Supporting Information

Electropolymerization of β -cyclodextrin onto multi-walled carbon nanotube composite films for enhanced selective detection of uric acid

Mulugeta B. Wayu, Luke T. DiPasquale, Margaret A. Schwarzmann, Samuel D. Gillespie, and Michael C. Leopold *

Contents:

- ▶ Instrumentation/Procedural Details of Microscopy and Spectroscopic Characterization of Films
- ▶ Figure SI-1. (A) cyclic voltammetry; (B) Differential pulse voltammetry (cathodic sweep) and (C) chronocoulometry (CC) of 5 mM potassium ferricyanide (0.5 M KCl) at (a) bare GCE, (b) Nafion and (c) Nafion–MWCNT nanocomposite modified GCE.
- ▶ Table SI-1. Summary of results from chronocoulometry experiments to determine electroactive surface area of modified glassy carbon electrodes.
- ▶ Figure SI-2: Cyclic voltammetry of a) GCE/HPU, b) GCE/b-CD/HPU, c) HPU/Nafion-MWCNT/GCE and d) GCE/Nafion-MWCNT/B-CD/HPU electrochemical sensors in 65.55 mM PBS (pH = 7.0) A) without and B) with 1mM UA.
- ► Figure S-3: Representative amperometric I-t curve and corresponding calibration curve (inset) during successive 0.1 mM injections of uric acid at bare glassy carbon electrode coated with HPU.
- ► Figure SI-4: AFM images of pristine MWCNT
- ▶ Figure SI-5: TEM image of A) pristine MWCNT, B) β-CD, C) Nafion-MWCNT and (D) Nafion-MWCNT/ β-CD
- ▶ Figure SI-6. The electropolymerization graphs of b-CD at (a) bare GCE and (c) Nafion-MWCNT nanocomposite modified GCE in 65.55 mM PBS (pH = 7.0) containing 0.01 M β -CD. 2b and 2d shows the last (10th) scans during the electropolymerization of β -CD.
- ► Figure SI-7: The sensitivity of a) GCE/Nafion–MWCNT/ β –CD/HPU, and b) GCE/ β –CD/HPU towards the oxidation of UA at +0.30 V versus the number of β -CD polymerization cycles between – 0.8 and 1.3 V at sweep rate of 100 mV.s⁻¹
- ▶ Figure S-8: Representative amperometric I-t curves and corresponding calibration curves (inset) during successive 0.1 mM injections of uric acid at a) GCE/Nafion-MWCNT/a-CD/HPU, b) GCE/Nafion-MWCNT/y-CD/HPU and c) GCE/Nafion-MWCNT/ B-CD/HPU electrochemical sesnsors.
- Figure S-9: (A) cyclic voltammetry of 5 mM potassium ferricyanide (0.5 M KCl) at (a) GCE/ β -CD, (b) bare GCE, (c) GCE/Nafion-MWCNT/ β-CD and (d) GCE/Nafion-MWCNT; (B) Typical amperometric I-t curves of GCE/Nafion-MWCNT/HPU electrochemical sensor during injections of common interferent species and UA and a graphical summary (Inset) of selectivity coefficients for acetaminophen (AP), ascorbic acid (AA), NaNO₂, oxalic acid (OA), and glucose (Glu) at a) +0.65 and b) +0.30 V vs Ag/AgCl.
- ▶ Table SI-2: Comparison of Amperometric Uric Acid Biosensor Performance Parameters Literature Comparison (with References) 1

Instrumentation/Procedural Details of Microscopy and Spectroscopic Characterization of Films

Transmission Electron Microscopy (TEM). MWCNT structure and Nafion encapsulation of the NTs was supported visually with TEM (JEOL 1010) characterization as was the presence of β -CD within the films. Samples of CNT/Nafion films with electropolymerized β -CD were removed from button electrodes, and were dissolved in ethanol before casting on a TEM grid. Separate TEM grids (Formvar/Carbon 400 mesh, Cu, Electron Microscopy Sciences) were created with specific combinations of the materials comprising the film systems were prepared as were samples of the individual components of the film systems.

Scanning Electron Microscopy (SEM). Nafion-MWCNT/ β -CD were also characterized with SEM (JEOL 6360). Complete films which included all of the individual components were removed from the electrode surface and dissolved in ethanol before drop casting onto the SEM aluminum stud platform.

Atomic Force Microscopy (AFM). MWCNT were dispersed using dimethyl formamide or methylene chloride on either silicon or gold substrates that were previously cleaned with sulfuric acid (0.1 M), rinsed (H_2O), and dried under a stream of nitrogen before being imaged with the AFM (Asylum).

IR. FTIR spectroscopy was conducted using a Thermo Scientific Nicolet Model iS10 FTIR equipped with a diamond SMART iTX HATR sample accessory.

Figure SI-1. (A) cyclic voltammetry; (B) Differential pulse voltammetry (cathodic sweep) and (C) chronocoulometry (CC) of 5 mM potassium ferricyanide (0.5 M KCl) at (a) bare GCE, (b) Nafion and (c) Nafion–MWCNT nanocomposite modified GCE. **DPV parameters:** Potential window = $0 \leftrightarrow +0.4$ V; Pulse width = 0.05 s; Amplitude = 0.05 V; Period = 0.5 s; Sensitivity 1E-4 A/V

Table SI–1. Chronocoulometry (CC), Cyclic Voltametry (CV) and Differntial Pulse Voltammetry (DPV) Summary for Cathodic Waves of 5 mM $[Fe(CN)_6]^{3-/4-}$ (0.5 M KCl) before and after modification of GCEs with Nafion and Nafion–MWCNT nanocomposite.

Electrode Type	Average	CV	CV	CV	DPV
	Area	Average	Average	Average	Average
	(cm^2)	Ip,c (μA) ^a	Ip,c (μA) ^b	Ip,c – BG	Ip,c (μ A) ^d
	from CC			(µA) ^c	
GCE	0.071 ± 0.003	59.7 <u>±</u> 5.0	55.6 <u>+</u> 6.8	55.60±6.6	50.9±11
GCE/Nafion	0.007 ± 0.003	11.3±3.5	6.74±1.90	6.76±1.9	3.49±0.8
GCE/Nafion– MWCNT	0.149±0.006	108±14	85.70±14.0	89.4±14	85.3±10

Notes: – Uncertainty values listed represent standard deviation (n=3).

^a Faradaic and non-Faradaic (charging) peak current (i_{p,c});

^b Isolated Faradaic current from individual peak analysis;

^c Isolated Faradaic current after background subtraction of same scans in 0.5 M KCl supporting electrolyte;

^d Isolated Faradaic current from individual peak analysis;

DPV parameters: Potential window = $0 \leftrightarrow +0.4$ V; Pulse width = 0.05 s; Amplitude = 0.05 V; Period = 0.5 s; Sensitivity 1E-4 A/V

Figure SI–2: Cyclic Voltammograms of a) GCE/HPU, b) GCE/ β –CD/HPU, c) GCE/Nafion–MWCNT/HPU and d) GCE/Nafion–MWCNT/ β –CD/HPU electrochemical sensors in 65.55 mM PBS (pH = 7.0) (A) without (background) and (B) with 1 mM UA.

Figure S–3: Representative amperometric I-t curve and corresponding calibration curve (**inset**) during successive 0.1 mM injections of uric acid at bare glassy carbon electrode coated with HPU. Note: In some cases, standard error bars are smaller than markers for average value (n = 6).

Figure SI–4: AFM images of pristine MWCNT dispersed in dichloromethane and dimethylformamide (DMF).

Figure SI–5: TEM image of **A**) pristine MWCNT, **B**) β–CD, **C**) Nafion–MWCNT and (**D**) β–CD/Nafion–MWCNT

Figure SI–6. The electropolymerization graphs of β –CD at (a) bare GCE and (c) Nafion–MWCNT nanocomposite modified GCE in 65.55 mM PBS (pH = 7.0) containing 0.01 M β –CD. 2b and 2d shows the last (10th) scans during the electropolymerization of β –CD. When compared to bare GCE, the observed ~20–fold increase in the peak current between –0.4 and –0.8 V vs Ag/AgCl for Nafion–MWCNT modified GCE, is attributed to the large surface area effect contributed by MWCNT to accommodate large amounts of β –CD.

Figure SI–7: The sensitivity of **a**) GCE/Nafion–MWCNT/ β –CD/HPU, and **b**) GCE/ β –CD/HPU towards the oxidation of UA at +0.30 V versus the number of β –CD polymerization cycles between –0.8 and 1.3 V at sweep rate of 100 mV.s⁻¹

Figure S–8: Representative amperometric I-t curves and corresponding calibration curves (inset) during successive 0.1 mM injections of uric acid at **a**) GCE/Nafion–MWCNT/ α –CD/HPU, **b**) GCE/Nafion–MWCNT/ γ –CD/HPU and **c**) GCE/Nafion–MWCNT/ β –CD/HPU electrochemical sesnsors. Note: In some cases, standard error bars are smaller than markers for average value (n = 3).

Figure S-9: (A) cyclic voltammetry of 5 mM potassium ferricyanide (0.5 M KCl) at **(a)** GCE/ β -CD, **(b)** bare GCE, **(c)** GCE/Nafion–MWCNT/ β -CD and (d) GCE/Nafion-MWCNT; **(B)** Typical amperometric I-t curves of GCE/Nafion-MWCNT/HPU electrochemical sensor during injections of common interferent species and UA and a graphical summary (**Inset**) of selectivity coefficients for acetaminophen (AP), ascorbic acid (AA), NaNO₂, oxalic acid (OA), and glucose (Glu) at a) +0.65 and b) +0.30 V vs Ag/AgCl. Note: In some cases, standard error bars are smaller than markers for average value (n=3).

SystemTypeWETimeRangeKape $x/0^6$ StabilityRefMafon-MWCNT/p-CD/HPUDirectGCE $2.11_{a.0.5}$ $5.38_{a.0.3}$ 700700122 weeksd.Mafon-MWCNT/p-CD/HPUDirectGCE $2.11_{a.0.5}$ $5.38_{a.0.3}$ 700700122 weeksd.Matrix-MITES/PL-A/HDUI*GPt0.97_{a.01}15700700155 days2.PUHMTES*HMTES/PL-A/HDUI*GPt0.78_{a-11}10.0_{a.3}700700152 weeks4.PUHMTES*HMTES/PL-A/HDUI*GPt0.78_{a-11}10.0_{a.3}700700152 weeks2.PUHMTES*HMTES/PL-A/HDUI*GPt0.78_{a-11}10.0_{a.3}700700152 weeks3.PUHMTES*HMTES/PL-A/HDUI*GPt0.78_{a-11}10.0_{a.3}700700152 weeks3.PUHMTES*HMTES/PL-A/HDUI*GPtPt0.78_{a-11}10.0_{a.3}70070050.403.PUHMTES*HMTES/PL-A/HDUI*GPt92.19218009.0110.04/955.Au/WCNTAI*GPtPt92.19218009.0110.06/955.Au/WWCNTAI*GPtPt70070059.04/955.Au/WWCNTAI*GPtPtPt9.0110.06/955.Au/WWCNTAI*GPtPtPt				Sensitivi	Response	Linear	Dynamic	TOD		
	System	Type	WE	ty	Time	Lange ^a	Range ^a	$xI0^{-6}$	Stability	Ref°
				(mA/µM)	(s)	(MJ)	(Mŋ)	$(\mu M)^b$		
	Nafion-MWCNT/β-CD/HPU	Direct	GCE	$2.11_{\pm 0.29}$	$5.38_{\pm 0.33}$	700	700	12	2 weeks	d.
Pt/HMTES*/HMTES/PL-A/PU 1* 0 78 700 50.2.4 >10 days 2 Au/c-MWCNT/AuNP/UOx 1* 0 10.0.6.5 700 5.0.2.4 >10 days 3 Au/c-MWCNT/AuNP/UOx 1* 0 1 0 1 2 weeks, 4 Au/c-MWCNT/AuNP/UOx 1* 0 1 800 0 1 2 weeks, 4 ITO/MWCNT/PAN/UUX 1* 92.19 2 1800 5 90 days 5 Au/MWCNT/AuNP/UOX 1* 0 1 0 1 2 weeks, 4 Au/MWCNT/AuNP/UOX 1* 0 1 0 1 0 1 0 0 5 Au/MWCNT/AuNP/UOX 1* 8 600 600 5 90 days 6 5 Au/MWCNT/AuNP/UOX 1* 4 8 0 1 1 1 1 5 Au/MWCNT/AuNP/UOX 1* 4 8 0	Pt/PtB/MPC- HMTES*/HMTES/PL-A/HPU	1 st G	Pt	$0.97_{\pm 0.11}$	15	700	700	15	5 days	I.
Selected Multi-walled Carbon Nanotubes Based LA Sensors From Literature Au/c-MWCNT/AuNP/UOX 1st G Au - 7 800 - 0.01 mM 120 days 3. Au/c-MWCNTs Direct Au - 7 800 - 0.01 mM 120 days 3. TrO/MWCNT/AuNP/UOX 1 st G TrO - 8 600 600 5 90 days 5. Au/MWCNT/AuNP/UOX 1 st G TrO - 7 800 800 10 120 days 6. Au/MWCNT/AuNP/UOX 1 st G Au - 7 800 800 10 120 days 6. GCE/PVF/GEL/c-MWCNT/UOX 1 st G - 40 70 2.33.10 st M cercease 7. GCE/PVF/GEL/c-MWCNT/OX Direct GC 0.2.500 0.2.500 0.16 6 months 7.	Pt/HMTES*/HMTES/PL-A/PU	1 st G	Pt	$0.78_{\pm0.11}$	$10.0_{\pm 5.3}$	700	700	$5.0_{\pm 2.4}$	>10 days	2.
		Sele	cted M	ulti-walled	Carbon Nanc	tubes Based	UA Sensors	From Literat	ure	
Au/MUCNTs Direct Au 92.19 2 1800 - 0.1 2 weeks, 10% decrease 4. ITO/MUCNT/PAN/UOX 1 st G ITO - 8 600 5 90 days 5. Au/MUCNT/Au/NP/UOX 1 st G TO - 7 800 800 10 120 days 6. Au/MUCNT/Au/NP/UOX 1 st G Au - 7 800 800 10 120 days 6. GCE/VF/GEL/c-MUCNT/UOX 2 st G c 40 710 - 2.33.10 ^s decrease 7. GCE/WT-HoFNPs Direct GC - 0.2-500 0.2-500 0.16 6 months 8. β -CD/CNT/GE Direct GE - 0.5-50 0.2-500 0.16 8. 8.	Au/c-MWCNT/AuNP/UOx	1 st G	Au		٢	800		0.01 mM	120 days	з.
	Au/MWCNTs	Direct	Au	92.19	7	1800	ı	0.1 µМ/тМ	2 weeks, 10% decrease	4.
	ITO/MWCNT/PANI/UOx	$1^{\rm st}{\rm G}$	ITO	ı	8	600	600	5	90 days	5.
	Au/MWCNT/AuNP/UOx	$1^{\rm st}{\rm G}$	Au	ı	L	800	800	10	120 days	6.
GCE/MWCNT-HoFNPs Direct GCE 0.2-500 0.2-500 0.16 6 months 8. β-CD/CNT/GE Direct GE 2.7 - 0.5-50 0.5-50 0.2 4 days 9.	GCE/PVF/GEL/c-MWCNT/UOx	2 nd G	GCE	ı	40	710	·	2.3x10 ⁻⁸ M	Day 1-10; 30% decrease; Day 11-35; 50% decrease	К.
β -CD/CNT/GE Direct GE 2.7 - 0.5-50 0.5-50 0.2 4 days 9.	GCE/MWCNT-HoFNPs	Direct	GCE	I	ı	0.2-500	0.2-500	0.16	6 months	8.
	β-CD/CNT/GE	Direct	GE	2.7	I	0.5-50	0.5-50	0.2	4 days	9.

Table SI-2 References

- Wayu, M. B.; Pannell, M. J.; Leopold, M. C.: Layered Xerogel Films Incorporating Monolayer-Protected Cluster Networks on Platinum-Black-Modified Electrodes for Enhanced Sensitivity in First-Generation Uric Acid Biosensing. *ChemElectroChem* 2016, 3, 1245-1252.
- Conway, G. E.; Lambertson, R. H.; Schwarzmann, M. A.; Pannell, M. J.; Kerins, H. W.; Rubenstein, K. J.; Dattelbaum, J. D.; Leopold, M. C.: Layer-by-layer design and optimization of xerogel-based amperometric first generation biosensors for uric acid. *J. Electroanal. Chem.* 2016, 775, 135-145.
- Chanhan, N.; Pundir, C. An Amperometric Uric Acid Biosensor Based on Multiwalled Carbon Nanotube-Gold Nanoparticle Composite. Anal. Biochem. 2011, 413, 97-103.
- Wang, J.; Zhang, W. Sputtering Deposition of Gold Nanoparticles onto Vertically Aligned Carbon Nanotubes for Electroanalysis of Uric Acid. J. Electroanal. Chem. 2011, 654, 79-84.
- Bhambi, M.; Sumana, G.; Malhotra, B. D.; Pundir, C. S.: An Amperometric Uric Acid Biosensor Based on Immobilization of Uricase onto Polyaniline-multiwalled Carbon Nanotube Composite Film. Artif. Cells, Blood Substitutes Biotechnol. 2010, 38, 178-185.
- Chauhan, N.; Pundir, C. S.: An amperometric uric acid biosensor based on multiwalled carbon nanotube-gold nanoparticle composite. *Anal. Biochem.* 2011, 413, 97-103.
- Erden, P.; Kacar, C.; Ozturk, F; Kilic, E. Amperometric Uric Acid Biosensor Based on Poly(vinylferrocene)-Gelatin-Carboxylated Multiwalled Carbon Nanotube Modified Glassy Carbon Electrode. *Talanta* 2015, 134, 488-495.
- 8. Noroozifar, M.; Khorasani-Motlagh, M.; Jahromi, F. Z.; Rostami, S.: Sensitive and selective determination of uric acid in real samples by modified glassy carbon electrode with holmium fluoride nanoparticles/multi-walled carbon nanotube as a new biosensor. *Sens. Actuators B: Chem.* **2013**, *188*, 65-72.
- 9. Wang, Z.; Wang, Y.; Luo, G.: A selective voltammetric method for uric acid detection at [small beta]-cyclodextrin modified electrode incorporating carbon nanotubes. *Analyst* **2002**, *127*, 1353-1358.