
Bard College Bard College 

Bard Digital Commons Bard Digital Commons 

Senior Projects Fall 2020 Bard Undergraduate Senior Projects 

Fall 2020 

Square Peg Problem in 2-Dimensional Lattice Square Peg Problem in 2-Dimensional Lattice 

Nathan M. Matsubara 
Bard College, nm2834@bard.edu 

Follow this and additional works at: https://digitalcommons.bard.edu/senproj_f2020 

 Part of the Discrete Mathematics and Combinatorics Commons, and the Geometry and Topology 

Commons 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. 

Recommended Citation Recommended Citation 
Matsubara, Nathan M., "Square Peg Problem in 2-Dimensional Lattice" (2020). Senior Projects Fall 2020. 
36. 
https://digitalcommons.bard.edu/senproj_f2020/36 

This Open Access is brought to you for free and open 
access by the Bard Undergraduate Senior Projects at 
Bard Digital Commons. It has been accepted for inclusion 
in Senior Projects Fall 2020 by an authorized 
administrator of Bard Digital Commons. For more 
information, please contact digitalcommons@bard.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Bard College

https://core.ac.uk/display/388562139?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.bard.edu/
http://www.bard.edu/
https://digitalcommons.bard.edu/
https://digitalcommons.bard.edu/senproj_f2020
https://digitalcommons.bard.edu/undergrad
https://digitalcommons.bard.edu/senproj_f2020?utm_source=digitalcommons.bard.edu%2Fsenproj_f2020%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/178?utm_source=digitalcommons.bard.edu%2Fsenproj_f2020%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/180?utm_source=digitalcommons.bard.edu%2Fsenproj_f2020%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/180?utm_source=digitalcommons.bard.edu%2Fsenproj_f2020%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://digitalcommons.bard.edu/senproj_f2020/36?utm_source=digitalcommons.bard.edu%2Fsenproj_f2020%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@bard.edu
http://www.bard.edu/
http://www.bard.edu/


Square Peg Problem in 2-Dimensional Lattice

A Senior Project submitted to
The Division of Science, Mathematics, and Computing

of
Bard College

by
Nathan Matsubara

Annandale-on-Hudson, New York
December, 2020



ii



Abstract

The Square Peg Problem, also known as the inscribed square problem poses a question: Does
every simple closed curve contain all four points of a square? This project introduces a new
approach in proving the square peg problem in 2-dimensional lattice.

To accomplish the result, this research first defines the simple closed curve on 2-dimensional
lattice. Then we identify the existence of inscribed half-squares, which are the set of three points
of a square, in a lattice simple closed curve. Then we finally add a last point to form a half-
square into a square to examine whether all four points of a square exist in a lattice simple
closed curve. A sage program was used to find all missing corners of all inscribed half-squares.
This has enabled us to look at the pattern of sets of all missing corners in specific shapes like
rectangles.

By the end, we were able to conjecture that there exist missing corners in the interior and
the exterior of the lattice simple closed curve unless the shape is a square. It is obvious that
the square has an inscribed square. Hence if we could prove that the set of all missing corners
is connected, we could give a new proof of the square peg problem in 2-dimensional lattice.
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1
Introduction

In this project, we discuss a new way of trying to prove the lattice version of the square peg

problem, also known as the inscribed square problem. The problem of whether every Jordan

curve has four points which form a square has not been solved in general. A survey of what is

known about the problem is in [2]. The solution of the problem for every polygon is in [3]. The

lattice square peg problem was solved in [4], but the proof in [4] depends upon [3], which is not a

discrete proof. Hence this project attempts to write a purely discrete proof of the lattice square

peg problem.

First, we introduce some basic definitions in understanding the simple closed curve on 2-

dimensional lattice. Then we discuss half-squares, which are the set of three points in a square,

inscribed in a lattice simple closed curve. Last, we look at the cloud, which is the set of missing

corners of all inscribed half-squares. By looking at different clouds, We were able to find clear

patterns of how clouds are formed in rectangular simple closed curves.

We were not able to reach to the solution of the lattice square peg problem in this project.

However we could speculate that missing corners exist in the interior and the exterior of the

non-square lattice simple closed curve. Because it is clear that a square has an inscribed square,

if we could prove that there are missing corners in the interior and the exterior, and the set of

all missing corners is connected, we would be able to solve the lattice square peg problem.
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2
Lattice Simple Closed Curves

2.1 Non Degenerate Lattice Simple Closed Curves

First, let us introduce definitions in order to describe a non-degenerate lattice simple closed

curve on 2-dimensional lattice.

Definition 2.1.1. The 2-dimensional lattice, denoted by Z2, consists of points in R2 whose

coordinates are only integers. 4

In 2-dimensional lattice, there are different ways to describe two neighboring points.

Definition 2.1.2. Consider two different types.

1. Two points in Z2 are 4-adjacent if the distance between them is exactly 1 in either the

vertical or horizontal direction.

2. Two points in Z2 are 8-adjacent if the distance between them is exactly 1 or
√

2.

4

Let us define a simple closed curve formed by 4-adjacent points in 2-dimensional lattice.

Definition 2.1.3. A non-degenerate lattice simple closed curve (NDLSCC) in Z2 is a

finite set C ⊆ Z2 such that every point in C has exactly two 4-adjacent points in C. 4
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Figure 2.1.1. Example of 4-adjacent non-degenerate lattice simple closed curve (NDLSCC)

In Figure 2.1.1, the NDLSCC consists of the black points.

Figure 2.1.2 is not a NDLSCC. Note that some points have three 4-adjacent points.

Figure 2.1.2. This is not a non-degenerate lattice simple closed curve

Now we define a path formed by 4-adjacent points in 2-dimensional lattice.

Definition 2.1.4. Let P be a finite set. A non-degenerate lattice path (NDLP) in Z2 is a

finite set P ⊆ Z2 such that every point in P has exactly two 4-adjacent points in P except for

two points in P , called endpoints, that have exactly one 4-adjacent point in P each. 4

We also define a path formed by 8-adjacent points in 2-dimensional lattice.

Definition 2.1.5. Let P be a finite set. A 8-adjacent non-degenerate lattice path (8-

NDLP) in Z2 is a set P ⊆ Z2 such that every point in P has exactly two 8-adjacent points in

P except for two points in P , called endpoints, that have exactly one 8-adjacent point in P

each. 4

Figure 2.1.3 is an example of non-degenerate lattice path. Notice that removing a point (or

4-adjacent points) from a NDLSCC gives NDLP because it creates two endpoints that have

exactly one 4-adjacent point. Also note that Figure 2.1.4 is not a non-degenerate lattice path.
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Figure 2.1.3. Example of non-degenerate lattice path (1)

Figure 2.1.4. This is not a non-degenerate lattice path

Figure 2.1.5 is also an example of non-degenerate lattice path. However, this non-degenerate

lattice path cannot be formed by removing a point (or 4-adjacent points) from a NDLSCC. This

is because if we add a point anywhere on this NDLP, it would not be non-degenerate.

Figure 2.1.5. Example of non-degenerate lattice path (2)

Consider a corner, which is a turning point, in NDLSCC.

Definition 2.1.6. A corner of a NDLSCC is a point which has its two 4-adjacent points in

both horizontal and vertical direction. 4
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In Figure 2.1.6, corners are indicated by each hexagon surrounding each point. Points that

are not surrounded by hexagon is not a corner.

Figure 2.1.6. Example of the corner of the NDLSCC

We introduce the associate path, which is crucial in describing possible points in an inscribed

square.

Definition 2.1.7. Let C ⊆ Z2 be a NDLSCC. Let a ∈ C, which we call a starting point. Let Ra

be the rotation of the plane around a by π
2 counterclockwise. The non-degenerate associate

path for a, denoted APa, is defined by APa = {Ra(b) | for all b ∈ C such that b 6= a}. 4

In Figure 2.1.7 the NDLSCC consists of the black points. The starting point, a is denoted by

a square around the black point. Then APa consists of the empty circle. The endpoints of APa

are 4-adjacent to the starting point. (Note that the black points are inside the empty circles

when they overlap.)

Figure 2.1.7. Example of non-degenerate associate path from starting point
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2.2 Lattice Jordan Curve Theorem

In this section, we introduce Jordan Curve Theorem into 2-dimensional lattice. First we will

define what component is, so that we can discuss the lattice Jordan curve theorem.

Definition 2.2.1. Let A ⊆ Z2.

1. The set A is connected if for any x, y ∈ A, there is a NDLP in A with endpoints x, y.

2. A component of A is a connected subset of A that is not the proper subset of another

connected subset of A. 4

The following theorem is the modified version of the well-known Jordan Curve Theorem in

2-dimensional lattice. The proof of this theorem is provided by [1].

Theorem 2.2.2 (Lattice Jordan Curve Theorem). Let C ⊆ Z2 be a NDLSCC. Then Z2 − C

has exactly two distinct components, one of which is bounded, and is called the interior of C,

and one of which is unbounded, and is called the exterior of C. Let P be a 8-NDLP with one

endpoint in the interior of C and the other endpoint in the exterior of C. Then C ∩ P 6= ∅

Now that we can distinguish the interior and the exterior of NDLSCC, we are going to show

that the endpoints of the associate path are in different components.

Lemma 2.2.3. Let C ⊆ Z2 be a NDLSCC. Let x ∈ C. Suppose x is not a corner. The endpoints

of APx are 4-adjacent to x, one endpoint in the interior of C and the other endpoint in the

exterior of C.

Proof. Let two 4-adjacent points of x in C be p, q. Because x is not a corner, then p and q are

either two horizontal or two vertical 4-adjacent points of x. Let z = Rx(p) and t = Rx(q). Then

z, t ∈ APx. Because x /∈ APx, then z and t are endpoints of APx. Note that z, t /∈ C. Hence z, t

must either be in the interior or the exterior of C. Because z = Rx(p) and t = Rx(q), we have z

and t are either two horizontal or two vertical 4-adjacent points of x. By using a standard fact

about a point in polygon, one endpoint is in the interior of C and the other endpoint is in the

exterior of C.
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Now we can prove that there always exists a point of intersection between NDLSCC and its

non-degenerate associate path.

Lemma 2.2.4. Let C ⊆ Z2 be a NDLSCC. Let x ∈ C. Suppose x is not a corner. Let APx be

the non-degenerate associate path for x. Then C ∩APx 6= ∅.

Proof. Let the two 4-adjacent points of x in C be p, q. Because x is not a corner, then p, x, q are

colinear. Let z = Rx(p) and t = Rx(q). Then z, t ∈ APx. By Definition 2.1.7, we have x /∈ APx.

Because p, x, q are colinear and x /∈ APx, then z and t are endpoints of APx. By Lemma 2.2.3,

we know that one endpoint is in the interior of C and the other endpoint is in the exterior of C.

Because z and t are in different components of C and because APx is a NDLP, by Theorem 2.2.2,

we have C ∩APx 6= ∅.



3
Inscribed Half-Square

3.1 Heads of Inscribed Half-Squares

In this section, we introduce half-squares inscribed in NDLSCC. We use the following notations.

Let x, y, z ∈ Z2. Let d(x, y) denote the distance between x and y. Let xy ⊥ yz denote that xy

and yz are perpendicular.

Definition 3.1.1. Let a, b, c ∈ Z2.

1. A half-square in Z2 is a set of 3 points {a, b, c} ⊆ Z2 such that d(a, b) = d(b, c) and

ab ⊥ bc.

2. The head of the half-square {a, b, c} is b, and the feet of the half-square {a, b, c} are a

and c. 4

In Figure 3.1.1, the half-square consists of black and empty points. The black point is the

head of this half-square and remaining two empty points are the feet of this half-square.

If all the points of half-square is in NDLSCC, then the half-square is inscribed.

Definition 3.1.2. Let C ⊆ Z2 be a NDLSCC. An inscribed half-square (IHS) in C is a set

of 3 points {a, b, c} ⊆ C such that {a, b, c} is a half-square. 4
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Figure 3.1.1. Example of a half-square

An example of IHS is shown in Figure 3.1.2. Note that this particular IHS is one of many IHS

in this NDLSCC.

Figure 3.1.2. Example of an inscribed half-square

Now we can state that every point is the head of an IHS.

Theorem 3.1.3. Let C ⊆ Z2 be a NDLSCC. Every point in C is the head of an inscribed

half-square in C.

Proof. Let p ∈ C. Consider two cases.

1. Suppose p is the corner of C. Then p has two 4-adjacent points s and t in horizontal and

vertical directions, respectively, by Definition 2.1.6. Then {s, p, t} is an IHS in C with p

its head.

2. Suppose p is not a corner of C. Let APp be the non-degenerate associate path for p. Then

there exists q ∈ APp∩C by Lemma 2.2.4. By Definition 2.1.7 we know that APp = {Rp(b) |

b ∈ C such that b 6= p}. Hence there exists some r ∈ C − {p} such that q = Rp(r). Then

d(q, p) = d(p, r) and qp ⊥ pr. Hence {q, p, r} is an IHS in C with p its head.
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3.2 Feet of Inscribed Half-Squares

Now that it is clear that every point in NDLSCC is the head of an inscribed half-square in

NDLSCC, we would also like to consider if every point in NDLSCC is the foot of an inscribed

half-square in NDLSCC. First, let us redefine the associate path for this specific case.

Definition 3.2.1. Let C ⊆ Z2 be a NDLSCC. Let a ∈ C, which we call a starting point.

Let Sa be the combined transformation consisting of the rotation of the plane around a by π
4

counterclockwise and the scaling of the plane around a by a factor of
√

2. The 8-adjacent non-

degenerate associate path for a, denoted 8-APa, is defined by 8-APa = {Sa(b) | for all b ∈

C such that b 6= a}. 4

In Figure 3.2.1, a NDLSCC consists of the black points. The starting point, a is denoted by

a square around the black point. Then 8-APa consists of the empty circles. The endpoints of

8-APa are 8-adjacent to the starting point. (Note that empty circles are strictly 8-adjacent to

each other and the black points are inside the empty circles when they intersect.)

Figure 3.2.1. Example of left non-degenerate associate path from starting point

We introduce a lemma, which is similar to Lemma 2.2.3

Lemma 3.2.2. Let C ⊆ Z2 be a NDLSCC. Let x ∈ C. Suppose x is not a corner. The endpoints

of 8-APx are 8-adjacent to x, one endpoint in the interior of C and the other endpoint in the

exterior of C.
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Proof. Let two 8-adjacent points of x in C be p, q. Because x is not a corner, then p, x, q are

colinear. Let z = Sx(p) and t = Sx(q). Then z, t ∈ 8-APx. Because x /∈ 8-APx, then z and t are

endpoints of 8-APx. Note that z, t /∈ C. Hence z, t must either be in the interior or the exterior of

C. Because z = Sx(p) and t = Sx(q), we have z and t are two 8-adjacent points of x in the same

direction. By using a standard fact about a point in polygon, one endpoint is in the interior of

C and the other endpoint is in the exterior of C

From here the procedure is same as Lemma 2.2.4.

Lemma 3.2.3. Let C ⊆ Z2 be a NDLSCC. Let x ∈ C. Suppose x is not a corner. Let 8-APx be

the 8-adjacent non-degenerate associate path for x. Then C ∩ 8-APx 6= ∅.

Proof. Let the two 4-adjacent points of x in C be p, q. Let z = Sx(p) and t = Sx(q). Then

z, t ∈ 8-APx.

By Definition 3.2.1, we have x /∈ 8-APx. Because p, x and x, q are 4-adjacent and x /∈ 8-APx,

then z and t are endpoints of 8-APx. By Lemma 3.2.2, we know that one endpoint is in the interior

of C and the other endpoint is in the exterior of C. Hence z and t are in different components

of C. Because 8-APx is a 8-adjacent NDLP and NDLSCC is 4-adjacent, by Theorem 2.2.2, we

have C ∩ 8-APx 6= ∅.

Now we can prove that every point that is not a corner in NDLSCC is a foot of an inscribed

half-square. We think we can prove the following theorem with every point including corners,

but we were not able to do it yet.

Theorem 3.2.4. Let C ⊆ Z2 be a NDLSCC. Every point that is not a corner in C is a foot of

an inscribed half-square in C.

Proof. Let p ∈ C. Suppose p is not a corner. Let 8-APp be the 8-adjacent non-degenerate

associate path for p. Then there exists q ∈ 8-APp ∩ C by Lemma 3.2.3. By Definition 3.2.1 we

know that 8-APp = {Sp(b) | b ∈ C such that b 6= p}. Hence there exists some r ∈ C − {p} such
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that q = Sp(r). Then d(p, r) = d(r, q) and pr ⊥ rq. Hence {p, r, q} is an IHS in C with p and q

as its feet.

3.3 Inscribed half-rectangle

Now we will examine half-rectangles in NDLSCC.

Definition 3.3.1. Let a, b, c ∈ Z2.

1. A 2× 1 half-rectangle in Z2 is a set of 3 points {a, b, c} ⊆ Z2 such that 2d(a, b) = d(b, c)

and ab ⊥ bc.

2. A 1× 2 half-rectangle in Z2 is a set of 3 points {a, b, c} ⊆ Z2 such that d(a, b) = 2d(b, c)

and ab ⊥ bc.

3. The head of the half-rectangle {a, b, c} is b, and the feet of the half-rectangle {a, b, c} are

a and c. 4

If all the points of half-rectangle is in NDLSCC, then the half-rectangle is inscribed.

Definition 3.3.2. Let C ⊆ Z2 be a NDLSCC. An inscribed half-rectangle (IHR) in C is a

set of 3 points {a, b, c} ⊆ C such that {a, b, c} is a half-rectangle. 4

Figure 3.3.1 and Figure 3.3.2 are the examples of IHR. 2 × 1 IHR and 1 × 2 IHR have the

same physical properties, but we need to consider both to find every possible IHR in NDLSCC.

Figure 3.3.1. Example of a 2× 1 IHR
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Figure 3.3.2. Example of a 1× 2 IHR

Let C ⊆ Z2 be a NDLSCC. Is every point in C the head of an inscribed half-rectangle in C?

We disprove this by giving a counterexample.

Counterexample.

Let C ⊆ Z2 be a NDLSCC. Let a ∈ C, which we call a starting point. Let Ta be the combined

transformation consisting of the rotation of the plane around a by π
2 and the enlargement of

the plane around a by a factor of 2. Let Ua be the combined transformation consisting of

the rotation of the plane around a by π
2 and the enlargement of the plane around a by a

factor of 1
2 . Then 1 × 2 associate path for a, denoted TAPa, is defined by TAPa = {Ta(b) |

for all b ∈ C such that b 6= a} and 2 × 1 associate path for a, denoted UAPa, is defined by

UAPa = {Ua(b) | for all b ∈ C such that b 6= a}. Because of the combined transformation, both

TAPa and UAPa are not NDLP. Hence every point in C is not the head of a 1 × 2 or 2 × 1

inscribed half-rectangle in C.

In Figure 3.3.3, let black points be the NDLSCC. Suppose the black point with square around

it is the head of an inscribed half-rectangle. Then larger empty circle is the every possible foot of

a 1×2 half-rectangle and smaller empty circle is the every possible foot of a 2×1 half-rectangle.

Because every empty circle do not overlap with any of the black points, there is no IHR.
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Figure 3.3.3. Countexample of an IHR
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4
Cloud

4.1 Missing Corners

Now that we clearly see that every point in C is the head of an IHS, we should consider the

missing point to form an IHS into a square.

Definition 4.1.1. Let C ⊆ Z2 be a NDLSCC. Let {a, b, c} ⊆ C such that {a, b, c} is a half-

square. The missing corner in Z2 is a point d ∈ Z2 such that d 6= b and d(a, b) = d(b, c) =

d(c, d) = d(a, d). 4

Figure 4.1.1 shows the example of a missing corner in NDLSCC. Empty circle represents a

missing corner found by 3 other points with empty squares, which is IHS.

Figure 4.1.1. Example of a missing corner

We define cloud of NDLSCC as the set of missing corners.
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Definition 4.1.2. Let C ⊆ Z2 be a NDLSCC. The cloud of C is a set of all missing corners of

all possible inscribed half-squares in C. 4

In Figure 4.1.2, black points form NDLSCC and empty circles are the cloud of NDLSCC.

Figure 4.1.2. Example of a cloud

4.2 Cloud for Rectangle

In this section, let us consider the cloud of a rectangular NDLSCC. It is a specific case as it

demonstrates clear pattern. First, we define integer interval to keep expressions simple.

Definition 4.2.1. Let a, b ∈ N. The integer interval from a to b is denoted as [[a, b]] = {x ∈

Z | a ≤ x ≤ b} = {a, a + 1, ..., b}. 4

Let us define a rectangular NDLSCC.

Definition 4.2.2. Let a, b ∈ N such that a, b ≥ 3. Suppose a > b. Let

B(a, b) = [[0, a]]× {0},

T (a, b) = [[0, a]]× {b},

L(a, b) = {0} × [[1, b− 1]],
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and

R(a, b) = {a} × [[1, b− 1]].

Let Rect(a, b) be NDLSCC that is the a× b rectangle given by

Rect(a, b) = B(a, b) ∪ T (a, b) ∪ L(a, b) ∪R(a, b).

4

We will look at three different types of rectangles. First, consider Rect(a, b) with a ≥ 2b and

b ≥ 3.

In Figure 4.2.1, empty circles are the cloud of Rect(15, 5).

Figure 4.2.1. The cloud of Rect(a, b) when a ≥ 2b

We separate the cloud of a rectangle into beam, arm, body, bridge and cross.

Definition 4.2.3. Let a, b ∈ N. Suppose b ≥ 3, and suppose a ≥ 2b.

1. Let the beam of Rect(a, b) be

Be(a, b) = Be1(a, b) ∪Be2(a, b)
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where

Be1(a, b) = {(x,−b) | x ∈ [[b, a− b]]}

and

Be2(a, b) = {(x, 2b) | x ∈ [[b, a− b]]}.

2. Let the arm of Rect(a, b) be

Ar(a, b) = Ar1(a, b) ∪Ar2(a, b) ∪Ar3(a, b) ∪Ar4(a, b)

where

Ar1(a, b) = {(x, b + x) | x ∈ [[1, b− 1]]},

Ar2(a, b) = {(x,−x) | x ∈ [[1, b− 1]]},

Ar3(a, b) = {((a− b) + x, 2b− x) | x ∈ [[1, b− 1]]}

and

Ar4(a, b) = {((a− b) + x,−b + x) | x ∈ [[1, b− 1]]}.

3. Let the body of Rect(a, b) be

Bd(a, b) = Bd1(a, b) ∪Bd2(a, b)

where

Bd1(a, b) = {(x, 0) | x ∈ [[0, a]]}

and

Bd2(a, b) = {(x, b) | x ∈ [[0, a]]}.

4. Let the bridge of Rect(a, b) be

Br(a, b) = Br1(a, b) ∪Br2(a, b)
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where

Br1(a, b) = {(b, x) | x ∈ [[1, b− 1]]}

and

Br2(a, b) = {(a− b, x) | x ∈ [[1, b− 1]]}.

5. Let the cross of Rect(a, b) be

Cr(a, b) = Cr1(a, b) ∪ Cr2(a, b) ∪ Cr3(a, b) ∪ Cr4(a, b)

where

Cr1(a, b) = {(x, x) | x ∈ [[1, b− 1]]},

Cr2(a, b) = {(x, b− x) | x ∈ [[1, b− 1]]},

Cr3(a, b) = {((a− b) + x, x) | x ∈ [[1, b− 1]]}

and

Cr4(a, b) = {((a− b) + x, b− x) | x ∈ [[1, b− 1]]}.

4

In Figure 4.2.2, empty circles are the beams of Rect(15, 5).

In Figure 4.2.3, empty circles are the arms of Rect(15, 5).

In Figure 4.2.4, empty circles are the bodies of Rect(15, 5).

In Figure 4.2.5, empty circles are the bridges of Rect(15, 5). Note that when a = 2b, two

bridges overlap.

In Figure 4.2.6, empty circles are the crosses of Rect(15, 5).

Now we show that all the missing corners given by a rectangle is the union of beam, arm,

body, bridge and cross.

Theorem 4.2.4. Let a, b ∈ N. Suppose b ≥ 3, and suppose a ≥ 2b. Then the cloud of Rect(a, b)

is Be(a, b) ∪Ar(a, b) ∪Bd(a, b) ∪Br(a, b) ∪ Cr(a, b).
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Figure 4.2.2. Example of beam when a ≥ 2b

Proof. Let C be the cloud of Rect(a, b). First we are going to show that C ⊆ Be(a, b)∪Ar(a, b)∪

Bd(a, b) ∪Br(a, b) ∪ Cr(a, b).

By Theorem 3.1.3, we know that every point in Rect(a, b) is the head of an IHS. Let p ∈

Rect(a, b). Consider different cases for all possible IHS with p as head in Rect(a, b).

1. Suppose p = (0, 0), p = (0, b), p = (a, 0) or p = (a, b). First, let us consider when p = (0, 0).

All possible feet of IHS with p as head are (0, i) and (i, 0) for each i ∈ [[1, b]]. Then for

each i ∈ [[1, b]], missing corner is (i, i). Hence the set of all missing corners is

{(i, i) | i ∈ [[1, b]]} = Cr1(a, b) ∪ {(b, b)} ⊆ Cr1(a, b) ∪Bd2(a, b).

By symmetry, we see that sets of all missing corners from other p in this case are

{(i, b− i) | i ∈ [[1, b]]} = Cr2(a, b) ∪ {(b, 0)} ⊆ Cr2(a, b) ∪Bd1(a, b),

{((a− b) + i, b− i) | i ∈ [[0, b− 1]]} = Cr4(a, b) ∪ {(a− b, b)} ⊆ Cr4(a, b) ∪Bd2(a, b)

and

{((a− b) + i, i) | i ∈ [[0, b− 1]]} = Cr3(a, b) ∪ {(a− b, 0)} ⊆ Cr3(a, b) ∪Bd1(a, b).
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Figure 4.2.3. Example of arm when a ≥ 2b

Figure 4.2.4. Example of body when a ≥ 2b

2. Suppose p ∈ [[1, b − 1]] × {0}, p ∈ [[1, b − 1]] × {b}, p ∈ [[(a − b) + 1, a − 1]] × {0} or

p ∈ [[(a − b) + 1, a − 1]] × {b}. Let us consider when p = (1, 0) ∈ [[1, b − 1]] × {0}. All

possible feet of IHS with p as head are (k + b, 0) and (k, b) for each k ∈ [[1, b]]. Then for

each k ∈ [[1, b]], missing corner is (k + b, b). Hence the set of all missing corners is

{(k + b, b) | k ∈ [[1, b− 1]]} ⊆ Bd2(a, b).

By symmetry, we see that sets of all missing corners from other p in this case are

{(k + b, 0) | k ∈ [[1, b− 1]]} ⊆ Bd1(a, b),

{(k − b, b) | k ∈ [[(a− b) + 1, a− 1]]} ⊆ Bd2(a, b)
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Figure 4.2.5. Example of bridge when a ≥ 2b

Figure 4.2.6. Example of cross when a ≥ 2b

and

{(k − b, 0) | k ∈ [[(a− b) + 1, a− 1]]} ⊆ Bd1(a, b).

3. Suppose p = (b, 0), p = (b, b), p = (a−b, 0) or p = (a−b, b). Let us consider when p = (b, 0).

The possible IHS with p as head are following sub-cases.

(a) The feet of IHS with p as head are (2b, 0) and (b, b). Hence the missing corner is

(2b, b) ∈ Bd2(a, b).

(b) The feet of IHS with p as head are (0, i) and (b + i, b) for each i ∈ [[0, b]]. Then for

each i ∈ [[0, b]], missing corner is (i, b + i). Hence the set of all missing corners is

{(i, b+ i) | i ∈ [[0, b]]} = Ar1(a, b)∪{(0, b), (b, 2b)} ⊆ Ar1(a, b)∪Bd2(a, b)∪Be2(a, b).

By symmetry, missing corners from other p from sub-case (a) are (2b, 0) ∈ Bd1(a, b),

(a − 2b, b) ∈ Bd2(a, b) and (a − 2b, 0) ∈ Bd1(a, b). We see that sets of all missing corners

from other p in sub-case (b) are

{(i,−i) | i ∈ [[0, b]]} = Ar2(a, b) ∪ {(0, 0), (b,−b)} ⊆ Ar2(a, b) ∪Bd1(a, b) ∪Be1(a, b),
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{((a−b)+i, 2b−i) | i ∈ [[0, b]]} = Ar3(a, b)∪{(a, b), (a−b, 2b)} ⊆ Ar3(a, b)∪Bd1(a, b)∪Be2(a, b)

and

{((a−b)+i,−b+i) | i ∈ [[0, b]]} = Ar4(a, b)∪{(a, 0), (a−b,−b)} ⊆ Ar4(a, b)∪Bd2(a, b)∪Be1(a, b).

4. Suppose p ∈ [[b + 1, (a − b) − 1]] × {0} or p ∈ [[b + 1, (a − b) − 1]]. Let us consider when

p = (b + 1, 0) ∈ [[b + 1, (a− b)− 1]]× {0}. The possible IHS with p as head are following

sub-cases.

(a) The feet of IHS with p as head are (k+b, 0) and (k, b) for each k ∈ [[b+1, (a−b)−1]].

Then for each k ∈ [[b + 1, (a − b) − 1]], missing corner is (k + b, b). Hence the set of

all missing corners is

{(k + b, b) | k ∈ [[b + 1, (a− b)− 1]]} ⊆ Bd2(a, b).

(b) The feet of IHS with p as head are (k−b, 0) and (k, b) for each k ∈ [[b+1, (a−b)−1]].

Then for each k ∈ [[b + 1, (a − b) − 1]], missing corner is (k − b, b). Hence the set of

all missing corners is

{(k − b, b) | k ∈ [[b + 1, (a− b)− 1]]} ⊆ Bd2(a, b).

(c) The feet of IHS with p as head are (k−b, b) and (k+b, b) for each k ∈ [[b+1, (a−b)−1]].

Then for each k ∈ [[b + 1, (a− b)− 1]], missing corner is (k, 2b). Hence the set of all

missing corners is

{(k, 2b) | k ∈ [[b + 1, (a− b)− 1]]} ⊆ Be2(a, b).

By symmetry, we see that sets of all missing corners from p ∈ [[b + 1, (a− b)− 1]] are

{(k + b, 0) | k ∈ [[b + 1, (a− b)− 1]]} ⊆ Bd1(a, b),

{(k − b, 0) | k ∈ [[b + 1, (a− b)− 1]]} ⊆ Bd1(a, b),

and

{(k,−b) | k ∈ [[b + 1, (a− b)− 1]]} ⊆ Be1(a, b).



26 4. CLOUD

5. Suppose when p ∈ {0}× [[1, b−1]] or p ∈ {b}× [[1, b−1]]. Let us consider when p = (0, 1) ∈

{0} × [[1, b − 1]]. All possible feet of IHS with p as head are (k, b) and (b − k, 0) for each

k ∈ [[1, b− 1]]. Then for each k ∈ [[1, b− 1]], missing corner is (b, b− k). Hence the set of

all missing corners is

{(b, b− k) | k ∈ [[1, b− 1]]} = Br1(a, b).

By symmetry, we see that set of all missing corners from p ∈ {b} × [[1, b− 1]] is

{(a− b, b− k) | k ∈ [[1, b− 1]]} = Br2(a, b).

Given all the cases, the set of all missing corners, which is the cloud of Rect(a, b), is a subset of

Be(a, b) ∪ Ar(a, b) ∪ Bd(a, b) ∪ Br(a, b) ∪ Cr(a, b). Hence C ⊆ Be(a, b) ∪ Ar(a, b) ∪ Bd(a, b) ∪

Br(a, b) ∪ Cr(a, b).

Now we are going to show that Be(a, b) ∪ Ar(a, b) ∪ Bd(a, b) ∪ Br(a, b) ∪ Cr(a, b) ⊆ C by

showing that each set in the union is a subset of C.

First, we claim that Be(a, b) ⊆ C. The set Be(a, b) is given by

Be(a, b) = {(x,−b) | x ∈ [[b, a− b]]} ∪ {(x, 2b) | x ∈ [[b, a− b]]}.

Let q ∈ Be(a, b). Then q ∈ {(x,−b) | x ∈ [[b, a − b]]} or q ∈ {(x, 2b) | x ∈ [[b, a − b]]}. We

consider cases.

1. Suppose q ∈ {(x,−b) | x ∈ [[b, a− b]]}. Consider sub-cases.

(a) Suppose q = (b,−b) or q = ((a − b),−b). By Case 3(b) of the previous part of the

proof, we have q ∈ {(i,−i) | i ∈ [[0, b]]} ∪ {((a− b) + i,−b + i) | i ∈ [[0, b]]} ⊆ C.

(b) Suppose q ∈ {(x,−b) | x ∈ [[b + 1, (a− b)− 1]]}. By Case 4(c) of the previous part of

the proof, we have q ∈ {(k,−b) | k ∈ [[b + 1, (a− b)− 1]]} ⊆ C.

2. Suppose q ∈ {(x, 2b) | x ∈ [[b, a− b]]}. Consider sub-cases.

(a) Suppose q = (b, 2b) or q = ((a − b), 2b). By Case 3(b) of the previous part of the

proof, we have q ∈ {(i, b + i) | i ∈ [[0, b]]} ∪ {((a− b) + i, 2b− i) | i ∈ [[0, b]]} ⊆ C.
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(b) Suppose q ∈ {(x, 2b) | x ∈ [[b + 1, (a− b)− 1]]}. By Case 4(c) of the previous part of

the proof, we have q ∈ {(k, 2b) | k ∈ [[b + 1, (a− b)− 1]]} ⊆ C.

The above cases show that q ∈ C. Hence Be(a, b) ⊆ C.

Second, we claim that Ar(a, b) ⊆ C. Let q ∈ Ar(a, b). Then q ∈ Ar1(a, b), q ∈ Ar2(a, b),

q ∈ Ar3(a, b) or q ∈ Ar4(a, b) . We consider cases.

1. Suppose q ∈ Ar1(a, b). By Case 3(b) of the previous part of the proof, we have q ∈

Ar1(a, b) ∪ {(0, b), (b, 2b)} ⊆ C.

2. Suppose q ∈ Ar2(a, b). By Case 3(b) of the previous part of the proof, we have q ∈

Ar2(a, b) ∪ {(0, 0), (b,−b)} ⊆ C.

3. Suppose q ∈ Ar3(a, b). By Case 3(b) of the previous part of the proof, we have q ∈

Ar3(a, b) ∪ {(a, b), (a− b, 2b)} ⊆ C.

4. Suppose q ∈ Ar4(a, b). By Case 3(b) of the previous part of the proof, we have q ∈

Ar4(a, b) ∪ {(a, 0), (a− b,−b)} ⊆ C.

The above cases show that q ∈ C. Hence Ar(a, b) ⊆ C, which is the subset of C.

Third, We claim that Bd(a, b) ⊆ C. The set Bd(a, b) is given by

Bd(a, b) = {(x, 0) | x ∈ [[0, a]]} ∪ {(x, b) | x ∈ [[0, a]]}.

Let q ∈ Bd(a, b). Then q ∈ {(x, 0) | x ∈ [[0, a]]} or q ∈ {(x, b) | x ∈ [[0, a]]}. We consider cases.

1. Suppose q ∈ {(x, 0) | x ∈ [[0, a]]}. Consider sub-cases.

(a) Suppose q = (b, 0) or q = (a − b, 0). By Case 1 of the previous part of the proof, we

have q ∈ {(i, b− i) | i ∈ [[0, b]]} ∪ {((a− b) + i, i) | i ∈ [[0, b− 1]]} ⊆ C.

(b) Suppose q ∈ {(x, 0) | x ∈ [[b+1, 2b−1]]} or q ∈ {(x, 0) | x ∈ [[(a−2b)+1, (a−b)+1]]}.

By Case 2 of the previous part of the proof, we have q ∈ {(k+ b, 0) | k ∈ [[1, b− 1]]}∪

{(k − b, 0) | k ∈ [[(a− b) + 1, a− 1]]} ⊆ C.
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(c) Suppose q = (2b, 0) or (a− 2b, 0). By Case 3(a) of the previous part of the proof, we

have q ∈ {(2b, 0), (a− 2b, 0)} ⊆ C.

(d) Suppose q = (0, 0) or (a, 0). By Case 3(b) of the previous part of the proof, we have

q ∈ {(i,−i) | i ∈ [[0, b]]} ∪ {((a− b) + i, b + i) | i ∈ [[0, b]]} ⊆ C.

(e) Suppose q ∈ {(x, 0) | x ∈ [[2b + 1, a − 1]]} or q ∈ {(x, 0) | x ∈ [[1, (a − 2b) − 1]]}. By

Case 4 of the previous part of the proof, we have q ∈ {(k + b, 0) | i ∈ [[b+ 1, (a− b)−

1]]} ∪ q ∈ {(k − b, 0) | i ∈ [[b + 1, (a− b)− 1]]} ⊆ C.

2. Suppose q ∈ {(x, b) | x ∈ [[0, a]]}.

(a) Suppose q = (b, b) or q = (a − b, b). By Case 1 of the previous part of the proof, we

have q ∈ {(i, i) | i ∈ [[0, b]]} ∪ {((a− b) + i,−b− i) | i ∈ [[0, b− 1]]} ⊆ C.

(b) Suppose q ∈ {(x, b) | x ∈ [[b+1, 2b−1]]} or q ∈ {(x, b) | x ∈ [[(a−2b)+1, (a−b)+1]]}.

By Case 2 of the previous part of the proof, we have q ∈ {(k+ b, b) | k ∈ [[1, b− 1]]}∪

{(k − b, b) | k ∈ [[(a− b) + 1, a− 1]]} ⊆ C.

(c) Suppose q = (2b, b) or (a− 2b, b). By Case 3(a) of the previous part of the proof, we

have q ∈ {(2b, b), (a− 2b, b)} ⊆ C.

(d) Suppose q = (0, b) or (a, b). By Case 3(b) of the previous part of the proof, we have

q ∈ {(i, b + i) | i ∈ [[0, b]]} ∪ {((a− b) + i, 2b− i) | i ∈ [[0, b]]} ⊆ C.

(e) Suppose q ∈ {(x, b) | x ∈ [[2b + 1, a − 1]]} or q ∈ {(x, b) | x ∈ [[1, (a − 2b) − 1]]}. By

Case 4 of the previous part of the proof, we have q ∈ {(k + b, b) | i ∈ [[b+ 1, (a− b)−

1]]} ∪ q ∈ {(k − b, b) | i ∈ [[b + 1, (a− b)− 1]]} ⊆ C.

The above cases show that q ∈ C. Hence Bd(a, b) ⊆ C.

Fourth, We claim that Br(a, b) ⊆ C. Let q ∈ Br(a, b). Then q ∈ Br1(a, b) or q ∈ Br2(a, b).

We consider cases.

1. Suppose q ∈ Br1(a, b). By Case 5 of the previous part of the proof, we have q ∈ Br1(a, b) ⊆

C.
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2. Suppose q ∈ Br2(a, b). By Case 5 of the previous part of the proof, we have q ∈ Br2(a, b) ⊆

C.

The above cases show that q ∈ C. Hence Br(a, b) ⊆ C.

Last, we claim that Cr(a, b) ⊆ C. Let q ∈ Cr(a, b). we have q ∈ Cr1(a, b), q ∈ Cr2(a, b),

q ∈ Cr3(a, b) or q ∈ Cr4(a, b) . We consider cases.

1. Suppose q ∈ Cr1(a, b). By Case 1 of the previous part of the proof, we have q ∈ Cr1(a, b)∪

{(b, b)} ⊆ C.

2. Suppose q ∈ Cr2(a, b). By Case 1 of the previous part of the proof, we have q ∈ Cr2(a, b)∪

{(b, 0)} ⊆ C.

3. Suppose q ∈ Cr3(a, b). By Case 1 of the previous part of the proof, we have q ∈ Cr3(a, b)∪

{(a− b, 0)} ⊆ C.

4. Suppose q ∈ Cr4(a, b). By Case 1 of the previous part of the proof, we have q ∈ Cr4(a, b)∪

{(a− b, b)} ⊆ C.

The above cases show that q ∈ C. Hence Cr(a, b) ⊆ C.

Because each set is a subset of C, Be(a, b) ∪Ar(a, b) ∪Bd(a, b) ∪Br(a, b) ∪ Cr(a, b) ⊆ C.

Since we have proved that C ⊆ Be(a, b)∪Ar(a, b)∪Bd(a, b)∪Br(a, b)∪Cr(a, b) and Be(a, b)∪

Ar(a, b) ∪ Bd(a, b) ∪ Br(a, b) ∪ Cr(a, b) ⊆ C, we can conclude that the cloud of Rect(a, b) is

Be(a, b) ∪Ar(a, b) ∪Bd(a, b) ∪Br(a, b) ∪ Cr(a, b).

This time, we consider a rectangle Rect(a, b) with b < a < 2b and b ≥ 3.

In Figure 4.2.7, empty circles are the cloud of Rect(10, 7).

We still name parts of cloud with same term, but some of them will be defined differently.

Definition 4.2.5. Let a, b ∈ N. Suppose b ≥ 3, and suppose b < a < 2b. We define Br(a, b) and

Cr(a, b) as we did in Definition 4.2.3.

1. Let the beam of Rect(a, b) be
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Figure 4.2.7. The cloud of Rect(a, b) when b < a < 2b

Be(a, b) = Be1(a, b) ∪Be2(a, b)

where

Be1(a, b) = {(x,−(a− b)) | x ∈ [[a− b, b]]}

and

Be2(a, b) = {(x, (a− b) + b) | x ∈ [[a− b, b]]}.

2. Let the arm of Rect(a, b) be

Ar(a, b) = Ar1(a, b) ∪Ar2(a, b) ∪Ar3(a, b) ∪Ar4(a, b)

where

Ar1(a, b) = {(x, b + x) | x ∈ [[(a− b)− 1, b + 1]]},

Ar2(a, b) = {(x,−x) | x ∈ [[(a− b)− 1, b + 1]]},

Ar3(a, b) = {((a− b) + x, 2b− x) | x ∈ [[(a− b)− 1, b + 1]]}

and

Ar4(a, b) = {((a− b) + x,−b + x) | x ∈ [[(a− b)− 1, b + 1]]}.

3. Let the body of Rect(a, b) be
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Bd(a, b) = Bd1(a, b) ∪Bd2(a, b) ∪Bd3(a, b) ∪Bd4(a, b)

where

Bd1(a, b) = {(x, 0) | x ∈ [[0, a− b]]},

Bd2(a, b) = {(x, 0) | x ∈ [[b, a]]},

Bd3(a, b) = {(x, b) | x ∈ [[0, a− b]]}

and

Bd4(a, b) = {(x, b) | x ∈ [[b, a]]}.

4

In Figure 4.2.8, empty circles are the beams of Rect(10, 7).

Figure 4.2.8. Example of beam when b < a < 2b

In Figure 4.2.9, empty circles are the arms of Rect(10, 7).

In Figure 4.2.10, empty circles are the bodies of Rect(10, 7).

In Figure 4.2.11, empty circles are the bridges of Rect(10, 7).

In Figure 4.2.12, empty circles are the crosses of Rect(10, 7).

The following proof follows the same procedure as Theorem 4.2.4.

Theorem 4.2.6. Let a, b ∈ N. Suppose b ≥ 3, and suppose b < a < 2b. Then the cloud of

Rect(a, b) is Be(a, b) ∪Ar(a, b) ∪Bd(a, b) ∪Br(a, b) ∪ Cr(a, b).



32 4. CLOUD

Figure 4.2.9. Example of arm when b < a < 2b

Figure 4.2.10. Example of body when b < a < 2b

Proof. Let C be the cloud of Rect(a, b). First we are going to show that C ⊆ Be(a, b)∪Ar(a, b)∪

Bd(a, b) ∪ Br(a, b) ∪ Cr(a, b). Let p ∈ Rect(a, b). Consider different cases for all possible IHS

with p as head in Rect(a, b).

1. Suppose p = (0, 0), p = (0, b), p = (a, 0) or p = (a, b). First, let us consider when p = (0, 0).

All possible feet of IHS with p as head are (0, i) and (i, 0) for each i ∈ [[1, b]]. Then for

each i ∈ [[1, b]], missing corner is (i, i). Hence the set of all missing corners is

{(i, i) | i ∈ [[1, b]]} = Cr1(a, b) ∪ {(b, b)} ⊆ Cr1(a, b) ∪Bd2(a, b).

By symmetry, we see that sets of all missing corners from other p in this case are

{(i, b− i) | i ∈ [[1, b]]} = Cr2(a, b) ∪ {(b, 0)} ⊆ Cr2(a, b) ∪Bd1(a, b),

{((a− b) + i, b− i) | i ∈ [[0, b− 1]]} = Cr4(a, b) ∪ {(a− b, b)} ⊆ Cr4(a, b) ∪Bd2(a, b)

and

{((a− b) + i, i) | i ∈ [[0, b− 1]]} = Cr3(a, b) ∪ {(a− b, 0)} ⊆ Cr3(a, b) ∪Bd1(a, b).
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Figure 4.2.11. Example of bridge when b < a < 2b

Figure 4.2.12. Example of cross when b < a < 2b

2. Suppose p ∈ [[1, (a − b) − 1]] × {0}, p ∈ [[1, (a − b) − 1]] × {b}, p ∈ [[b + 1, a − 1]] × {0}

or p ∈ [[b + 1, a − 1]] × {b}. Let us consider when p = (1, 0) ∈ [[1, (a − b) − 1]] × {0}. All

possible feet of IHS with p as head are (k + b, 0) and (k, b) for each k ∈ [[1, (a − b) − 1]].

Then for each k ∈ [[1, (a− b)− 1]], missing corner is (k + b, b). Hence the set of all missing

corners is

{(k + b, b) | k ∈ [[1, (a− b)− 1]]} ⊆ Bd4(a, b).

By symmetry, we see that sets of all missing corners from other p in this case are

{(k + b, 0) | k ∈ [[1, (a− b)− 1]]} ⊆ Bd2(a, b),

{(k − b, b) | k ∈ [[b + 1, a− 1]]} ⊆ Bd3(a, b)

and

{(k − b, 0) | k ∈ [[b + 1, a− 1]]} ⊆ Bd1(a, b).

3. Suppose p = (b, 0), p = (b, b), p = (a − b, 0) or p = (a − b, b). Let us consider when

p = (a− b, 0). The possible IHS with p as head are following sub-cases.

(a) The feet of IHS with p as head are (a, 0) and (a − b, b). Hence the missing corner is

(a, b) ∈ Bd2(a, b).
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(b) The feet of IHS with p as head are (0, i) and (b+ i, b) for each i ∈ [[0, a− b]]. Then for

each i ∈ [[0, a− b]], missing corner is (i, b + i). Hence the set of all missing corners is

{(i, b+i) | i ∈ [[0, a−b]]} = Ar1(a, b)∪{(0, b), (b, a)} ⊆ Ar1(a, b)∪Bd3(a, b)∪Be1(a, b).

By symmetry, missing corners from other p from sub-case (a) are (0, 0) ∈ Bd1(a, b), (0, b) ∈

Bd2(a, b) and (a, 0) ∈ Bd1(a, b). We see that sets of all missing corners from other p in

sub-case (b) are

{(i,−i) | i ∈ [[0, a−b]]} = Ar2(a, b)∪{(0, 0), (a−b,−a+b)} ⊆ Ar2(a, b)∪Bd1(a, b)∪Be1(a, b),

{(b+ i, a− i) | i ∈ [[0, a−b]]} = Ar3(a, b)∪{(b, a), (a, b)} ⊆ Ar3(a, b)∪Bd4(a, b)∪Be2(a, b)

and

{((b+i,−(a−b)+i) | i ∈ [[0, a−b]]} = Ar4(a, b)∪{(a, 0), (b,−a+b)} ⊆ Ar4(a, b)∪Bd2(a, b)∪Be1(a, b).

4. Suppose p ∈ [[(a − b) + 1, b − 1]] × {0} or p ∈ [[(a − b) + 1, b − 1]]. Let us consider when

p = (b+1, 0) ∈ [[(a−b)+1, b−1]]×{0}. All possible feet of IHS with p as head are (k−b, b)

and (k + b, b) for each k ∈ [[(a − b) + 1, b − 1]]. Then for each k ∈ [[(a − b) + 1, b − 1]],

missing corner is (k, 2b). Hence the set of all missing corners is

{(k, a) | k ∈ [[(a− b) + 1, b− 1]]} ⊆ Be2(a, b).

By symmetry, we see that sets of all missing corners from p ∈ [[(a− b) + 1, b− 1]] is

{(k,−(a− b)) | k ∈ [[(a− b) + 1, b− 1]]} ⊆ Be1(a, b).

5. Suppose when p ∈ {0}× [[1, b−1]] or p ∈ {b}× [[1, b−1]]. Let us consider when p = (0, 1) ∈

{0} × [[1, b − 1]]. All possible feet of IHS with p as head are (k, b) and (b − k, 0) for each

k ∈ [[1, b− 1]]. Then for each k ∈ [[1, b− 1]], missing corner is (b, b− k). Hence the set of

all missing corners is

{(b, b− k) | k ∈ [[1, b− 1]]} = Br1(a, b).
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By symmetry, we see that set of all missing corners from p ∈ {b} × [[1, b− 1]] is

{(a− b, b− k) | k ∈ [[1, b− 1]]} = Br2(a, b).

Given all the cases, the set of all missing corners, which is the cloud of Rect(a, b), is a subset

of Be(a, b)∪Ar(a, b)∪Bd(a, b)∪Br(a, b)∪Cr(a, b). Hence C ⊆ Be(a, b)∪Ar(a, b)∪Bd(a, b)∪

Br(a, b) ∪ Cr(a, b).

Now we are going to show that Be(a, b) ∪ Ar(a, b) ∪ Bd(a, b) ∪ Br(a, b) ∪ Cr(a, b) ⊆ C by

showing that each set in the union is a subset of C.

First, we claim that Be(a, b) ⊆ C. The set Be(a, b) is given by

Be(a, b) = {(x,−(a− b) | x ∈ [[a− b, b]]} ∪ {(x, a) | x ∈ [[a− b, b]]}.

Let q ∈ Be(a, b). Then q ∈ {(x,−(a− b) | x ∈ [[a− b, b]]} or q ∈ {(x, a) | x ∈ [[a− b, b]]}. We

consider cases.

1. Suppose q ∈ {(x,−(a− b) | x ∈ [[a− b, b]]}. Consider sub-cases.

(a) Suppose q = ((a− b),−(a− b)) or q = (b,−(a− b)). By Case 3(b) of the previous part

of the proof, we have q ∈ {(i,−i) | i ∈ [[0, a− b]]}∪{(b+ i, a− i) | i ∈ [[0, a− b]]} ⊆ C.

(b) Suppose q ∈ {(x,−(a − b) | x ∈ [[(a − b) + 1, b − 1]]}. By Case 4(c) of the previous

part of the proof, we have q ∈ {(k,−(a− b)) | k ∈ [[(a− b) + 1, b− 1]]} ⊆ C.

2. Suppose q ∈ {(x, a) | x ∈ [[a− b, b]]}. Consider sub-cases.

(a) Suppose q = ((a− b), a) or q = (b, a). By Case 3(b) of the previous part of the proof,

we have q ∈ {(i, b + i) | i ∈ [[0, a− b]]} ∪ {((a− b) + i, 2b− i) | i ∈ [[0, b]]} ⊆ C.

(b) Suppose q ∈ {(x, a) | x ∈ [[(a − b) + 1, b − 1]]}. By Case 4(c) of the previous part of

the proof, we have q ∈ {(k, a) | k ∈ [[(a− b) + 1, b− 1]]} ⊆ C.

The above cases show that q ∈ C. Hence Be(a, b) ⊆ C.

Second, we claim that Ar(a, b) ⊆ C. Let q ∈ Ar(a, b). Then q ∈ Ar1(a, b), q ∈ Ar2(a, b),

q ∈ Ar3(a, b) or q ∈ Ar4(a, b) . We consider cases.
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1. Suppose q ∈ Ar1(a, b). By Case 3(b) of the previous part of the proof, we have q ∈

Ar1(a, b) ∪ {(0, b), (b, 2b)} ⊆ C.

2. Suppose q ∈ Ar2(a, b). By Case 3(b) of the previous part of the proof, we have q ∈

Ar2(a, b) ∪ {(0, 0), (b,−b)} ⊆ C.

3. Suppose q ∈ Ar3(a, b). By Case 3(b) of the previous part of the proof, we have q ∈

Ar3(a, b) ∪ {(a, b), (a− b, 2b)} ⊆ C.

4. Suppose q ∈ Ar4(a, b). By Case 3(b) of the previous part of the proof, we have q ∈

Ar4(a, b) ∪ {(a, 0), (a− b,−b)} ⊆ C.

The above cases show that q ∈ C. Hence Ar(a, b) ⊆ C, which is the subset of C.

Third, We claim that Bd(a, b) ⊆ C. The set Bd(a, b) is given by

Bd(a, b) = {(x, 0) | x ∈ [[0, a−b]]}∪{(x, 0) | x ∈ [[b, a]]}∪{(x, b) | x ∈ [[0, a−b]]}∪{(x, b) | x ∈ [[b, a]]}.

Let q ∈ Bd(a, b). Then q{(x, 0) | x ∈ [[0, a− b]]}, q{(x, 0) | x ∈ [[b, a]]}, q{(x, b) | x ∈ [[0, a− b]]}

or q ∈ {(x, b) | x ∈ [[b, a]]}. We consider cases.

1. Suppose q ∈ {(x, 0) | x ∈ [[0, a− b]]}. Consider sub-cases.

(a) Suppose q = (a − b, 0). By Case 1 of the previous part of the proof, we have q ∈

{((a− b) + i, i) | i ∈ [[0, b]]} ⊆ C.

(b) Suppose q ∈ {(x, 0) | x ∈ [[1, a− b− 1]]}. By Case 2 of the previous part of the proof,

we have q ∈ {(k − b, 0) | k ∈ [[b + 1, a− 1]]} ⊆ C.

(c) Suppose q = (0, 0). By Case 3(b) of the previous part of the proof, we have q =

(0, 0) ⊆ C.

2. Suppose q ∈ {(x, 0) | x ∈ [[b, a]]}. Consider sub-cases.

(a) Suppose q = (b, 0). By Case 1 of the previous part of the proof, we have q ∈ {(i, b−i) |

i ∈ [[1, b]]} ⊆ C.
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(b) Suppose q ∈ {(x, 0) | x ∈ [[b + 1, a − b − 1]]}. By Case 2 of the previous part of the

proof, we have q ∈ {(k + b, 0) | k ∈ [[1, (a− b) + 1]]} ⊆ C.

(c) Suppose q = (a, 0). By Case 3(b) of the previous part of the proof, we have q =

(a, 0) ⊆ C.

3. Suppose q ∈ {(x, b) | x ∈ [[0, a− b]]}. Consider sub-cases.

(a) Suppose q = (b, b). By Case 1 of the previous part of the proof, we have q ∈ {(a −

b) + i, b− i) | i ∈ [[1, b]]} ⊆ C.

(b) Suppose q ∈ {(x, b) | x ∈ [[b + 1, a − b − 1]]}. By Case 2 of the previous part of the

proof, we have q ∈ {(k − b, b) | k ∈ [[b + 1, a− 1]]} ⊆ C.

(c) Suppose q = (0, b). By Case 3(b) of the previous part of the proof, we have q =

(0, b) ⊆ C.

4. Suppose q ∈ {(x, b) | x ∈ [[b, a]]}. Consider sub-cases.

(a) Suppose q = (b, b). By Case 1 of the previous part of the proof, we have q ∈ {(i, i) |

i ∈ [[1, b]]} ⊆ C.

(b) Suppose q ∈ {(x, b) | x ∈ [[b + 1, a − b − 1]]}. By Case 2 of the previous part of the

proof, we have q ∈ {(k + b, b) | k ∈ [[1, (a− b) + 1]]} ⊆ C.

(c) Suppose q = (a, b). By Case 3(b) of the previous part of the proof, we have q =

(a, b) ⊆ C.

The above cases show that q ∈ C. Hence Bd(a, b) ⊆ C.

Fourth, We claim that Br(a, b) ⊆ C. Let q ∈ Br(a, b). Then q ∈ Br1(a, b) or q ∈ Br2(a, b).

We consider cases.

1. Suppose q ∈ Br1(a, b). By Case 5 of the previous part of the proof, we have q ∈ Br1(a, b) ⊆

C.

2. Suppose q ∈ Br2(a, b). By Case 5 of the previous part of the proof, we have q ∈ Br2(a, b) ⊆

C.
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The above cases show that q ∈ C. Hence Br(a, b) ⊆ C.

Last, we claim that Cr(a, b) ⊆ C. Let q ∈ Cr(a, b). Then q ∈ Cr1(a, b), q ∈ Cr2(a, b),

q ∈ Cr3(a, b) or q ∈ Cr4(a, b) . We consider cases.

1. Suppose q ∈ Cr1(a, b). By Case 1 of the previous part of the proof, we have q ∈ Cr1(a, b)∪

{(b, b)} ⊆ C.

2. Suppose q ∈ Cr2(a, b). By Case 1 of the previous part of the proof, we have q ∈ Cr2(a, b)∪

{(b, 0)} ⊆ C.

3. Suppose q ∈ Cr3(a, b). By Case 1 of the previous part of the proof, we have q ∈ Cr3(a, b)∪

{(a− b, 0)} ⊆ C.

4. Suppose q ∈ Cr4(a, b). By Case 1 of the previous part of the proof, we have q ∈ Cr4(a, b)∪

{(a− b, b)} ⊆ C.

The above cases show that q ∈ C. Hence Cr(a, b) ⊆ C.

Because each set is a subset of C, Be(a, b) ∪Ar(a, b) ∪Bd(a, b) ∪Br(a, b) ∪ Cr(a, b) ⊆ C.

Since we have proved that C ⊆ Be(a, b)∪Ar(a, b)∪Bd(a, b)∪Br(a, b)∪Cr(a, b) and Be(a, b)∪

Ar(a, b) ∪ Bd(a, b) ∪ Br(a, b) ∪ Cr(a, b) ⊆ C, we can conclude that the cloud of Rect(a, b) is

Be(a, b) ∪Ar(a, b) ∪Bd(a, b) ∪Br(a, b) ∪ Cr(a, b).

Note that Rec(a, a) would be a square. Now we consider Rect(a, a) with a ≥ 3.

In Figure 4.2.13, empty circles are the cloud of Rect(10, 10).

Figure 4.2.13. The cloud of Rect(a, a)

Note that cross is defined differently.
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Definition 4.2.7. Let a ∈ N. Suppose a ≥ 3.

1. Let the cross of Rec(a, a) be

Cr(a, a) = Cr1(a, b) ∪ Cr2(a, b)

where

Cr1(a, a) = {(x, x) | x ∈ [[1, b− 1]]},

and

Cr2(a, a) = {(x, b− x) | x ∈ [[1, b− 1]]}.

4

In Figure 4.2.14, empty circles are the crosses of Rect(10, 10).

Figure 4.2.14. Example of cross for Rec(a, a)

Again, the following proof follows the same procedure as Theorem 4.2.4.

Theorem 4.2.8. Let a ∈ N. Suppose a ≥ 3. Then the cloud of Rec(a, a) is Rec(a, a)∪Cr(a, a).

Proof. Let C be the cloud of Rect(a, a) for a > 2 such that a ∈ N. First we are going to show

that C ⊆ Be(a, b) ∪Ar(a, b) ∪Bd(a, b) ∪Br(a, b) ∪ Cr(a, b).

By Theorem 3.1.3, we know that every point in Rect(a, b) is the head of an IHS. Let p ∈

Rect(a, b). Consider different cases for all possible IHS with p as head in Rect(a, b).

1. Suppose p = (0, 0), p = (0, a), p = (a, 0) or p = (a, a). First, let us consider when p = (0, 0).

All possible feet of IHS with p as head are (0, i) and (i, 0) for each i ∈ [[0, a]]. Then for
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each i ∈ [[0, a]], missing corner is (i, i). Hence the set of all missing corners is

{(i, i) | i ∈ [[0, a]]} = Cr1(a, a) ∪ {(a, a), (0, 0)} ⊆ Cr1(a, a) ∪Rec(a, a).

By symmetry, we see that sets of all missing corners from other p in this case are

{(i, a− i) | i ∈ [[0, a]]} = Cr2(a, a) ∪ {(a, 0), (0, a} ⊆ Cr2(a, a) ∪Rec(a, a),

2. Suppose p ∈ [[1, a − 1]] × {0}, p ∈ [[1, a − 1]] × {b}, p ∈ {0} × in[[1, a − 1]] or p ∈

{a} × in[[1, a − 1]]. Let us consider when p = (1, 0) ∈ [[1, a − 1]] × {0}. All possible feet

of IHS with p as head are (0, a − k) and (k, a) for each k ∈ [[1, a − 1]]. Then for each

k ∈ [[1, a− 1]], missing corner is (a− k, a). Hence the set of all missing corner is

{(a− k, a) | k ∈ [[1, a− 1]]} ⊆ T (a, a)

. By symmetry, we see that sets of all missing corners from other p in this case are

{(a, k) | k ∈ [[1, a− 1]]} = R(a, a)

,

{(k, 0) | k ∈ [[1, a− 1]]} ⊆ B(a, a)

, and

{(0, a− k) | k ∈ [[1, a− 1]]} = L(a, a).

Given all the cases, the set of all missing corners, which is the cloud of Rect(a, a), is a subset

of Cr(a, a) ∪Rect(a, a). Hence C ⊆ Cr(a, a) ∪Rect(a, a).

Now we are going to show that Cr(a, a) ∪ Rect(a, a) ⊆ C by showing that each set in the

union is a subset of C.

First, we claim that Cr(a, a) ⊆ C. Let q ∈ Cr(a, a). Then q ∈ Cr1(a, a), q ∈ Cra(a, a). We

consider cases.

1. Suppose q ∈ Cr1(a, a). By Case 1 of the previous part of the proof, we have q ∈ Cr1(a, a)∪

{(a, a), (0, 0)} ⊆ C.
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2. Suppose q ∈ Cr2(a, b). By Case 1 of the previous part of the proof, we have q ∈ Cr2(a, b)∪

{(a, 0), (0, a)} ⊆ C.

The above cases show that q ∈ C. Hence Cr(a, b) ⊆ C.

Now, we claim that Rect(a, a) ⊆ C. Let q ∈ Rect(a, a). Then q ∈ [[0, a]]×{0}, q ∈ [[0, a]]×{b},

q ∈ {0} × in[[1, a− 1]] or q ∈ {a}× ∈ [[1, a− 1]] We consider cases.

1. Suppose q ∈ [[0, a]]× {0}. Consider sub-cases.

(a) Suppose q ∈ (0, 0) or (a, 0)). By Case 1 of the previous part of the proof, we have

q ∈ {(i, i) | i ∈ [[0, a]]} ∪ {(i, a− i) | i ∈ [[0, a]]} ⊆ C.

(b) Suppose q ∈ [[1, a − 1]] × {0}. By Case 2 of the previous part of the proof, we have

q ∈ {(k, 0) | k ∈ [[1, a− 1]]} ⊆ C.

2. Suppose q ∈ [[0, a]]× {a}. Consider sub-cases.

(a) Suppose q ∈ (0, a) or (a, a)). By Case 1 of the previous part of the proof, we have

q ∈ {(i, i) | i ∈ [[0, a]]} ∪ {(i, a− i) | i ∈ [[0, a]]} ⊆ C.

(b) Suppose q ∈ [[1, a − 1]] × {a}. By Case 2 of the previous part of the proof, we have

q ∈ {(a− k, a) | k ∈ [[1, a− 1]]} ⊆ C.

3. Suppose q ∈ {0} × in[[1, a − 1]]. By Case 2 of the previous part of the proof, we have

q ∈ L(a, a) ⊆ C.

4. Suppose q ∈ {a}× ∈ [[1, a − 1]]. By Case 2 of the previous part of the proof, we have

q ∈ R(a, a) ⊆ C

The above cases show that q ∈ C. Hence Rect(a, a) ⊆ C.

Because each set is a subset of C, we have Cr(a, a) ∪Rect(a, a) ⊆ C.

Since we have proved that C ⊆ Cr(a, a) ∪ Rect(a, a) and Cr(a, a) ∪ Rect(a, a) ⊆ C, we can

conclude that the cloud of Rect(a, a) is Cr(a, a) ∪Rect(a, a).
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4.3 Internal and external corners

Now we should examine whether missing corners exist in both interior and exterior of NDLSCC.

First, we should consider corners of NDLSCC because it is clear that any IHS with a corner of

NDLSCC as its head forms a missing corner.

Definition 4.3.1. Let S ⊆ Z2 be a NDLSCC. Let p be a corner of S. Then we form the IHS

with p as head and its two 4-adjacent points as feet.

1. If the IHS with p as head has its missing corner in the interor of S, then p is an internal

corner.

2. If the IHS with p as head has its missing corner in the exterior of S, then p is an external

corner.

4

To examine whether missing corners exist in both interior and exterior of a NDLSCC. We

want to know the existence of internal and external corners.

We think the following is true. Let S ⊆ Z2 be a NDLSCC.

1. There exists a corner in S.

2. There exists an internal corner in S.

3. Suppose S is not Rect(a, b) for some a, b ∈ N. There exists an external corner in S.

Therefore we think the following is true. Let S ⊆ Z2 be a NDLSCC. There exists a missing

corner in the interior of S.

Also we think the following is true. Let S ⊆ Z2 be a NDLSCC. Let a, b ∈ N. Suppose S is not

Sq(a, b). There exists a missing corner in the exterior of S. However, we have not proved these

statements.
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Sage Code

A.1 Cloud

This program finds all the IHSs by using each point as a head and plots all the missing corners

deduced from the IHSs.

This function reverses order of element in the list.

def reverse(lst):

lis = []

for i in range(len(lst)-1,-1,-1):

lis.append(lst[i])

return lis

This function lists coordinates of the rectangle.

def rectangle(x,y):

lis = []

for i in range (0, x + 1):

lis.append((i, 0))

for k in range (1, y + 1):

lis.append((x, k))
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revlis = []

for j in range (0, y):

revlis.append((0, j))

for h in range (0, x):

revlis.append((h, y))

newlis = reverse(revlis)

reclis = lis + newlis

return reclis

This function plots a point.

def diskbrown((x1,y1),r):

cp = circle((x1,y1), r, fill=True, thickness=1, edgecolor=’black’, facecolor=’black’)

return cp

This function rotates a vector clockwise.

def rotateclockw((x1,y1)):

v = vector([y1, -x1])

return v

This function returns the list of missing corner of a square if there exist an IHS with given

point as a head.

def missingcornercenter((x1,y1), lis):

newlis = [vector(x) for x in lis if x != (x1, y1)]

miscornerlis = []

w1 = vector((x1,y1))

for w2 in newlis:

zz = w2 - w1
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w3 = w1 + rotateclockw(zz)

if w3 in newlis:

w4 = w2 + rotateclockw(zz)

miscornerlis.append(w4)

return miscornerlis

This function returns the list of missing corner of a square if there exist an IHS with given

point as a foot.

def missingcornerfoot((x1,y1), lis):

newlis = [vector(x) for x in lis if x != (x1, y1)]

miscornerlis = []

w1 = vector((x1,y1))

for w2 in newlis:

zz = w2 - w1

w3 = w2 + rotateclockw(zz)

if w3 in newlis:

w4 = w1 + rotateclockw(zz)

miscornerlis.append(w4)

return miscornerlis

The fuctions returns the list of missing corners of a square for each point on the curve by

using given point as a head.
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def allmissingcornercenter(lis):

allmiscornerlis = []

for x in lis:

allmiscornerlis.append(missingcornercenter(x, lis))

#show(allmiscornerlis)

result = []

for list in allmiscornerlis:

for item in list:

result.append(item)

return result

The fuctions returns the list of missing corners of a square for each point on the curve by

using given point as a foot.

def allmissingcornerfoot(lis):

allmiscornerlis = []

for x in lis:

allmiscornerlis.append(missingcornerfoot(x, lis))

result = []

for list in allmiscornerlis:

for item in list:

result.append(item)

return result

This is the interactive controls. We now come to the main part of the Sage code.
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@interact

def _(

vv = input_box(default = initlis, label="List of Vertices of Polygon"),

switch = ("Show original", False),

u = slider(3, 30, 1, default=20, label=’bound for graph’),

rx = slider(3, 30, 1, default=8, label=’Length’),

ry = slider(3, 30, 1, default=5, label=’Height’),

selec = selector([’Head’, ’Foot’], label = ’Orientation’)

):

rad = sqrt(u)

reclis = rectangle(rx,ry)

newlis = allmissingcornercenter(reclis)

#show("Corners = ", newlis)

footlis = allmissingcornerfoot(reclis)

circs = [circle(newlis[k], rad/15, fill = False, thickness = 1.0, edgecolor =

"black", facecolor = "white") for k in range(0, len(newlis))]

circssum = sum(circs)

circs1 = [circle(footlis[k], rad/15, fill = False, thickness = 1.0, edgecolor =

"black", facecolor = "white") for k in range(0, len(footlis))]

circssum1 = sum(circs1)
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#hs = [diskbrown(vv[k], rad/40) for k in range(len(vv))]

hs = [diskbrown(reclis[k], rad/40) for k in range(len(reclis))]

same = duplicates(newlis)

#show("Overlap = ", same)

#show(’There are ’, len(vv), ’points’)

#show(circssum + sum(hs), figsize=12, xmin=-u, xmax=u, ymin=-u, ymax=u)

if selec == ’Head’:

show(circssum + sum(hs), figsize=12, xmin=-1, xmax=rx+1, ymin=-ry-1,

ymax=(2*ry)+1)

if selec == ’Foot’:

show(circssum1 + sum(hs), figsize=12, xmin=-1, xmax=rx+1, ymin=-ry-1,

ymax=(2*ry)+1)

if switch == True:

show(sum(hs))
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