
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

2021

SODA: an Open-Source Library for Visualizing Biological Sequence SODA: an Open-Source Library for Visualizing Biological Sequence

Annotation Annotation

Jack W. Roddy
The University Of Montana

Travis J. Wheeler
The University Of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

 Part of the Bioinformatics Commons, Graphics and Human Computer Interfaces Commons, and the

Software Engineering Commons

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Roddy, Jack W. and Wheeler, Travis J., "SODA: an Open-Source Library for Visualizing Biological Sequence
Annotation" (2021). Graduate Student Theses, Dissertations, & Professional Papers. 11677.
https://scholarworks.umt.edu/etd/11677

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by
an authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F11677&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=scholarworks.umt.edu%2Fetd%2F11677&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/146?utm_source=scholarworks.umt.edu%2Fetd%2F11677&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.umt.edu%2Fetd%2F11677&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/11677?utm_source=scholarworks.umt.edu%2Fetd%2F11677&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

SODA - AN OPEN SOURCE LIBRARY FOR VISUALIZING BIOLOGICAL

SEQUENCE ANNOTATIONS

By

Jack W Roddy

Bachelor of Science, The University of Montana, Missoula, MT, 2019

Thesis

presented in partial fulfillment of the requirements
for the degree of

Master of Science
in Computer Science

The University of Montana
Missoula, MT

Autumn 2020

Approved by:

Ashby Kinch Ph.D., Dean
Graduate School

Travis Wheeler Ph.D., Chair
Computer Science

Doug Brinkerhoff Ph.D.
Computer Science

Cory Palmer Ph.D.
Mathematical Sciences

© COPYRIGHT

by

Jack W Roddy

2021

All Rights Reserved

ii

Roddy, Jack W, M.S., January 2021 Computer Science

SODA - an open source library for visualizing biological sequence annotations

Chairperson: Travis Wheeler

Genome annotation is the process of identifying and labeling known genetic sequences or fea-
tures within a genome. Across the various subfields within modern molecular biology, there is a
common need for the visualization of such annotations. Genomic data is often visualized on web
browser platforms, providing users with easy access to visualization tools without the need for
installing any software or, in many cases, underlying datasets. While there exists a broad range of
web-based visualization tools, there is, to my knowledge, no lightweight, modern library tailored
towards the visualization of genomic data. Instead, developers charged with the task of producing
a novel visualization must either adopt a complex system or fall back on general purpose visual-
ization frameworks. Here, I present SODA, a web-based genomic annotation visualization library
implemented in TypeScript as an abstraction over D3. SODA is designed to be lightweight and
flexible, empowering developers with the tools to easily create customized and nuanced genomic
visualizations.

iii

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor and committee chair, Travis Wheeler.

He has made my journey through graduate school remarkably enjoyable. I am endlessly grateful

to George Lesica for providing guidance on the work presented here. I’d also like to acknowledge

the support of my other committee members, Doug Brinkerhoff and Cory Palmer, both of whom

provided some of my favorite classes during my time at the University of Montana. It’s unlikely

that this project would have ever begun if it weren’t for the time I spent at the Institute for Systems

Biology with Robert Hubley, Arian Smit, and Jeb Rosen. Finally, I would like to thank every other

member of the Wheeler Lab for being so awesome and fun to work around.

iv

TABLE OF CONTENTS

COPYRIGHT . ii

ABSTRACT . iii

ACKNOWLEDGMENTS . iv

CODE LISTINGS . ix

LIST OF FIGURES . xi

LIST OF TABLES . xii

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 EXAMPLE APPLICATIONS . 4

2.1 Dfam-SODA . 4

2.1.1 Annotation of TEs . 4

2.1.2 Description of Dfam-SODA . 5

2.2 UCSC RepeatMasker Track . 6

2.2.1 Description of RepeatMasker-SODA . 7

2.2.1.1 RepeatMasker Annotation Glyphs 7

2.2.1.2 RepeatMasker Annotation Fragments 7

2.2.1.3 Compact Rendering . 9

2.2.1.4 Annotation Fragments Produced by Insertion 9

2.2.1.5 Dynamic Annotation Labels . 10

2.3 PolyA Debugging Tool . 11

2.3.1 Description of PolyA-SODA . 11

v

CHAPTER 3 IMPLEMENTATION . 14

3.1 Design Principles . 14

3.2 Technologies . 15

3.2.1 TypeScript . 15

3.2.2 SVG – Scalable Vector Graphics . 16

3.2.3 D3 – Data-Driven Documents . 17

CHAPTER 4 FEATURES . 18

4.1 Annotation Objects . 18

4.2 Chart Objects . 18

4.3 Modules . 20

4.3.1 Glyph Rendering . 20

4.3.2 Zooming . 20

4.3.3 Resizing . 20

4.3.4 Layout Management . 22

4.3.4.1 Graph Coloring Based Layout . 22

4.4 Plugins . 23

4.4.1 Click and Hover Plugins . 23

4.4.2 Tooltip Plugin . 23

4.4.3 Rule Plugin . 24

CHAPTER 5 EXAMPLE IMPLEMENTATIONS 25

5.1 TrackChart Implementation . 25

5.1.1 Instantiation . 25

5.1.2 Rendering . 26

5.1.3 The Canonical Rendering Pattern . 27

5.1.4 The Inverted Rendering Pattern . 27

5.2 Dfam-SODA Implementation . 29

5.2.1 Dfam Annotation Records as SODA Annotation Objects 29

5.2.2 DfamTrackChart Overview . 30

5.2.3 DfamChartRenderParams . 31

vi

5.2.4 DfamTrackChart Rendering Routine . 32

5.2.4.1 DfamTrackChart.preRender() . 32

5.2.4.2 DfamTrackChart.inRender() . 32

5.2.4.3 DfamTrackChart.renderAnnotations() 33

5.2.4.4 DfamTrackChart Dynamic Functionality 34

5.2.4.5 DfamTrackChart Hover Behavior . 34

5.2.4.6 DfamTrackChart Click Behavior . 35

5.2.4.7 DfamTrackChart Tooltips . 36

5.2.5 DfamAnnotationsGraphic . 36

5.2.5.1 DfamAnnotationsGraphic.render() 38

5.2.5.2 DfamAnnotationsGraphic usage . 39

5.3 RepeatMasker-SODA Implementation . 40

5.3.1 RepeatMasker Annotation Blocks . 40

5.3.2 RepeatMasker Records as SODA Annotation Objects 41

5.3.3 RMSKTrackChart Overview . 43

5.3.4 RMSKTrackChartRenderParams . 44

5.3.5 RMSKTrackChart Rendering Routine . 44

5.3.5.1 RMSKTrackChart.inRender() . 44

5.3.5.2 RMSKTrackChart.renderAligned() 45

5.3.5.3 RMSKTrackChart.renderLeftUnaligned() 46

5.3.5.4 RMSKTrackChart.renderLeftJoining() 47

5.3.5.5 RMSKTrackChart.renderLabels() 47

5.3.6 RMSKTrackChart Dynamic Functionality . 48

5.3.6.1 RMSKTrackChart.bindClick() . 48

5.3.6.2 RMSKTrackChart.bindTooltip() . 49

5.3.7 RMSKTrackChart Usage . 49

5.4 PolyA-SODA Implementation . 50

5.4.1 PolyA Confidence Scores as SODA Annotation Objects 50

5.4.2 PolyAHeatmapChart Overview . 52

vii

5.4.3 PolyAHeatmapRenderParams . 52

5.4.4 PolyAHeatmapChart Rendering Routine . 53

5.4.5 PolyAHeatmapChart.inRender() . 53

5.4.6 PolyAHeatmapChart.renderHeatmap() . 53

5.4.7 PolyAHeatmapChart.renderLabels() . 54

5.4.8 PolyA-SODA Usage . 54

CHAPTER 6 DISCUSSION . 56

6.1 Future Work . 56

6.2 Conclusion . 56

BIBLIOGRAPHY . 57

viii

CODE LISTINGS

1 An example of how type parameters work in TypeScript . 16

2 The TrackChartConfig interface definition. 26

3 The TrackChartRenderParams object definition. 27

4 An example of using the inverted rendering pattern with the TrackChart. 28

5 The custom Annotation object for Dfam records . 30

6 An overview of the definition of the DfamTrackChart class 31

7 An overview of the definition of the DfamChartRenderParams 31

8 The DfamTrackChart preRender() routine . 32

9 The DfamTrackChart inRender() routine . 33

10 The DfamTrackChart renderAnnotations() routine . 33

11 The DfamTrackChart setGlyphDynamics() routine . 34

12 The DfamTrackChart bindHover() routine . 34

13 The DfamTrackChart bindClick() routine . 35

14 The DfamTrackChart bindTooltip() routine . 36

15 An overview of the definition of the DfamAnnotationsGraphic class 37

16 An overview of the definition of the DfamAnnotationsGraphicConfig 38

17 The DfamAnnotationsGraphic rendering routine. 38

18 An example of how the DfamAnnotationsGraphic is used in the Dfam webcode 39

19 An overview of the RMSKAnnotation class implementation. 42

20 The custom TrackChart extension class . 43

21 The implementation of the RMSKTrackChartRenderParams. 44

22 The RMSKTrackChart inRender() implementation . 45

23 The RMSKTrackChart renderAligned() implementation . 45

ix

24 The RMSKTrackChart renderLeftUnaligned() implementation 46

25 The RMSKTrackChart renderAligned() implementation . 47

26 The RMSKTrackChart renderLabels() implementation . 47

27 The RMSKTrackChart setGlyphDynamics() implementation 48

28 The RMSKTrackChart bindClick() implementation . 48

29 The RMSKTrackChart bindTooltip() implementation . 49

30 Example usage of the RMSKTrackChart . 49

31 The definition of the PolyAHeatmapCell class. 51

32 The definition of the PolyAHeatmapLabel class . 51

33 The definition of the PolyaHeatmapChart class . 52

34 The definition of the PolyaHeatmapChart class . 52

35 The PolyAHeatmapChart inRender() implementation . 53

36 The PolyAHeatmapChart renderHeatmap() implementation 53

37 The PolyAHeatmapChart renderLabels() implementation . 54

38 An example of how the entire PolyA-SODA debugging tool is used 54

x

LIST OF FIGURES

Figure 2.1 The hierarchy of Dfam classification . 5

Figure 2.2 The Dfam-SODA visualization . 6

Figure 2.3 RepeatMasker-SODA rectangle glyphs . 8

Figure 2.4 RepeatMasker-SODA Annotation Fragments 8

Figure 2.5 RepeatMasker Glyph Expansion . 9

Figure 2.6 Insertion and vertical layout . 10

Figure 2.7 RepeatMasker-SODA Dynamic Labels . 10

Figure 2.8 The RepeatMasker-SODA visualization . 11

Figure 2.9 The PolyA-SODA visualization . 13

Figure 3.1 A comparison between standard and SVG images 17

Figure 5.1 A simple Trackchart visualization . 29

Figure 5.2 RepeatMasker-SODA block types . 42

Figure 5.3 Confidence scores run-length encoding . 51

xi

LIST OF TABLES

4.1 A description of Annotation objects in the SODA core. 19

4.2 A description of Chart objects in the SODA core. 19

4.3 A description of the glyphs available in the rendering module. 21

5.1 A description of the annotation block types in RepeatMasker-SODA. 41

xii

1

CHAPTER 1 INTRODUCTION

Genome annotation is the process of identifying and labeling known genetic sequences or features

within a genome. Across the various sub-fields within modern molecular biology, there is a common

need for the visualization of such annotations. Annotation visualizations can be placed into two

broad categories: genome browsers, which are designed to support on-demand visualizations of

queries made to large-scale annotation databases; and localized visualizations, in which a one-off

figure is produced, typically from a local data file. The work presented in this thesis is concerned

with visualizing genomes in linear context; many bacterial genomes are circular, and perhaps best

visualized in that context, but that is beyond the scope of this work. There is often a great deal

of similarity in the visual content necessary to effectively visualize annotations that emerge from

distinct datasets. Almost ubiquitously, linear genomic visualizations are plotted in two dimensions.

Along the horizontal axis, individual annotations are plotted as glyphs that span the range of

genomic coordinates that they characterize. Usually, a difference in the vertical placement of two

annotations is used to prevent the visual overlap of features, but in some cases, it can have semantic

meaning.

Typically, genomic visualization applications are built on web platforms, making them accessible

to users without the need to install software. However, there exists no web-based library tailored

for producing genomic visualizations. As such, developers have limited options when tasked with

producing a novel visualization: they can either attempt to adapt an existing framework or fall back

on general-purpose web visualization tools. Both avenues have a significant drawback in the time

cost of development, and the adaptation route suffers from a lack of flexibility and likely requires

the adoption of a technology stack. This has left a need for a lightweight and flexible library that

equips developers with the tools to easily and efficiently create dynamic and interactive genomic

visualizations.

2

Genome browser services, such as the UCSC Genome Browser [1], the ENSEMBL Genome

browser[2], and JBrowse[3] leverage the commonality across annotation data to great effect: they

provide a rich, cohesive environment for visualizing and comparing annotations sourced from various

databases. Typically, a genome browser implements several data tracks, which are essentially

a visualization pattern tailored to a specific type of annotation. Since tracks share the same

horizontal coordinate space, a group of tracks can be stacked vertically to simultaneously display

annotations from different databases that are tied to the same region of the genome. The major

genome browsers are all open source, and have varying levels of support for visualizing user data

that is not officially provided by the platform. However, the software environments that serve as

their foundation are complex (and, in some cases, outdated), and they are not flexible in the face

of novel use cases.

There exists also a number of single-purpose tools for the generation of static annotation vi-

sualizations, such as DnaPlotLib[4] and DnaFeaturesViewer[5]. Instead of providing an interactive

environment that loads and visualizes data in response to database queries, these tools generally

produce a localized, one-off figure from user-supplied data. While they can supply a turnkey solu-

tion out of the box, tools in this category are inherently limited to their intended use-cases, and

figure customization outside a limited scope is often infeasible.

Here, I present SODA, a modern, web-based software library that aims to provide a general-

ized and modular framework for the generation of dynamic and interactive genomic visualizations.

Rather than a tool in and of itself, SODA is a library with which to build visualization tools.

SODA provides developers with a toolkit that lends itself to the creation of genome browsers,

single-purpose tools, or something in between. The visualizations produced by SODA can be easily

integrated with web pages, and it is simple to define interactions between a SODA visualization

and other page features. The SODA API is simple and flexible, exposing both high and low-level

features. Developers can easily and quickly create dynamic visualizations without a deep under-

standing of SODA internals. On the other hand, experienced developers can assume a considerable

level of control over the fine details of the rendering process.

3

This purpose of this thesis is to present readers with an understanding of the full scope of

what SODA is capable of, and a general idea of the amount and style of code that needs to be

written to produce a visualization. It is not intended as a practical developer’s guide, and, as

such, may lack descriptions of some of the finer details of the SODA API. Readers may want

to supplement this document with the comprehensive SODA API documentation, which can be

found at https://sodaviz.readthedocs.io/. SODA is released as open source software

under the BSD-3 licence, and is available for download on the NPM package registry (https:

//npmjs.com/package/@traviswheelerlab/soda), and the full source code can be found

at https://github.com/TravisWheelerLab/soda.

https://sodaviz.readthedocs.io/
https://npmjs.com/package/@traviswheelerlab/soda
https://npmjs.com/package/@traviswheelerlab/soda
https://github.com/TravisWheelerLab/soda

4

CHAPTER 2 EXAMPLE APPLICATIONS

Details of SODA’s implementation and features are described in Chapters 3 and 4, respectively.

To first provide context for those details, this chapter showcases three applications that are imple-

mented using the library. Each tool is an interactive and dynamic visualization of Transposable

Element (TE) annotations. Collectively, these tools demonstrate utilization of the entirety of the

current SODA feature set. While they are all similar by virtue of visualizing essentially the same

type of data, each tool presents that data in a different context. In chapter 5, the implementation

of each application is explored in detail.

2.1 Dfam-SODA

Dfam[6] is an open access database of Transposable Elements (TE). One of the features on the

Dfam website allows users to view a visualization for the annotation of TEs in a relatively short (up

to 100,000 base pairs) range on a chromosome. The previous implementation of the visualization

was effective, but simple and static. The maintainers of Dfam expressed an interest in replacing it

with a SODA-based visualization to improve its functionality and make the process of updating it

more streamlined. I took this as an opportunity to test the integration of SODA-based technologies

into a real-world website technology stack. Dfam-SODA has now replaced the previous visualization

on the live Dfam website.

2.1.1 Annotation of TEs

The bulk of the annotations underlying the Dfam-SODA visualization are the result of com-

paring a genome to a database of known TE elements, which are broadly categorized in a familial

5

hierarchy. The annotations are supplemented with annotation of simple tandem repeats (repetitive

sequence such as ‘atgatgatgatg’). Figure 2.1 depicts the Dfam classification hierarchy. A particular

region of the genome will be annotated as either belonging to one of the TE families in the database,

belonging to a tandem repeat class, or having no annotation.

(I) TE hierarchy

(II) Tandem repeats

Figure 2.1: A representation of the hierarchy of Dfam classifications. At (I), the families of TEs are shown, and
tandem repeats are shown at (II).

2.1.2 Description of Dfam-SODA

In the visualization, each annotation record is represented by a rectangle that is color coded by

the family of the TE it represents. There are three core components of the Dfam-SODA visualiza-

tion, stacked vertically in the following order:

1. The annotation of TE’s on the forward strand of the chromosome

2. The annotation of simple tandem repeats

3. The annotation of TE’s on the reverse strand of the chromosome

Each of the SODA components is configured with an informational tooltip and a highlight

effect on hovered glyphs. Immediately following the core of the visualization are two non-SODA

based components: a legend describing the colors used in the visualization and a table with a

6

row describing each annotation. Finally, there is interactive behavior between the SODA-based

components and the table: when a glyph is clicked by the user, the table scrolls to and highlights

the row corresponding to the clicked glyph.

(I) Clicked glyph (II) Tooltip

(III) Highlighted table entry

(a) Forward strand
annotations

(b) Simple repeat
annotations

(c) Reverse strand
annotations

SODA
components

Non-SODA
components

Figure 2.2: A screenshot of the Dfam-SODA visualization embedded in the Dfam website. The core of the visualization
is shown at (a), (b), and (c). In the screenshot, the glyph at (I) was hovered and clicked, resulting in the tooltip at
(II), and the highlighted table entry at (III).

2.2 UCSC RepeatMasker Track

The UCSC genome browser[1] is a popular genome browser that houses visualization tracks for

dozens of kinds of genomic annotation. The tracks are independently configured and submitted by

various groups, and they can vary greatly in visual complexity. While the UCSC genome browser

is an effective tool, it is built with dated technologies and can provide a both a frustrating user

and developer experience. The UCSC rendering backend is written in C++, and it functions by

producing static images on the server side and uploading those images to the client. As a result,

the browser is slow to respond to user input and provides no dynamic interaction.

The RepeatMasker track in the UCSC browser visualizes the annotation of TE’s and other

7

repetitive DNA features, and is arguably one of the most nuanced and information-dense tracks

in the UCSC browser. As a means to test the ease of development and performance of a SODA

visualization of complex data, we recreated the visual aspects of the UCSC RepeatMasker track,

supplemented with improved dynamic functionality.

2.2.1 Description of RepeatMasker-SODA

While RepeatMasker-SODA largely visualizes the same data as Dfam-SODA, it provides ad-

ditional visual indicators to represent complex relationships that are not present in the Dfam

annotations.

2.2.1.1 RepeatMasker Annotation Glyphs

Like in Dfam-SODA, the annotation of TEs and simple repeats are represented with rectangle

glyphs. The rectangles in RepeatMasker-SODA, however, are different in the following three ways:

1. The outline, rather than the entire glyph, is colored according to the TE family color scheme.

2. The interior of the rectangles are shaded in grayscale to indicate the inferred biological age

(determined by the quality of the sequence alignment that defines the annotation) of the

annotated feature. Younger features appear darker, while older features appear lighter.

3. The interior of the rectangles are textured with a repeating chevron pattern to indicate which

chromosome strand the feature was identified on. Annotations on the forward strand have a

chevron pattern that points to the right, and the reverse strand patterns point left.

An example of this is shown in Figure 2.3.

2.2.1.2 RepeatMasker Annotation Fragments

Often, a RepeatMasker annotation represents a fragment of a known TE sequence. Two reasons

that this can occur are:

8

Darker shading: younger feature
Left-facing chevrons: reverse strand

Lighter shading: older feature
Right-facing chevrons: forward strand

Different outline colors:
different TE families

Figure 2.3: An example of RepeatMasker-SODA rectangle glyphs.

1. TE features are often copied, and the copy is placed in another location in the genome.

Sometimes, this process yields only a fragment of the original.

2. Large-scale deletions can occur, leaving behind fragments of originally full-length features.

When a RepeatMasker-SODA glyph represents a sequence fragment, dashed horizontal lines are

rendered around it to project the portion(s) of the TE sequence that is missing from the fragment.

An example of this is shown in Figure 2.4.

(II) Unrepresented
sequence

(I) Annotation fragment

Figure 2.4: An example of an annotation fragment (I) surrounded by the projections of the portion of the known TE
sequence that is missing from the fragment at (II).

9

2.2.1.3 Compact Rendering

In the RepeatMasker-SODA visualization, some sequence projections that flank rectangles are

excessively long. To condense the visualization, they are rendered by default in a compact form.

However, if a rectangle is clicked by the user, they will expand to their full length. If the rectangle

is clicked a second time, the flank will collapse back to its compact length. For an example of this

functionality, refer to Figure 2.5.

(I)

(II)

Glyph clicked

Figure 2.5: An example of the RepeatMasker glyph expansion. A compact glyph is shown at (I). After it is clicked
by the user, it expands to the length shown at (II).

2.2.1.4 Annotation Fragments Produced by Insertion

The TE replication process described earlier sometimes results in the placement of a TE copy

inside another TE that was already at the insertion site, fragmenting the TE that was already

there. These situations add two layers of complexity to the RepeatMakser-SODA visualization:

1. When we infer that a feature has been fragmented by an insertion event, the fragments are

joined with angled lines.

2. When we infer that a feature is itself an insertion, the glyph is always placed vertically as

close as possible to the feature it fragmented. Inserts are never placed above the features

they fragmented.

For an example of this, refer to Figure 2.6.

10

(I) (II)

(a) (b)

Figure 2.6: A depiction of two insertions into a TE feature. The blue features at (a) and (b) inserted into the green
feature. At (I) and (II) are the angled lines to indicate that the three green fragments were originally joined.

2.2.1.5 Dynamic Annotation Labels

A dynamic label is placed immediately to the left of each annotation glyph. As the user zooms

in and out, the labels automatically adjust the level of text detail they display depending on how

much space is available. For an example of this, refer to Figure 2.7

(I)

(II)

Zoom in

Figure 2.7: An example of the dynamic labels in RepeatMasker-SODA. At (I), the label is restricted by another glyph
and displays shorter length text. After zooming in, there is more space and the full label is shown at (II).

11

Figure 2.8: A screenshot of the RepeatMasker-SODA visualization.

2.3 PolyA Debugging Tool

The Wheeler lab has recently developed PolyA (manuscript in prep), a tool that adjudicates

annotations by computing position specific confidence scores for competing alignments to the same

region in a genome. For debugging purposes, we found that it was informative to view preexisting

annotation (produced by the ProcessRepeats tool in the RepeatMasker [7] software), adjudicated

annotation (produced by PolyA), and a heatmap of relevant confidence scores in a multi-track

visualization. To aid in the development of PolyA and test the capabilities of SODA in a multi-

track visualization context, we built a SODA-based PolyA output visualizer.

2.3.1 Description of PolyA-SODA

The development of PolyA is motivated specifically by the intention to adjudicate TE annota-

tion, so the PolyA-SODA debugging tool depends on the previously described RepeatMasker-SODA

to visualize both preexisting and adjudicated annotations. The PolyA-SODA visualization has three

tracks:

12

1. A RepeatMasker-SODA track displaying current annotations from the UCSC RepeatMasker

database

2. A RepeatMasker-SODA track displaying the PolyA adjudicated annotations for the same

region

3. A track that displays a heatmap of the confidence scores for competing alignments in the

same region

In addition, we added a vertical rule that spans the height of the visualization and follows the

user’s mouse to simplify the comparison of annotation across tracks. A tooltip that indicates the

position to the nearest base pair is fixed to the rule.

13

(b) PolyA
annotations

(a) UCSC
annotations

(b) PolyA
confidence

scores

(IV) Rule tooltip

(III) Vertical rule(I) Annotation

(II) Confidence scores

Figure 2.9: A screenshot of the PolyA-SODA debugging visualization. The RepeatMasker-SODA tracks are shown
at (a) and (b), and the PolyA confidence score heatmap is shown at (c). An annotation is pointed out at (I), with
the corresponding confidence scores shown at (II). The vertical rule is shown at (III), with the tooltip indicating its
position in base pairs shown at (IV).

14

CHAPTER 3 IMPLEMENTATION

This chapter provides a description of SODA’s implementation and design details. As men-

tioned previously, SODA mostly distinguishes itself from other accessible genomic visualization

options by virtue of being a library that aims to support the visualization needs of the myriad of

genomics-focused web services. SODA provides developers with a modular toolkit to ease the de-

velopment of visualization applications that may not follow any established use case. SODA makes

few assumptions about client data and the way in which it should be visualized, and it leverages

that principle to allow a developer fine-grained control over the details of a visualization.

3.1 Design Principles

The main design principles of SODA are as follows:

1. It should be a modular library built on top of modern web technologies to ease development

of visualization applications.

2. It should make few assumptions about client data and the way it should be visualized.

3. It should be capable of producing interactive and dynamic visualizations.

4. It should be lightweight, and its use should not require either the understanding or adoption

of a complex system.

5. It should be easy to integrate in websites, and should support interaction with non-SODA

website features.

15

6. It should be nonrestrictive, providing flexibility and fine-grained control for extensive cus-

tomization.

7. It should provide intuitive implementation patterns that can be used as development blueprints

and easily adapted to various use cases.

3.2 Technologies

SODA is built on top of modern web technologies, each of which is addressed in the following

sections. Each section includes brief descriptions of a technology, the rationale for its use, and an

explanation of how it used.

3.2.1 TypeScript

TypeScript is an open source programming language that extends JavaScript (the most widely

used web programming language), by providing the addition of static type definitions. Because

TypeScript code is compiled to JavaScript for execution, it can be interwoven seamlessly with

JavaScript code. However, this also means that it cannot strictly enforce types at runtime. Instead,

it provides a safety net during application development by helping to prevent type errors before

any code is ever executed. TypeScript type definitions can be written to describe the behavior

and structure of arbitrary JavaScript code. This allows the TypeScript compiler to perform type

checking and inference on external JavaScript dependencies of a TypeScript project.

In general, type definitions in code can greatly improve both the readability and maintainability

of a software product. Because of this, SODA is implemented entirely in TypeScript, and developers

are strongly encouraged to use TypeScript when developing SODA-based applications. In partic-

ular, SODA makes extensive use of the concept of type parameters to propagate information of

client-written SODA extensions throughout core SODA features. While this doesn’t equip SODA

with features that could not be produced with JavaScript code, it reduces the risk of misusing

SODA features. Refer to code listing 1 for a simple example of how type parameters work, and to

Chapter 5 for examples of actual SODA TypeScript code.

16

Code Listing 1: An example of how type parameters work in TypeScript

1 class classA {
2 propertyA: string;
3 }
4

5 class classB {
6 propertyB: number;
7 }
8

9 // An interface with two type parameters, A and B.
10 interface InterfaceC<A extends classA, B extends classB> {
11 // An anonymous callback function property that uses
12 // the type arguments to type its own parameters
13 callback: (a: A, b: B) => void;
14 }
15

16 // An instantiation of the interface with type parameters.
17 // Here, we provided classA and classB as the parameters, but,
18 // in principle, we could supply extensions of those classes
19 let c: InterfaceC<classA, classB> = {
20 // To properly instantiate this interface, we have to
21 // supply the callback function property
22 callback: (a, b) => {
23 // Normally, strict TypeScript would complain about parameters
24 // a and b being ambiguously typed.
25 // In this case, the TypeScript compiler is smart enough
26 // to propagate the type arguments onto the parameters
27

28 // This is valid because the compiler infers that a is of type ClassA
29 console.log(a.propertyA);
30 // This is valid because the compiler infers that b is of type ClassB
31 console.log(b.propertyB);
32 }
33 };

3.2.2 SVG – Scalable Vector Graphics

Scalable Vector Graphics (SVG) is a modern vector image format that is designed for use in web

browsers. Vector images are defined by points in the Cartesian plane, which are then joined together

by lines and curves when the image is actually rendered (see https://en.wikipedia.org/

wiki/Vector_graphics. This allows SVG images to be programatically defined in Extensible

Markup Language (XML) and rendered crisply in a browser at arbitrary zoom levels. Complex SVG

based visualizations can be less performant than those based on other web rendering technologies

https://en.wikipedia.org/wiki/Vector_graphics
https://en.wikipedia.org/wiki/Vector_graphics

17

(Canvas, WebGL). However, they are generally easier to implement and test, and, for this reason,

SODA visualizations are rendered entirely as SVG images.

(a) Standard raster image
(JPEG, PNG, BMP, TIFF, etc.)

(b) SVG image

Figure 3.1: A scalability comparison between standard image formats and SVG images. (source: https://en.
wikipedia.org/wiki/Scalable_Vector_Graphics)

3.2.3 D3 – Data-Driven Documents

D3 is a popular data visualization library implemented in JavaScript. At its core, D3 provides

a set of tools to make it easy to manipulate and bind data to a browser’s DOM elements, which

control the visual aspects in a webpage (see https://en.wikipedia.org/wiki/Document_

Object_Model for more information). D3 is powerful and flexible, but it has a reputation for

having a steep learning curve. SODA’s rendering module is an abstraction over D3 and it provides

a straightforward API for rendering annotations as SVG images.

https://en.wikipedia.org/wiki/Scalable_Vector_Graphics)
https://en.wikipedia.org/wiki/Scalable_Vector_Graphics)
https://en.wikipedia.org/wiki/Document_Object_Model
https://en.wikipedia.org/wiki/Document_Object_Model

18

CHAPTER 4 FEATURES

This chapter presents a description of the core components of SODA and the ways in which

they interact with one another. For more detailed information about the SODA API, refer to the

library documentation (found at https://sodaviz.readthedocs.io/).

4.1 Annotation Objects

Annotation objects hold the data necessary to place the glyphs that represent an annotation

within the coordinate space of a Chart (a Chart is an object in which Annotations are rendered, see

Section 4.2). The base Annotation implementation stores only positional information and a unique

identifier field. SODA assumes that horizontal coordinates are in reference to genomic positions,

while vertical coordinates simply place an annotation into different rows/bins in a Chart. Most

often, vertical placement of glyphs in a genomic visualization has no semantic meaning, and any

intentional choice in vertical placement is motivated by an attempt to condense the visualization or

preserve visual clarity. For specialized visualizations that represent auxiliary information (e.g. gene

expression, sequence alignment quality) in an annotation, developers are intended to extend the

Annotation class to include any data necessary to augment the rendered glyphs. The Annotation

classes available in the SODA core are described in Table 4.1. For more detailed descriptions, refer

to https://sodaviz.readthedocs.io/en/latest/annotations.html.

4.2 Chart Objects

When rendering, the glyphs that represent annotations are plotted inside of a Chart object.

The core components of a Chart are the DOM element in which annotations are drawn, and

https://sodaviz.readthedocs.io/
https://sodaviz.readthedocs.io/en/latest/annotations.html

19

Object Description

Annotation The base Annotation class from which all other Annotation
classes are derived

OrientedAnnotation Adds an orientation field, which is most likely used to indi-
cate chromosome strand

CompactAnnotation Supports two sets of horizontal positioning fields so that the
glyph can be dynamically expanded and compacted

TextAnnotation Used for textual glyphs

Table 4.1: A description of Annotation objects in the SODA core.

a scale function that translates semantic coordinates into the relative coordinate space of the

Chart. SODA provides an abstract base Chart class, along with some functional extended charts

to facilitate the straightforward generation of common genomic visualization patterns. For heavily

customized visualizations, developers are intended to extend the Chart class. The Chart classes

available in the SODA core are described in table 4.2. For more detailed descriptions, refer to

https://sodaviz.readthedocs.io/en/latest/charts.html.

Object Description

ChartBase The abstract base Chart class from which all other charts
should be derived. It implements the functionality to create,
embed in the browser, and manage the SVG viewport in
which glyphs are rendered.

TrackChart A Chart class that aims to mirror the basic functionality of
a genome browser track. In particular, it comes configured
to interface with the zooming and resizing SODA modules.

AxisChart A Chart class that is used to render a horizontal Axis. It
is intended to be added alongside and synchronized with
another Chart object to display the genomic coordinates of
a visualization. For examples of how this is done in practice,
refer to chapter 2.

Table 4.2: A description of Chart objects in the SODA core.

https://sodaviz.readthedocs.io/en/latest/charts.html

20

4.3 Modules

4.3.1 Glyph Rendering

SODA provides a module that can be used to render glyphs to represent Annotation objects.

The module can be used to generate rectangles, lines, arrows and text. Rendered glyphs can be

customized with a configuration API in which glyph attributes can either be set directly, or by

callback functions that implicitly receive references to the represented Annotation object and the

target Chart. The glyphs available in the SODA rendering module are described in Table 4.3. For

a more detailed description of the rendering API, refer to the documentation appendix.

Internally, SODA maintains a data structure that maps each Annotation to its representative

glyph’s DOM element. Whenever an Annotation is used to render a glyph, SODA updates the

internal map automatically. The internal map is exposed to developers to make it easy to access

the DOM elements.

4.3.2 Zooming

The zoom module allows developers to easily add interactive horizontal zooming and panning

to a chart. When configuring a visualization with multiple charts, a ZoomController object auto-

matically handles the synchronization of zoom level across all of its registered charts. Upon a zoom

event, a zoom behavior function, which utilizes a scaling function and the coordinate data stored

within a glyph’s bound Annotation object, is applied to each glyph to transform and re-render

the glyph. Any glyphs rendered with the primitive rendering API will automatically be assigned a

default zoom behavior. Alternatively, the API allows the default zoom behaviors to be overwritten

with arbitrary client-defined functions.

4.3.3 Resizing

The resize module allows developers to easily configure how a Chart will be re-rendered in

response to resize event. When configuring a visualization with multiple charts, a ResizeController

can be configured to handle the synchronized resizing of all of its registered charts. The TrackChart

21

Glyph Description Example

Rectangle A simple rectangle. By de-
fault, it will cover the full
width of an Annotation and
the full height of a row in a
Chart.

Line A simple line. There are con-
venience functions to render
vertical and horizontal lines,
but an arbitrary line may be
rendered if the endpoint coor-
dinates are provided.

Chevron Rectangle A rectangle with a chevron
pattern background. By de-
fault, it will cover the full
width of an Annotation and
the full height of a row in a
Chart.

Chevron Line A horizontal line with a
chevron pattern affixed to it.
By default, it will cover the
full width of an Annotation
and the full height of a row
in a Chart.

Text A dynamic text label. It can
be configured to display dif-
ferent length text depending
on how much room it has in
the coordidnate space of the
Chart it’s rendered in.

Table 4.3: A description of the glyphs available in the rendering module.

class provides a default resize behavior that maintains the original view range in terms of semantic

coordinates, but a developer is free to implement custom behavior.

22

4.3.4 Layout Management

In general, the coordinate spaces of genomic annotations are one-dimensional. Often times, a

dataset will contain collisions in this space, which would result in a visual overlap in the figure. A

developer is free to manually or programmatically define their own layout, but SODA also provides

a module to optimize the layout of rendered annotations to conserve vertical screen real estate

while preventing any horizontal overlap.

4.3.4.1 Graph Coloring Based Layout

The layout module achieves this outcome by casting layout in terms of the classic computational

problem of “graph coloring”. The annotation overlap problem can be reduced to graph coloring in

the following way:

1. Let each annotation be represented as a vertex in a notional graph G.

2. For each pair of vertices (v,w) in G, add an edge connecting v and w if the annotations

associated with v and w are overlapping.

With such a graph in place, a proper coloring of the graph (in which no two vertices share the

same color) indicates a non-overlapping layout of the annotations (all vertices sharing a color will

see their corresponding annotations placed at the same vertical position in the visualization). Since

edges are defined between overlapping annotation vertices, no two annotations that overlap will be

placed at the same vertical position. A layout defined in this way will use a number of rows equal

to to the number of colors.

Graph coloring is a well known NP-complete problem, and, as such, is computationally difficult

to solve optimally. However, the graphs defined in this case are a special type of graph known as

interval graphs (see https://en.wikipedia.org/wiki/Interval_graph), which are col-

orable in polynomial time. SODA’s layout module uses a simple algorithm (see Algorithm 1) that

is designed to color interval graphs.

https://en.wikipedia.org/wiki/Interval_graph

23

Algorithm 1: The interval graph coloring algorithm

verts = vertices sorted by annotation start coordinate;
colors = 0;
while length(verts) > 0 do

v = verts.pop();
vColor = 0;
for c = 0..colors do

for each w ∈ verts that has been colored with c do
if v overlaps with w then

vColor++;
break;

end

end
break;

end
colors = max(colors, vColor);
v.color = vColor;

end

4.4 Plugins

4.4.1 Click and Hover Plugins

The Click and Hover plugins allow developers to bind any number of arbitrary callback functions

to be executed whenever a glyph is clicked or hovered. The callback functions implicitly receive

references both to the glyph’s DOM element and its respective Annotation object. This way, the

callback functions can easily be defined to modify the fields on the Annotation object and also to

instigate some sort of visual change in the glyph.

4.4.2 Tooltip Plugin

The Tooltip plugin makes use of the Hover plugin to allow developers to cause a text tooltip

to appear next to a glyph. The Tooltip configuration API allows developers to define callback

functions to dynamically specify the style and text for a tooltip from fields on the glyph’s underlying

Annotation object.

24

4.4.3 Rule Plugin

The rule plugin allows developers to add a sliding vertical rule to any Chart. By default, the

rule position is bound to the location of the mouse. Optionally, a tooltip displaying the semantic

coordinate position of the rule can be attached to the rule. If there are multiple Charts with rules

in a visualization, the rule positions can optionally be synchronized.

25

CHAPTER 5 EXAMPLE IMPLEMENTATIONS

In this chapter, I provide an in-depth exploration of the implementations of the examples shown

in Chapter 2. This is intended to showcase SODA’s feature set and present the design patterns

that emerged during its development. Each of the applications builds upon the TrackChart class

and the design pattern that it encourages, and collectively they provide a complete demonstration

of all of SODA’s features.

5.1 TrackChart Implementation

In this section, we will describe the implementation of the TrackChart class, which each of

the example SODA applications is built on top of. The TrackChart class is largely designed to

fit the basic needs of a typical genomic visualization track. It is configured to automatically

support horizontal zooming, panning, and resizing, and it provides a blueprint for the canonical

SODA glyph rendering pattern. The TrackChart can be instantiated directly and used to render

simple visualizations, but this is a somewhat awkward approach that is probably best used for

experimentation or rough prototyping. Instead, developers building a practical SODA application

are encouraged to implement an extension of the TrackChart class.

5.1.1 Instantiation

The TrackChart class itself extends the abstract ChartBase class, and, as a result, inherits

the basic functionality to generate and manage an SVG viewport in the browser. For a detailed

description of the API for the ChartBase and TrackChart classes, refer to the documentation at

https://sodaviz.readthedocs.io/en/latest/charts.html. A TrackChart is initial-

https://sodaviz.readthedocs.io/en/latest/charts.html

26

ized with a TrackChartConfig object (see code listing 2), which houses all initial configuration

options. The TrackChart constructor uses the selector property from the config to locate the DOM

container for the visualization, and then creates the SVG viewport. Once a TrackChart has been

initialized, glyphs may be rendered inside of its SVG viewport.

Code Listing 2: The TrackChartConfig interface definition.

1 export interface TrackChartConfig extends ChartConfig {
2 // these properties are inherited from ChartConfig
3 // and define the SVG viewport attributes
4 selector: string;
5 binHeight?: number;
6 height?: number;
7 width?: number;
8 // these properties are unique to TrackChartConfig
9 // and define the zooming and panning constraints

10 scaleExtent?: [number, number];
11 translateExtent?: (chart: TrackChart<any>) =>
12 [[number, number], [number, number]];
13 }

5.1.2 Rendering

The TrackChart class inherits a render() method from the abstract ChartBase class which calls

three other required methods:

• preRender() – A method that adjusts Chart properties to accommodate a new render. In

the TrackChart, this updates the coordinate translation scale and adjusts the SVG viewport

height to fit the glyphs that will be rendered.

• inRender() – An abstract method that should use the SODA rendering module to draw glyphs.

• postRender() – A method that runs any routines that need to be executed after the rendering

takes place. In the TrackChart, this simply alerts the ZoomController and plugins if they are

registered to the Chart.

27

The default render() implementation expects a TrackChartRenderParams object (see Code

Listing 3) as an argument.

Code Listing 3: The TrackChartRenderParams object definition.

1 export interface TrackChartRenderParams extends ChartRenderParams {
2 // these properties are inherited from ChartRenderParams
3 // and they define the semantic width of the current render
4 queryStart: number;
5 queryEnd: number;
6 // this property is unique to TrackChartRenderParams
7 // and it defines the height of the visualization
8 maxY?: number;
9 }

5.1.3 The Canonical Rendering Pattern

In the canonical rendering pattern, a developer implements an extension of the TrackChart

class, in which a custom rendering routine is defined within the inRender() method. The extended

class can retain the default render() function parameters, but it will more than likely be prudent for

the developer to similarly extend the default TrackChartRenderParams class to include annotation

and auxiliary data. An implementation of the inRender() method is necessary for the pattern, but

the developer can optionally overwrite the preRender() and postRender() methods as well. Detailed

examples of the canonical rendering pattern can be found in the following sections describing the

implementations of each of the example SODA applications.

5.1.4 The Inverted Rendering Pattern

In the inverted rendering pattern (which is more suited for prototyping, experimentation, or

possibly very simple practical applications), the developer defines a rendering routine external

to the TrackChart class. This pattern is slightly awkward, but has advantage of not requiring

the implementation of an extension of the TrackChart class. First, the developer instantiates

a base TrackChart object. Then, the TrackChart is prepared by calling the render() method

28

with arguments to appropriately adjust the dimensions of the SVG viewport and the coordinate

translation scale. Finally, the developer can use the glyph rendering module to render Annotation

objects inside the TrackChart. Refer to the following code listing for an example of this process.

Code Listing 4: An example of using the inverted rendering pattern with the TrackChart.

1 let n = 10;
2 let exampleWidth = 1000;
3

4 // first, we'll make some simple Annotation objects
5 let ann: soda.Annotation[] = [];
6 for (let i = 0; i < n; i++) {
7 let id = i.toString();
8 let annConf: soda.AnnotationConfig = {
9 id: id,

10 w: (exampleWidth/n),
11 x: i * (exampleWidth/n),
12 y: i,
13 h: 0,
14 };
15 ann.push(new soda.Annotation(annConf));
16 }
17

18 // create an AxisChart and a TrackChart
19 let axis = new soda.AxisChart({selector: '#axis-chart'});
20 let chart = new soda.TrackChart({selector: '#track-chart'});
21

22 // define simple render parameters
23 let renderParams: soda.TrackChartRenderParams = {
24 queryStart: 0,
25 queryEnd: exampleWidth,
26 maxY: n
27 };
28

29 // call render() on each Chart to prepare it for the glyphs
30 axis.render(renderParams);
31 chart.render(renderParams);
32

33 // we'll use a d3 scale to help us pick the rectangle colors
34 let colorScale = d3.scaleOrdinal(d3.schemeCategory10);
35

36 // define a simple rectangle config
37 let rectConf: soda.RectangleConfig<soda.Annotation, soda.TrackChart> = {
38 selector: 'ann',
39 // we'll use a callback to set the rectangle colors
40 fillColor: (d: soda.Annotation) => colorScale(d.id)
41 };
42

43 // finally, we'll use the glyph module to draw the rectangles
44 soda.rectangleGlyph(chart, ann, rectConf);

29

Figure 5.1: The resulting visualization using the inverted rendering pattern with the TrackChart.

5.2 Dfam-SODA Implementation

Dfam-SODA is made up of three components, each of which is an instantiation of a Dfam-

TrackChart, an extended TrackChart class. The three components are encapsulated in a driver

class, DfamAnnotationsGraphic, which instantiates a ZoomController, a ResizeController, an Ax-

isChart, and a DfamTrackChart for each of the core components. Then, it translates the results of

a query to the Dfam API (https://www.dfam.org/help/api) into SODA Annotation objects

and feeds the Annotations into the correct DfamTrackChart’s rendering routine.

Dfam-SODA is an open source application, and its full source code can be found at https:

//github.com/TravisWheelerLab/dfam-soda.

5.2.1 Dfam Annotation Records as SODA Annotation Objects

The Dfam API returns the results of a query to the TE annotation database as a JSON string.

Since the Dfam Annotation records do not conform to a common annotation format, a simple

parsing routine was written to translate the records into an extended SODA Annotation object.

For details on the definition of the DfamAnnotation class, refer to Code Listing 5.

https://www.dfam.org/help/api
https://github.com/TravisWheelerLab/dfam-soda
https://github.com/TravisWheelerLab/dfam-soda

30

Code Listing 5: The custom Annotation object for Dfam records

1 export class DfamAnnotation extends Annotation implements OrientedAnnotation {
2 // these fields are part of the base Annotation class
3 // a unique identifier for this Annotation
4 readonly id: string;
5 // the semantic x coordinate of the annotation
6 readonly x: number;
7 // the semantic width of the annotation
8 readonly w: number;
9 // the y coordinate of the annotation

10 y: number;
11

12 // this is where the DfamAnnotation specific fields start
13 // the family/type of TE this object represents
14 readonly type: string;
15 // the fine-grained classification of the TE
16 readonly modelName: string;
17 // the divergence score of the TE
18 readonly score: number;
19 // the orientation of the alignment
20 readonly orientation: string;
21 // a string identifier that provides us a means to find
22 // the TE's row in the table below the visualization
23 readonly rowId: string;
24 }

5.2.2 DfamTrackChart Overview

The three core components of the Dfam-SODA visualization are the forward strand annota-

tions, the simple repeat annotations, and the reverse strand annotations. In this case, the vertical

placement of the distinct groups of annotations has semantic meaning, but the vertical positioning

of annotations relative to others in the same group does not. The forward and reverse strand charts

have a variable height, defined by the number of rows necessary to render all of the annotations

without visual overlap. The forward strand chart clusters annotations toward the bottom of the

chart, moving them up as necessary to avoid overlap, while the reverse strand inverts that behavior.

The simple repeat chart is fixed to a single row, as simple repeats do not to overlap.

To simplify the rendering logic, we implemented a single class capable of rendering each com-

ponent in isolation. The DfamTrackChart class extends the base SODA TrackChart class, and

31

inherits from it a considerable amount of functionality.

Code Listing 6: An overview of the definition of the DfamTrackChart class

1 export class DfamTrackChart extends TrackChart<DfamChartRenderParams> {
2 // d3 scale to map class to color
3 colorScale: d3.ScaleOrdinal<string, string>;
4 // if the chart is inverted, we invert the layout in the y direction
5 inverted?: boolean;
6

7 constructor(config: DfamChartConfig) {
8 super(config);
9 this.colorScale = d3.scaleOrdinal(REPEAT_COLORS)

10 .domain(REPEAT_TYPES);
11 this.inverted = config.inverted;
12 }
13

14 protected preRender(params: DfamChartRenderParams): void {}
15

16 protected inRender(params: DfamChartRenderParams): void {}
17

18 protected renderAnnotations(annotations: DfamAnnotation[]) {}
19

20 protected setGlyphDynamics(annotations: DfamAnnotation[]): void {}
21

22 protected bindHover(ann: DfamAnnotation): void {}
23

24 protected bindTooltip(ann: DfamAnnotation): void {}
25

26 protected bindClick(ann: DfamAnnotation): void {}
27 }

5.2.3 DfamChartRenderParams

The DfamChartRenderParmams extends the TrackChartRenderParams by adding one property

that holds an array of DfamAnnotation objects.

Code Listing 7: An overview of the definition of the DfamChartRenderParams

1 export interface DfamChartRenderParams extends TrackChartRenderParams {
2 // these properties are inherited from TrackChartParams
3 queryStart: number;
4 queryEnd: number;
5 maxY?: number;
6 // this property holds the DfamAnnotation objects that will be rendered in the chart

32

7 ann: DfamAnnotation[];
8 }

5.2.4 DfamTrackChart Rendering Routine

The DfamTrackChart class makes a small addition to the base preRender() implementation,

implements inRender(), and uses the base postRender().

5.2.4.1 DfamTrackChart.preRender()

The base preRender() method assumes that the Annotation objects passed to it already have

some sort of layout information, so it sets the height of the Chart based on the largest y–coordinate

it finds among the Annotations. Since there is no external layout definition in the Dfam-SODA

visualization, we use the layout module to assign a y–coordinate to each annotation and supply a

maximum y value. Once this has been done, we can pass the adjusted render parameters off to the

base preRender() method, which will finish preparing the Chart for rendering.

Code Listing 8: The DfamTrackChart preRender() routine

1 protected preRender(params: DfamChartRenderParams): void {
2 params.maxY = Math.max(1, soda.greedyGraphLayout(params.ann));
3 super.preRender(params);
4 }

5.2.4.2 DfamTrackChart.inRender()

The DfamTrackChart inRender() implementation calls two subroutines:

• renderAnnotations() – This renders the rectangles

• setGlyphDynamics() – This uses SODA plugins to bind dynamic functionality to each ren-

dered glyph

33

Code Listing 9: The DfamTrackChart inRender() routine

1 protected inRender(params: DfamChartRenderParams): void {
2 this.renderAnnotations(params.ann);
3 this.setGlyphDynamics(params.ann);
4 }

5.2.4.3 DfamTrackChart.renderAnnotations()

The DfamTrackChart uses the rectangle glyph module along with a simple configuration to draw

a rectangle for each Annotation. A callback function is provided that will dynamically set each

rectangle to the appropriate color that indicates the type of TE it represents. Additionally, if the

DfamTrackChart has been configured to be inverted (forward versus reverse strand), a y–coordinate

callback is provided, which simply inverts the logic of the default y coordinate callback.

Code Listing 10: The DfamTrackChart renderAnnotations() routine

1 protected renderAnnotations(annotations: DfamAnnotation[]) {
2 const conf : RectangleConfig<DfamAnnotation, DfamTrackChart> = {
3 selector: 'dfam-ann',
4 strokeWidth: () => 4,
5 strokeOpacity: () => 0,
6 strokeColor: (a, c) => c.colorScale(a.type),
7 fillColor: (a, c) => c.colorScale(a.type),
8 };
9

10 if (this.inverted) {
11 // if the chart has been inverted,
12 // we invert the y-coordinate calculation here
13 conf.y = (a: DfamAnnotation): number =>
14 (this.binCount - a.y - 1) * this.binHeight + 2
15 }
16 soda.rectangleGlyph(this, annotations, conf);
17 }

34

5.2.4.4 DfamTrackChart Dynamic Functionality

The DfamTrackChart loops over all of the rendered Annotation objects and uses a few simple

subroutines that use SODA plugins to add dynamic functionality to each glyph.

Code Listing 11: The DfamTrackChart setGlyphDynamics() routine

1 protected setGlyphDynamics(annotations: DfamAnnotation[]): void {
2 for (const ann of annotations) {
3 this.bindHover(ann);
4 this.bindClick(ann);
5 this.bindTooltip(ann);
6 }
7 }

5.2.4.5 DfamTrackChart Hover Behavior

A SODA hover configuration holds a reference to the Annotation to which the functionality

will be bound and two callback functions. The mouseover() callback will be called when the

representative glyph is hovered with the mouse, and the mouseout() callback will be run when the

mouse is moved off of the glyph (assuming it was already being hovered). The callbacks can be

defined such that they receive both a reference to the Annotation object and a selection of the

glyph’s DOM element.

The Dfam-SODA hover behavior changes the stroke-opacity property during hover events to

achieve a highlighting effect on glyphs that are hovered. In this case (shown in Code Listing 12),

only a reference to the DOM element was needed.

Code Listing 12: The DfamTrackChart bindHover() routine

1 protected bindHover(ann: DfamAnnotation): void {
2 const hoverConf: soda.HoverConfig<DfamAnnotation> = {
3 ann: ann,
4 mouseout: (s, a) => {
5 s.style('stroke-opacity', 0);
6 },
7 mouseover: (s, a) => {

35

8 s.style('stroke-opacity', 0.5);
9 },

10 };
11 soda.addHoverBehavior(hoverConf);
12 }

5.2.4.6 DfamTrackChart Click Behavior

A SODA click configuration holds a reference to the Annotation to which the functionality

will be bound, along with a callback function. The click() callback will be called whenever the

representative glyph is clicked with the mouse. The callback can be defined such that it receives

both a reference to the Annotation object and a selection of the glyph’s DOM element.

The Dfam-SODA click behavior uses the DfamAnnotation.rowId property along with D3 to get

access to the annotation’s corresponding row in the table below the visualization, highlights it, and

scrolls the browser to its position. In this case (shown in Code Listing 13, only a reference to the

Annotation was needed.

Code Listing 13: The DfamTrackChart bindClick() routine

1 protected bindClick(ann: DfamAnnotation): void {
2 const clickConf: soda.ClickConfig<DfamAnnotation> = {
3 ann: ann,
4 click: (s, a) => {
5 const rowSelection = d3.select<HTMLElement, any>(`#${a.rowId}`);
6 const rowElement = rowSelection
7 .node();
8 if (rowElement == undefined) {
9 throw(`Table row element on ${a.id} is null or undefined`);

10 }
11 else {
12 // scroll the page to the table row
13 rowElement
14 .scrollIntoView(false);
15 // temporarily highlight the row
16 rowSelection
17 .style('background-color', 'yellow');
18 // fade back to the original color
19 rowSelection
20 .transition()
21 .duration(2000)
22 .style('background-color', null);

36

23 }
24 }
25 };
26 soda.addClickBehavior(clickConf);
27 }

5.2.4.7 DfamTrackChart Tooltips

A SODA tooltip configuration holds a reference to the Annotation to which the functionality

will be bound, a callback function to define the tooltip text, and several optional style parameters.

The text callback function can be defined such that it receives a reference to the Annotation object.

The Dfam-SODA tooltips display the detailed name of the represented TE and its coordinates in

the genome. In this case (shown in Code Listing 14), the callback uses a reference to the Annotation

to extract the necessary data for the tooltip string.

Code Listing 14: The DfamTrackChart bindTooltip() routine

1 protected bindTooltip(ann: DfamAnnotation): void {
2 const tooltipConf = {
3 ann: ann,
4 text: (a: DfamAnnotation) =>
5 `${a.modelName} (${a.type}): ${a.x}-${a.x + a.w}`,
6 opacity: () => 1.0,
7 };
8 soda.tooltip(this, tooltipConf);
9 }

5.2.5 DfamAnnotationsGraphic

The DfamAnnotationsGraphic class is a convenience driver class that initializes, configures, and

renders the entire Dfam-SODA visualization. When instantiated, it creates DOM containers for

each of its components in the target webpage, then in turn instantiates each of the SODA Charts

that will be placed in the containers. Next, it instantiates a ZoomController and a ResizeController,

37

and registers each component to both. Finally, if it was initially provided with Annotations to

render, it will render the visualization.

Code Listing 15: An overview of the definition of the DfamAnnotationsGraphic class

1 export class DfamAnnotationsGraphic {
2 // a class that unifies the soda components
3 // that make up the Dfam-SODA visualization
4 data?: DfamSearchResults;
5 zoomController: ZoomController;
6 resizeController: ResizeController;
7 axis: AxisChart;
8 forwardChart: DfamTrackChart;
9 reverseChart: DfamTrackChart;

10 simpleChart: DfamTrackChart;
11

12 constructor(config: DfamAnnotationGraphicConfig) {
13 this.createContainers(config.target);
14

15 this.axis = new soda.AxisChart({selector: '#soda-axis'});
16

17 this.forwardChart = new DfamTrackChart({selector: '#soda-fwd',
18 scaleExtent: config.scaleExtent,
19 translateExtent: config.translateExtent,
20 binHeight: config.binHeight});
21 this.forwardChart.inverted = true;
22

23 this.reverseChart = new DfamTrackChart({selector: '#soda-rev',
24 scaleExtent: config.scaleExtent,
25 translateExtent: config.translateExtent,
26 binHeight: config.binHeight});
27

28 this.simpleChart = new DfamTrackChart({selector: '#soda-smp',
29 scaleExtent: config.scaleExtent,
30 translateExtent: config.translateExtent,
31 binHeight: config.binHeight});
32

33 this.zoomController = new ZoomController();
34 this.resizeController = new ResizeController();
35

36 this.zoomController.addComponents([this.axis,
37 this.forwardChart,
38 this.reverseChart,
39 this.simpleChart]);
40

41 this.resizeController.addComponents([this.axis,
42 this.forwardChart,
43 this.reverseChart,
44 this.simpleChart]);
45

46 if (config.data) {
47 this.render(config.data);

38

48 }
49 }
50

51 protected createContainers(target: any): void {}
52

53 public render(data: DfamSearchResults): void {}
54

55 public drawLegend(): void {}
56 }

Code Listing 16: An overview of the definition of the DfamAnnotationsGraphicConfig

1 export interface DfamAnnotationGraphicConfig {
2 // a css selector to locate the
3 // target DOM container for the graphic
4 target?: string;
5 // the result of the Dfam search API,
6 //which will be used to render the visualization
7 data?: DfamSearchResults;
8 binHeight?: number;
9 // controls the extent to which a user can zoom the graphic

10 scaleExtent?: [number, number];
11 // controls the extent to which a user can pan the graphic
12 translateExtent?: (chart: TrackChart<any>) => [[number, number], [number, number]];
13 }

5.2.5.1 DfamAnnotationsGraphic.render()

The rendering routine initially triggers the ResizeController, as the Dfam site calls render()

whenever the browser is resized. Next, it checks if the rendering data has changed since the

previous render took place. If the data hasn’t changed, it avoids unnecessary re-rendering by doing

nothing. If the data has changed, it parses the new data into DfamAnnotation objects and passes

the correct subset to each of its components.

Code Listing 17: The DfamAnnotationsGraphic rendering routine.

1 public render(data: DfamSearchResults): void {
2 this.resizeController.trigger();
3 if (data !== this.data) {
4 this.data = data;

39

5 // parse the search results for Annotation objects,
6 // which are returned grouped by their target chart
7 let parsedResults = parseDfamSearchResults(data);
8

9 this.axis.render({
10 queryStart: parsedResults.queryStart,
11 queryEnd: parsedResults.queryEnd
12 });
13

14 this.forwardChart.render({
15 ann: parsedResults.forward,
16 queryStart: parsedResults.queryStart,
17 queryEnd: parsedResults.queryEnd
18 });
19

20 this.reverseChart.render({
21 ann: parsedResults.reverse,
22 queryStart: parsedResults.queryStart,
23 queryEnd: parsedResults.queryEnd
24 });
25

26 this.simpleChart.render({
27 ann: parsedResults.simple,
28 queryStart: parsedResults.queryStart,
29 queryEnd: parsedResults.queryEnd
30 });
31 this.drawLegend();
32 }
33 }

5.2.5.2 DfamAnnotationsGraphic usage

The usage of the DfamAnnotationsGraphic is simple: after a Dfam website user submits a search

query, the page stores the resulting API response JSON string (see https://en.wikipedia.

org/wiki/JSON for more information), and passes it to the graphic’s rendering routine.

Code Listing 18: An example of how the DfamAnnotationsGraphic is used in the Dfam webcode

1 redraw() {
2 if (!this.graphic) {
3 // create the chart from scratch only the first time
4 const el = this.graph.nativeElement;
5 el.innerHTML = '';
6

7 const graphicConf: DfamAnnotationGraphicConfig = {
8 target: el,

https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/JSON

40

9 data: this.data,
10 scaleExtent: [1, 10],
11 translateExtent: (chart) => [[0, 0], [chart.width, chart.height]],
12 };
13 this.graphic = new DfamAnnotationsGraphic(graphicConf);
14 }
15 this.graphic.render(this.data);
16 }

5.3 RepeatMasker-SODA Implementation

RepeatMasker-SODA is implemented as an extension of the TrackChart class. The layout of the

visualization has a nuanced, semantic meaning that cannot be properly defined using the default

SODA layout module. With that being the case, the layout is determined by the SODA client prior

to parsing RepeatMasker records into SODA objects. The external layout engine is a complex,

rule-based system that is outside the scope of the work presented here.

RepeatMasker-SODA is an open source application, and its full source code can be found at

https://github.com/TravisWheelerLab/rmsk-soda.

5.3.1 RepeatMasker Annotation Blocks

As shown in Chapter 2, one RepeatMasker annotation is represented by a combination of

rectangles, lines, and a dynamic label. Each record in the RepeatMasker database contains one

or more annotation blocks that collectively describe the annotation of one TE instance. There are

three main types of blocks, two of which are further sub-typed. For reference, Table 5.1 describes

the blocks and their sub-types, and Figure 5.2 shows how each block type is visualized. The primary

block types are:

1. Aligned blocks, which represent alignments between the chromosome and the TE sequence.

2. Unaligned blocks, which represent portions of the TE sequence missing from the annotation.

3. Joining blocks, which represent positional relationships between the other blocks.

https://github.com/TravisWheelerLab/rmsk-soda

41

Unaligned and joining blocks are sub-typed by positional context, and each sub-type is rendered

differently depending on that context. Unaligned blocks can be left-flanking, right-flanking, or

internal to the annotation (henceforth referred to as ‘inner unaligned’). Joining blocks are always

rendered in pairs, and we distinguish between the left and right members of each pair. In addition

to the blocks explicitly represented in the RepeatMasker data, we consider the annotation label as

a block in the genomic coordinate space.

Block type Description Representative Glyph

Aligned Represents alignments between the
chromosome and the TE sequence

Rectangle with a chevron pattern
indicating the chromosome strand

Left unaligned Represents missing portions of the
TE sequence on the left flank of the
annotation

Dashed horizontal line with a ver-
tical endpoint line on the left

Right unaligned Represents missing portions of the
TE sequence on the right flank of
the annotation

Dashed horizontal line with a ver-
tical endpoint line on the left

Inner unaligned Represents missing portions of the
TE sequence in between aligned
blocks

Dashed horizontal line with a ver-
tical endpoint line on the right

Left joining Represents positional relationships
between aligned blocks, unaligned
blocks, and repeat models

Solid angled line pointing upwards
to the right

Right joining Represents positional relationships
between aligned blocks, unaligned
blocks, and repeat models

Solid angled line pointing upwards
to the left

Label Labels the annotation Text

Table 5.1: A description of the annotation block types in RepeatMasker-SODA.

5.3.2 RepeatMasker Records as SODA Annotation Objects

The blocks in each record are parsed into a collection of RMSKAnnotation objects (refer to

Code Listing 19). In addition to the blocks that are explicitly represented in a record, we generate

an extra RMSKAnnotation object that is used to render the label next to each annotation.

42

Inner unaligned

Left joining Right joining

Aligned Aligned

Right unalignedLeft unaligned

Label

Figure 5.2: An example of a RepeatMasker-SODA glyph that represents unaligned, aligned, and joining blocks.

Code Listing 19: An overview of the RMSKAnnotation class implementation.

1 // the custom Annotation object for joined RepeatMasker records
2 export class RMSKAnnotation extends Annotation
3 implements TextAnnotation, CompactAnnotation, OrientedAnnotation {
4 // these properties are inherited from the base Annotation class
5 readonly id: string;
6 readonly x: number;
7 y: number;
8 readonly w: number;
9 readonly h: number;

10

11 // this is from OrientedAnnotation
12 readonly orientation: string;
13

14 // these properties are from TextAnnotation
15 text: string[];
16 drawThresholds: number[];
17

18 // these properties are from CompactAnnotation
19 compacted: boolean;
20 compactX: number;
21 compactW: number;
22

23 // these properties are unique to the RMSKAnnotation
24 // the type of annotations we are drawing
25 readonly type: string;
26 // TE classification names
27 readonly className: string;
28 readonly familyName: string;
29 readonly subfamilyName: string;
30 // the divergence score
31 readonly score: number;
32

33 // these methods are from
34 public getX(): number {}
35 public getW(): number {}
36 }

43

5.3.3 RMSKTrackChart Overview

The RMSKTrackChart is an extension of the TrackChart class with most of the extended

implementation existing as the rendering routine.

Code Listing 20: The custom TrackChart extension class

1 export class RMSKTrackChart extends TrackChart<RMSKTrackChartRenderParams> {
2 // d3 scale to map divergence score to a color
3 divergenceColorScale: d3.ScaleSequential<string>;
4 // d3 scale to map class to color outline
5 classColorScale: d3.ScaleOrdinal<string, string>;
6

7 constructor(config: ChartConfig) {
8 super(config);
9 this.divergenceColorScale = d3.scaleSequential(d3.interpolateGreys)

10 .domain(SCORE_RANGE);
11 this.classColorScale = d3.scaleOrdinal(d3.schemeCategory10)
12 .domain(REPEAT_CLASSES);
13 }
14

15 protected inRender(params: RMSKTrackChartRenderParams): void {}
16

17 protected renderAligned(aligned: RMSKAnnotation[]) {}
18

19 protected renderLeftUnaligned(leftUnaligned: RMSKAnnotation[]): void {}
20

21 protected renderRightUnaligned(rightUnaligned: RMSKAnnotation[]): void {}
22

23 protected renderInnerUnaligned(innerUnaligned: RMSKAnnotation[]): void {}
24

25 protected renderLeftJoining(leftJoining: RMSKAnnotation[]): void {}
26

27 protected renderRightJoining(rightJoining: RMSKAnnotation[]): void {}
28

29 protected renderLabels(labels: RMSKAnnotation[]): void {}
30

31 protected bindClick(aligned: RMSKAnnotation[]): void {}
32

33 protected bindTooltips(aligned: RMSKAnnotation[]): void {}
34 }

44

5.3.4 RMSKTrackChartRenderParams

Once the records have been parsed into RMSKAnnotation objects, they are filtered and grouped

by block type. The RMSKTrackChartRenderParams interface (see Code Listing 21) contains a

property for each the list of RMSKAnnotations.

Code Listing 21: The implementation of the RMSKTrackChartRenderParams.

1 export interface RMSKTrackChartRenderParams extends TrackChartRenderParams {
2 // these properties are inherited from TrackChartParams
3 queryStart: number;
4 queryEnd: number;
5 maxY?: number;
6 // these are Annotation objects that represent different block types
7 aligned: RMSKAnnotation[];
8 leftUnaligned: RMSKAnnotation[];
9 rightUnaligned: RMSKAnnotation[];

10 innerUnaligned: RMSKAnnotation[];
11 leftJoining: RMSKAnnotation[];
12 rightJoining: RMSKAnnotation[];
13 labels: RMSKAnnotation[];
14 }

5.3.5 RMSKTrackChart Rendering Routine

The RMSKTrackChart uses the default preRender() and postRender(), and it implements in-

Render().

5.3.5.1 RMSKTrackChart.inRender()

The RMSKTrackChart inRender() implementation calls several subroutines:

• renderAligned() – This renders the aligned blocks

• renderLeftUnaligned() – This renders the left flanking unaligned blocks

• renderRightUnaligned() – This renders the right flanking unaligned blocks

• renderInnerUnaligned() – This renders the inner unaligned blocks

45

• renderLeftJoining() – This renders the left joining blocks

• renderRightJoining() – This renders the right joining blocks

• renderLabels() – This renders the dynamic labels next to each glyph

• setGlyphDynamics() – This uses SODA plugins to bind dynamic functionality to each ren-

dered glyph

The implementations of each of these subroutines are similar to each other, so, for the sake of

brevity, we have omitted several of their descriptions. For the full code, refer to the RepeatMasker-

SODA Github repository (https://github.com/TravisWheelerLab/rmsk-soda).

Code Listing 22: The RMSKTrackChart inRender() implementation

1 protected inRender(params: RMSKTrackChartRenderParams): void {
2 this.renderAligned(params.aligned);
3 this.renderLeftUnaligned(params.leftUnaligned);
4 this.renderRightUnaligned(params.rightUnaligned);
5 this.renderInnerUnaligned(params.innerUnaligned);
6 this.renderLeftJoining(params.leftJoining);
7 this.renderRightJoining(params.rightJoining);
8 this.renderLabels(params.labels);
9 this.bindTooltips(params.aligned);

10 this.bindClick(params.aligned);
11 }

5.3.5.2 RMSKTrackChart.renderAligned()

Here, we make use of the chevron rectangle glyph module along with a substantial configura-

tion to draw a chevron rectangle for each aligned block. Callback functions in the configuration

are used to determine the outline and fill colors of each rectangle, similarly to the Dfam-SODA

implementation. By default, SODA glyphs fill the height of a row in the Chart they are rendered

in. To override this behavior we supply callback functions to set the y–coordinate and the height

of the rectangles so that they are rendered at half of the height of a row.

https://github.com/TravisWheelerLab/rmsk-soda

46

Code Listing 23: The RMSKTrackChart renderAligned() implementation

1 protected renderAligned(aligned: RMSKAnnotation[]) {
2 const rectConf: soda.ChevronRectangleConfig<RMSKAnnotation, RMSKTrackChart> = {
3 selector: 'aligned',
4 strokeColor: (a, c) => c.classColorScale(a.className),
5 fillColor: (a, c) => c.divergenceColorScale(7000 - a.score),
6 y: (a, c) => a.y * c.binHeight + c.binHeight/2,
7 h: (a, c) => c.binHeight/2,
8 chevronSpacing: () => 10,
9 };

10 soda.chevronRectangleGlyph(this, aligned, rectConf);
11 }

5.3.5.3 RMSKTrackChart.renderLeftUnaligned()

Here, we make use of both the horizontal and vertical line glyph modules to draw the left-

flanking unaligned blocks. First, the dashed horizontal lines are rendered with callback functions

to position them at center-height relative to the aligned rectangles. Next, the vertical line endpoints

are rendered with callback functions to position them at the left end of the block region and so

that they are rendered at half the height of a row.

Code Listing 24: The RMSKTrackChart renderLeftUnaligned() implementation

1 protected renderLeftUnaligned(leftUnaligned: RMSKAnnotation[]): void {
2 const horizontalConf: soda.HorizontalLineConfig<RMSKAnnotation, RMSKTrackChart> = {
3 selector: 'left-unaligned',
4 strokeDashArray: () => "3, 3",
5 y: (a, c) => (a.y + 1) * c.binHeight - c.binHeight/4,
6 strokeColor: (a, c) => c.classColorScale(a.className),
7 };
8 soda.horizontalLine(this, leftUnaligned, horizontalConf);
9

10 const verticalConf: soda.VerticalLineConfig<RMSKAnnotation, RMSKTrackChart> = {
11 selector: 'left-endpoint',
12 x: (a) => a.getX(),
13 y1: (a, c) => (a.y + 1) * c.binHeight,
14 y2: (a, c) => (a.y + 1) * c.binHeight - c.binHeight/2,
15 strokeColor: (a, c) => c.classColorScale(a.className),
16 };
17 soda.verticalLine(this, leftUnaligned, verticalConf);
18 }

47

5.3.5.4 RMSKTrackChart.renderLeftJoining()

Here, we make use of the generic line glyph module to draw the upward-angled left joining line

blocks. In this case, we supply callback functions that define the start and end coordinates of each

line.

Code Listing 25: The RMSKTrackChart renderAligned() implementation

1 protected renderLeftJoining(leftJoining: RMSKAnnotation[]): void {
2 const lineConf: soda.LineConfig<RMSKAnnotation, RMSKTrackChart> = {
3 selector: 'left-join',
4 x1: (a) => a.getX(),
5 x2: (a) => a.getX() + a.getW(),
6 y1: (a, c) => a.y * c.binHeight + c.binHeight/2,
7 y2: (a, c) => a.y * c.binHeight + c.binHeight/4,
8 };
9 soda.lineGlyph(this, leftJoining, lineConf);

10 }

5.3.5.5 RMSKTrackChart.renderLabels()

Here, we make use of the text glyph module to draw the dynamic labels. A callback function is

used to place the text at the right end of the space allotted for the label. Another callback function

is provided to dynamically generate three levels of text detail from the Annotation objects.

Code Listing 26: The RMSKTrackChart renderLabels() implementation

1 protected renderLabels(labels: RMSKAnnotation[]): void {
2 const textConf: soda.TextConfig<RMSKAnnotation, RMSKTrackChart> = {
3 selector: 'label',
4 x: (a) => a.getX() + a.getW(),
5 textPad: 5,
6 text: (a) => [`${a.subfamilyName}#${a.className}/${a.familyName}`,
7 `${a.subfamilyName}#${a.className}...`,
8 `${a.subfamilyName}...`]
9 };

10 soda.textGlyph(this, labels, textConf);
11 }

48

5.3.6 RMSKTrackChart Dynamic Functionality

The RMSKTrackChart loops over all of the rendered Annotation objects and uses a few simple

subroutines that use SODA plugins to add dynamic functionality to each glyph.

Code Listing 27: The RMSKTrackChart setGlyphDynamics() implementation

1 protected setGlyphDynamics(aligned: RMSKAnnotation[]) {
2 for (const ann of aligned) {
3 this.bindClick(ann);
4 this.bindTooltip(ann);
5 }
6 }

5.3.6.1 RMSKTrackChart.bindClick()

Here, a callback function is defined that provides the unaligned flank expansion feature. The

click callback first finds each RMSKAnnotation object associated with the one represented by

the glyph that was clicked. Then, if any of the objects found are compactable (see Figure 2.5),

the compacted flag is toggled. Finally, the ZoomController is called to re-render the visualization

over a duration of 1000 milliseconds, which results in an animation effect during the expansion or

collapsing of the relevant flanks.

Code Listing 28: The RMSKTrackChart bindClick() implementation

1 protected bindClick(ann: RMSKAnnotation): void {
2 const clickConf: soda.ClickConfig<RMSKAnnotation> = {
3 ann: ann,
4 click: (s, a) => {
5 let prefix = a.id.split('-')[0];
6 for (const key of soda.getAllIds()) {
7 if (key.startsWith(prefix)) {
8 let ann = soda.getAnnotationById(key);
9 if (isCompactAnn(ann)) {

10 ann.compacted = !ann.compacted;
11 }
12 }
13 }
14 this.getZoomController().zoomedRenderDuration(1000);

49

15 }
16 };
17 soda.addClickBehavior(clickConf);
18 }

5.3.6.2 RMSKTrackChart.bindTooltip()

Here, we define a tooltip configuration with a callback that provides a string containing the

detailed name of the hovered annotation.

Code Listing 29: The RMSKTrackChart bindTooltip() implementation

1 protected bindTooltip(ann: RMSKAnnotation): void {
2 const conf: soda.TooltipConfig<RMSKAnnotation, RMSKTrackChart> = {
3 ann: ann,
4 text: (a) => `${a.subfamilyName}#${a.className}/${a.familyName}`,
5 };
6 soda.tooltip(this, conf);
7 }

5.3.7 RMSKTrackChart Usage

Code Listing 30 provides an example of how RepeatMasker-SODA is used. First, the controller

objects are instantiated. Next, the Chart objects are instantiated and added to the controllers.

Finally, data is provided to the render() function, which in turn renders the AxisChart and RM-

SKTrackChart.

Code Listing 30: Example usage of the RMSKTrackChart

1 let zoomController = new ZoomController();
2 let resizeController = new ResizeController();
3

4 window.onresize = () => resizeController.trigger();
5

6 const axis = new AxisChart({selector: '#axis'});
7 const rmskChart = new RMSKTrackChart({selector: '#rmsk-chart', binHeight: 24});
8

9 zoomController.addComponent(axis);

50

10 zoomController.addComponent(rmskChart);
11

12 resizeController.addComponent(axis);
13 resizeController.addComponent(rmskChart);
14

15 // this function uses its query parameter arguments to query the
16 // UCSC API and render the results in the RMSKTrackChart
17 function render(chr: string, queryStart: number, queryEnd: number): void {
18 // we make an asynchronous query to the UCSC api and parse the
19 // results into RMSKTrackChartParams, then render the Charts
20 getRMSKRenderParamsFromQuery(chr, queryStart, queryEnd)
21 .then((params: RMSKTrackChartRenderParams) => {
22 rmskChart.render(params);
23 // the RMSKTrackChartParams are also valid AxisRenderParams
24 axis.render(params);
25 });
26 }

5.4 PolyA-SODA Implementation

PolyA-SODA is made up of three components in a multi-track visualization format. Two of the

components are instantiations of the RMSKTrackChart class–one visualizes the existing annotation

of TE’s from the UCSC genome browser, and the other visualizes the PolyA adjudicated annota-

tions. The third component visualizes the PolyA confidence scores for all competing alignments in

the region as a heatmap.

PolyA-SODA is an open source application, and its full source code can be found at https:

//github.com/TravisWheelerLab/polya-soda.

5.4.1 PolyA Confidence Scores as SODA Annotation Objects

The PolyA debugging output provides a sparse two-dimensional array of position specific con-

fidence scores for each competing alignment in the adjudicated region. Each row represents the

confidence scores for the alignments of a particular TE family. The confidence scores are rounded

to the nearest tenth and encoded with a run length encoding (see Figure 5.3). Null values in a

row, which represent a position for which an alignment to a family was not present, are discarded.

Each run in a row is represented as a PolyAHeatmapCell object, an extended Annotation object

https://github.com/TravisWheelerLab/polya-soda
https://github.com/TravisWheelerLab/polya-soda

51

that is used to render the heatmap. For each row, a corresponding PolyAHeatmapLabel object, an

extended TextAnnotation object, is created for the purpose of rendering the TE family name next

to each row.

0.79 0.83 0.77 0.80 0.54 0.9 0.87 0.93 0.92 0.89

0.8 0.8 0.8 0.8 0.5 0.9 0.9 0.9 0.9 0.9

0.8, 4 0.5, 1 0.9, 5

Rounding

Run-length encoding

Confidence scores

Figure 5.3: An example of how PolyA confidence scores are rounded and encoded with a run-length encoding.

Code Listing 31: The definition of the PolyAHeatmapCell class.

1 export class PolyAHeatmapCell extends Annotation {
2 // the confidence score value that we will
3 // use to color the heatmap cell
4 public value: number;
5 }

Code Listing 32: The definition of the PolyAHeatmapLabel class

1 export class PolyAHeatmapLabel extends Annotation implements TextAnnotation {
2 // the name of the TE family that the label is for
3 name: string;
4 // these properties are required by TextAnnotation
5 text: string[] = [];

52

6 drawThresholds: number[] = [];
7 }

5.4.2 PolyAHeatmapChart Overview

The PolyAHeatmapChart is a simple extension of the TrackChart class.

Code Listing 33: The definition of the PolyaHeatmapChart class

1 export class PolyAHeatmapChart extends TrackChart<PolyAHeatmapRenderParams> {
2 colorScale: d3.ScaleSequential<string>;
3

4 constructor(config: ChartConfig) {
5 super(config);
6 this.colorScale = d3.scaleSequential(d3.interpolatePRGn)
7 .domain([0, 1]);
8 }
9

10 public inRender(params: PolyAHeatmapRenderParams) {}
11

12 public renderHeatmap(rows: PolyAHeatmapCell[]): void {}
13

14 public renderLabels(rowLabels: PolyAHeatmapLabel[]): void {}
15 }

5.4.3 PolyAHeatmapRenderParams

The PolyAHeatmapRenderParams extends the TrackChartRenderParams by adding properties

that hold arrays of PolyaHeatmapCells and PolyAHeatmapLabels.

Code Listing 34: The definition of the PolyaHeatmapChart class

1 export interface PolyAHeatmapRenderParams extends TrackChartRenderParams {
2 // these properties are inherited from TrackChartParams
3 queryStart: number;
4 queryEnd: number;
5 maxY?: number;
6 // these properties hold the Annotation objects for the heatmap labels and rectangles
7 rows: PolyAHeatmapCell[];
8 rowLabels: PolyAHeatmapLabel[];
9 }

53

5.4.4 PolyAHeatmapChart Rendering Routine

The PolyAHeatmapChart uses the default preRender() and postRender() and implements in-

Render().

5.4.5 PolyAHeatmapChart.inRender()

The PolyAHeatmapChart inRender() calls two subroutines:

• renderHeatmap()—This renders the rectangles that visualize the heatmap

• renderLabels()—This renders the TE family name labels next to each row in the heatmap

Code Listing 35: The PolyAHeatmapChart inRender() implementation

1 public inRender(params: PolyAHeatmapRenderParams) {
2 this.renderHeatmap(params.rows);
3 this.renderLabels(params.rowLabels);
4 }

5.4.6 PolyAHeatmapChart.renderHeatmap()

The PolyAHeatmapChart uses the rectangle glyph module to draw a rectangle for each run of

similar confidence scores.

Code Listing 36: The PolyAHeatmapChart renderHeatmap() implementation

1 public renderHeatmap(rows: PolyAHeatmapCell[]): void {
2 const rectConf: soda.RectangleConfig < PolyAHeatmapCell, PolyAHeatmapChart > = {
3 selector: 'heatmap-cell',
4 strokeColor: (a) => this.colorScale(a.value),
5 fillColor: (a) => this.colorScale(a.value),
6 };

54

7 soda.rectangleGlyph(this, rows, rectConf);
8 }

5.4.7 PolyAHeatmapChart.renderLabels()

The PolyAHeatmapChart uses the text glyph module to draw a label next to each row in the

heatmap.

Code Listing 37: The PolyAHeatmapChart renderLabels() implementation

1 public renderLabels(rowLabels: PolyAHeatmapLabel[]): void {
2 const textConf: soda.TextConfig<PolyAHeatmapLabel, PolyAHeatmapChart> = {
3 selector: 'label',
4 textPad: 10,
5 x: (a) => a.getX() + a.getW(),
6 y: (a) => (a.y + 0.5) * this.binHeight,
7 text: (a) => [a.name]
8 };
9 soda.textGlyph(this, rowLabels, textConf);

10 }

5.4.8 PolyA-SODA Usage

Code Listing 38 provides an example of how PolyA-SODA is used. First, the controller objects

are instantiated. Next, the Chart objects are instantiated and added to the controllers. Finally,

data is provided to the render() function, which in turn renders each chart.

Code Listing 38: An example of how the entire PolyA-SODA debugging tool is used

1 const zoomController = new ZoomController();
2 const resizeController = new ResizeController();
3 const ruleController = new RuleController();
4

5 window.onresize = () => resizeController.trigger();
6

7 const axis = new AxisChart({selector: '.axis'});
8 const ucscChart = new RMSKTrackChart({selector: '.ucsc-chart', binHeight: 20});
9 const polyaChart = new RMSKTrackChart({selector: '.polya-chart', binHeight: 20});

55

10 const heatmap = new PolyAHeatmapChart({selector: '.heatmap-chart', binHeight: 20});
11

12 const components = [axis, ucscChart, polyaChart, heatmap];
13

14 zoomController.addComponents(components);
15 resizeController.addComponents(components);
16 // by creating a RuleController and adding the components, the
17 // vertical rule that spans the visualization is automatically added
18 ruleController.addComponents(components);
19

20 // this function accepts the output of the PolyA debugging tool,
21 // two JSON strings which encode adjudicated annotation information
22 // and the relevant confidence scores
23 function render(polyaAnn: string, polyaConfidence: string): void {
24 // the heatmapParams, which include the Annotation objects,
25 // are first parsed from the polyA confidence scores
26 const heatmapParams = parseConfidenceData(polyaConfidence);
27

28 // the heatmap rendering paramters are inherently also valid
29 // axis rendering paramters
30 axis.render(heatmapParams);
31 heatmap.render(heatmapParams);
32

33 // the relevant chromosome from the polyA data is parsed out
34 // so that we can make a query to the UCSC api
35 const chr = parseInt(ann.split(/\s+/)[1].replace('chr', ''));
36

37 // we query the range of the polyA data and use the RMSK-SODA
38 // parser to get RMSKTrackChartRenderParams for the existing
39 // annotations
40 getRMSKRenderParamsFromQuery(chr, heatmapParams.queryStart,
41 heatmapParams.queryEnd)
42 .then((params: RMSKTrackChartRenderParams) => {
43 ucscChart.render(params);
44 });
45

46 // we use a JSON of adjudicated PolyA annotations to get
47 // RMSKTrackChartRenderParams for the PolyA annotations
48 getRMSKRenderParamsFromJson(ann)
49 .then((params: RMSKTrackChartRenderParam) => {
50 polyaChart.render(params);
51 });
52 }

56

CHAPTER 6 DISCUSSION

6.1 Future Work

While SODA currently has the functionality to render many of the glyph shapes that are

commonly used across various genomic visualizations, I will continue to add new glyph shapes as

I become aware of the need for them.

I would also like to implement more chart classes to cater to use cases that do not easily fit the

mould of the TrackChart class. For example, I plan to add chart classes that are tailored towards

creating line charts and bar charts.

Currently, SODA makes use of the popular JavaScript library D3 to render visualizations in

SVG format. This makes the rendering process simple, but has a large impact on performance. I

will experiment with using WebGL as a rendering backend. This may improve performance and

make SODA visualizations more scalable.

SODA has been initially developed as a web framework that embeds visualizations in the web

browser. While this is probably the way in which SODA will most often be used, I would like

to develop Python bindings to make it easy to integrate SODA visualizations into command line

applications.

6.2 Conclusion

SODA provides a simple, flexible, and modular framework that can be used to easily generate

custom, dynamic visualization for arbitrary genomic data. It aims to fill the void between spe-

cialized visualization tools and large-scale genome browsers by providing developers with a toolkit

that simplifies the process of creating novel genomic visualizations.

57

BIBLIOGRAPHY

[1] W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle, A. M. Zahler, and

D. Haussler, “The human genome browser at ucsc,” Genome research, Jun 2002. [Online].

Available: https://genome.cshlp.org/content/12/6/996.abstract/

[2] A. D. Yates et al., “Ensembl 2020,” Nucleic Acids Research, vol. 48, no. D1, pp. D682–D688,

11 2019. [Online]. Available: https://doi.org/10.1093/nar/gkz966

[3] R. Buels et al., “JBrowse: a dynamic web platform for genome visualization and

analysis,” Genome Biology, vol. 17, no. 1, p. 66, Apr 2016. [Online]. Available:

https://doi.org/10.1186/s13059-016-0924-1

[4] B. S. Der, E. Glassey, B. A. Bartley, C. Enghuus, D. B. Goodman, D. B. Gordon, C. A. Voigt,

and T. E. Gorochowski, “Dnaplotlib: Programmable visualization of genetic designs and

associated data,” ACS Synthetic Biology, vol. 6, no. 7, pp. 1115–1119, 2017, pMID: 27744689.

[Online]. Available: https://doi.org/10.1021/acssynbio.6b00252

[5] V. Zulkower and S. Rosser, “DNA Features Viewer: a sequence annotation formatting and

plotting library for Python,” Bioinformatics, vol. 36, no. 15, pp. 4350–4352, 07 2020. [Online].

Available: https://doi.org/10.1093/bioinformatics/btaa213

[6] R. Hubley, R. D. Finn, J. Clements, S. R. Eddy, T. A. Jones, W. Bao, A. F. Smit, and T. J.

Wheeler, “The Dfam database of repetitive DNA families,” Nucleic Acids Research, vol. 44,

no. D1, pp. D81–D89, 11 2015. [Online]. Available: https://doi.org/10.1093/nar/gkv1272

https://genome.cshlp.org/content/12/6/996.abstract/
https://doi.org/10.1093/nar/gkz966
https://doi.org/10.1186/s13059-016-0924-1
https://doi.org/10.1021/acssynbio.6b00252
https://doi.org/10.1093/bioinformatics/btaa213
https://doi.org/10.1093/nar/gkv1272

58

[7] A. Smit, R. Hubley, and P. Green. (2013-2015) Repeatmasker open-4.0. [Online]. Available:

http://www.repeatmasker.org

[8] A. Yousif, N. Drou, J. Rowe, M. Khalfan, and K. C. Gunsalus, “Nasqar: a web-based platform

for high-throughput sequencing data analysis and visualization,” BMC Bioinformatics, vol. 21,

no. 1, p. 267, Jun 2020. [Online]. Available: https://doi.org/10.1186/s12859-020-03577-4

http://www.repeatmasker.org
https://doi.org/10.1186/s12859-020-03577-4

	SODA: an Open-Source Library for Visualizing Biological Sequence Annotation
	Let us know how access to this document benefits you.
	Recommended Citation

	COPYRIGHT
	ABSTRACT
	ACKNOWLEDGMENTS
	CODE LISTINGS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	EXAMPLE APPLICATIONS
	Dfam-SODA
	Annotation of TEs
	Description of Dfam-SODA

	UCSC RepeatMasker Track
	Description of RepeatMasker-SODA
	RepeatMasker Annotation Glyphs
	RepeatMasker Annotation Fragments
	Compact Rendering
	Annotation Fragments Produced by Insertion
	Dynamic Annotation Labels

	PolyA Debugging Tool
	Description of PolyA-SODA

	IMPLEMENTATION
	Design Principles
	Technologies
	TypeScript
	SVG – Scalable Vector Graphics
	D3 – Data-Driven Documents

	FEATURES
	Annotation Objects
	Chart Objects
	Modules
	Glyph Rendering
	Zooming
	Resizing
	Layout Management
	Graph Coloring Based Layout

	Plugins
	Click and Hover Plugins
	Tooltip Plugin
	Rule Plugin

	EXAMPLE IMPLEMENTATIONS
	TrackChart Implementation
	Instantiation
	Rendering
	The Canonical Rendering Pattern
	The Inverted Rendering Pattern

	Dfam-SODA Implementation
	Dfam Annotation Records as SODA Annotation Objects
	DfamTrackChart Overview
	DfamChartRenderParams
	DfamTrackChart Rendering Routine
	DfamTrackChart.preRender()
	DfamTrackChart.inRender()
	DfamTrackChart.renderAnnotations()
	DfamTrackChart Dynamic Functionality
	DfamTrackChart Hover Behavior
	DfamTrackChart Click Behavior
	DfamTrackChart Tooltips

	DfamAnnotationsGraphic
	DfamAnnotationsGraphic.render()
	DfamAnnotationsGraphic usage

	RepeatMasker-SODA Implementation
	RepeatMasker Annotation Blocks
	RepeatMasker Records as SODA Annotation Objects
	RMSKTrackChart Overview
	RMSKTrackChartRenderParams
	RMSKTrackChart Rendering Routine
	RMSKTrackChart.inRender()
	RMSKTrackChart.renderAligned()
	RMSKTrackChart.renderLeftUnaligned()
	RMSKTrackChart.renderLeftJoining()
	RMSKTrackChart.renderLabels()

	RMSKTrackChart Dynamic Functionality
	RMSKTrackChart.bindClick()
	RMSKTrackChart.bindTooltip()

	RMSKTrackChart Usage

	PolyA-SODA Implementation
	PolyA Confidence Scores as SODA Annotation Objects
	PolyAHeatmapChart Overview
	PolyAHeatmapRenderParams
	PolyAHeatmapChart Rendering Routine
	PolyAHeatmapChart.inRender()
	PolyAHeatmapChart.renderHeatmap()
	PolyAHeatmapChart.renderLabels()
	PolyA-SODA Usage

	DISCUSSION
	Future Work
	Conclusion

	BIBLIOGRAPHY

