction as part of 

the MS data processing workflow. 
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