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Perception & Psychophysics
1990, 48 (4), 297-306

Hemispheric differences are found in
the identification, but not the detection,

of low versus high spatial frequencies

FREDERICK L. KITTERLE, STEPHEN CHRISTMAN, and JOSEPH B. HELLIGE
University of Toledo, Toledo, Ohio

The processing of sine-wave gratings presented to the left and right visual fields was examined
in four experiments. Subjects were required either to detect the presence of a grating (Experi­
ments 1 and 2) or to identify the spatial frequency of a grating (Experiments 3 and 4). Orthogonally
to this, the stimuli were presented either at threshold levels of contrast (Experiments 1 and 3)
or at suprathreshold levels (Experiments 2 and 4). Visual field and spatial frequency interacted
when the task required identification of spatial frequency, but not when it required only stimu­
lus detection. Regardless of contrast level (threshold, suprathreshold), high-frequency gratings
were identified more readily in the right visual field (left hemisphere), whereas low-frequency
gratings showed no visual field difference (Experiment 3) or were identified more readily in the
left visual field (right hemisphere) (Experiment 4). Thus, hemispheric asymmetries in the process­
ing of spatial frequencies depend on the task. These results support Sergent's (1982) spatial fre­
quency hypothesis, but only when the computational demands of the task exceed those required
for the simple detection of the stimuli.

Perceptual characteristics of input, as well as cognitive
characteristics of task, have been shown (by, e.g., Ser­
gent & Hellige, 1986) to influence obtained patterns of
cerebral asymmetry. Sergent (1982, 1983) proposed that
the right visual field/left hemisphere (RVF/LH) is special­
ized for the perceptual processing of higher spatial fre­
quencies, and that the left visual field/right hemisphere
(LVF /RH) is specialized for the processing of lower spa­
tial frequencies. Two general strategies, one involving
complex stimuli and the other, simple stimuli, have been
employed in testing this hypothesis, and each strategy will
be discussed below in turn.

Strategy 1: Complex Stimuli
First, some researchers have used complex stimuli

(e.g., alphanumeric characters, faces) and have varied in­
put characteristics (e.g., size, eccentricity, luminance, ex­
posure duration) in order to vary the proportion of high
and low frequencies in the input. When Christman (1989)
reviewed such studies, he found moderate support for the
spatial frequency hypothesis. However, the manipulations
used in these studies have only crude and/or indirect ef­
fects on the spatial frequency content of the input, and
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sorship to J. B. Hellige, and a Stale of Ohio Department of Aging award
to F.L.K. In addition, the participation of J. B. Hellige was supported
by National Science Foundation Grant BNS 89-08305. We thank Girn
Koay for constructing the figures. Correspondence should be addressed
to Frederick L. Kitterle, Department of Psychology, University of
Toledo, Toledo, OH 43606.

thus they cannot be considered simple or straightforward
manipulations of spatial frequency as opposed to other in­
put variables (e.g., stimulus perceptibility; see Michimata
& Hellige, 1987).

In only four studies have quantitative forms of spatial
filtering been employed to directly test the spatial fre­
quency hypothesis. Sergent (1985) presented clear versus
low-pass blurred faces and found, as predicted by the
hypothesis, that low-pass blurring produced greater rela­
tive LH impairment. In a similar experiment, however,
Sergent (1987) obtained an LH advantage with broad-pass
faces and no hemispheric differences with low-pass faces.
Christman (1990) used dioptric blur to filter out higher
frequencies in a temporal integration task that required
the identification of digits. He found that low-pass blur
produced greater LH impairment. Finally, Peterzell, Har­
vey, and Hardyck (1989) used band-pass filtering in a
letter-classification task and found no interaction between
spatial frequency and.hemispheric advantage.

These results suggest that factors such as exposure du­
ration, task requirements, and stimulus perceptibility play
a role above and beyond any effects of spatial frequency.
In particular, the spatial frequency hypothesis stresses that
hemispheric asymmetries depend on the interaction of the
range of spatial frequencies available in the input with
the range of frequencies required by processing demands
of the task.

In the studies cited above, there was explicit control
and knowledge of the spatial frequencies available in the
input, but not of those required by the task. Sergent (1987)
pointed out the importance of "our ignorance about which
spatial frequencies convey the relevant information for
optimal performance in a particular task" (p. 424). Thus,

297 Copyright 1990 Psychonomic Society, Inc.
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the inconsistent results obtained by Peterzell et al. (1989)
and by Sergent (1987) may have arisen due to task, as
well as input, characteristics.

Strategy 2: Simple Stimuli
An alternative strategy in testing the spatial frequency

hypothesis is to present stimuli whose spatial frequency
spectra are simple and known (e.g., sine-wave gratings).
This not only permits explicit control over the frequen­
cies available in the input, but also allows for explicit
knowledge of the spatial frequencies required for process­
ing in the task at hand. The single frequency available
in the input is, by definition, the only frequency that can
be required for successful processing. Thus, paradigms
employing single-component sine-wave grating stimuli
provide a useful method of unambiguously examining the
effects of input characteristics and their interaction with
task requirements.

To date, studies done with grating stimuli have involved
the use of either discrimination or detection tasks to test
for hemispheric differences. With the discrimination task,
the conclusions from relatively few studies have been
equivocal. Fiorentini and Berardi (1984) tested at only
one spatial frequency (1 c/deg) and found some sugges­
tion of a small RH advantage, as predicted by the spatial
frequency hypothesis. It is obvious that their results are
limited. Szelag, Budohoska, and Koltuska (1987), who
used a wide range of base spatial frequencies, found no
evidence for hemispheric differences in the time needed
to discriminate whether two successively presented grat­
ings were the same or different. However, the changes
in mean luminance that accompanied presentation of the
gratings might have differentially masked high and low
spatial frequencies (Badcock & Sevdalis, 1987). Thus, the
evaluation of hemispheric differences is confounded by
potential differences in hemispheric susceptibility to mask­
ing. Similarly, Boles and Morelli (1988) failed to control
for changes in mean luminance. When mean luminance
is controlled, hemispheric effects are found, with discrimi­
nation of low spatial frequencies being faster for LVF/RH
presentations and discrimination of high spatial frequen­
cies being faster for RVF/LH presentations (Kitterle,
1990).

With the detection task, a number of studies have failed
to find hemispheric differences in contrast sensitivity
(Blake & Mills, 1979; Fiorentini & Berardi, 1984; Kit­
terle & Kaye, 1985; Peterzell et al., 1989; Rao, Rourke,
& Whitman, 1981). Earlier studies that showed hemi­
spheric differences in contrast sensitivity (Beaton & Blake­
more, 1981; Rovamo & Virsu, 1979) have not been repli­
cated, and it is possible that these earlier findings were
the result of individual differences in nasal and temporal
hemiretinal sensitivity, since only monocular viewing was
used.

Why are hemispheric differences not found in threshold
detection of spatial frequency? The detection of a grating
is a relatively simple task. Perhaps hemispheric asym­
metries arise only when there is a limited capacity for han-

dling information or for allocating attention (Rose, 1983).
In addition, the detection of a grating may occur relatively
early in processing. In the initial formulation of the spa­
tial frequency hypothesis, Sergent (1982) wrote that
"hemispheric differences as a function of spatial fre­
quency must result from processing taking place beyond
the sensory level" (pp. 265-266).

But what constitutes processing "beyond the sensory
level"? There are at least three possibilities. One possi­
bility is to assume that simple detection occurs at a sen­
sory level; therefore, hemispheric differences would arise
only when some higher level processing of the input is
required (e.g., discrimination, identification). Differences
in hemispheric processing tend to occur in psychophysi­
cal tasks that require relatively extensive computation by
the visual system (Christman, 1988; Cohen, 1982; Green­
wood, Rotkin, Wilson, & Gazzaniga, 1980; Kitterle,
1986; Rose, 1983). Thus, if hemispheric differences de­
pend on computational processes that monitor and com­
pare the output of different spatial frequency channels,
one might expect to find laterality effects in spatial fre­
quency discrimination and identification tasks. Discrimi­
nation requires an intermediate level of information
processing in between the levels of information necessary
for detection and identification judgments (see, e.g., Ut­
tal, 1988). Thus, identification tasks should require more
computation and consequently be more likely to result in
hemispheric asymmetries. To date, the identification of
sine-wave gratings in the LH versus the RH has not been
examined in any studies. One of our primary purposes
in the present paper, therefore, is to present experiments
carried out to examine the ability of the LH versus the
RH in order to identify threshold and suprathreshold grat­
ings of low versus high spatial frequency.

A second possibility is to assume that threshold levels
of stimulus contrast constitute a sensory level; hemispheric
differences would therefore arise only when supra­
threshold stimuli were used. A third possibility is the con­
junction of the previous two; that is, hemispheric differ­
ences arise only when discrimination or identification
judgments are performed on suprathreshold-level stimuli.
This suggests a 2 X 2 matrix consisting of the four com­
binations of two levels of task (i.e., detection and iden­
tification) and two levels of input (i.e., threshold and
suprathreshold), as depicted in Figure 1. With this in
mind, we present here five independent experiments: In
Experiments 1 and 2, we examined detection of gratings
at threshold and suprathreshold levels, respectively,
whereas in Experiments 3, 4, and 5, we examined sine­
wave grating identification at threshold and suprathreshold
levels. In this way, all possible combinations of task level
and input contrast level were investigated.

If task and computational requirements are critical, only
Experiments 3, 4, and 5 (involving identification tasks)
would be expected to yield hemisphere x spatial fre­
quency interactions. If input contrast level is critical, then
Experiments 2, 4, and 5 (involving suprathreshold stimuli)
would be expected to yield hemispheric effects. Lastly,
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TASK VARIABLES

GENERAL METHOD

Figure 1. A summary of all the experiments in this study,
represented as a 2x2 table that shows all possible combinations of
task level (detection vs. identification) x input contrast level
(threshold vs. suprathreshold).

if higher level task requirements performed on supra­
threshold stimuli are critical, then only Experiments 4 and
5 (suprathreshold identification) would be expected to
yield hemispheric effects.

EXPERIMENT 1

The warning tone preceded the gratings by a variable foreperiod
(500-1,100 msec). The subjects viewed the displays binocularly
through a viewing hood in a darkened room. The hood and a chin­
rest provided a means of stabilizing the subject's head during the
session.

All subjects were naive about the purposeof the study, all reported
that they had normal visual acuity, and all were right-handed males
with no immediate family history of sinistrality. We assessed their
handedness with a brief handedness questionnaire.

Method
Subjects. Ten right-handed males received either course credit

or $10 per hour for their participation.

Threshold Detection Under Uncertainty

Five previous studies (Blake & Mills, 1979; Fiorentini
& Berardi, 1984; Kitterle & Kaye, 1985; Peterzell et al.,
1989; Rao et al., 1981) did not yield hemispheric differ­
ences in spatial frequency processing in detection tasks
at sensory threshold. However, these studies share some
methodological limitations, as, for example, in the num­
ber and nature of subjects. Laterality studies typically re­
quire large numbers of subjects, because cerebral later­
alization is an inherently noisy phenomenon with large
intersubject variability. In none of the aforementioned
studies, however, were more than 4 subjects used, and
thus none is likely to have had sufficient power for the
detection of hemispheric differences. In our Experi­
ment 1, 10 subjects were used. In all of the aforemen­
tioned studies, only accuracy (percent detection) was ex­
amined. In the present experiments, both reaction time
(RT) and accuracy were measured in order to obtain a
broader picture of the nature of hemispheric processing.
Conceivably, hemispheric differences in the ability to de­
tect spatial frequency may appear only in terms of process­
ing time, not processing accuracy.

Uncertainty affects threshold detection. The contrast
threshold increases when subjects are uncertain about
which spatial frequency will be presented and/or which
spatial position it will be presented at (Davis & Graham,
1981; Davis, Kramer, & Graham, 1983). Subjects need
to monitor more visual channels under conditions of un­
certainty; because these channels are noisy and give rise
to false alarms, performance deteriorates relative to con­
ditions in which all resources can be devoted to the
monitoring of a single channel.

All of the aforementioned five studies were run under
conditions of maximum certainty; on any given trial, the
subject knew exactly which frequency and which spatial
position (i.e., visual field) was going to be employed. In
the present Experiment 1, however, the subjects did not
know from trial to trial which of five frequencies or which
of two spatial positions (LVF vs. RVF) would occur. If
there are hemispheric differences in the noisiness of spa­
tial frequency channels, then conditions of uncertainty in
Experiment 1 should be better suited at uncovering poten­
tial hemispheric differences in threshold detection of vary­
ing spatial frequencies.
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Features that are common to all five experiments are described
in the next section, followed by procedures and methods unique
to each experiment.

The stimuli (vertically oriented sinusoidal gratings) were gener­
ated by a Picasso CRT Spatio-Temporal Image Synthesizer (lnnis­
free) under computer control and displayed on two Tektronix 608
monitors (P-31 phosphor, which decays to I % intensity at .25 rnsec
after display offset). Holes in the large black mane surround (300

high X 36 0 wide at a viewing distance of 42 in.) placed directly
in front of the monitors masked their screens down to two 6.8 0

circular displays. The inner edge of each screen was 30 from the
small red fixation point placed between the two CRTs. Signals to
the .r- and y-axes of both monitors produced uniformly lit screens
(mean luminance of 10.3 cd/m'), Signals to the z-axis of the moni­
tors produced the various spatial frequencies. The amplitude of these
signals controlled the contrast, C, defined as

(Lmax - Lmin)I (Lmax + Lmin),

where Lmax is the maximum luminance and Lmin is the minimum
luminance. Because contrast was modulated about the mean lu­
minance of the screens, the level oflight adaptation did not change
when the gratings were abruptly turned on and off. Both contrast
and mean luminances were measured with a Tektronix 116 pho­
tometer/radiometer. Care was taken throughout the study to ensure
that the monitors remained matched in mean luminance and that
the contrast calibrations did not drift.

At the beginning of the session, subjects were light-adapted for
2 min to the mean luminance of the display while the instructions
were read. The instructions stressed the importance of looking at
the red fixation light as soon as the warning tone was sounded and
of maintaining fixation until after the response key was depressed.
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Stimuli. The exposure duration for gratings was held constant
at 150 msec. The stimulus set consisted of five spatial frequencies
(0.75,1.5,3.0,6.0, and 12.0 c/deg), each with four levels of con­
trast that were selected, on the basis of pilot data, to span a range
that included sub- and slightly suprathreshold levels. The stimulus
set also contained a set of zero contrast gratings that served as catch
trials. An experimental block consisted of 102 trials: 80 stimulus
trials (resulting from the factorial combination of 5 spatial frequen­
cies x 4 levels of contrast X 2 visual fields x 2 foreperiod dura­
tions) and 22 catch trials (zero contrast gratings) on which no stimu­
lus was presented.

Procedure. The method of constant stimuli was employed, so
that the 102 trials were presented in a random order.

Each trial began with a warning tone, which alerted the subject
that a stimulus might or might not occur after a foreperiod of 650
or 800 msec. To indicate whether or not they had detected the
presence of a grating, half of the subjects then responded "present"
by pressing a key with the left index finger and .. absent" by press­
ing a key with the right index finger; the other half responded with
the reverse order.

Each subject participated in a total of 14 experimental blocks of
102 trials each. The subjects were run in two separate sessions of
7 blocks each. A brief rest period followed each block, and an ex­
tended break was given after the 4th block of each session.

Results and Discussion
Regression analyses indicated the contrast (and as­

sociated median RT) necessary to achieve 75% correct
detection for each spatial frequency in the LVF versus
the RVF. This served to normalize the data and to help
smooth out individual differences in overall levels of per­
formance. Figure 2A shows the derived contrast sensi­
tivity functions for the LVF and RVF. Figure 2B shows
the associated RTs. Analyses of variance (ANOVAs) were
performed on the contrasts and RTs associated with 75%
correct detection, with spatial frequency and visual field
as within-subject variables, and hand of response as a
between-subject variable.

Contrast threshold data. There were no significant
main effects of hand of response [F(1 ,8) = 1.2, p > .20]
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or visual field [F(I,8) = 1.94, p > .20]. There was a
significant effect of spatial frequency [F(4,32) = 94.56,
p < .00001], with higher frequencies requiring greater
contrast for detection. There were no significant inter­
actions between hand of response and spatial frequency
[F(4,32) < 1], hand of response and visual field [F(l,8)
= 1.95, P > .20], or spatial frequency and visual field
[F(4,32) = 1.73, p > .16]. Finally, the three-way inter­
action between hand of response, spatial frequency, and
visual field was also nonsignificant [F(4,32) = 1.94,
p > .12]. Thus, there were no hemispheric asymmetries
in contrast sensitivity as a function of spatial frequency,
even under conditions of maximal stimulus uncertainty.

Reaction time data. There was no main effect of hand
ofresponse [F(I,8) = 1.22, p > .30]. There was a sig­
nificant effect of spatial frequency [F(4,32) = 6.23,
p < .002], with higher frequencies yielding longer RTs.
The main effect of visual field was nonsignificant [F(l,8)
= 4.37, p < .07], although there is some suggestion that
there are slightly faster RTs with RVF stimuli. Visual field
did not interact with spatial frequency [F(4,32) < 1], sug­
gesting that (in accord with the contrast threshold data)
there were no hemispheric differences as a function of
spatial frequency.

There was also no interaction between visual field and
hand of response [F(l,8) = 1.17, p > .31]. The inter­
action between hand of response and spatial frequency was
nonsignificant [F(4,32) = 2.18, p < .10].

EXPERIMENT 2

Grating Detection at Suprathreshold Levels

In Experiment 1, as in previous experiments that also
required the threshold detection of sine-wave gratings, no
hemispheric asymmetries were found. As discussed
earlier, Experiment 2 was designed to test whether or not
an interaction of spatial frequency and visual field would

...........-0 RVF/LH

/~ .............. LVF/RH

0 0-0/.-.
./

1 10 100

SPATIAL FREQUENCY (c/deg)

Figure 2. (A) Contrast sensitivity as a function of spatial frequency for left visual field (LVF, filled circles) and right visual field
(RVF, unfilled circles)presentations under spatial positionand spatial frequency uncertainty. (B) Reaction time to detect threshold-level
gratings as a function of contrast under spatial position and spatial frequency uncertainty. Filled circles plot LVF presentations
and unfilled circles plot the data for RVF presentations.



emerge in the detection task at suprathreshold levels of
stimulus contrast. Because stimuli were shown at
suprathreshold contrasts, no detection errors occurred,
and only RT data will be reported.

Method
Subjects. Twelve right-handed males participated for course

credit.
Stimuli. Spatial frequencies of 1,3, and 10 cldeg were used in

this experiment. Contrast was also varied in this experiment (.1,
.2, and .4). There were two exposure durations (50 and 200 msec).

Procedure. The subjects were required to depress a response key
as soon as they saw a grating. The grating was presented to either
the right or the left of fixation at a variable time after a warning
tone. There was a I-sec intertrial interval.

The design of the experiment involved two viewing conditions
(LVF or RVF presentation), three spatial frequencies (I, 3, and
10 cldeg), three contrasts (.1, .2, and .4), and two exposure dura­
tions (50 and 200 msec) as within-subject variables. There were
20 replications of each condition and two rest periods within the
experimental session. After the second rest period, the subject was
instructed to respond with the opposite hand. Each observer had
a series of practice trials. The analysis of this experiment was based
on the mean of the median RTs of each condition.

Results
The results are shown in Figures 3A, 3B, and 3C, where

RT is plotted as a function of spatial frequency for con­
trast levels of .1, .2, and .4, respectively. The left panel
of each figure shows the results for a 50-msec exposure,
and the right panel, the loo-msec exposure duration. In
all figures, RTs are averaged over hand since this vari­
able did not significantly interact with spatial frequency,
duration, visual field, or contrast, or with any combina­
tion of these variables. A four-factor repeated measures
ANOVA was conducted on these data.

There were significant main effects of spatial frequency
[F(2,22) = 21.33, p < .0001], contrast [F(2,22) =
132.52, P < .0001], duration [F(l,II) = 9.36,
p < .05], and visual field [F(l,ll) = 9.36, p < .01].
Specifically, RT increased with spatial frequency,
decreased with contrast and duration, and was shorter for
LVF than for RVF presentations. In addition, there were
significant first-order interactions of spatial frequency and
contrast [F(4,44) = 8.26, p < .0001] and contrast and
duration [F(2,22) = 8.19,p < .002]. However, despite
an increased number of subjects and additional procedural
controls not found in earlier studies, there were no sig­
nificant spatial frequency x visual field [F(2, 22) = .95,
p > .4], spatial frequency x visual field X contrast
[F(4,44) = .93, p > .45], spatial frequency X visual
field X duration [F(2,22) = .62, p > .53], or spatial fre­
quency x visual field X contrast X duration [F(4,44) =
.28, p > .82] interactions. Thus, there were no hemi­
spheric differences in suprathreshold detection of spatial
frequency. These results reinforce the finding in Experi­
ment 1 and previous studies of hemispheric symmetry in
the detection of gratings.
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EXPERIMENT 3

Threshold Identification
As mentioned earlier, visual field X spatial frequency

interactions might be found in psychophysical tasks only
when some higher level of processing of the input or more
extensive computation by the visual system is required.
For example, for identification of the spatial frequency
presented, the output of the different spatial frequency
channels must be both monitored and compared. For de­
tection, on the other hand, it is not necessary to know
which channel responded, only that there was activity in
some channel. Threshold detection and identification may
also be based on different decision processes (Thomas,
1985; Thomas, Gille, & Barker, 1982). The results of
Experiments I and 2 indicate that both hemispheres oper­
ate on equivalent bases of sensory information and apply
the same detection rules. However, the two hemispheres
differ in response biases in other situations (see, e.g.,
Chiarello, Pollock, & Gage, 1988; Peterzell et al., 1989)
and may differ in the computational processes or deci­
sion rules that lead to the identification of a stimulus as
being of high versus low frequency. Experiment 3, there­
fore, was designed to determine whether hemispheric
asymmetries are present in grating identification at
threshold.

Method
Subjects. Eight right-handed males received either course credit

or $10 per hour for their participation.
Stimuli. Two stimulus sets were used: a low-frequency set (0.75­

and 1.5-c/deg vertical sine-wave gratings) and a high-frequency set
(6.0- and 12.0-c/deg gratings). Each grating was paired with five
contrast levels, chosen to span a range that included sub- andslightly
suprathreshold levels and to yield equivalent detection performance
(as determined by detection performance in Experiment I) for each
spatial frequency. This enabled us to examine, in Experiment 3,
the ability of the LH versus the RH to identify different spatial fre­
quencies that were equally detectable.

Procedure. An experimental block used a single stimulus set and
consisted of 105 trials: 100 stimulus trials (resulting from the fac­
torial combination of 2 spatial frequencies x 5 levels of contrast
x 2 visual fields x 5 foreperiod intervals) and 5 catch trials on
which no grating was presented. The method of constant stimuli
was employed, so that the trials were presented in random order.

Each trial began with a warning tone, alerting the subject that
a stimulus would be presented for 150 msec after a foreperiod of
600, 650, 700, 750, or 800 msec. The subjects were told to press
one key if the stimulus with wide bars (i.e., 0.75-c/deg grating in
the low-frequency set; 6.0 c/deg in the high-frequency set) had been
presented, and to press the other key if the stimulus with narrow
bars (i.e., 1.5 c/deg in the low-frequency set; 12 c/deg in the high­
frequency set) had been presented. Half of the subjects responded
"wide" with the left hand and "narrow" with the right; this ar­
rangement was reversed for the other half.

The subjects were run in two separate sessions of eight blocks
each, one session for each stimulus set. Half of the subjects received
the low-frequency condition first, and the other half the high­
frequency condition first. The subjects rested briefly at the mid­
point of each session.
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Figure 3. Reaction time to detect a suprathreshold-level grating as a function of contrast (A, .10;
B, .20; C, .40) and exposure duration (SO msec, left panels, and 100 msec, right panels). Filled cir­
cles plot left visual field (LVF) presentations and unfilled circles plot the data for right visual field
(RVF) presentations.



Results and Discussion
Contrast threshold data. The percent correct identifi­

cations as a function of visual field (LVF, RVF) and con­
trast level are shown in Figure 4A for the low-frequency
condition and in Figure 4B for the high-frequency con­
dition.

In this analysis, spatial frequency, visual field, and con­
trast level were within-subject variables. Performance im­
proved as contrast increased [F(4,24) = 50.73, p <
,[OO1סס. but no other main effect was significant.
Although the predicted interaction between spatial fre­
quency and visual field did not appear (F < 1), there was
a significant three-way interaction between spatial fre-
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quency, visual field, and contrast level [F(4,24) = 3. 16,
P < .04]. Spatial frequency and visual field did not inter­
act at Contrast Levels 1 (F < 1), 2 (F < I), or 3
[F(l,7) = 2.36, p > .16], but did interact marginally at
Contrast Level 4 [F(I,7) = 4.25, P < .08] and signifi­
cantly at Contrast Level 5 [F(l,7) = 5.48, p < .05]. At
Contrast Levels 4 and 5, there were no visual field differ­
ences in the low-frequency condition (Figure 4A) and a
RVF advantage in the high-frequency condition (Fig­
ure 4B).

Reaction time data. Mean RTs are plotted in
Figure 4C for the low-frequency condition and in
Figure 4D for the high-frequency condition.
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Figure 4. As a function of contrast (arbitrary units) for left visual fJeld/right hemi­
sphere (L VFIRH, filled circles) and right visual fieldlleft hemisphere (RVF/LH, un­
fined circles) presentations: (A) Frequency of seeing as a function of contrast (ar­
bitrary units) for the identification of low-spatial-frequency gratings (.7S and
I.S c/deg); (B) frequency of seeing as a function of contrast for the identification
of high-spatial-frequency gratings (6 and 12 c/deg); (C) reaction times to identify
low-spatial-frequency gratings (.7S and I.S c/deg); and (D) reaction times to iden­
tify high-spatial-frequency gratings (6 and 12 c/deg).
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Mean RT decreased with contrast [F(4,24) = 12.90,
P < ,[OO1סס. but no other main effect was significant.
To test for the hypothesized directional interaction be­
tween spatial frequency and visual field, we first obtained
the difference scores between RTs for LVF and RVF
presentations with low-spatial-frequency stimulus set and
similar difference scores for high-spatial-frequencystimu­
lus set. We then took the difference between these two
differences and, using a one-tailed t test, determined
whether or not the result was significantly different from
zero. The visual field x spatial frequency interaction ap­
proached significance [t(6) = 1.77, p < .06]. The trend
of visual field differences was the same as for the per­
cent correct identification data; that is, there were no
differences in the low-frequency condition (Figure 4C)
and an RVF advantage in the high-frequency condition
(Figure 4D). None of the other interactions were sig­
nificant.

Thus, there is partial support for the spatial frequency
hypothesis in both the contrast threshold percent correct
identification and the RT data. High spatial frequencies
are identified more accurately and more rapidly with
RVF/LH than with LVF/RH presentations. However,
there is an absence of a double dissociation (i.e., RH ad­
vantage for low frequencies and LH advantage for high).

EXPERIMENT 4
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Figure 5. Reaction times to identify 1- and 9-c/deg gratings as a
function of contrast level for left visual field/right hemisphere
(LVF/RH, filled circles) and right visual field/left hemisphere
(RVF/LH, open circles) presentations averaged over exposure du­
ration.

with the other three variables, and are presented in
Figure 5 for the 1- and 9-c/deg gratings.

Mean RT decreased with contrast [F(2,6) = 32.41,
p < .001] and increased with spatial frequency [F(1,4) =

14.8, p < .025]. The visual field x spatial frequency
interaction was significant [F(1,4) = 8.03,p < .05], as
was the visual field x spatial frequency x contrast inter­
action [F(2,1O) = 7.06, p < .05]. With the 1-c/deg grat­
ing, mean RTs were significantly faster when the presen­
tation was in the LVF than when it was in the RVF [501
vs. 521 msec; F(l,4) = 6.97, p < .05]; with the 9-c/deg
grating, they were faster when the presentation was in
the RVF than when it was in the LVF [551 vs. 570 msec;
F( 1,4) = 82.78, p < .01]. The divergence increased with
contrast for the 1-c/deg grating but decreased with con­
trast for the 9-c/deg grating (Figure 5).

In summary, the results of Experiment 4 are consistent
with the spatial frequency hypothesis. A low-frequency
grating was identified more rapidly in the LVF, and a
high-frequency grating, more rapidly in the RVF. Mean
RTs decreased with increases in contrast; the rate of
decrease, however, depended on spatial frequency. It was

Suprathreshold Grating Identification
In Experiment 4, briefly flashed, suprathreshold sinu­

soidal gratings were presented and RT alone was meas­
ured. If a double dissociation exists at suprathreshold
levels, then low-spatial-frequencygratings should be iden­
tified faster when presented in the LVF, since the RH is
hypothesized to process these components more effi­
ciently, and vice versa for high-spatial-frequencygratings.

Method
Subjects. Five right-handed males participated for course credit.

Data from an additional subject were excluded because of failure
to follow instructions.

Stimuli. Vertically oriented sinusoidal gratings (l and 9 c/deg)
were presented at contrast levels of .1, .2, and .4. The gratings
were exposed for either 50 or 200 msec and were presented at a
variable foreperiod (500-1,100 msec) after a brief warning tone.

Procedure. There were 20 replications of each condition and two
rest periods within the experimental session. Each observer had a
series of practice trials.

Half of the subjects depressed the left key for the wide-striped
stimulus and the right key for the narrow-striped stimulus. For the
other half, the reverse arrangement was used. For both groups, the
importance of speed and accuracy was stressed as well as the im­
portance of maintaining fixation.

Results and Discussion
A four-factor repeated measures ANOVA (2 spatial fre­

quencies x 2 visual fields x 2 durations x 3 contrasts)
was done on the basis of the means of the median RT for
each condition for the 5 observers. The data were col­
lapsed over duration, which did not significantly interact
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faster and asymptoted sooner for the low-spatial-frequency
gratings.

EXPERIMENT 5

The spatial frequency x visual field x contrast inter­
action in Experiment 4 strongly supports the hypothesis
that the relative processing efficiency of the cerebral hemi­
spheres depends on the spatial frequency of the stimulus.
Exposure duration was not found to interact with spatial
frequency and visual field. However, only two exposure
durations were used. Therefore, a second suprathreshold
experiment was conducted, utilizing the same spatial fre­
quencies (1 and 9 c/deg) to examine the effects of ex­
posure duration in more detail. Because it used the same
spatial frequencies, Experiment 5 essentially replicated
Experiment 4 and thus also provided a measure of the
reliability of our findings.

Method
Subjects. Ten right-handed males participated for course credit.
Stimuli. The spatial frequencies of I and 9 c/deg were exposed

for 20, 40, or 160 msec. The contrast of the gratings was .1, .2,
or .4, and the mean luminance was 10 cd/rrr'.

Procedure. The procedure used was similar to that used in Ex­
periment 4. There were 20 repetitions of each combination of con­
dition, and the analysis was based on the mean of the median RTs
of each condition.

Results
Mean RT is plotted as a function of exposure duration

for the 1- and 9-c/deg gratings (Figure 6). Filled circles
plot the data for LVF presentations and open circles for
RVF presentations.

As predicted from Experiment 4, spatial frequency
interacted with visual field [F(1,9) = 5.92,p < .05]. The
l-c/deg grating evoked faster RTs when it was presented
in the LVF, whereas faster RTs were obtained with the
9-c/deg target when it was presented in the RVF. There
were no significant second-order interactions between du­
ration, spatial frequency, and visual field. However, du­
ration had a main effect [F(2, 18) = 9.54, p < .001], and
it interacted with spatial frequency [F(2, 18) = 4.84, p <
.02]. Mean RT decreased with exposure duration, espe­
cially with the l-c/deg grating.

GENERAL DISCUSSION

In the initial formulation of the spatial frequency
hypothesis, Sergent (1982) attributed hemispheric asym­
metries in sensitivity to spatial frequency to processing
beyond the sensory level. Earlier studies, in which grat­
ings were used and in which no hemispheric asymmetries
in contrast sensitivity were found, typically required de­
tection and measured contrast at threshold levels. Failure
to find hemispheric differences may be due to the level
of stimulation; that is, hemispheric asymmetries may arise
only at suprathreshold contrast levels. Conversely, failure
to find hemispheric asymmetries may be due to the na-
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Figure 6. Reaction times to identify 1- and 9-c/deg gratings at 10%
contrast as a function of exposure duration for left visual field/
right hemisphere (LVF/RH, filled circles) and right visual field/left
hemisphere (RVF/LH, open circles) presentations.

ture of the detection task. We addressed this issue in our
experiments by varying both the level of stimulation (i.e.,
threshold vs. suprathreshold) and the nature of the task
(detection vs. identification). We have shown that hemi­
spheric asymmetries arise at both threshold and
suprathreshold levels for grating identification. Con­
versely, hemispheric symmetry is found at both levels for
grating detection.

Hemispheric asymmetries in the processing of spatial
frequency are not unique to our procedure, namely
presenting a single sinusoidal grating in isolation and re­
quiring a unique identification response. Christman, Kit­
terle, and Hellige (1990) found that compound gratings
with low-spatial-frequency components (.5 and 1 c/deg)
were identified faster by the RH than by the LH, whereas
a compound grating with high-spatial-frequency compo­
nents (4 and 8 c/deg) was identified faster by the LH than
by the RH. Kitterle, Christman, and Hellige (1990) have
shown that the direction of visual field asymmetries for
compound gratings can be altered by choosing tasks that
direct attention to either high- or low-spatial-frequency
components. Finally, as noted earlier, a visual field x
spatial frequency interaction is found in the time required
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to discriminate whether two successively presented grat­
ings have the same or different spatial frequencies (Kit­
terle, 1990).

The results of the present experiments, together with
the studies mentioned above, provide compelling evidence
in support of the spatial frequency hypothesis. hemispheric
asymmetries in identification in the direction predicted by
this hypothesis can be induced either by changing the spa­
tial frequency components of the visual input toward the
high- or low-spatial-frequency range or by directing at­
tention toward the high- or low-spatial-frequency com­
ponents in the visual stimulus.

Recent models suggest that threshold detectionand iden­
tification operate at the same level of sensory input but
differ in the nature of the decision process (see Kitterle
& Christman, in press, for further discussion). Sergent's
(1982) statement that the hemisphere X spatial frequency
interaction is the result of "processing beyond the sen­
sory level" may be understood in terms of differences
in the computational process for detection versus iden­
tification rather than differences in level of processing
(i.e., detection early, identification late). Having clearly
shown in our experiments that hemispheric asymmetries
occur with identification tasks, we suggest that future
work should be directed toward an elaboration of the na­
ture of hemispheric differences in the computational
processes involved in the identification oflow versus high
spatial frequency.
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